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“Der Mensch kann nur Mensch werden durch Erziehung.
Er ist nichts, als was die Erziehung aus ihm macht.”
— IMMANUEL KANT



Resumo

A computacdo quantica tem potencial para revolucionar campos como desenvolvimento
de medicamentos, previsao de doencas, design de materiais, aprendizado de maquina,
big data e seguranca cibernética. O componente fundamental dos processos de infor-
macao quantica é o qubit, que aproveita a superposicao quantica para representar 0 e 1
simultaneamente, ao contrario dos bits cldssicos que s6 podem representar um valor de
cada vez. Varias abordagens para implementacao de qubits foram propostas, incluindo

supercondutores, spins nucleares e eletronicos, fons aprisionados e qubits fotonicos.

Recentemente, foi proposta uma nova maneira de implementar o qubit para com-
putagao quantica através de uma aplicacao inovadora de heteroestruturas de van der
Waals (vdW) como qubits de carga, aqui denominadas qubits vdW. Ele explora a super-
posicao espacial de elétrons das camadas individuais, estudando a composicao orbital das
bandas em fun¢ao do campo aplicado. Dada a extensa lista de combinagoes possiveis de

materiais bidimensionais (2D), a proposta oferece uma nova perspectiva na érea.

Neste trabalho, investigamos as propriedades estruturais e eletronicas de vinte dichalco-
genetos de metais de transicdo (TMDs) usando a Teoria do Funcional da Densidade
(DFT). Selecionamos camadas com niveis de energia bem alinhados que resultaram em
estados hibridizados para formar qubits vdW. Para estudar esses qubits com menor es-
forgo computacional do que DFT, empregamos a abordagem Tight-Binding (TB), us-
ando Fungoes de Wannier Maximamente Localizadas (MLWF) derivadas de célculos DFT.
Nosso modelo simplificado é consistente com os resultados DFT, validado e generalizado
para outros sistemas com estados hibridizados semelhantes. Identificamos novas combi-
nacoes de materiais 2D como candidatos promissores para a implementagao de qubits
vdW.

Para explorar as propriedades de transporte de regioes de dispersao influenciadas por
estados hibridizados em materiais 2D, focamos em nanofitas (NRs) para nossos calculos
de transporte quantico. Esses calculos nos permitem analisar como as ondas planas se
dividem devido aos estados hibridizados, facilitando a transmissao de corrente entre as
camadas dentro da heteroestrutura. As NRs simuladas foram baseados em modelos TB

anteriores para os materiais 2D com confinamento adicional, garantindo o carater ab



viil

1mitto do nosso modelo, mantendo baixo custo computacional. Inicialmente, exploramos
o impacto do confinamento nas NRs formadas a partir de monocamadas TMD, avaliando
como a terminagao quimica e a configuracao das bordas influenciam o surgimento dos
estados de bordas e das propriedades de transporte. Com uma compreensao clara dos
efeitos do confinamento, procedemos a investigacao do transporte em estruturas altamente
hibridizadas para observar a divisao de pacotes de onda. Essas descobertas abrem caminho

para a implementacao de qubits de carga.



Abstract

Quantum computing has the potential to revolutionize fields like drug development, dis-
ease prediction, materials design, machine learning, big data, and cybersecurity. The
fundamental component of quantum information processes is the qubit, which leverages
quantum superposition to represent both 0 and 1 simultaneously, unlike classical bits that
can only represent one value at a time. Various approaches to qubit implementation have
been proposed, including superconductors, nuclear and electronic spins, trapped ions, and

photonic qubits.

Recently, a new way of implementing the qubit for quantum computation through an
innovative application of gated van der Waals (vdW) heterostructures as charge qubits has
been proposed, here named vdW qubits. It explores the spatial superposition of electrons
from the individual layers by studying the orbital composition of the bands as a function
of the gate field. Given the extensive list of possible combinations of two-dimensional

(2D) materials, the proposal provides a new perspective in the area.

In this work, we investigate the structural and electronic properties of twenty 2D
transition metal dichalcogenides (TMDs) using Density Functional Theory (DFT). We
selected layers with well-aligned energy levels that resulted in hybridized states to form
vdW qubits. To study these qubits with lower computational effort than DFT, we em-
ployed the Tight-Binding (TB) approach, using Maximally Localized Wannier Functions
(MLWF) derived from DFT calculations. Our simplified model is consistent with DFT
results, validated, and generalized to other systems with similar hybridized states. We
identified new combinations of layered materials as promising candidates for implementing
vdW qubits.

To explore the transport properties of scattering regions influenced by hybridized states
in 2D materials, we focused on nanoribbons (NRs) for our quantum transport calcula-
tions. These calculations allow us to analyze how plane waves split due to hybridized
states, facilitating current transmission between layers within the heterostructure. The
NRs simulated were based on previous TB models for the 2D materials with additional
confinement, ensuring the ab initio character of our model while maintaining low com-

putational cost. Initially, we explored the impact of confinement on NRs formed from



TMD monolayers, assessing how chemical termination and edge configuration influence
the appearance of edge states and transport properties. With a clear understanding of
confinement effects, we proceeded to investigate transport in highly hybridized structures
to observe wave packet splitting. These findings pave the way for implementing charge

qubits.
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1 Introduction

1.1 Motivation

The creation of the transistor in Bell Labs in 1947 impacted several branches of the
technology industry, but that impact was mighty in computer design. Integrated circuits,
often containing billions of microscopic transistors, are the building blocks of current
electronic devices. The trend of increasing ever smaller transistors being included in each
processor chip was expressed as an empirical law, known as Moore’s law (MOORE, 1998).
While still relevant, the pace of this exponential growth has slowed slightly, as noted by
Intel’s CEQ. Instead of the doubling every two years, the contemporary trajectory now

extends to a three-year cycle for doubling the transistor count on chips.

The large number of miniaturized transistors included in a single chip helps to increase
the performance and portability of the processors, making it possible to deal with complex
numerical problems that require substantial computational power. However, some diffi-
culties arise, such as shape engineering and gate design, due to the large-scale integration
causing the dimensions of the elements to approach the atomic level. In that length scale,
the laws of Quantum Mechanics (QM) dictate the operations: tunneling, entanglement,
and superposition of states are intrinsic properties that one needs to deal with. By learn-
ing how to create and manipulate operational devices that exploit quantum effects can
help guide us toward the next leap on the development of second-generation quantum
technologies (GEORGESCU; NORI, 2012).

Presently, one can tackle a large class of complex problems computationally. How-
ever, many other problems are still out of reach since they demand a large amount of
computing time to be answered, even with the most powerful processors available. From
a fundamental point of view, even if one has complete knowledge of the physical laws
relevant to the problem, numerical solutions are still a non-trivial task. For instance, in
quantum many-body problems, a standard computer cannot deal with the wave function
of a many-body system with ~ 3 x 10* coordinates. Problems in weather forecasting, gene
mapping, drug development, molecular simulations, cellular reactions, cryptography, and

the emergent evolution of machine learning and artificial intelligence need a device capa-
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ble of performing complex tasks reasonably fast. This machine is the quantum computer

(QC), and its building blocks are known as quantum bits or qubits.

In Fig.(1.1), one may note the difference concerning performance between a classical
computer (CC) and a QC. Since the qubits are described by a superposition of any two
quantum states, the amount of information carried by n qubits would require 2" classical
bits. Once the system’s complexity and the amount of data increase, the QC is superior to
its classical counterpart since it can handle several entries of information simultaneously,

reflecting the time required to execute a certain task.

A

Calculation time

System's Complexity

FIGURE 1.1 — Performance comparison of a classical vs. quantum computer with system’s complexity.

Since the qubits on a QC are a superposition of two quantum states, the probability
of either outcome depends on the qubit’s quantum state immediately before measurement
(interaction with the observer). Mathematically, it can be described as a superposition of

[thg) with energy ¢ and |¢1) with energy &;

) = afto) + B 1), (1.1)

where a and  are complex numbers and [¢) is constrained to the orthonormalization

condition,

la® + 18] = 1. (1.2)

This two-level system can be represented graphically on a Bloch sphere, Fig.(1.2), in the
basis {]0),|1)}

|4) = cos (g) |0) + €% sin (g) 1), (1.3)
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where 6 and ¢ are the azimuthal and polar angles on spherical coordinates, respectively.
This representation gives a useful visualization once logical operations are performed on
the qubit.

FIGURE 1.2 - (a) a graphical representation of a qubit on a Bloch sphere. (b) Landau—Zener evolution of
a two-level system represented on the Bloch sphere. Figures generated using QuTip package (JOHANSSON
et al., 2012; JOHANSSON et al., 2013).

Nevertheless, this desire for a universal QC that can perform any task, not just specific
ones, is not new (DEUTSCH, 1985). In a lecture by Richard Feynman in the 60s, he argues
that nothing in the physical laws prohibits this continuous miniaturization of electronic
components and explores quantum phenomena that emerge on this length scale to solve
complex problems. He stated: “nature is not classical... if you want to make a simulation
of nature, you had better make it quantum mechanically” (FEYNMAN, 1959), and today
a QC can be used not just to tackle complex problems but also test the foundations of
QM itself (SADANA et al., 2022). Since it can be difficult to predict certain properties of
quantum materials and due to the expenses in doing it in several experiments, the use of
simulations is often used in a predictive way of obtaining excellent approximation about

several properties (HEAD-MARSDEN et al., 2021).

To guide theoretical research and industry investments in the creation of a QC, David
DiVincenzo proposed five requirements for a physical implementation (DIVINCENZO, 1996;
DIVINCENZO; IBM, 2000):

e A Hilbert space well delineated and a scalable physical system with well-characterized
qubits (two-level system: spin, ground and excited state, photons polarization);

e Initialization of the qubits (knowledge of the initial state before the start of the

computation, for instance, be cool down to the ground state of its Hamiltonian);

e The quantum system must be isolated from its environment for its state not to

be mixed, resulting in decoherence. This requirement is directly related to error
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correction and quantum computation fault tolerance. We must have coherent times
longer than the gate operation time (it is essential to look at the coherence time
because any quantum system is characterized by this time when in contact with
the external environment - the shorter this time, the faster the system becomes

classical);

e Universal quantum gates. This requirement is the basis for all quantum computa-
tion. One must be able to perform a sequence of unitary operations that act on

specified pairs of qubits and generates entangled states;

e One must be able to perform a “strong” measurement on the system to extract

information after it (a strong coupling with the quantum system must be made).

Since then, a considerable amount of research has been done to obtain a functional
and universal QC due to the massive investment of industries such as Microsoft, IBM,
Google, Amazon, Intel, and D-Wave that are investing millions (or even billions) on
the development of technologies and encouraging theoretical studies to put in practice a
QC. To cite some movements already made by the industry and academia, Google, with
universities, simulated a hydrogen molecule computing the energy surface using an array
of qubits in 2016. After, they performed a Hartree-Fock calculation using the Google
Sycamore quantum processor where the simulations used 12 qubits (NULL et al., 2020)
and recently, in 2019, Google claim reached quantum supremacy (ARUTE et al., 2019). In
the same year, IBM revealed a QC with 53 qubits, and in 2021 they claimed that they
built a quantum processor with 127 qubits, the “IBM Eagle”. Right after, a Chinese group
claimed that they had achieved quantum supremacy, performing better than previously
claimed by Google (PAN et al., 2022).

A significant challenge in creating a functional QC resumes creating an environment
where the qubits live (host material and design), controlling them (modulation of proper-
ties), and analyzing their dynamics (transport properties), which is the basis for perform-
ing logical operations without losing coherence. Based on these four points, investigating
thin layered materials is appealing due to their broad electronic properties and manufac-
turing flexibility, reduced dimensionality, and symmetry, and how they lead to phenomena
absent in their bulk counterparts, giving rise to properties that could be valuable for tech-
nological applications, such as the implementation of solid-state qubits which is a direct
use of collective phenomena of quantum states which favors scalability and the possibility

to assemble devices on a nanometre scale.

Moreover, one could be discouraged from exploring low-dimensional materials due to
arguments by Landau and Peierls that 2D materials, if they existed, would be thermody-
namically unstable (PETERLS, 1935; LANDAU, 1937). Nonetheless, the class of 2D materials
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has already impacted the design of the current electronic devices, and a significant inter-
est in them started with the isolation of graphene by Novoselov and his co-workers in
2004 (NOVOSELOV et al., 2004), resulting in a profound curiosity and investment in the
field. Since then, a search for other 2D materials began due to the exceptional properties
that graphene presents, such as outstanding electronic transport properties, high thermal
conductivity, stiffness, half-integer quantum hall effect, and the existence of a non-zero
Berry’s phase due to the topology of its band structure (YU et al., 2000-01; HIRATA et al.,
2004; NOVOSELOV et al., 2005; ZHANG et al., 2005a; ZHANG et al., 2005b). The transition
from bulk to a layer thickness, as occurs with graphite, was figured for other 2D materi-
als, resulting in one of the most explored families of 2D materials, the layers of transition
metal chalcogenides (TMDs), and they are interesting because they can overcome some
of graphene’s limitations due to its absence of a band gap. The TMDs are described
by the chemical formula MXs with M a metal and X a chalcogen; they have hexagonal
structures presented in two main ways: the trigonal prismatic phase (allotrope H) and
an octahedral phase (allotrope T). The H phase is more stable thermodynamically and
presents a semiconducting behavior, and the phase T is metastable exhibits a metallic

behavior, and is interesting for their topological properties (FEI et al., 2017).

There are several specialized demands for the intrinsic properties of layered materials
and their combination, which form the so-called van der Waals (vdW) heterostructures
where numerous stacking combinations are possible due to the weak covalent bonds formed
in the interlayer environment that maintain the hole structure stable (GEIM; GRIGORIEVA,
2013). The individual electronic properties can be preserved in constructing heterojunc-
tions, or hybrid ones can emerge (LINDER; SUDB®, 2007) resulting in the freedom to mod-
ulate the properties as desired via external perturbations such as electric fields, strain
(WU et al., 2017), doping (ZHAO et al., 2017), substrate effects (LI et al., 2018; FELJO et
al., 2021), and many others, getting promising features for high-performance integrated
circuits. Numerous layers of vdW heterostructures are assembled experimentally, and
machine learning models make uncountable combinations of materials predicting their
structural and electronic properties (WILLHELM et al., 2022; HU et al., 2022). Moreover,
the quality of solid-state qubits is correlated with the quality of the host material (SCAP-
PUCCI et al., 2021). To this end, it is crucial to produce high-quality materials to improve

current technological components and enable their applications.

