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Abstract

Pre-equilibrium reactions induced by nucleons are important in applications of nuclear

physics, applications for aerospace technologies, atmospheric and space physics, as well

as for astrophysics studies. One-fifth of the particles emitted in pre-equilibrium nuclear

reactions are composites, such as deuterons, tritiums, and alpha particles. Iwamoto and

Harada proposed a semi-classical model for pre-equilibrium nuclear reactions describing

direct mechanisms. Deuterons can be produced by a direct reaction mechanism called

pickup. Our goal is to implement their model of deuteron emission in the Blann Hybrid-

Monte Carlo model to analyze data of proton-induced reactions having deuterons as emit-

ted particles. The unified model phase-space is investigated to understand its restrictions.

DWUCK and an eikonal approximation were used to compare with the unified model re-

sults. A semi-classical distorted-wave model is used to relate the unified model with the

DWBA theory. The theoretical foundation for a Monte Carlo implementation is pro-

posed. We compare our cross-section and angular distribution results with the ones from

DWUCK4 for a ground-state to ground-state reaction and also for a sum of all orbits

involved in each reaction. We have studied the (p,d) and (n,d) reactions for 40Ca, 120Sn,

and 208Pb. We can conclude that we have satisfactory results for all cases studied. The

application of the Monte Carlo theoretical foundation and a deep understanding for the

results obtained in this study are suggestions for future research.



Resumo

Reações de pré-equilíbrio são reações que ocorrem antes que o sistema atinja o equilíbrio,

entre aproximadamente 10−22 e 10−18 segundos. Reações deste tipo, induzidas por nu-

cleons, são importantes em várias aplicações da física nuclear, tecnologias aeroespaciais,

física atmosférica e espacial, além também ser de interesse de estudos em astrofísica.

Aproximadamente 20% das partículas emitidas em reações de pré-equilíbrio são partícu-

las compostas, como deuterons, trítios e partículas alfas. Iwamoto e Harada propuseram

um modelo semiclássico para descrever os mecanismos diretos de emissão de deuterons em

reações de pré-equilíbrio. Deuterons podem ser produzidos pelo mecanismo chamado de

“pickup”. Nosso objetivo foi de implementar o modelo unificado de Iwamoto e Harada no

modelo híbrido Monte Carlo de Blann para analisar dados de reações induzidas por pró-

tons incidentes tendo dêuterons como partícula emitida (p,d). Investigamos o espaço de

fase do modelo unificado para entender suas restrições e limitações. Utilizamos DWUCK e

a aproximação eikonal para comparar com os resultados do modelo unificado. Um modelo

semiclássico utilizando ondas distorcidas (Distorted Wave) para espalhamento inelástico

de nucleóns foi usado para aproximar o modelo unificado da teoria de ondas distorcidas,

DWBA. Neste trabalho, propomos o nosso modelo e a base teórica para aplicação dos cál-

culos usando o método Monte Carlo. Comparamos os resultados obtidos para as seções de

choque e distribuições angulares do nosso modelo com os resultados obtidos do DWUCK.

Apresentamos os resultados para as reações do tipo (p,d) e (n,d) para três casos: 40Ca,
120Sn, e 208Pb. Todos os resultados obtidos foram satisfatórios. Sugerimos a aplicação

da base teórica para implementação do método Monte Carlo e estudos para aprofundar

o entendimento dos resultados obtidos neste trabalho para serem realizados em pesquisas

futuras.
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1 Introduction

1.1 Motivation

Nucleon induced pre-equilibrium reactions are important in the description and mod-

eling of accelerator-driven-system, rapid-reactors, particle-beam radiotherapy, as well as

for applications for aerospace technologies, such as the study of radiation damage on elec-

tronic, radiation protection for astronauts, and for modeling of particle detection systems.

It is also important for atmospheric and space physics, and also for astrophysics studies.

In nucleon induced reaction, with incident energy above 30 MeV, about 20% of the

nucleon-induced pre-equilibrium emission rate corresponds to composite particles such as

deuterons, tritium, and alpha particles. The pre-equilibrium process provides reasonable

results for reaction cross-sections with incident energies between 10 and 220 MeV. One can

define pre-equilibrium reaction as those that occur before the system reaches equilibrium,

a time scale approximately between 10−22 and 10−18 seconds.

In Fig. 1.1, one can see the emission spectra for a p+56Fe reaction at 61.5 MeV. Each

data set represents the emission spectrum for a different kind of particle. The one in

black, the first data set from the top, represents the emission spectrum for protons (p).

The red one is for deuterons (d), the green one for tritium (t), the blue one for helium-3

(h), and the purple one for alpha particles (a).
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FIGURE 1.1 – Emission spectra of p+56Fe at 61.5 MeV from Bertrand e Peelle (1973).

One can observe that the deuteron emission spectrum has a magnitude of about 20%

of the proton emission spectrum. The spectra for tritium and helium-3 have similar values

but are approximately two orders of magnitude below the proton values and decrease even

more with increasing energy. For alpha particles, the initial spectrum, at about 15 MeV,

has higher values than the deuteron one with a value of 4.9 mb/MeV. However, the alpha

particle spectrum decreases considerably with increasing energy. In this work, we will

discuss only deuteron emission.
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FIGURE 1.2 – Emission spectra of p+27Al at 61.5 MeV from Bertrand e Peelle (1973).

In Fig. 1.2, the emission spectra of p+27Al is shown. This target has about half the

mass of 56Fe. The emission spectra of p+120Sn is shown in Fig. 1.3. 120Sn is a target with

about twice the mass of 56Fe. It is clear that, in all three cases, the deuteron emission

spectrum is close to 20% of the proton emission spectrum independently of the target

mass and charge. Furthermore, the other particle emission spectra show similar emission

rates with respect to the proton one as seen in the p+56Fe reaction, with exception of the

tritium (t) and helium-3 (h) spectra for 120Sn.
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FIGURE 1.3 – Emission spectra for p+120Sn at 61.5 MeV from Bertrand e Peelle (1973).

Before talking about the deuteron formation mechanisms, we define some models we

will talk about. The exciton model is a semi-classical model created by (GRIFFIN, 1966)

to analyze pre-equilibrium nuclear reactions. The Hybrid model is a model developed by

Blann (BLANN, 1971) and later extended to a new model called the Hybrid-Monte Carlo

model (BLANN, 1996), which calculates the exclusive spectra and yields of precompound

reactions. The unified model, or the Iwamoto and Harada model (IWAMOTO; HARADA,

1982), is a model used for describing pre-equilibrium reactions with composite particle

emissions, for example, deuterons, tritiums, and alpha particles. We will further discuss

them on the next section.

An important mechanism for deuteron formation is called “pickup”. In this kind

of reaction, an incident nucleon takes another nucleon from the target nucleus to form

the deuteron. Another important deuteron formation mechanism is called “coalescence”

(BUTLER; PEARSON, 1963; SCHWARZSCHILD; ZUPANCIC, 1963; NAGLE et al., 1996). In this

case, the deuteron is formed from two fast nucleons which were emitted close to each other

in phase space. In the context of the pre-equilibrium reaction exciton model (KONING;

DUIJVESTIJN, 2004), Iwamoto and Harada developed a model that unifies both deuteron

formation mechanisms (IWAMOTO; HARADA, 1982; SATO et al., 1983; KONOBOEYEV; KO-

ROVIN, 1996). Inspired by their model, we tried to modify their model to apply it in the
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Hybrid-Monte Carlo Simulation model.

In (SATO et al., 1983), Sato, Iwamoto and Harada discussed the angle-integrated energy

spectra for pre-equilibrium emission of tritium, helium-3 and deuterons. As they used

the “never come back” approximation, their energy spectra calculations did not contain

equilibrium and quasi-equilibrium components. They started with the 2p1h (2 particles

and 1 hole) state and they summed all contributions until the 6p5h state. They also

mentioned that the states above 4p3h had insignificant contributions to the high energy

spectra. The other relevant parameters of the exciton model, such as the single-particle

level density, the spreading width, nucleon absorption cross-section, the complex particle

and the target nucleus radius, were the same as in (IWAMOTO; HARADA, 1982).

In Fig. 1.4, we show the proton, deuteron, tritium, helium-3 (Note that here the

helium-3 notation change to 3He instead of h), and alpha particle spectra in proton induced

reactions on 197Au (left) and 54Fe (right), respectively. The incident proton energy is 62

MeV. K Sato, Iwamoto and Harada concluded that the data was well reproduced by

their calculations even with the discrepancies seen in the high energy part, especially for

deuteron emission.
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FIGURE 1.4 – Proton, deuteron, tritium, 3He, and alpha particle angle-integrated energy
spectra for proton induced reactions for 197Au (left) and 54Fe (right) with Ep = 62 MeV
from Sato, Iwamoto e Harada (SATO et al., 1983). The bars represent the experimental
values. The line represents the results from K. Sato, Iwamoto and Harada calculations.
For our discussion, one may ignore the dashed curves.

For all reactions in Fig. 1.4, the 197Au results show a better agreement with the

experimental data than the 54Fe ones. This is consistent with the idea that a Fermi gas

model provides a better description of Sato, Iwamoto and Harada formation factor in

heavier systems. For Sato, Iwamoto and Harada, deuteron emission is dominated by the

pickup component. The underestimate of this cross-section in Fig. 1.4 is huge. The other

emitted particles will not be discussed in this work.