The assembling of thick layered materials dates back to the 60’s (FRINDT, 1966) where
crystals of MoS, were mechanically exfoliated, and even today, a significant fraction of
layered materials is isolated in this way, particularly vd W materials, due to the weak bonds
that facilitate the exfoliation. Besides this procedure, a large class of other techniques
was developed. For instance, the direct growth of MoSs in a solid electrolyte substrate
by chemical vapor decomposition (CVD) resulted in high mobility FETSs (ALAM et al.,
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2021). Still in the CVD technique, graphene can be used as a substrate to grow other
layered materials epitaxially forming vdW heterostructures (SHI et al., 2012), as illustrated
in Fig.(1.3). This procedure results in high-quality products because even if there is a
lattice mismatch between the materials, this technique avoids some interfacial effects that
can change the electronic properties (NOVOSELOV et al., 2005).

CVD-Graphene

Cu Foil

FIGURE 1.3 — Sythesis of MoSs/graphene heterostructure by chemical vapor decomposition. The top
left is a high-resolution STEM imaging of the resulting materials. The bottom left shows FFT patterns.
Source: (SHI et al., 2012).

Once the material is assembled, verifying if the final product has the desired prop-
erties is the next step. In order to determine the layer thickness of the resulting prod-
uct, the technique of Atomic Force Microscopy (ATM) is broadly used (DRESSELHAUS
et al., 2010). Raman Spectroscopy (RS) helps fingerprint a material by identifying layer-
dependent changes of the vibrational structure (BUTLER et al., 2013), detecting oscillating
modes, and it has the advantage of not interfering with the sample. Transmission Electron
Microscopy (TEM) provides information on the layer’s size, stacking, and composition de-
tails (SCHLIEHE et al., 2010). Scanning Tunneling Microscopy (STM) helps analyze the
topography and electronic structure (AUWARTER et al., 1999; HELVEG et al., 2000) of a
single-atom-thick material and can also manipulate single atoms (BUTLER et al., 2013).
X-ray diffraction supplies information about the unit cell structure, constituents, structure
factors, and orientation concerning the substrate (BUTLER et al., 2013). These experimen-
tal techniques display such high accuracy and result in a large amount of data that enables
one to simulate materials, build theoretical models, and investigate properties in several
scenarios where emergent functionalities can be theoretically anticipated guiding further

advances in experimental techniques.

Once high-quality materials on a nanometer scale are obtained with well-known prop-
erties, exploring their intrinsic collective behavior can find a reason for using them as elec-
tronic components for hosting qubits, opening an exciting route to obtain many of them
due to the scalability of nanomaterials. The merging of the fields of materials science
with quantum information already showed the capability of revolutionizing the electronic

components industry, first with the creation of transistors and now on obtaining qubits.
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An exciting use of 2D materials to this end occurred just a few years after graphene’s
isolation, in which spin qubits on ribbons of graphene quantum dots were obtained, show-
ing long coherence times (TRAUZETTEL et al., 2007). Moreover, the exploration of solid-
state qubits started before the isolation of graphene where superconducting qubits had
been investigated (BOUCHIAT et al., 1998; NAKAMURA et al., 1997; NAKAMURA et al., 1999),
consisting in an artificial two-level system of charge states coupled by Cooper pairs (NAKA-
MURA et al., 1999) in which coherent oscillations were verified, encouraging, even more,
the combination of materials science and quantum information fields. Nowadays, super-
conducting qubits represent one of the most promising for being implemented on quantum
hardware (WENDIN, 2017; KRANTZ et al., 2019) and these qubits show coherence times
around 50-100 us, reaching at most 8 ms (EARNEST et al., 2018) and gate speeds on the
order of tens of ns. Motivated by promising results of superconducting qubits and the pro-
posal of quantum dots as universal gates for quantum computation (LOSS; DIVINCENZO,
1998), other physical implementations began to be explored: usage of the electronic and
nuclear spin degree of freedom (KANE, 1998; GAO et al., 2022), exploration of entanglement
among electrons and nuclear spins (SIMMONS et al., 2011), qubit logic mediated by holes
in germanium (HENDRICKX et al., 2020), trapped ions (RIEBE et al., 2004; HAFFNER et al.,
2005) which have coherence times longer than 10 min observed (WANG et al., 2017), the
entanglement of photons (O'BRIEN et al., ; SHADBOLT et al., 2012; FLAMINI et al., 2018),
charge states of nitrogen-vacancy centers in diamond (GROTZ et al., 2012), and more re-
cent proposals such as molecular spins (CHIESA et al., 2023), are just a few examples
of developments on the field and the use of semiconducting platforms demonstrated the
functionality of two-qubit quantum logic (NOWACK et al., 2011; VELDHORST et al., 2015;
HENDRICKX et al., 2020).

The superabundance of properties of vdW materials also makes them promising to
be part of components on quantum computing platforms. For instance, the coherent
temporal control of charge carriers in vdW materials was verified (WANG et al., 2019)
in a superconducting circuit. Fig.(1.4) shows using a vdW heterostructure as part of a

quantum circuit.
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FIGURE 1.4 — (a) Schematic of the hBN-encapsulated superconductor-graphene—superconductor junc-
tions embedded in a circuit quantum electrodynamics system. (b) Assembly of vdW heterostructures
using a dry polymer-based pick-up and transfer technique. (¢) Optical micrograph of the graphene trans-
mon qubit. SC, superconducting. Inset, atomic force microscopy image of the encapsulated graphene
before making electrical contact to the superconducting electrodes. (d) Qubit chip made of high-quality
aluminium. Adapted from: (WANG et al., 2019).

Besides previously discussed implementations for obtaining qubits, recently, a new pro-
posal through an innovative application of gated vdW heterostructures as charge qubits
has been suggested (LUCATTO et al., 2019), here named vdW qubits. This proposal ex-
plores the spatial superposition of electrons from the individual layers by studying the
orbital composition of the bands as a function of the gate field. Such control of the or-
bital composition of the bands were already observed experimentally (KIEMLE et al., 2020).
Given the extensive list of possible combinations of 2D materials, the proposal provided
a new perspective in the area. To obtain this spatial superposition of electrons, we are
particularly interested in the alignment of the individual layers’ energy levels before being
combined to form heterostructures. The interest in investigating this feature is due to the
possibility of hybridized states appearing, caused by the superposition of quantum states

coming from different materials.

Expanding on the concept of the vdW qubit in terms of operability, one can con-
fine the heterostructure with highly hybridized states in a quantum dot. This would
yield well-defined single-electron states characterizing the states |0) and |1). These well-
characterized states, isolated from environmental disturbances within a quantum dot, can
be manipulated using an electric field to prepare the state by concentrating the wave

function in a particular layer. The readout can then be measured via a single-electron
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transistor, as discussed in Refs. (TSUKANOV, 2019; CAO et al., 2022). Scalability of such
qubits can be achieved by exploiting equivalent high-symmetry points in the BZ, where

entanglement can be described using a k - p approach.

Not only looking at the energy matching but also computing the band offsets is impor-
tant, which determines the type of band alignment. This quantity is a critical parameter
to obtain good heterojunctions because it determines properties such as quantum confine-
ment and chemical activity (PIERUCCI et al., 2016), essential for electronic and photonic
devices and depending on the offset’s value, the resulting band structure can exhibit a
strong signature of one of the different materials or hybridize due to the strong coupling
(ZRIBI et al., 2019).

In this work, we search for heterostructures that display this hybridization on the band
structure based on energy alignment and interpret this superposition or charge separation
between the layers as a two-level system suited for implementing a vdW qubit. Taking ad-
vantage of the freedom of manipulating electronic properties, an electric field is applied in
the stacking direction, changing the alignment of the energy levels and, consequently, the
charge contribution of the layers for the qubit. Manipulating quantum states via external
perturbations is viable. For instance, spin qubits in silicon were coherently coupled to an
electric field and mechanical oscillations (LAUCHT et al., 2017). On what concerns high
scalability, it is crucial to have short field pulses. Several ways of controlling qubits were
already proposed, most requiring a complex experimental apparatus and the simulations

requiring substantial computational power.

Here, to give courses on maintaining and analyzing the dynamics of a vdW qubit
in a low computational cost, we use a Tight-Binding (TB) model obtained from an ab
initio calculation mapping the Bloch wave functions into Wannier Functions (WFs) and
get several host platforms where this vdW qubit can be implemented and controlled.
Then we compare our results from the TB model with those from the DFT, ponderating
accuracy and computational cost. Combining the electronic properties of vdW materials
with the ease of manipulating them, a device to explore the dynamics of the charge qubit

is proposed based on vdW heterostructures.

1.2 General Objectives

The present work aims to identify a family of vdW heterostructures suitable for host-
ing charge qubits, develop a methodology with low computational costs based on ab initio
results, and investigate the transport properties of nanoribbons derived from these het-
erostructures as the investigation of the dynamics of such qubit. We aim to establish

a modeling approach that balances accuracy and computational efficiency to facilitate
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the exploration of transport phenomena in these systems. Here the vdW qubit is based
on the band alignment of different materials, which implies a quantum superposition of
the energy levels. The electron affinities and ionization energies computed for layered
materials are used to derive chemical trends. Once the solid-state qubits are well estab-
lished, this two-level system is subjected to an external electric field to investigate how
the host materials’ properties are modified, aiming to control the quantum state local-
ization and dynamics. This proposed qubit is shown to be compatible with the current
developments in the technology of two-dimensional material technology and operable at

high temperatures when compared with other semiconductor-based qubits.

To achieve this goal of providing an accurate description on the localization and dy-

namics of a charge qubit at a low computational cost, some sub-objectives were proposed:

1. Use the formalism of DFT to obtain the desired quantities (band gaps and energy

levels with respect with to the vacuum level) with high accuracy;

2. Combine the individual layers based on their energy alignment and verify if this

requirement gives the superposition of levels to implement a charge qubit;

3. Create a Tight-Binding model from the Bloch wavefunctions to verify if the results

obtained on the full ab initio level are captured on the simplified model,

4. Investigate the dynamics and transport of a wave packet in a van der Waals het-

erostructures nanoribbons.

We combined the formalism of Density Functional Theory (DFT) developed by Pierre
Hohenberg, Walter Kohn, and Lu Sham (HOHENBERG; KOHN, 1964; KOHN; SHAM, 1965)
with Maximally Localized Wannier Functions (MLWFs) (MARZARI; VANDERBILT, 1997;
SOUZA et al., 2001) to construct a Tight-Binding (TB) model from first-principles calcula-
tions. The Bloch wavefunctions were mapped into Wannier functions using the Wannier90
package (MOSTOFTI et al., 2008; MOSTOFT et al., 2014). Once the TB parameters were ob-
tained, we used the Kwant software (GROTH et al., 2014) to perform numerical simulations

of quantum transport.

1.3 Organization

In Chapter 1, we provide a contextualization of the current study by establishing a
connection between the field of materials science and quantum computing. Subsequently,
a link is made between these fields, elucidating the reasons layered materials emerge as an
enticing platform for hosting qubits. Additionally, we articulate the primary objectives of

this work.
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In Chapter 2, the theoretical background is presented. Starting from the first attempts
to solve the electronic Hamiltonian of many electrons, the first approximations considered
by D. R. Hartree and V. A. Fock are discussed. Then the most used approach to study
electronic properties is introduced: the Density Functional Theory approximation. Next
is the formalism to obtain the Maximally Localized Wannier Functions that will serve
as basis functions for constructing the Tight-Binding Hamiltonian, followed by a short
description of the Tight-Binding formalism. The chapter concludes with a discussion on
the formalism of coherent quantum transport, followed by its numerical implementation

within the simulation package employed for modeling such transport phenomena.

In Chapter 3, an ab initio investigation of the structural and electronic properties
of monolayers of TMDs is performed. We aim to identify those candidates exhibiting
highly hybridized states within the band structure, thereby qualifying them as potential
host materials for a vdW qubit, contingent upon the alignment of energy levels. The

prediction of candidates for hosting materials is also discussed.

In Chapter 4 presented the vdW heterostructures formed, based on the alignment of
the energy level of its components, to explore the electronic properties and the modulation
of its properties via an electric field, showing the viability of such heterostructures being
host materials for a vdW qubit. It also discusses how the TB model is obtained, its

accuracy, and its limitations compared with the DFT results.

In Chapter 5, we utilize ab initio Tight-Binding Hamiltonians to explore the confine-
ment effects on nanoribbons derived from transition metal dichalcogenides. This study
is essential before exploring nanoribbons of van der Waals heterostructures, which ex-
hibit highly hybridized states in their band structures. The investigation of nanoribbons
is driven by our interest in examining the transport properties of these systems using
the plane wave formulation of the scattering problem, as implemented in the KWANT
software. We examine nanoribbons of monolayer TMDs, considering various edge config-
urations and chemical terminations to fully understand their electronic properties and the

emergence of edge states.

In Chapter 6, the transport property of a nanoribbon derived from 2D van der Waals
heterostructure discussed in Chapter 4 that exhibits highly hybridized states in their
band structure was investigated. Our investigation focuses on how the conductance of
this nanoribbon is influenced by its length and the application of an external electric
field along the stacking direction. By varying the length of the nanoribbon, we analyze
the oscillatory behavior of conductance and identify the stabilization point. Additionally,
we explore the impact of external electric fields on the conductance, observing how they
can modulate the electronic and transport properties by altering the distribution of the
wave functions across different layers. These studies provide valuable insights into the

potential for tuning the transport characteristics of nanoribbons for various applications
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in nanoelectronics and quantum computing.

In Chapter 7, we highlight the most significant contributions of this work to the scien-
tific literature. Additionally, a comprehensive summary of the results discussed through-
out the thesis is provided, offering a clear and concise overview of the key findings and

their implications.

In the end, we present some appendices and annexes. Appendix A discusses the tests
performed with the van der Waals functionals implemented in the ab initio package used
in this thesis. Appendix B provides a brief description of the wannierization procedure
and presents the typical final spread of the Wannier functions for one system investigated.
Appendix C lists the 222 potential heterostructure candidates for hosting charge qubits,
based on the small mismatch of energy levels in the conduction or valence bands. Fi-
nally, Annexes A and B contain a list of published works in peer-reviewed journals and
participation in scientific events, where partial results of this thesis were presented to the

scientific community.



2 Theoretical Background

2.1 Electronic structure calculation

Theories to understand electronic behavior in the matter began at the end of the XIX
century. The pioneers in considering quantum mechanics to understand this problem
were Niels Bohr and Ernest Rutherford (PHIL, 1913), yielding the first spark to a deep
understanding of electronic dynamics. Later, Plank, Einstein, de Broglie, Schrodinger,
Heisenberg, Pauli, Dirac, and many others helped the development of a rigorous mathe-
matical description of quantum mechanics to obtain not only the descriptions of phenom-
ena already seen experimentally but also to make predictions. Around 1930, the basis
for the modern theories of the electronic structure of matter was already well established
(MARTIN, 2020).

The central problem is to deal with the full Hamiltonian of a system of electrons and

nuclei given by

Z€e? 1 e? YAV
Qmez er —R[| §§|I‘Z‘—I'j| ZQM[ Z|R[_RJ| 21)

in which m, is the electron mass, M;, Z;, and Z;e are the mass, atomic number and
the charge of the nuclei, respectively, r; is the vector position of electrons and R; is the
vector position of the nuclei, e is the charge of the electron, and A is the reduced Plank’s
constant. To obtain the solution to this Hamiltonian is necessary to solve the Schrédinger
equation for many electrons, and unraveling this computationally is intractable - some
approximations must be considered. The great challenge is solving this equation that

deals with the electron-electron interaction with great accuracy.

Since early calculations, scientists realized how is difficult to treat the problem of many
interacting particles. Two independent-particle approaches were developed to tackle the
problem: the mean-field and the Hartree-Fock (HF) theories, where the electrons are
uncorrelated but obey the exclusion principle. The mean-field approach describes the

system as an effective one-particle Hamiltonian with an effective potential acting on the
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electrons. Omne of the first models that used the idea of the non-interacting electron
was performed by Pauli and Sommerfeld (PAULI, 1927; SOMMERFELD, 1928). However,
despite some advances, a few problems remained, such as the inadequacies of the free
electron transport calculation and static thermodynamic predictions, what determined the
number of conduction electrons, and what differs a metal from an insulator, for instance,
(ASHCROFT; MERMIN, 1976).

2.1.1 Hartree-Fock approximation

Advances in treating electronic calculations numerically were strikingly performed first
by Hartree (HARTREE, 1928), who was the pioneer of the self-consistent method, and then
by Fock (FOCK, 1930) using a more rigorous quantum mechanical approach taking into
account the anti-symmetrization of the wave function: Hartree-Fock (HF) method. All
these significant advances in electronic structure calculation were mainly due to the more
rigorous band structure theory and the Schrédinger equation. Even though this non-
interacting picture gives good results, a complete description that concerns the electronic

behavior of electrons, the interactions must be taken into account.

Since the Hamiltonian Eq.(2.1) cannot be solved easily, some approximations are con-
sidered. First, the term ,

- ; QH—MIV% (2.2)
can be ignored since it describes the kinetic energy of the nuclei that, in comparison
with the energy of electrons, is much smaller; such approximation is called the Born-
Oppenheimer or adiabatic approximation (BORN; OPPENHEIMER, 1927), where the elec-
trons can be seen as instantaneously following the motion of the nuclei, while always
remaining in the same stationary state of the electronic hamiltonian (KOHANOFF, 2006).

With this simplification, our Hamiltonian becomes

H=T+ ‘7ext + th + Erp, (2.3)

where T is the kinetic energy operator of the electrons, V..t is the interaction acting on
the electrons due to the nuclei, th takes account of the electron-electron interaction and
the term FE;; is the classical interaction of the nuclei with one another, which can be
seen just as a constant when one aims to describe only the electronic motion. Then, the
Hamiltonian Eq.(2.3) is the one to be solved. In principle, if we want to obtain the ground
state energy of the previous Hamiltonian, all we have to do it to take its expectation value

with respect to the many-body wave function
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(V| H|¥)

bo= 0

= (U| T |®) + (U] Vi |T) + / BrVig (v)n(r) + Eyy, (2.4)

and minimize it with respect to ¥, with the constraint that the trial wave function obeys
the particle symmetry and conservation laws. One of the first approaches to minimize
this functional is to propose a wave function that is the product of the individual orbitals

¢(r;), first performed by Hartree, in which
‘P(rlar%“wr]\/') = ¢(r1)¢(rN> (25)

A more rigorous approach is to write the trial wave function as a determinant of the
single particle orbitals, the HF method, where one transforms the N-body wave function
into N wave functions of a single particle that is coupled with all the others and takes
into account the antisymmetry of the fermionic wave function, in which one minimizes

the total energy of the full interacting Hamiltonian

¢1(1’1701) <Z51(I'2,<72) ¢1<rN70N)
¢2(I'1,01) ¢2(1'2,02) ¢2(I‘N,UN)

(2.6)

¢N(I‘1,U1) ¢N(1'2,<72) ¢N(I‘N,UN)

where the single-particle orbitals ¢;(r;, o;) can be written as a product of a function that
depends only on the coordinate v; and a function that depends only on the spin «;, once

spin-orbit effects are neglected. Then, the expectation value of H becomes

w119) = 37 [ o) (<57 o)+ 3 [ i) Vet vite) + B

1 1

+ 5 ; ]Z . / drdr/w'zo'i <r)w;f,0j (r/) Wwi,a’i (r)wj’o—j (r/)
1 1

=5 20 )05 0 s 0 )

Z7j7g

(2.7)

where the first, second, and third terms are calculated in terms of single particle orbitals,
and the fourth and fifth are the direct and exchange terms that emerges due to the
antisymmetry of the wave function. Now, taking the functional derivative with respect to
Y _(r), we arrive at a Schrodinger-like equation given by

1,0

5V V)] alr) = 2ieia ), 2:8)
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where the effective potential is composed of the external contribution, V,,;, the Hartree

contribution Vi (r) and the exchange part, V7 (r), given by

OEESY / A (i) - - ijjgi - (2.9)

For each orbital, there is an equation to solve and an exchange that depends on all
the others, so this method is generally expensive computationally. In the HF approxima-
tion, the electrons are treated independently since the Slater determinant gives our wave
function, which is the product of single-particle orbitals. However, the Pauli’s principle is
considered, and this deliberation gives rise to the exchange term, resulting in a reasonable
estimation of the ground state energy. However, it is possible to obtain better results,
including more degrees of freedom in the wave function that will give rise to a term that
will decrease the total energy, the correlation energy E. (MACDONALD, 1933). This cor-
relation energy can also be defined as the difference between the total energy on the exact

ground state, Ey, and the HF energy

E.= Ey— Enr, (2.10)

where Ej given by Eq.(2.4) with respect to the full many body wave function ¥ and Exp
is computed with respect to the wave function given by Eq.(2.6).

2.1.2 The Bloch’s Theorem

Independent of the approximation taken to treat the behavior of electrons, we are
mainly interested in solving Schrédinger’s equation for those electrons on condensed mat-
ter subjected to a periodic potential and periodic boundary conditions. The Bravais lattice

describes the periodicity

R = mia; + moag + msas, (211)

where the a; are vectors that describe the system and m; integer numbers, containing all
the information of the periodic crystal, and describe the unit cell of the crystal, which
is the smallest part of space that reproduces all the crystal when translated by lattice

vectors.

Since the Hamiltonian for independent particles is invariant to lattice translations, it

commutes with the translation operator defined in Eq.(2.12)

T, f(r) = f(r + Ry), (2.12)
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and the electrons subjected to a periodic potential V(r) = V(r+R) gives origin to wave
functions stated by the Bloch theorem (ASHCROFT; MERMIN, 1976)

Ui (r) = €Tt (r), (2.13)

where k is the wave vector and n is the band index, and wu,x(r) is a periodic function that

has the same period of the Bravais lattice, that is

Unk(r) = upk(r + R). (2.14)

As a consequence, the wave function has the property

Vn(r + R) = e®Re) 1 (1), (2.15)

so the Bloch wavefunction can be seen as a product of a periodic function with the
periodicity of the Bravais lattice modulated by a plane wave. We must perform integrals
over the k space to obtain properties of interest. The crucial point is to choose periodic
boundary conditions, in our case, Born-von Karman periodic conditions so that we can
solve the Schrodinger equation in k space. Making this transition, we work now on the
reciprocal space, using the reciprocal lattice vectors, G, that exhibit the same periodicity
as the original cell. The first Brillouin zone (BZ) is the smallest cell in this k space

centered in origin.

Once the transition to k space is well established and the periodicity employed by
the boundary condition, it is well suited to use the Fourier transform of the quantities
of interest since some functions will have translational invariance symmetry. Then, the

Fourier transform of f(r) is given by

1

f(G) = . / dr f(r)e'ST, (2.16)

where G are points of the reciprocal lattice. Taking the periodic boundary condition to

our wave function given by Eq.(2.13), we can express it as an expansion of the form

Yok (r) = %7 " cae'®T (2.17)

G

and the same way for the periodic potential

V(r) =) Vee'r (2.18)
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and then we put these terms on the single particle Schrodinger equation, arriving at

h2
%(k — G/)2 — €:| Ck—q’ + Z VG—G’Ck—G = 0. (219)
G

Now, the goal is to obtain the coefficients ¢,_g/. For this, we have to truncate our
Fourier expansion into some cutoff wave vector obtained via convergence tests, putting in
this way an upper limit for the kinetic energy of the plane waves considered. A convergence
test must also be performed to obtain our k-mesh, where the widely used was proposed
by Monkhorst and Pack (MONKHORST; PACK, 1976).

2.2 Density Functional Theory (DFT)

A good result for the ground state can be achieved with the Hartree-Fock approxima-
tion, but computing the exchange term is quite expensive computationally since this term
is different for each orbital considered, and the problem is then solved in a self-consistent
cycle until some convergence criterium predefined. However, as mentioned before, this
approach is a good starting point once the correlation effects are entirely ignored. The
most significant leap in the electronic structure was in the ’60s with the seminal papers
from Pierre Hohenberg and Walter Kohn (HOHENBERG; KOHN, 1964) and Kohn and Lu
Sham (KOHN; SHAM, 1965): the theory of Density Functional Theory (DFT) was born.
DFT is a theory of an interacting, correlated many-body system of electrons by choosing

only the ground state density and total energy.

Since the properties of electrons in solids fall into two categories, ground and excited
states, they showed that instead of being concerned with the full many-body wave func-
tion, one could look at the electronic density of the ground state as an essential property of
the system in which one can extract all the properties - all belongings of the system can be
considered to be unique functionals of the ground state density. DFT is attractive because
one equation for the electronic density substitutes the whole many-body Schrédinger equa-
tion of N electrons with 3N coordinates, providing a much more practical way to study
systems with a large number of electrons and an arbitrary level of complexity. With DFT
becomes possible to compare theoretical predictions with experimental results, providing,
in this way, a good view of how good the approximation is in treating the electrons as

non-interacting particles.

Nevertheless, this revolutionary approach of dealing with a many body system raises
some questions: how does one conclude that the electronic density can describe the whole
system? How can a function of N variables play the same role as the full many-body

wave function of 3N coordinates? Two theorems from Hohenberg and Kohn provide the
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answers.

2.2.1 The Hohenberg-Kohn theorems

DFT relies on two theorems, and their proofs are straightforward (MARTIN, 2020), but

its consequences are profound.

Theorem 1. For any system of interacting particles in an external potential Vg (7), Vege(r)

is determined uniquely, except for a constant, by the ground state particle density ng(r).

Proof. The proof is performed by reductio ad absurdum. First we suppose that two differ-
ent external potentials Ve(mlt) (r) and Ve(jt) (r) that lead to the same ground state electronic
density n(r). The two external potentials result in two different hamiltonians H, and H,
each having different ground state wavefunctions ¥; and W, that we suppose that lead
to the same ground state electronic density ng(r). Since Vs is not ground state of Hy, it
follows that

FE; = <\I/1| Hl |\I/1> < <\Ifg| Hl |\I’2>
E < <‘1’2| FII — F[Q + [:[2 |\I/2>

- - - 2.20
By < (U] By [Uo) + (Wo| [, — F] |05) (2:20)

m<@+/fm$m—wﬂmww

We could perform the same procedure starting from the expected value concerning the

Hamiltonian Hg and arrive at the result
By < Bt [ VS - Ve @hnote) (221)
now, if we sum the previous two inequalities
Ei+ FEy < Ey + En, (2.22)

which is a contradiction. Two different external potentials cannot result in the same
nondegenerate ground state. There is a unique correspondence between external potentials
and wave functions. Since any observable is computed as an expectation value of the wave

function, every observable is also a unique functional of the external potential. O

Here we highlight the following: until now, a prescription has yet to be given to solve

the problem. We still have the problem of solving the many-body wave function in the
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presence of an external potential. In summary, we can write Theorem 1 as follows,

no(r) | = [ Vi (r) | = | ¥ (x) | = |0 = (U| O |D) |, (2.23)

where it says that the electronic density determines all the observables of a system.

The second theorem certifies that the ground state density minimizes the energy, as

proved below.

Theorem 2. A universal functional for the energy E[n] in terms of the density n(r) can
be defined, for any valid external potential Vou (7). For any particular Ve (r), the exact
ground-state of the system is the global minimum value of this functional, and the density

that minimizes this functional is the ground state density no(r).

Proof. Being restricted to densities that are ground state densities of the electronic hamil-
tonian with some external potentials (these densities are called “V-representable”), and
since all properties are uniquely defined if n(r) is specified, then each such property can

be view as a functional of n(r), including the total energy functional.

Ercln) = T[] + Eoneln] + / Vowe(t)n(r) + Epy

— Fuxln] + / Veao(r)n(r) + Ery

where Fyi[n] is a universal quantity independent of the external potential. Now consider

a system with the ground state density ng(r), then we have
Elno] = Frx[no] + (Yol Veat [Wo) (2.24)

From the variational principle, any density that is not the density of the ground state will

result in higher energy. Obviously, only the ground state density minimizes Eyx[n]. O

2.2.2 The Kohn-Sham Auxiliary System

An attempt to solve this many-body problem is based on the theorem of Hohenberg
and Kohn and was proposed by Kohn and Lu Sham (KOHN; SHAM, 1965). Here the
fully interacting system is mapped onto a non-interacting system that possesses the exact
ground state electronic density of the original system. As a consequence of the first
theorem of Hohenberg-Kohn, these systems will also have the same energy. In this non-
interacting picture, all the many body properties are encoded on the exchange-correlation

energy, Exc[n], that is given by



CHAPTER 2. THEORETICAL BACKGROUND 47

Excln] = (T[n] = Toln]) + (V[n] = Voln]), (2.25)

where the first (second) term is the kinetic (electrostatic) energy difference between the
interacting and the non-interacting systems. Now, since we are treating a system of

non-interacting particles, our energy functional is given by
EKS[”] = TO [n] + Eea:t [n] + Ehartree [TL] + E[I [TL] + Ea:c[n]a (226)

with the subscript “0” standing for single particle, and

To[n] = —% > Wil V)

i / (2.27)
Enartrecn] % / ey )

v — |

and the density is given by
N
n(r) =YY )P, (2.28)
o =1

subjected to the constraint

/drn(r) =N
(2.29)
WIS = 61600

Now one minimizes the energy functional Ekg[n| following a similar procedure done in the

Hartree-Fock method, using Lagrange multipliers to deal with the constraints, arriving at
1
=5 Vi) + Vi) + Vialr)| 02(0) = 020, (2:30)

where we define the Kohn-Sham potential as

ViZs(r) = Veur(r) + Viartree (r) + Vae(r). (2.31)

The exchange and correlation potential V,.(r) and the Hartree potential Vig e (r) are

obtained by functional derivatives with respect to density

0Exc

Vie(r) = (e, o)

(2.32)

and
5Ehart7"ee

Vhart'ree(r) - m

(2.33)
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The Kohn-Sham equation is a set single-particle equation that can be solved selfcon-
sistently, giving the energy of the full-interacting system. Once the KS potential depends

on the ground state wave function, we must solve the KS equation selfconsistently.