Broeders e Konobeyev (2005), proposed an alternative approach to the pre-equilibrium

energy distribution for nucleon-induced reactions at intermediate energies. Their approach

combined the emission mechanisms, pickup, coalescence and knock-out, into a unique
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model. According to them, in a knock-out process, the emitted particle is “knocked out”

(emitted) from the target by the interaction of the incident particle with the target. The

incident particle excites a “preformed” particle on the target resulting in its emission from

the nucleus.

The Sato, Iwamoto and Harada model (SATO et al., 1983) was used in their work to

describe the pickup and coalescence components starting from a 2p1h exciton configura-

tion. However, the knock-out component was formulated using the Pauli principle for the

nucleon-deuteron interaction inside the nucleus. With that, they developed an alternative

approach based on pickup and coalescence models from the exciton model (SATO et al.,

1983) and the hybrid model (BLANN; VONACH, 1983).

They also assumed that non-equilibrium deuteron emission in nucleon induced reac-

tions was due to: i) pickup from a low energy nucleon below the Fermi energy right after

the initial exciton state (2p1h) formation, ii) coalescence between two excited nucleons

with energies above the Fermi energy level, iii) knock-out of a pre-formed deuteron, or iv)

a direct process resulting in deuteron formation and emission. These contributions from

each deuteron formation component were calculated using formation factors from Sato,

Iwamoto and Harada model (SATO et al., 1983).

In Fig. 1.5, we have pickup (F(1,1)), coalescence (F(2,0)), and (KO) contributions for

deuteron emission spectra on 54Fe and 197Au with Ep = 61.5 MeV. It is interesting to

note that Broeders and Konobeyev included knock-out contribution beyond those that

Sato, Iwamoto and Harada included in their work, (SATO et al., 1983). We can also see in

Fig. 1.5 that the pickup and coalescence contributions are small and that the knock-out

contribution dominates most of the high energy part of the spectra. This contribution

was not part of the results of (SATO et al., 1983). The direct pickup process (D) is a

process where the nucleon is picked up without the formation of the 2p1h configuration.

As Broeders e Konobeyev (2005) state, its final state is the 0p1h.
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FIGURE 1.5 – Contributions of different nuclear processes for deuteron emission in pro-
ton induced reactions on p+54Fe and p+197Au with Ep = 61.5 MeV. EQ is equilibrium
emission, (F(1,1)) is pickup nucleon from a (2p1h) exciton state, (F(2,0)) is two excited
nucleon coalescence, knock-out is (KO) and direct pickup is (D). The sum of all non-
equilibrium components is denoted as (NONEQ) and the total spectrum as (TOTAL). The
black circles represent the experimental data obtained from (BERTRAND; PEELLE, 1973).
The deuteron energy shown is in laboratory coordinates. Figure taken from (BROEDERS;
KONOBEYEV, 2005).

Thus, the description of pre-equilibrium emission of composite particles is needed

in order to improve our understanding of nucleon-induced reactions. As we have pointed

out, pre-equilibrium nuclear reactions are important and they can impact many important

areas of science. By creating a model to simulate this kind of composite particles emission,

we will be able to improve our understanding of this type of reaction. Furthermore, it

will help other researchers in their endeavors to describe nuclear experimental data.
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1.2 Goals

EMPIRE, (HERMAN et al., 2007), is a well-known software used for theoretical inves-

tigations of nuclear reactions and for nuclear data evaluation. EMPIRE is constituted of

several modules, two of which are the PCROSS module (based on the exciton model),

and the DDHMS module (based on the Hybrid-Monte Carlo model). Both models are

used for pre-equilibrium nuclear reactions.

Our goal in this project is to implement our semi-classical distorted-wave model into

the Hybrid-Monte Carlo Simulation (HMS) for pre-equilibrium nuclear reactions, (BLANN,

1996). The HMS calculates the emission distribution of the emitted nucleons both in

energy and angles. We intend to implement our model in the DDHMS (Double Differential

Hybrid-Monte Carlo Simulation) module in the nuclear reaction code EMPIRE, (HERMAN

et al., 2007). This module executes the pre-equilibrium calculation inside this code. Our

final goal is that our code will expand EMPIRE in order to analyse (p,d) reactions.