Initial guess - input density

n(r)

A4
Effective potential computed
Vs

|

[Solve Kohn-Sham equations|

v

|Compute the new density|

v

ICompare with the input densityl

Yes

\4

Output quantities

Energy, forces, stress, eigenvalues ...

FIGURE 2.1 — Flow chart of SCF cycle.

An initial guess for the electronic density is given, and the Kohn-Sham potential
is computed. Then, a usual diagonalization procedure is performed to obtain the KS
equation’s eigenvalues, enabling one to compute the new electronic density. If the new
electronic density computed is equal or very close to the input density (a pre-defined
convergence threshold gives the comparison), the quantities of interest are obtained. If

not, the SCF cycle is restarted until convergence. A schematic is shown in Fig.2.1.

Until now, there is no approximation: all the expressions found are exact, so DFT is
an exact theory. However, once one wants to describe real systems, some approximations
are considered, especially for the Exc[n| term where all the many-body interactions are
included. Then, here we have the first approximation of the DFT theory. In advance, the
Exc[n] term can be broken into a sum of Ex[n] and Eg[n]. The first term is relatively
easy to estimate, and it has an analytic form for the case of the homogeneous electron gas,

such as the LDA approximation in the next section; however, the correlation term is much
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more difficult to compute due to many-body effects. A first quantitative approximation
for this term was proposed by Wigner (WIGNER, 1934; WIGNER, 1938). Moreover, proper
correlation treatment is connected with advances in many-body theory, where a series
of Feynman diagrams were summed to eliminate the divergencies (MARTIN, 2020; CARR;
MARADUDIN, 1964). The most precise results are obtained via quantum Monte Carlo
calculation (CEPERLEY; ALDER, 1980; ORTIZ; BALLONE, 1994). The correlation part is,
for typical solids, much smaller than the exact exchange energy, but at very low densities,

the correlation becomes a relevant part of the energy (MARTIN, 2020).

We stress that the single-particle states obtained in the Kohn-Sham approach are
not necessarily associated with electrons, but a better interpretation is treating them as

quasiparticles.

2.2.3 Local Density Approximation (LDA)

Together with the idea of the auxiliary system, Kohn and Sham, in the same paper
(KOHN; SHAM, 1965), proposed the first approximation to solids to deal with the exchange-
correlation term. They considered that a solid could be treated as a homogeneous gas
of electrons such that the effects of exchange and correlation are local: Local Density
Approximation (LDA).

ELPA] = /exc(n)n(r’)dgr’, (2.34)

where £,.(n) is the exchange-correlation energy per particle of a uniform electron gas.
Since we are treating the approximation of a uniform electron gas, the eigenfunctions will
be plane waves, and the exchange part will be given by the Hartree-Fock term V7 (r) in

which we can obtain an exact expression for £,(n) given by (KOHN; SHAM, 1965)

1/3
€p = —Z <§n> , (2.35)

and the correlation part does not have an analytical expression but has been obtained with
high accuracy with Monte Carlo methods (CEPERLEY; ALDER, 1980; ORTIZ; BALLONE,
1994; MAGGIO; KRESSE, 2016).

LDA performs badly whenever there is an odd number of electrons since it needs
to distinguish between spin densities, but it is well suited to systems with slow-varying
densities. To overcome this limitation, it is possible to use LSDA, where spin effects are

considered.
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2.2.4 Generalized Gradient Approximation (GGA)

Even with the LDA successfully describing many physical quantities, one needs to go
beyond to treat the system under study, not just as a homogeneous electron gas, to obtain
more reliable results. The first step beyond local approximation is to consider variations
in the density. Since it is a scalar quantity, it is natural to take its gradient yielding on the
gradient expansion approximation (GEA) suggested by Kohn and Sham. However, this
approach led to inconsistent results and violated conditions such as sum rules (HERMAN et
al., 1969). The improvement over GEA is considering variations in the density, taking its
gradient but in a different form to preserve essential properties. The exchange-correlation
energy on the Generalized Gradient Approximation (GGA) can be written as (PERDEW;
BURKE, 1996)

EXGAnt,n'] = / Bro(r)es(nt, nb, Vo', [Vad], ...)
(2.36)
= /d?’rn(r)egomo(n)Fxc(nT, nt, |Val|, [Vnt, ...),

homo

nemo(p) is the exchange

where F),. is the enhancement factor that is dimensionless and ¢
energy of the unpolarized homogeneous gas. The argument of F,. is assigned to be a
certain quantity s that depends on the gradient of the density and is given by, for its first

order

[Vn|
§=—
2k3FTZ
where kp is the Fermi wave vector. The most widely used GGA approximation is the
implementation given by Perdew-Burker-Ernzerhof (PBE) (PERDEW et al., 1996; PERDEW

(2.37)

et al., 1997). Improving binding energies is one of the most significant achievements of
GGA approximation (KOCH; HOLTHAUSEN, 2001). However, despite the improvement in
the properties prediction, the GGA gives larger bond lengths and does not give the correct

band gap. To obtain high-accuracy results, we must go a step further.

2.2.5 Hybrid Functionals

As discussed earlier, the Hartree-Fock approximation results in band gaps that are too
large, while the Kohn-Sham eigenvalues tend to underestimate the gap. A natural search
for better accuracy is to mix the best of these two worlds, resulting in hybrid functionals
that improve band gaps and excitation energies. This combination of Hartree-Fock and

Kohn-Sham contributions for the hybrid functional is given by a particular parameter «
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Bt — o BRE 4 (1 — o) EXS. (2.38)

Becke, based on arguments of the coupling constant for the exchange-correlation energy,

proposed and hybrid functional of the form

; 1
ENE™ = S(EXE + EXY), (2:39)

A more accurate treatment of the coupling constant resulted in a widely used hybrid
functional, the PBEO proposed by Perdew, Ernxerhof, and Burke (PERDEW et al., 1996;
PERDEW et al., 1996) given by

1
BEEP = BEEF + LBY - B 240
Other widely used XC term is the B3LYP, which uses the Becke B88 exchange functional
(BECKE, 1988) and the LYP correlation (LEE et al., 1988)

BSYY — B2+ ol BT — BEPY) + u(BES - EEPY) 4 (BT - EEPY), (241)

with the coefficients parametrized by atomic and molecular data. However, there are
diverse reasons to construct hybrid functionals that are just a fraction of the Hartree-
Fock exchange. For instance, any functional with non-zero o cannot be used for metals
since the long-range part coming from the Coulomb potential must be eliminated since it
gives rise to unphysical results at the Fermi surface (MARTIN, 2020). This range separation

is to “break” the Coulomb interaction into two parts, a short-range (SR) and a long-range
(LR)

1 erfe(wr) N er f(wr)

Z = : (2.42)
T r T
—_—— ——
SR LR

where erf is the error function, w is the range parameter and er fe(w r) =1 —erf(w r).

For solids, the most widely used hybrid functional with this kind of treatment is the
HSE (HEYD et al., 2003; HEYD et al., 2006; KRUKAU et al., 2006), in which the long-range

Hartree-Fock is eliminated, resulting in a functional the form

EHSE ;LE)I?F I zE)IiBE,SR i E)};BE,LR’ (2.43)
where in the HSEO6 functional, the range parameter is chosen to be 0.11/ag, and the

superscript SR stands for short range. The correlation part is given by being the same as
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PBE
EHSE — pPBE (2.44)

However, the price paid on using HSE06 for obtaining more accurate results on band
gaps is on computational cost, which can be 2-4 times more expensive than pure DFT
calculation (HEYD; SCUSERIA, 2004).

2.2.6 Van der Waals Functionals

The local approximations’ success is remarkable, and the implementation of hybrid
functionals improved the excitations energies and gave a better result for the band gap.
However, the local approximation cannot describe the van der Waals interactions on the
2D materials and heterostructures. The longest-range interaction is a correlation effect
due to quantum fluctuations that induce dipoles. This attraction is called the London
interaction, which is a long-range interaction (proportional to 1/7%). For this reason,
the approximations such as LDA and GGA does not give good result for such interac-
tion. These long-range interactions can be considered via a completely nonlocal exchange-
correlation functional or modeled by effective interactions parametrized empirically or by

first-principles calculations.

There are two main approaches to obtaining a nonlocal functional that describes with
sufficient accuracy the effects from long to short-range correlations (MARTIN, 2020). The
first approach is a long-range pair-wise interaction in which a damping function f(R) is

introduced to eliminate short-range divergences in the sum over pairs of the interactions

1 CoaB
E ispersion — o~ R 3 2.45
disp 2%(RAB)6JC( AB) ( )
where g poo
Coan =~ / ducua (i) (i), (2.46)
0

with « being the polarizability. A convenient form for the damping function and result
for the integral Eq.(2.46) has been proposed and developed (TKATCHENKO; SCHEFFLER,
2009; DION et al., 2004) and showed good performance for molecules and solids (MARTIN,
2020).

The other approach is based on fundaments of many-body theory, such as random
phase approximation (RPA), where the XC term is given in function of the electronic
density, and the correlation part is treated as a sum of a local correlation part, and a
genuinely nonlocal correlation part (DION et al., 2004; DION et al., 2005)

Ec[n] = E;[n] + E"[n], (2.47)
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in which the nonlocal part is responsible for the van der Waals forces. The nonlocal part
is given by

1
B = / drde'n(0)®(r, v )n(r'), (2.48)
where ®(r,r’) is some given general function.

In 2D systems, it is essential to consider this kind of interaction since it gives the
correction of weak but relevant non-local terms resulting in more accurate results for
binding distances and stability. For this reason, vdW functionals implemented on the ab
initio package used in this work were tested, and the results will be compared with those

in the literature as discussed in Appendix A.

2.2.7 Hellman-Feynman Theorem

The Born-Oppenheimer approximation is valuable once we have an atomic configura-
tion free of internal stress. The force on the nuclei is given in terms of the charge density
independent of the electron kinetic energy and the effects of exchange and correlation.
This is the force theorem derived by Feynman (FEYNMAN, 1939). The force on a system

with respect to the nuclei position R; can be given by

_9E
IR,

From the expression of total energy, given by the expectation value of the Hamiltonian

F = (2.49)

concerning some normalized wave function 2.4

oH ov ow OE;;
F, = — (U] — | ) — (— T
! < |8RI| ) <8RI 6RI> OR;’

and since any variation of the ground state wave function is zero,

| H |T) — (U] H| (2.50)

£ =~ [t St O (2.51)

so the force has an explicit dependence on the electronic density. The procedure to obtain

the optimal structure is relatively standard: the initial atomic coordinates are given,
and the electronic density is computed, followed by forces and stress. Then, to reduce
stress and optimize the atomic positions minimizing the energy, the atomic arrangement is
changed, and the electronic density of the first calculation is used to start a new relaxation

procedure. This is repeated until a predefined convergence criterion is achieved.
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2.2.8 Norm Conserving Pseudopotentials

Besides all the approximations already considered, there are some problems related to
technical issues when solving the KS equations: the divergence of the Coulomb potential.
As one approaches the cores, it is required a significant number of plane waves, which has,
as a consequence, the increasing on the cutoff energy on the expansion Eq.(2.17); heavy
atoms would be much more challenging to simulate due to the large number of electrons
involved. It is intuitive to think that the core electrons can be treated separately from the
valence ones because the latter are responsible for the atom’s chemical activity since they
are more weakly bound to the nucleus. The detachment of the electronic behavior of these
two “kinds” of electrons gave rise to the idea of the pseudopotential (PHILLIPS; KLEINMAN,
1959) in which the core electrons are ignored, but not completely: it is considered smooth

potential acting on the valence electrons.

The emergence of ab initio norm-conserving and ultrasoft pseudopotentials has paved
the way for precise calculations, serving as the cornerstone for much of the ongoing research
and development in electronic structure methods. The notion of “norm-conservation” holds
particular significance in the evolution of ab initio pseudopotentials, since they are derived
from calculations without any fitting to properties of a module or a solid, facilitating their
application and enhancing their accuracy and transferability. Norm-conserving pseudo-
functions ¥ (r) are normalized solutions of a model potential meticulously selected to

replicate the valence properties observed in an all-electron calculation (MARTIN, 2020).

Once the pseudopotential is applied to different systems, the valence pseudo functions

must satisfy the usual orthonormality conditions
(W) = 634800, (2.52)
so that the KS equations have the same form as derived in subsection 2.2.2.

The starting point for defining norm-conserving potentials is the list of requirements
for a good ab initio pseudopotential given by Hamman, Schluter, and Chiang (HAMANN
et al., 1979):

e All-electron and pseudovalence eigenvalues agree for the chosen atomic reference

configuration.
e All-electron and pseudovalence wavefunctions agree beyond a chosen core radius R..

e The logarithmic derivatives of the all-electron and pseudo-wavefunctions agree at
R..

e The integrated charge inside R, for each wavefunction agrees (norm conservation).
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e The first energy derivative of the logarithmic derivatives of the all-electron and

pseudowavefunctions agrees at R, and therefore for all r > R,.

From points 1 and 2, it logically follows that the Norm Conserving Pseudopotentials
coincide with the atomic potential beyond the core region. Point 3 is a direct consequence
of the continuity of the wavefunction and its radial derivative at R, for any smooth
potential. While inside the core region, both the pseudopotential and radial pseudo-
orbital diverge from their all-electron counterparts, point 4 ensures that the integrated
charges remain the same as for the all-electron radial orbital for a valence state. This
charge conservation principle guarantees the accuracy of the total charge within the core
region, while the normalized pseudo-orbital, particularly for local functionals, is equal to
the true orbital beyond R.. Point 5 is crucial for a high-quality pseudopotential: it should
be producible within a straightforward framework yet adaptable to complex environments.
Within a molecule or solid, the wavefunctions and eigenvalues undergo alterations, and a
pseudopotential meeting the criteria of point 5 will accurately replicate these changes in
eigenvalues to a linear extent relative to the modifications in the self-consistent potential
(CHRISTIANSEN et al., 1979; KRAUSS; STEVENS, 1984; MARTIN, 2020).

In our study, we employed Optimized Norm-Conserving Vanderbilt (ONCV) pseu-
dopotentials sourced from the PseudoDojo library (SETTEN et al., 2018). These ONCV
pseudopotentials are characterized by multiple projectors, with their pseudofunctions nor-
malized. The term “optimized” denotes the meticulous attention paid to ensuring the
softness of the potentials, achieved by minimizing residual kinetic energy. Optimization
of the projector set for each angular momentum [ was undertaken, leading to the devel-
opment of a novel approach centered on auxiliary functions to fulfill various continuity
constraints (SETTEN et al., 2018). Extensive testing of these pseudopotentials (HAMANN,
2013; HAMANN, 2017) has demonstrated their remarkable agreement with results from

all-electron calculations.

2.3 Maximally Localized Wannier Functions (MLWF)

2.3.1 Overview of the formalism

First-principles codes typically solve the electronic structure of periodic materials in
terms of Bloch states 1,k(r), where n is the band index and k is the quasi-momentum
crystal number. An alternative representation can be given in terms of localized orbitals,
first proposed by Felix Bloch (BLOCH, 1929), which is a procedure called Linear Combi-
nation of Atomic Orbitals (LCAO) that consists in making linear combinations of atomic
orbitals and after this method was proposed by Slater and Koster (SLATER; KOSTER, 1954)
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as good interpolation procedure to fit band structures from ab-initio calculations. Here
we follow a recipe to obtain our localized atomic orbitals from a first principle calcula-
tion, so-called Wannier functions (WFs) first introduced by Gregory Wannier (WANNIER,
1937). The WFs centered on a lattice site R and associated with a band index n, |Rn),

is written in terms of the set of Bloch states, |1,x), as

(2‘;)3 /B ) dke ™ R i) (2.53)
where V is the volume of the unit cell and the integral is over the BZ. It’s noteworthy
that the Wannier WFs are orthonormal, and that two WFs represented as |Rn) and
|R'n) transform into one another through a translation by R — R’ (BLOUNT, 1962). This

property of WF's serves as a bridge, facilitating the reconciliation between the real-space

|Rn) =

localization and the reciprocal-space delocalization frameworks. Moreover, WFs cannot
be attributed to a well-defined energy eigenvalue since they do not directly correspond to

eigenstates of the single-particle Hamiltonian.

A primary challenge with WF's lies in their lack of uniqueness. This issue arises be-
cause any Bloch wavefunction can be multiplied by a phase factor (gauge transformation),
which essentially represents the same physical state. This inherent ambiguity can lead to
difficulties in achieving precise localization in real space, particularly when bands exhibit
degeneracies at specific points within the BZ, making the Bloch states indistinguishable at
k that this occurs. For more than one band, instead of a phase factor, the gauge freedom
is identified as a unitary matrix U,(LI;) that transforms occupied Bloch orbitals into the
Wannier representation at every wave vector. In Hilbert space, a unitary transformation
is the generalization of an orthogonal one, so in a band structure, one has the freedom that
a given k-point to apply a unitary transformation in those multidimensional functions and
obtain the same physics. This unitary matrix is chosen to make the WFs as meaningful

as possible while mapping the Bloch states into the Wannier representation.

In a general scenario involving a set of J bands, which may not be isolated within

their set, the associated Wannier functions (WFs) are defined as follows:

J
. V ik
Ri) = G [, e D o) U (2.54)
n=1

where US;) represents a J x J unitary transformation acting within the chosen subspace
and periodically dependent on k. This phenomenon is termed gauge freedom. Utilizing
this freedom, a new representation of electronic states is developed, wherein instead of
existing in a Bloch state with band index n and quasi-momentum quantum number k,
they reside in a Wannier representation with an equivalent band index. In this context,

the representation is more closely associated with the labeling of atomic orbital states
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and a lattice vector quantum number, indicating the unit cell inhabited by that state.

However, this unitary transformation must be well-defined to ensure its effectiveness.

A careless application of Eq.(2.54) would give poorly localized WF's, since we do not
know how to choose the unitary rotations. In addition, since this matrix mixes the Bloch
states at the k-points, different choices lead to WFs with different localizations. Also, it
does not preserve the individual Wannier centers. For this new representation to make
sense, it needs to be localized and associated with a specific unit cell. Then, it is necessary
to explore the space of unitary transformations that bring from a Bloch representation to

a Wannier representation, demanding four key factors:

|w,(r)) span the same space as {|tux) };

States that have the same label n but correspond to a different unit cell are periodic

images of one another, w,(r) = w,(r — R);

(wy,(R)|w,(R?)) = 65 mOrp> : orthogonality of WEs;

It is required that they be as localized as possible in real space to have only one.

Even with the previous requirements, one still has an infinite set of solutions. A simple
route to obtain the unitary transformation through a projection onto a predefined set of
localized orbitals (CLOIZEAUX, 1964)

J
’Cbnk) = Z |wmk> <wmk|gn> ) (255)

where |g,,) is a initial guess. The functions |¢,x) passes through a symmetric orthonor-
malization, and they are converted into the periodic part of the Bloch functions. A more
rigorous approach to deal with the gauge freedom is to choose a particular set of US;)
which the sum of the wavefunction spreads {2 of the corresponding WFs be minimized
(MARZARI; VANDERBILT, 1997), as discussed in the next subsection.

2.3.2 Spread functional: Localization of the WF's

As a measure of the total delocalization or spread of the WFs, one introduces the

spread functional

O —

n

[(r*) —17], (2.56)

J
=1

which measures the sum of the quadratic spreads of the WFs and it has to be minimized

with respect to the unitary transformations UT(LI;-). One can decompose the functional €2 in
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three terms: invariant, diagonal, and off-diagonal. First, the functional can be splitted as
Q=0Q;+9Q, (2.57)

where

Q=Y [, =D | ®Rm[r|on) *], (2.58)

Q=>" > =|®m|r|on) " (2.59)

n  Rm#0n

Both terms are positive definite, and €2; is gauge invariant (MARZARI; VANDERBILT, 1997).
The first measures the k-space dispersion of the band projection operator, while the second
reflects the extent to which the WFs fail to be eigenfunctions of the band-projection
position operators. The criterion to find a set of Maximally Localized Wannier Functions
(MLWFs) is reducing, as far as possible, the mean-square average of all off-diagonal matrix
elements of z, y, z between WFs, which is encoded into Q. The vital point is that all
these quantities defined here in real space are transformed into k-space where the matrix

elements of position operators are well-defined (BLOUNT, 1962) and are given by:

v

(R xJ0m) = i / Ake™® (| Vi Jtie) (2.60)
v .

(Rals* lom) = — 5 / K™ (10| V2 ) (2.61)

and now one is able to define the quantities T,, = (On|r|0n) and (r*) = (On|r?|0n) at

the origin, an then

.V
r, =1 (271_)3 /dk (unk| Vi |unk> , (2‘62)

and
2 _ V u 2
(r*), = e /dk\ Vit |- (2.63)

In the k-space representation, performing derivatives on regular meshes will be nec-
essary, so one has to express the positions of the WFs and their spread as a function
of the phase relation between the Bloch orbitals. To this end, it is used finite-difference
expressions for Vi and V3 and requires that these quantities are invariant with lattice

translations. Then, Eqs. (2.62) and (2.63) are rewritten, becoming

1
Ty =% > wbIlm MK, (2.64)
k,b
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1
= 5 2w {[1 = MG+ [Tm MY (2.65)
kb
where
Mr(nk,’v?) = (Unnk|UnJc+b) » (2.66)

and b are the vectors connecting each k-point to its neighbors, and wy, are the associated
weights, and the expression Eq.(2.66) represents the overlap matrix among the Bloch
orbitals at neighboring k points. It should be noted that the only ingredient required
to compute the spread functional is the overlap term of the Bloch orbitals. Then, the

corresponding expression for €2; becomes:

Q; wy, Z [1 - Z | VD)) ] (2.67)

Nkp kb m=1

For ) we can decompose into band-off-diagonal and band-diagonal pieces, Q = Qop+Qp,

where

Qop=Y_ Y =|®Rm|r|on)| Zwb > IR (2.68)

m#n R m#n
and

Qp = ZZ = | (Rn|r|0n) |? Zwbz —TIm InM&E» —b.5,)2 (2.69)

n R0 Nip kb

in which Ny, is the number of k-points on the Monkhorst-Pack grid and r,, is the center
of the nth WF.

The minimization procedure with a predefined sample of k-points begins with the
minimization of 27, which is gauge invariant. Then the other quantities, {2p and Qpp are
minimized. The minimization only involves the updating of the unitary matrices obtained

first as the overlap of the Bloch orbitals

MO = (014 1y (2.70)

and then, at every update of the unitary matrices towards the minimum, the overlap

matrices are updated with inexpensive matrix algebra (MARZARI et al., 2012)
MED) _ 701 5 (Ok+byr(ktb) (2.71)

It’s crucial to highlight that, at the global minimum, WFs are real. To avoid potential

local minima, initiating the localization procedure with a smoothly varying gauge choice
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is essential (MARZARI et al., 2012). For this purpose, it is important to offer a set of initial
guess orbitals derived from prior analyses of the orbital characteristics within the ab-initio

band structure.

While the preceding discussion adequately outlines the process for obtaining MLWEF's
for an isolated set of bands, our primary focus often centers on entangled bands, such
as those encompassing the Fermi energy in a semiconductor (including both valence and
conduction bands). The challenge in deriving WFs for such scenarios arises from the
uncertainty on the selection of states to form J WFs. To address this, the projection onto
trial orbitals offers a simple and effective method for extracting a smooth Bloch subspace
from a set of entangled bands. By localizing these trial functionals, smoothness in k-space

can be achieved, facilitating the generation of MLWFs.

The smoothness of a Bloch state in k-space is quantified by €2;, which encapsulates the
intrinsic smoothness inherent in the underlying Hilbert space. Its expression in k-space
formulation reveals that €; provides a BZ average of the local subspace mismatch. The
optimized subspace selection process can be formulated as follows (SOUZA et al., 2001):
Initially, a set of Jx > J Bloch states is identified at each point on a uniform BZ grid, typ-
ically using a range of energies or bands. Subsequently, an iterative procedure is employed
to extract, self-consistently at each k-point, the J-dimensional subspace that yields the
smallest possible value of €); when integrated across the BZ. When viewed as a function
of k, the Bloch subspace obtained at the end of this iterative minimization is deemed
“optimally smooth,” as it exhibits minimal variation with respect to k. Furthermore, the
algorithm can be easily adapted to retain a selected subset of Bloch eigenstates within a
specified disentanglement window, such as those spanning a narrower range of energies or

bands, which we refer to as a frozen window (MARZARI et al., 2012).

As in the case of the one-shot projection, the outcome of this iterative procedure
is a set of J Bloch-like states at each k which are linear combinations of the initial Jy

eigenstates
Nwindow

|Pni) = Z %) (V| gn) - (2.72)

m=1
Once a suitable J-dimensional Bloch manifold is identified, the same methodology outlined
earlier for isolated bands can be applied to generate localized WFs. Then we orthonor-
malize the resulting J orbitals to produce a set of J smoothly varying Bloch-like states
across the BZ,

Nbands

[Doni) = D (S |Srut) (2.73)

m=1
where (Sk)mn = (Omx|¢nk). This orbital projection will introduce a gauge fixing that can

be redefined by minimizing 2 over the subspace. The other part of the spread functional
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(2, is minimized following the previous approach of Marzari and Vanderbilt (MARZARI;
VANDERBILT, 1997).

2.4 Tight-Binding formalism

DFT is a well-established way to obtain materials’ electronic and structural properties
of different systems. Approaches based only on the symmetry of the system and the use
of valence states to describe the physics, without any parameter given a priori, are called
first principles or ab initio methods. However, in general, methodologies based purely on
DFT tend to be quite expensive computationally, which motivates the search for other

methods to describe the electronic behavior of a system with many electrons.

Methods characterized by their low computational cost are often favored for approxi-
mating low-energy bands, particularly those surrounding the Fermi energy. The bands in
this range frequently suffice in describing pertinent properties, as the electrons within this
energy window are typically treated as non-interacting with others at similar energy levels,
yet are strongly bound to their respective atoms. Following a single-particle framework,
electrons in this scenario can be modeled as independent particles navigating within a pe-
riodic potential generated by the atomic structure’s ions. One well-known approach that
operates within this framework is the Tight-Binding (TB) approximation. Essentially,
the TB method utilizes a collection of localized orbitals with onsite energy, while consid-
ering only specific hopping terms, typically adequate for describing low-energy bands. In

general, to construct a localized basis, one may consider a set of atomic orbitals given by
oi(r — Ry), (2.74)

where R; is the position of atomic ¢ in the unit cell and ¢;(r) are the atomic states
associated with an atom and [ = s,p,d, f. Now, one writes a basis using these localized

states, satisfying the Bloch theorem. A direct basis is given by:

1 -

IW\r) = ——= e I'—RZ‘—R/ 5 2.75

Xk,l, ( ) \/N ; ¢l( ) ( )

with R’ covering all the crystal cells and ¢ denoting the atomic position of the atom at R;

and [ representing the orbital part. The single-particle eigenstates can be expanded as a

linear combination on this basis

7/J1({n) (r) = Z Cgll),iXk,l,i(r)a (2.76)
Li
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remaining to determine the coefficients cl(("l)i. This can be achieved requiring ¢1((n) (r) being

eigenstate of the single-particle (SP) hamiltonian

HPp (r) = ey (x). (2.77)

Projecting this eigenvalue equation on the basis xi,,(r), one obtain the secular equation

S Otmal H [xacrs) =28 OtimiXica) | ebds =0, (2.78)
b | (1) ’ M

where the term (I) can be rewritten as

(1) = 5 S0 3™ (6, (v~ Ry~ R')Jou(r — R, ~ R)

RN R/

Qo (2.79)
= ¢ (4n(r —R))|¢s(r — R; — R)),
R §m’l5i7j5(R)—:roverlap terms
once is being considered an orthonormal and localized basis, and
(1) = (sl H [Xie.0)
=D *®(on(r —Ry)| H? |§(r — R, — R))
R (2.80)

= 5m,15i,j5(R)5l + €ik.R5[(Rj — Rz — R) — dnn]‘/lm,ij

N

on site term (j=i,R=0) hoppi?lg term
where the first term gives the onsite energy elements and the second the hopping (V. ;)

term between nearest neighbors separated by a distance d,,,.

Owing to their localized nature, WF's serve as an ideal orbital basis for TB models,
facilitating the derivation of various quantities of interest alongside first-principle calcu-
lations, a procedure called Wannier interpolation. This technique proves invaluable not
only for obtaining band structures but also for computing physical quantities that require
a fine sampling of the BZ. The Wannier interpolation process typically begins with a
first-principles calculation conducted on a coarse, uniform reciprocal-space mesh. Subse-
quently, the states within the bands of interest are transformed into WF's, allowing the
desired quantity to be expressed in the Wannier representation. Leveraging the maximum
localization property of WF's, this quantity exhibits exponential decay with distance, en-

abling the original properties to be efficiently interpolated on a much denser k-mesh.

In this thesis, we extensively use Wannier interpolation to generate band structure
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plots, particularly due to the use of hybrid functionals in our DFT calculations, which
significantly increases computational costs. From the WFs that expand a group of J

bands, a set of Bloch-like states can be constructed as follows:

[Pni) = > e*F|Rn). (2.81)

Notice that Eq.(2.81) closely resembles the sum of orbitals in Eq.(2.76) from the TB
theory, with the WF's taking the place of atomic orbitals. Consequently, computing the
matrix elements of the Hamiltonian with respect to the WFEs enables the calculation of the
band structure through Fourier transformations. This approach essentially constitutes a
Slater-Koster interpolation method, albeit with TB parameters derived from first princi-
ples (MARZARI et al., 2012). The procedure to obtain these WFs was discussed in Sec.2.3
and implemented on the Wannier90 package (MOSTOFT et al., 2008; MOSTOFTI et al., 2014).
More details on how the TB model is obtained is discussed in Appendix B.

2.5 Transport Formalism

2.5.1 Energy, length and time scales

Transport deals with the investigation of charged particle movement, such as elec-
trons or holes, within conductors. Quantum transport is intricately linked to mesoscopic
physics, a discipline that gained prominence in the early 1980s. Coined to underscore
the significance of intermediate spatial scales (meso) between the micro and macro scales,
mesoscopic physics explores a regime where particles exhibit behaviors that transcend
the confines of strict quantum or classical physics. Instead, they showcase an interplay

between these domains.

The constant miniaturization of electronic components, coupled with advancements in
technology, has underscored the critical significance of understanding particle dynamics.
In dealing with nanometer-scale device components and entities in motion, it is necessary
a careful consideration of length scales, since the particles in motion may be treated as
waves. This approach gives prominence to quantum effects, leading to extraordinary phe-
nomena such as the quantization of conductance, the quantum Hall, the Aharonov-Bohm,
and Coulomb-blockade effects (THN, 2009). Moreover, quantum transport is essentially
defined by two primary scales: length and energy. The observable domain is intricately
influenced by the interaction between these scales and the internal energy parameters of
the nanostructure. In 1988, the first experimental observations of the quantization of

conductance were verified in point contacts at zero magnetic fields (WEES et al., 1988;
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FIGURE 2.2 — Quantum point contact conductance as a function of a gate voltage. The conductance
plateaus can be seen, indicating its quantization. Figure adapted from (WEES et al., 1988).

WHARAM et al., 1988). The conductance exhibited distinct plateaus, indicating its quan-
tized nature, as can be seen from Fig.2.2 and showed to have the form
2¢?

=—N 2.82
¢=""N, (282

where N is an integer number. This implies that the conductance is quantized in unit of
twice the conductance quantum

2

Go = % — 3.8740459 x 1075 Q. (2.83)

As one may remember from basic electromagnetism, the conductance of a certain material

is directly proportional to its width and inversely proportional to its length

w
G = o (2.84)
which is valid on the ballistic regime. From this equation, a seemingly intuitive conclusion
might suggest that as the sample size diminishes, its conductance approaches infinity.
However, this assumption contradicts experimental evidence. It becomes evident that at
extremely small sample sizes, quantum mechanical effects significantly contribute to the

observed phenomenon of conductance quantization.

To this quantization be observed, certain criteria should be attended: the width of
the channel must be comparable to the Fermi wavelength Ar of the electrons and the
temperature must be low compared to the transverse modes in the channel. These criteria

give rise to certain regimes of interest:

o If G > Gy, the electron conductance is easy: many electrons transverse a nanos-

tructure simultaneously and they can do this in many ways, known as transport
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channels. In this regime, the scattering approach to electron transport becomes
impractical owing to a large number of transport channels resulting in a bigger

scattering matrix.

e For G < Gy, the transport takes place in rare discrete events: electrons tunnel one

by one.

e The regions G =~ G attract the most experimental interest and are usually difficult

to comprehend theoretically.

Here, we encounter our initial examples of energy and length scales that deserve careful
consideration in the transport of nanostructures. Other crucial energy scales include
thermal energy (kgT), the energy that an electron acquires when traversing a potential
difference, the chemical potential (x), the Fermi energy (Ey), and the Thouless energy,
which is a measure of the sensitivity of energy levels to a change in the boundary conditions

of the system, (E7), for instance.

Additional time scales delineating distances where properties, such as electron momen-
tum and the phase of the wave function are subject to randomization through scattering
processes are worth noting. One pertinent time scale is the relaxation time (7), repre-
senting the average duration over which the initial momentum of electrons is reversed due
to scattering. This time scale is useful in defining the mean free path (¢), signifying the
average distance electrons traverse before experiencing backscattering. Additionally, the
phase relaxation length (¢,) denotes the average distance electrons diffuse in the mate-
rial before their phase is disrupted through scattering, incorporating interference effects.
Clear observation of interference effects necessitates that this length be comparable to
device sizes, often requiring experiments to be conducted at low temperatures (NAZAROV;
BLANTER, 2009). The ¢, and ¢ are important scales of the device, where the former sets
a limit in which a sample exhibit quantum behavior while the latter defines a ballistic

conductor.

Based on the constraints and relations between the length, time, and energy scales,

the electronic transport can be investigated in three different regimes:

e Diffusive: the mean free path is much smaller than the sample dimensions and

disorder scattering dominates;
e QQuasi-ballistic: the mean free path and device size are comparable;

e Ballistic: the conductor contains no impurities and the dominant source of electron

scattering is at the device boundaries.

In this thesis, we assume systems that are fully coherent meaning that the phase coherent

length is much bigger than other scales and the leads attached to the system, assumed
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to be infinite in one direction, are considered ballistic where they are simply regarded as

means to inject current into the scattering region.

2.5.2 Current and conductance

When trying to model nanostructures, the task becomes formidable as it involves
describing all the subtleties of the sample and accounting for the intrinsic imperfections
present in the real-world samples. However, treating a nanostructure as an infinitely long
waveguide proves to be a remarkably effective approximation that sidesteps some of the
intrinsic complexities. To elaborate on this concept, we initially consider the quantum
point contact, a system devoid of potential barriers, and demonstrate its equivalence to a
waveguide with a potential barrier (NAZAROV; BLANTER, 2009). Such an example allows

us to introduce the concept of modes and momenta.

Considering a waveguide characterized by translational symmetry along the x axis and

confinement represented by the potential function

0, 1z < a/2
oo, elsewhere.

In this context, the solutions to the Schrodinger equation take the form

¢($’ n Z) _ eikzx Z Cyzeik:yyeikzz’ (286)

where the wave vectors k, and k, are quantized, determining the available transport
channels. While the preceding discussion describes the propagation of electrons in a
vacuum, electrons within a nanostructure experience the influence of a periodic potential.
Despite this, the fundamental description undergoes minimal alteration. The solutions to
the Schrodinger equation for such a periodic potential deviate from plane waves and take

the form of Bloch waves, as previously explored in subsection 2.1.2.

Moreover, it is important to acknowledge that real-world structures, such as the
nanoribbons (NRs) examined in our study, significantly deviate from the idealization of
an infinitely long waveguide. Despite this disparity, the simplified model remains invalu-
able, offering insights that extend to a wide array of nanostructures. Building upon this
model, the introduction of a potential along the x axis, typically in the form of a potential
barrier, gives rise to transmitted and reflected waves. These confined energy states are
commonly known as subbands or transport channels. The incorporation of a potential
barrier enhances the basic model, resulting in a configuration frequently encountered in
transport measurements—a quantum point contact (QPC). By employing an adiabatic

approximation for the system, we can achieve a comprehensive understanding of wave
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Closed channels

Open channels

Left contact
Right contact

FIGURE 2.3 — Color map of a nanostructure subjected to a gaussian potential on its central region
configuring a QPC. Due to the potential, depending of the energy of the modes leaving the contacts, one
may obtain an open or a closed channel.

dynamics within such a waveguide (GLAZMAN; JONSON, 1990).

Considering a waveguide extending along the z axis with impenetrable walls in the y
and z directions, featuring a variable shape as illustrated in Fig.(2.3). In this scenario,
each transport channel is associated with a potential barrier, and depending on the energy
of the incoming electron, it can either traverse the barrier or be reflected. Additionally, a
finite number of channels are open, while the rest remain closed. For each channel, trans-
mission and reflection amplitudes are defined, ultimately yielding the channel-dependent

transmission coefficient 7),(F). This concept forms the essence of quantum transport.

In such a situation, the electric current can be written as

where close channels, f,(k;) = f.(—k,) since the electrons are reflected and there is no
net current for these channels. Here n represents the channel index. For open channels,
the filling factors are not the same since electrons coming from the left and right reservoirs
have different chemical potentials. According to Fig.(2.3), electrons coming from the left
have the filling factor given by f1(E) (k, > 0) and the electrons coming from the right
have fr(E) (k, < 0). Now, since the filling factors depend only on the energy, we may

replace the expressions with k£ for those with E. The velocity can be written as

hke  10E,(k,)

k p— p—
unlke) == =5 Ok,

(2.88)

and we can change the variable of integration writing it in terms of energy, dk, =

dEOk,/OE,(k,), we obtain
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2e
I — W Z /dE[fL(E) — fr(E)]
5 o (2.89)

- %Nopen(,uL - ,uR)a

with p; and pgr being the chemical potential of the left and right contact, respectively.
The voltage difference applied, denoted as eV = puy, — pg, is much less than kg7 (in the

linear regime), and it is responsible for the current. Consequently,

2e?

_[ - TVNOPQI“ (290)
where the proportionality coefficient is referred to as the conductance quantum. The sys-
tem’s conductance, expressed as the ratio of current (I) to voltage (V), appears quantized
in units of Gg = %, remarkably different from Ohm’s law. This quantity is composed
of fundamental constants and remains independent of material properties, nanostructure

size, and geometry.

The representation of conductance can be refined as follows:

G = 2—22]\4 T, (2.91)
with M representing the number of available modes, and T being the transmission prob-
ability that an electron injected on the left will transmit to the right. This formulation
aligns with the Landauer approach (LANDAUER, 1988), wherein the current through a
conductor is given in terms of the probability that an electron transmits through it. The
Landauer formula captures distinctive characteristics that emerge as device dimensions
shrink: the emergence of an interface resistance between the reservoirs and the scattering
region, and the departure from the linear decrease in conductance with sample width, as
dictated by Ohm’s law. Instead, conductance depends on the number of transverse modes

in the conductor and changes in discrete steps (DATTA, 1995).

2.5.3 Multiterminal systems

In a more general scenario, a nanostructure is connected to multiple electrodes, some
of them being gates and others being terminals. In this context, the linear expansion of

the current concerning the applied voltages to the reservoir results in the matrix equation:
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Here, the conductance coefficients G;; generalize the conductance G from the two-

terminal system. This generalization imposes two crucial constraints:

e Conservation of charge: In a time-independent scenario, the divergence of the cur-
rent must be zero, implying that the total current entering and leaving the nanos-
tructure must sum up to zero. Consequently, the conductance coefficients in each

column of the matrix satisfy the sum rule >  G;; = 0.

e Absence of transport currents without voltage differences between contacts: This

leads to the second sum rule » 37, Gy; = 0 for the rows of the conductance matrix.

From these two sum rules, it can be demonstrated that the stationary current in any

nanostructure depends solely on the voltage differences between the contacts.

The extension of conductance to describe nanostructures connected to multiple voltage
probes and particle reservoirs was developed by Biittiker (BUTTIKER, 1988). This frame-
work enables the direct description of multi-terminal phase-coherent conductors in terms
of measured currents and voltages, bypassing the need to consider the internal state of the
conductor. He extended the two-terminal linear response formula Eq.(2.90) by summing
over all terminals, indexed by p and ¢q. The arrows ¢ < p simply signify that electron
transfer occurs from p to ¢. Here, T represents the product of the number of modes,

denoted as M, and the transmission probability per mode, denoted as 7', at the Fermi

energy
2e _ _
I, = T [qupﬂp - Tpeqﬂq]
a (2.92)
= Z[qu‘/;) - qu%]?

q

where 002
es _
Gpg = TTm—qa (2.93)

with the conductance term satisfying the sum rules previously discussed. While this

expression can be extended for non-zero temperature situations by linearly expanding the
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Fermi distribution, we refrain from exploring this here and reserve it for the subsequent

section on the scattering matrix.

It’s important to note that this formulation does not hold for non-coherent transport,
where the exclusion principle affects the transmission function, rendering this approach
invalid. In essence, if the transmission functions exhibit significant variations over the
energy range of transport, the applicability of this formalism may be questioned (DATTA,
1995).

2.5.4 Scattering matrix

When the dimensions of the conductor are notably smaller than the phase-relaxation
length, the transport is coherent. This coherence allows for the computation of the trans-
mission function through the Schrédinger equation and in this regime, a significant rela-
tionship emerges between the transmission function and the scattering matrix (S-matrix)
(DATTA, 1995). The S-matrix encapsulates details about electron wave functions far from
the structure and the scattering process. It serves as a comprehensive mean of informa-
tion regarding the transport characteristics, elucidated through a series of transmission

eigenvalues derived from itself.

As the flow of particles in nanostructure devices is inherently a quantum mechanical
process, it finds a well-suited description within scattering theory. This theory, which
specifies an initial state, a scattering region, and a final state, incorporates the entirety
of this process through the S-matrix. In this framework, the total conductivity of a sys-
tem is articulated in terms of the conductor’s quantum mechanical transmission, typically
represented by the S-matrix, along with the occupation numbers of the exact electronic
scattering states (LESOVIK; SADOVSKYY, 2011). Notably, the use of the scattering matrix
formalism predates its application in mesoscopic physics; Born, Wheeler, and Heisen-
berg initially introduced it to elucidate the scattering of particles by atoms (BORN, 1926;
WHEELER, 1937; HEISENBERG, 1943), proving to be a valuable tool in various domains.

The pioneering application of scattering formalism in quantum transport is credited to
Landauer (LANDAUER, 1988), a framework now commonly referred to as the Landauer-
Biittiker formalism. In the context of a two-terminal system, we distinguish between
the left and right waveguides using indices L and R, respectively. The coefficient of the
plane wave propagating on the ideal wave guide are given by ar,, ag, which are are the
amplitudes of the waves coming from the reservoirs, and by, bg,, are the amplitudes of
the waves transmitted through or reflected back from the scattering region for the modes
n and m. These coefficients are therefore not independent: the amplitude of the wave
reflected from the obstacle linearly depends on the amplitudes of the incoming waves in

all the channels
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{6} = [SHa}, (2.94)
where the S-matrix as dimensions (N, + Ng) x (Np + Ng), where Ny and Ny are the

number of open channels on the right and left leads respectively and {a} and {b} are
column vectors representing the incoming and outgoing wave amplitudes in the different

modes in the leads. The S-matrix has the following block structure, in the case of a

S s r t
g — LL RL _ :
SRI. SRR t T/

where r is the reflection matrix for waves coming from the left and »’ for the particles

two-terminal system

coming from the right. The transmission matrix ¢ is responsible for the transmission
through the scattering region. The probability of the process of an electron coming in
channel n and being reflected in the same lead in channel m is given by the coefficient
\rmnP. The same for the coefficients t,,,, which now gives the probability amplitude
of being transmitted from channel n to channel m. The scattering matrix has to obey
some constraints such as being symmetric concerning time reversal and unitary, to ensure
current conservation. This results in S = S7, ¢t = t7, and S'S = 1, which is true for an

arbitrary number of leads.

Using the formalism of this section, we can write the current of a two terminal as

I= %e dE Y " [tmn(E)PfL(E) — fr(E)] = 2 / ) Tr(t')[fr(E) — fr(E)], (2.95)

T Jo
where T'r represents the trace of the matrix ¢7¢. For multi-terminal channels, we obtain

where the trace is take over the transport channels and s, s is a block of the S-matrix,
which describes the transmission of electrons from terminal 5 to terminal « or their
reflection back to a (NAZAROV; BLANTER, 2009). From this expression, we can extract

the matrix elements for the conductance matrix, adopting the linear regime

Gory =2GoTT{00p — 3;530‘,5}, (2.97)

which is the generalization of the Landauer formula for the multiterminal case. If we
consider a situation of zero temperature and assume that the transmission coefficients
|tmn(E)| does not vary for small variations around the Fermi energy, then the current can

be expressed as
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=2y, 3 Jtn? (2.98)
— h b £ mn| » .
and the conducante 02
G = %Tr(ﬂt), (2.99)

which was what we obtained previously. This formula gives a relation between a macro-
scopic quantity (the conductance) and the transmission matrices that are decided from

the microscopic model.

2.5.5 Numerical transport calculations - Kwant Software

Solving a scattering problem is present in several branches of physics. Due to the
complexity of describing a system with a close geometry such as a ribbon, a quantum dot,
or any other shape, one considers the scattering of particles in a finite system couple to
infinite leads or contacts. Solving such a problem is much easier and general allowing to

obtain the conductance and various other transport properties (GROTH et al., 2014).

The numerical calculations on mesoscopic systems started on early 1980’s (LEE; FISHER,
1981; THOULESS; KIRKPATRICK, 1981; MACKINNON, 1985), where the first algorithms
were developed, with the most famous ones based on recursive Green’s function algorithm
however being restricted mainly to one-dimensional geometries or a particular Hamilto-
nian. In our work, we use the Kwant software which is a Python package for numerical
quantum transport calculations. According to the authors, Kwant significantly outper-
forms the most commonly used recursive Green’s function method and avoids usual insta-
bilities occurring in many algorithms. Here we are interested on infinite systems consisting
of a finite scattering region where semi-infinite electrodes (leads) are attached. Within
the Landauer-Biittiker formalism, these leads acts are waveguides leading to plane waves

in and out of the scattering region.

Kwant is based on the wave function formulation of the scattering problem. Without
loss of generality, we can consider the case of a scattering region attached to one lead.
The ordering of the sites is reversed with the distance to the scattering region, as shown
in Fig.(2.4). The Hamiltonian of such a system has a tridiagonal block, as we will discuss

Nnow.

In the case of a one dimensional system, a typical real space Hamiltonian is given by

Hip= (—%W + U(w)) : (2.100)

which can be further discretized, using finite difference methods and be written as a
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FIGURE 2.4 — Schematic representation of a one dimensional device (lead + scattering region) and how
the sites are numbered on Kwant.

matrix,

—t U1+ 2t -1
—1 U; + 2t t

H. =
P t Uy +2t —t

with ¢ being the hopping between neighboring sites.

However, employing this approach directly to compute the modes of a semi-infinite lead
poses a challenge, as the corresponding Hamiltonian would be semi-infinite. To address
this, we adopt a strategy used to obtain waveguide modes, as discussed earlier in this
section. Leveraging the translational invariance of the lead, we transform this challenge
into a finite generalized eigenvalue problem. To achieve this, we express the Hamiltonian
of a quasi 1D lead, and the lead eigenmodes are expanded as combinations of plane waves.

Then, the Hamiltonian of the lead can be expressed as

Vv H Vi

v H Vi
Hicaa =
oot v H Vi

For Hj..4, all subblocks are similar due to translational invariance. In this matrix, H
is the onsite matrix and V' is the hopping matrix. Now one can obtain a finite set of
equations that gives the eigenvectors of the translational invariant Hamiltonian using the
Bloch theorem. In this case, the eigenstates 1(z) can be decomposed into the product of

a phase and a wave function with the periodicity of the lattice
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V() = op(x)e™, (2.101)

and applying this theorem to an eigenvector ¢ of the discretized infinite lead hamiltonian

Hleadr(@ = El&a (2102)
where
e
@D = wO 9
(1

with 1); corresponds to the solution of the i-th unit cell of the lead. Then we have the

following matrix equation

vV H VI
v H Vi o Y1
V H VT % =F iﬂo
(1 (2
For a arbitrary unit cell of the lead
(H = E)y + Vippoy + Vithyy =0, (2.103)

and since our solutions are of the form Eq.(2.101), where now we consider A = e™* we

have

(H—E)p+ VX +Vigh =0, (2.104)

which is a quadratic eigenvalue problem. Performing a change o variables, & = A\¢, we

can rescast the previous equation into a generalized eigenvalue problem

()= )

where its solutions can be classified according to the value of |\[:

H-FE VI
1 0

-V 0
0 1

1. Propagating modes: these are solutions such that |A| = 1, which consists of outgoing
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with positive energy and incoming with negative energy.

2. Evanescent modes: these are solutions with 0 < |[A\| < 1 and |\| > 1.

in
n

The modes are further sorted into incoming ones ¢, outgoing one ¢2** and evanescent
ones ¢7’. Now, having a scattering region connected to one or more leads, the total

hamiltonian of the nanostructure can be written as

Htot = Hsr + Hlead +V + VT, (2105)

where H,, is the Hamiltonian of the scattering region, Hj.,s the Hamiltonian of the lead
and the connection between the scattering region and the leads is given by V. Then, on

matrix form

H,, Prvf
vP, H Vi
Htot == y
Vv H

where P, is a matrix where its entries satisfy

[Porlij =1 (2.106)

if the site ¢ from the lead is connected to the site j of the scattering region and 0 otherwise.
Thus, solving the generalized eigenvalue problem for the total Hamiltonian, the eigenstates

corresponding to the transverse mode n of a unit cell of the lead has the for,

Uali) = 0+ 3 Sundet (i) + > Syt (i), (2.107)

and the scattering wave function inside the system

Un(0) = @5, (2.108)

S 18 the scattering matrix and gives the transmission probability from transverse mode
m to transverse mode n as t,,, = |Sya|?. From the scattering matrix, the conductance is

obtained through the Landauer formula.
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2.6 Computational Details

The first principle simulations were done with the Quantum ESPRESSO (QE) package
(GIANNOZZI et al., 2009; GIANNOZZI et al., 2017; GIANNOZZI et al., 2020). For the mono-
layers of TMDs, cutoff energy ranging from 120-160 Ry was used due to the structural
and electronic properties of the allotropes considered, and the integrations over the BZ
have used a Monkhorst-Pack mesh for k-point sampling (MONKHORST; PACK, 1976). The

value used for each material is given on Table (2.1).

TABLE 2.1 — Cutoff energy for the plane wave expansion (Ecut) and the mesh of kpoints (k-mesh) that
assures well converged DFT results.

Ecut (Ry) k-mesh

HfS, (T) 160 10 x 10 x 1
HfS, (H) 120 10 x 10 x 1
HfSe, (T) 180 12 x 12 x 1
HfSe, (H) 120 10 x 10 x 1
MoS, (T) 160 10 x 10 x 1
MoS, (H) 160 10 x 10 x 1
MoSe, (T) 160 14 x 14 x 1
MoSe, (H) 160 10 x 10 x 1
SnS, (T) 120 10 x 10 x 1
SnS, (H) 120 10 x 10 x 1
SnSep (T) 140 12 x 12 x 1
SnSe, (H) 120 12 x 12 x 1
WS, (T) 140 10 x 10 x 1
WS, (H) 160 10 x 10 x 1
WSe, (T) 160 14 x 14 x 1
WSe, (H) 120 10 x 10 x 1
718, (T) 120 10 x 10 x 1
71S, (H) 120 10 x 10 x 1
ZrSey (T) 140 12 x 12 x 1
ZrSe, (H) 120 10 x 10 x 1

The atomic positions were relaxed until a convergence threshold of 1075 Ry/Bohr on
the forces and 107° Ry on the energy. The SCF cycle’s convergence threshold was 1078
Ry. A vacuum of 30 A was used to avoid spurious interactions of the periodic images
for the monolayers with truncation of the Coulomb interaction perpendicular to the slab
(SOHIER et al., 2017).
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The wave functions and pseudopotentials are generated within the scalar-relativistic
Optimized Norm-Conserving Vanderbilt Pseudopotential (ONCVPSP) code (HAMANN et
al., 1979; HAMANN, 2013; HAMANN, 2017) taken from The PseudoDojo project (SET-
TEN et al., 2018). Exchange and correlation (XC) are described using the Perdew-Burke-
Ernzerhof (PBE) (PERDEW et al., 1996; PERDEW et al., 1997).

To describe excited states more accurately, the hybrid functional HSE06 (HEYD et al.,
2003; HEYD et al., 2006; KRUKAU et al., 2006) was used. The vdW interaction, where the
vdW-DF family was implemented by the Thonhauser group (THONHAUSER et al., 2015;
THONHAUSER et al., 2007; LANGRETH et al., 2009), used was vdW-DF-obk8 (KLIMES et al.,
2009) because, compared with other interactions implemented on the ab initio code, it

gave the best results for the structural properties.

The performance of several vdW functionals implemented on QE package is shown in
Appendix A. The TB parameters are obtained from the first principles calculations as
implemented on the Wannier90 package (MOSTOFTI et al., 2008; MOSTOFT et al., 2014). The
truncation of the sparse hamiltonian to select the maximum value of the hoppings and
how many neighbors will be used on the TB model, the PythTB (http://www.physic
s.rutgers.edu/pythtb/index.html) package was used. The numerical calculations for

quantum transport were performed using KWANT software (GROTH et al., 2014).


http://www.physics.rutgers.edu/pythtb/index.html
http://www.physics.rutgers.edu/pythtb/index.html

3 Structural and electronic properties of
TMDs

3.1 Motivation

In order to obtain vdW qubits, we initially investigate the properties of the individual
layers that comprise the heterostructures. To this end, ab initio calculations were per-
formed to obtain the lattice parameters following a precise methodology, considering a
well-converged k-point sampling and cutoff energy with the same treatment for the XC
functional. These systematic calculations are important since the electronic properties of
the crystals are influenced by strain, which may cause a transition from direct (indirect)
to indirect (direct) band gaps and even yield a transition to a metallic behavior (YUN et
al., 2012; WU et al., 2017), among other effects. After obtaining structural parameters,
the electronic properties were investigated using the HSE06 XC functional to correct the
band gaps and, consequently, the energy levels, which are of fundamental importance in
obtaining the vdW qubits.

3.2 Structural properties

Here, the focus is obtaining the lattice parameter of TMDs, which will be further

combined, forming the vdW heterostructures.

TMDs are compounds with the form X-M-X, where X is a chalcogen and M is a metal
connected by covalent bonds and displaying hexagonal symmetry. Two typical structural
phases are the 2H (trigonal prismatic) and 1T (octahedral) phases, belonging to the Dg,
and D3y point groups, respectively. The 2H phase has chalcogen atoms located on top
of each other in the perpendicular direction of the layer, while the 1T phase has the

chalcogen atoms rotated by an angle of 180 degrees to the metal.

Although TMDs are typically semiconducting, some phases are inherently metastable

and can exhibit metallic behavior. This work explores both stable and metastable phases
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concerning phase stability discussed in the work of Zhuang et al. (ZHUANG; HENNIG,
2013). Phase engineering is performed experimentally to assemble metastable phases, as
discussed in (KAN et al., 2014; GAN et al., 2018; QIAN et al., 2020). In addition, the stability
and degradation of TMDs in various conditions have been investigated, and methods
have been proposed to preserve their structural and electronic properties. These methods
include stabilization via more precise experimental methods, using dopants or solvents
combined with exfoliation assembly, as discussed in (ZHUANG; HENNIG, 2013; ZHANG et
al., 2019; SAHA; MAHAPATRA, 2016; GAO et al., 2015; GAO et al., 2016; MIRABELLI et al.,
2016; BOIX-CONSTANT et al., 2021; ZHAO et al., 2014; HEISING; KANATZIDIS, 1999). It is
important to note that some TMDs, such as MoS, and WSs, are less reactive with oxygen,

while others require the control of surrounding gases (LONGO et al., 2017).

& N

FIGURE 3.1 — Top and side view of MoSs allotrope H.

O * o
o

FIGURE 3.2 — Top and side view of HfSs allotrope T.

In this study, the structural and electronic properties of 20 phases of 10 TMDs were
investigated to obtain the necessary data for forming heterostructures and analyzing their
energy alignments. To ensure accurate results, all unit cells were relaxed using a con-
vergence criteria of 107° Ry/Bohr for forces and 10~° Ry for energy. To avoid spurious
interactions with periodic images, a vacuum of 15 A in the out-of-plane direction was
used. The vdW correction vdW-DF-obk8 was chosen for its precision in obtaining struc-
tural parameters, following a benchmark with several functionals implemented in the QE

package (see Appendix A for details). The lattice parameters (a) and the bond length
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between metal (M) and chalcogen (X) (darx) for each of the 2D materials are presented
in Table 3.1.

TABLE 3.1 — Structural properties of TMDs. Cell parameter a and distance metal chalcogen dy;x were
calculated using vdW-DF-obk8 functional. The experimental values were taken from [1],[2] and are in
good agreement with ab initio calculations (SAHA et al., 2020). The distance M-X is in excellent agreement
with [3] and [4], in which the values are given between parentheses. The allotrope marked with * is to
identify the most stable phase.

a (A) aep (A) dux(A)

(T)  3.649 3.6351  2.56 (2.551)
HfS, (H)  3.540 3.3721 258
HfSe,*(T) 3.774 3.748 2,69 (2.6711)
]

]

[

HfSe, (H) 3.68  3.44 2.71
MoS, (T)  3.19  3.156F 243
MoSo*(H)  3.185 3.16211  2.41 (2.418))
T) 329 - 2.56
H) 3.322 32891 2,54 (2.5483)
SnS,*(T)  3.705 3.6482 2,60 (2.5914)
) 3.62  3.647P  2.64
SnSe,*(T) 3.872 3.811% 2,75 (2.7314))
SnSe, (H) 3.80 3.811° 279

WS, (T) 321 - 2.43
WSo*(H)  3.187 3.153M  2.42 (2.428))
WSe, (T) 329 - 2.57

(
WSe,*(H) 3.321 3.2820 2,55 (2.551%])

ZrS,*(T)  3.685 3.6620  2.57 (2.571%)
ZrS, (H) 357 - 2.59
ZrSex*(T)  3.800 3.7001 2,70 (2.718)
ZrSe, (H) 371 - 2.73

References: [1](BJORKMAN, 2014), [2](BASTOS et al., 2019), [3](ZHUANG; HENNIG, 2013), [4](KODA et al.,
2016), [5](0Sz; SALJE, 1989),[6] (GAO et al., 2022), [7](QU et al., 2016). T Since it is an unstable phase of
MoSs, the distance between the two neighbors Mo atoms was slightly different, so to compare with the
ab initio result, it was taken the mean value of those distances.

The experimental data were not found for the missing values on the table.

Experimental assembly of layered materials, including the more stable phases of TMDs,
has been accomplished through various techniques. For instance, ZrSy and ZrSey, which
have an octahedral (1T) symmetry (Cdlp-like) structure, can be obtained through halogen
vapor transport techniques, whereas HfS, and HfSe; can be acquired through iodine vapor
transport (RIMMINGTON; BALCHIN, 1974; WHITEHOUSE et al., 1973). SnS, crystals were

grown by a stoichiometric composition technique at a constant temperature, and their
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structural properties were confirmed through X-ray analysis (TRIFONOVA et al., 1996).
SnSe; crystals can be obtained by undirectional solidification in an Sn-saturated environ-
ment with a temperature gradient (ALBERS; VERBERKT, 1970). For crystals with trigonal
prismatic symmetry (2H) as the most stable phase, chemical vapor transport is used to
obtain MoSy, MoSey, WS,, and WSe,, and their structural arrangement is characterized
through X-ray diffraction analysis (LUCOVSKY et al., 1973).

Phase engineering methods have enabled the experimental growth of TMDs that do
not occur through conventional procedures. For example, MoS; can be obtained in its
1T phase using ion intercalation techniques, where the phase transition to octahedral
occurs due to significant charge transfer from the ion (PY; HAERING, 1983). Additionally,
substitutional doping of rhenium in WS, nanotubes can form the 1T phase, with the
Re impurity atoms serving as electron donors (ENYASHIN et al., 2011). Similarly, lithium
insertion has been shown to induce the formation of 1T MoS; and WSy (KAN et al., 2014).
Combining ball milling and chemical lithium intercalation can also result in the formation
of high percentages of 1T WS, and MoSe, from their 2H phase, resulting in single-layer
TMD nanodots (TAN et al., 2018). Likewise, different growing conditions have been shown
to lead to the formation of 2H phases of SnS, and SnSe, (0SZ; SALJE, 1989).

First principles calculations also allow the simulation of phase transitions between
allotropic forms under various conditions, guiding experimentalists on paths to obtain
such materials under favorable conditions. For example, hydrogenation can induce a phase
transition (H to T and vice versa) for HfSy, HfSes, WSes, ZrS,, and ZrSe,, resulting in
the interplay between metallic and semiconductor behavior depending on the layer’s side
exposed to the process (QU et al., 2016). Layered 1H SnS, can be obtained by in situ
heating and electron beam radiation, with the growth of each phase being controllable by
tuning experimental parameters (XIE et al., 2020). Similarly, 2H SnSe; can be assembled
using the Bridgman-grown method (BERTRAND et al., 1984).

3.3 Electronic properties

Going beyond the structural properties, the electronic properties are investigated,
such as band structures, band gaps, and energy levels with respect to the vacuum level of
the previous monolayers. These energies, and consequently the band gap, are obtained,
including quasi-particle correction of HSEO6 that, even sub-estimating those obtained
from GW calculations (RASMUSSEN; THYGESEN, 2015; GRUMET et al., 2018), still gives a
good approximation with a much lower computational cost. As implemented on the QE
package, the energies are obtained with respect to the vacuum level using the truncation

of the long-range Coulomb potential (SOHIER et al., 2017). The valence band maximum
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(VBM), conduction band minimum (CBM), and band gaps (E,) are given in Table 3.2.
They have been performed for the primitive unit cell of the materials presented. Fig.(3.3)

displays a more didactic view of the energy levels. No spin-orbit is considered here.

The values of VBM and CBM will be fundamental when combining individual layers
because the degree of alignment of these energies will dictate the combination to be
performed. The ionization energy (I) is related to VBM by VBM = —I and the electron
affinity (A) is related to CBM by CBM = —A. The quasi-particle band gap is related to
these quantities by

E,=1- A (3.1)

TABLE 3.2 — Electronic properties of monolayers TMDs. The band gap (E,;), VBM, and CBM with
respect to the vacuum level obtained with hybrid exchange-correlation functional HSE06.

E, (¢V) VBM (¢V) CBM (eV)

HES,*(T)  2.19 -7.08 -4.89
HfS, (H) 197  -7.67 5.70
HfSe, (T) 153  -6.37 4.84
HfSe, (H) 174  -7.19 5.45
MoS, (T)  metal  metal metal
MoS*(H) 2.35  -6.45 -4.10
MoSe; (T) metal  metal metal
MoSe,*(H) 1.89  -5.89 ~4.00
SnS,*(T) 224 -7.40 5.15
SnS, (H) 138  -6.96 5.57
SnSeo*(T) 140  -6.72 5.31
SnSe, (H)  0.58 -6.28 -5.70
WS, (T) metal metal metal
WS,*(H)  2.49 -6.20 3.71
WSe; (T) metal  metal metal
WSe*(H)  2.01  -5.63 -3.60
ZrS5(T) 207 -7.11 5.04
ZrS, (H) 181  -7.58 577
ZrSe,*(T) 130  -6.39 -5.09
ZrSe, (H) 160  -7.13 5.5

Another critical quantity defined here is the natural band offset between the layers.
This quantity is obtained as the difference between the values of I and A in the following

way

(3.2)
AE, = A(2) — A(1).
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where AE, (AE,) is the offset on the valence (conduction), and the indices 1 (2) represent
the layers that will compose the heterojunction. Fig.(3.3) presents the energy levels with

respect to the vacuum level of the monolayers, and the offsets will be computed from
Eq.(3.2) using these values.
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FIGURE 3.3 — Energy levels and band gaps of monolayers considering quasi-particle effects. The bar
edges represent the valence band maximum and the conduction band minimum for each material. All
energies are in eV and with the vacuum as reference.

A trend can be observed concerning band gaps when considering materials in the same
phase, either 2H or 1T, and changing the chalcogen from S to Se. In general, the band gap

becomes smaller, except for the case of 1T MoS; - MoSesy, where the compound remains
metallic.

Once the band offsets are determined, they fall into three categories: type I, II, and
III (broken gap). Each type is well suited for specific technological applications. Het-
erostructures of type I possess electrons and holes on the same layer, making them excel-
lent candidates for use in optical devices. In type II, electrons and holes are located in
different layers, resulting in carrier confinement, which is useful for high-mobility electron
mobility transistors. Type III is a broken gap situation, in which materials falling into
this category are well suited for Tunneling Field Effect Transistors (TFETS) applications

(OZQELIK et al., 2016). A schematic view of these types of band alignments is shown in
Fig.(3.4).

1.30
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FIGURE 3.4 — Types of band alignment. Type I (electrons and holes are on the same layer), the VBM
and CBM are on the same material. Type II (electrons and holes in different layers), where the VBM
and CMB are on different materials, or type III, which is a broken gap situation (OZQELIK et al., 2016).

It is important to emphasize the significance of quasi-particle corrections on the band
structure of materials. Since DFT tends to underestimate the band gap, it directly impacts
energy levels. Therefore, materials that display energy level alignment when quasi-particle
effects are considered may not exhibit this characteristic if only a pure DFT calculation

is performed.

It’s worth noting that all current calculations are based on the unit cell of layered

TMDs, which comprises of three atoms: a metal and two chalcogens.

3.4 Criteria on forming vdW heterostructures

TMDs” multitude of properties renders them increasingly prevalent in contemporary
components. For instance, SnS, exhibits favorable electronic properties, making it a
promising candidate for high-performance photodetectors. Additionally, its abundance
simplifies experimental synthesis. Furthermore, this material demonstrates n-type tran-
sistor behavior, as reported in (HUANG et al., 2014). The deposition of HfOy onto MoSs
results in a transistor with high current on/off at room temperature, low power dissipa-
tion, and significant carrier mobility, making it an attractive material for constructing
Field Effect Transistors (FETs) and other electronic components (RADISAVLIEVIC et al.,
2011). Recent studies have shown that FETs using solid electrolytes as substrates can
achieve high current densities (ALAM et al., 2021). In addition, MoS, exhibits piezoelectric
properties, allowing electricity conversion into mechanical force and vice versa, making it
useful for logic components. The angular dependence of this property can also be advan-
tageous for valleytronic devices (ZHU et al., 2015; WU et al., 2014). Furthermore, TMDs
such as MoS, have been employed in energy storage for coin-cell devices (BISSETT et al.,
2016).

With all the data obtained and the relevant quantities defined, presented in Tables 3.1
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and 3.2, one can combine the thin layered materials forming heterostructures to obtain
the desired property of hybridized states on the band structure. The alignment of the

energy levels is the first property explored to combine pairs of materials to this end.

The band offsets will help predict the type of band alignment of the heterostructure,
categorizing the material in a specific class well suited for some technological application.
This quantity is also essential in estimating the strength of the electric field to control the
level of hybridization of states on the heterostructure. Since a certain distance d separates
the layers, the electric field given by E = V/d, with V' being the gate potential, the offset’s
values will indicate the field’s strength to change the alignment. This electric control of
hybridized states would be used in controlling the charge contribution of each layer for

the qubit, as will be discussed in the next chapter.

A class of host material was already proposed (LUCATTO et al., 2019). Here, this class
is enlarged, giving more experimental routes for obtaining host platforms for the vdW
qubits, which can be helpful for industry purposes in assembling such materials, choosing
those that are economically viable, easier to obtain, and environmentally friendly. The
newfound combinations are presented in Appendix.C. Here we are going to explore just a

small set of them.



4 vdW Heterostructures of TMDs

4.1 Motivation

After obtaining structural parameters and energy levels listed in Tables 3.1 and 3.2, it
is crucial to calculate the band offsets, which play a crucial role in determining quantum
confinement, dopability, and chemical activity. By analyzing the energy levels, it is pos-
sible to identify combinations of monolayers with good band alignment that can achieve
the desired hybridization of the heterojunction band structure. This process is essential

for designing efficient and effective heterojunction devices.

Experimental techniques have enabled the production of high-quality vdW materi-
als, creating heterostructures with an atomic thickness suitable for electronic components
(SONG et al., 2022). These vdW materials have demonstrated their effectiveness as p-n
junctions, resulting in high-performance electronic components (LEE et al., 2014) such as
transistors (ZHANG, 2019), digital logic devices (YIN et al., 2021), and in-memory comput-
ing systems (LI et al, 2022). For instance, MoSey/WSey and WSes/SnSes (YANG et al.,
2017) have shown to be effective p-n junctions, enabling their integration into FETs with
low current leakage. Furthermore, SnSe;/WSes, grown using molecular beam epitaxy, can
function as a tunneling field-effect device (TFET) (ARETOULI et al., 2016). Meanwhile,
MoSey /ZrSe, can also be used as a TFET with its band alignments modulated by gate

bias.

vdW heterostructures exhibit rich physics, and their properties can be modulated by
external means. Ab initio simulations have shown that the band gap of these materials can
be reduced by vertical compressive strain, resulting in a semiconductor-metal transition
and offering the possibility of using them in technological applications (BHATTACHARYYA;
SINGH, 2012). In addition, perpendicular electric fields can tune the electronic band
structure, with large electric fields achievable through ionic gated transistors, allowing
electric fields on the order of 3-4 V//f\ (DOMARETSKIY et al., 2022; WEINTRUB et al.,
2022), where it was demonstrated that the band gap of WSe, can be reversibly closed by
applying an electric field perpendicularly to the layer (DOMARETSKIY et al., 2022). While

there are several other ways of changing the electronic properties of vdW heterostructures,
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this work focuses on applying an electric field perpendicularly to the heterostructure.

The structural parameters previously determined were utilized to construct unit cells.
In certain instances, these unit cells were nearly commensurate, facilitating the creation
of a unified unit cell through minor stress applied to both layers, simplifying stacking and
the heterojunction formation. Subsequently, the relaxed heterostructures were evaluated
to ascertain the minimum interlayer distance and total energy. The convergence criteria
for the heterostructures are similar those applied to the monolayers, with the exception
of incorporating a 30 A vacuum in the stacking direction during the ab initio calculations

to prevent interactions between periodic images.

Moreover, to control the properties of hybridized states via an electric field and conse-
quently control the vdW qubit, with DFT calculations using hybrid XC functional, such
as HSE06, makes the computational cost of the simulations huge, even with relatively
simple systems. This is where the TB approach becomes advantageous. Our simplified
model is free of empirical parameters, fitting, or Machine Learning techniqu<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>