1.3 Structure of this work

This thesis is organized in five chapters. We start with the introduction. In the second

chapter, we review the literature. In the third chapter, we discuss about the distorted-

wave born approximation (DWBA) and the eikonal approximation. In the fourth chapter,

we discuss about the semi-classical distorted-wave model, introducing the theoretical basis

for the Monte Carlo evaluation of the scattering series, and we talk about the results we

have obtained for the cross-sections and the angular distributions for deuteron pickup. In

the last chapter, we made our conclusions about this thesis. In the appendix, we present a

published proceedings, a discussion about the potentials used in our studies, and a study

we made to understand the limitations of the unified model from Iwamoto and Harada by

redefining its phase space, a discussion about inelastic scattering with DWBA, and the

energy levels used in DWUCK for the results obtained on chapter 4.



2 Literature Review

In this chapter, we review previous work on the subject of the thesis. We start by

talking about nuclear reaction mechanisms and their differences. Of the three mechanisms

that we will present, the pre-equilibrium reaction mechanism will be the center of our

attention. Following our discussion of this mechanism, we discuss the differences between

the classical and the quantum-mechanical theories used to describe it, as well as several

models created to study pre-equilibrium reactions.

Three models are important for our work: the exciton model, the hybrid-Monte Carlo

model, and the unified model. We will discuss them in turn after the introduction. This

discussion is important for understanding the source of our ideas, our goals, and what we

want to achieve with this work.

2.0.1 Introduction

According to Koning and Akkermans, (KONING et al., 1999), there are three different

types of a nuclear reaction mechanisms in a reaction induced by a light-ion: the direct,

compound, and pre-equilibrium nuclear ones. We can define these mechanisms by the

time in which the reaction takes place and by the characteristics that each mechanism

produces in the data. Fig. 2.1, from (KONING et al., 1999), gives an idea of the energy

spectrum of a reaction A(a,b)B with an incident energy of several tens of MeV. The

differences between the mechanisms can be seen in the spectrum. One can also see that

the angular distribution transition to isotropy by the decrease of the outgoing energies.
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FIGURE 2.1 – Representation of a typical energy spectrum of a reaction A(a,b)B with
an incident energy of several tens of MeV from (KONING et al., 1999).

In a direct reaction, the process occurs in a short period of time, ∼ 10−22 seconds, and,

as we can see in part D of Fig. 2.1, the associated angular distribution is forward peaked

with an oscillatory behavior. Koning et al. (1999) says that the forward-peaked angular

distribution is expected to be due by the pre-equilibrium phase. Compound process takes

longer than a direct process, ∼ 10−18 seconds. This process is predominant at low energies

(below 10 MeV). The compound nucleus is formed when the target nucleus captures the

incident particle. Different from a direct process, which occurs mostly in a one-step

process, the compound emission process occurs after the nucleus reaches equilibrium.

Intermediate between compound and direct processes are the pre-equilibrium pro-

cesses. In pre-equilibrium reactions, the composite nucleus emits particles before reaching

the statistical equilibrium. These reactions can be described in a time-dependent process.

In the exciton model, the occupation probability of the configurations with the same

number of particles and holes can be determined by a master equation, which results are

predictions of the energy distribution of emitted particles. We are not going to discuss
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about the master-equation model in this work.

A pre-equilibrium process takes features from both compound and direct processes.

As (KONING et al., 1999) state, “It is imagined that the incident particle step-by-step

creates more complex states of the compound system and gradually loses its memory of

the initial energy and direction”. The pre-equilibrium processes provide reasonable results

for reaction cross-sections with incident energies between 10 and 220 MeV.

While explaining the differences between the classical and quantum-mechanical pre-

equilibrium reaction theories, Koning and Akkermans, (KONING et al., 1999), state that

most classical models are phenomenological ones. These models, like the one that we will

discuss in one of the next subtopics, the unified model from Iwamoto and Harada, take

into account a master equation which represents the probability of particle transitions.

The exciton number (n), which represents the number of particles (p) and holes (h), is

used to account for the states, as many particle-holes are involved in the process.

Although proven to be quite successful, the exciton model was criticized due to its

classical treatment of the compound and direct mechanisms. A quantum-mechanical

model for the pre-equilibrium mechanism is more appropriate. Two quantum-mechanical

models were proposed, the multi-step compound (MSC) and the multi-step direct (MSD)

ones.

MSC reactions mostly occur in an energy range a little above the one that is charac-

teristic of the compound nucleus and are restricted to energies between 10 and 20 MeV.

MSD reactions are said to provide most of the pre-equilibrium cross-section.

One interesting way to look at the differences between MSC and MSD models is that

on compound reactions the reaction keeps on by the bound configurations of the system.

When it proceeds by the unbound configurations, one can think of that as the MSD

reactions.

Among the differences between the classical and quantum treatments, in which the

MSC combines quantum-mechanical perturbation theory with statistical postulates, is

that the MSC mechanism yields symmetrical angular distributions while the exciton model

has practical problems due to its systematical underestimation of the double-differential

cross-section at backward angles. For the MSD, as Koning and Akkermans, (KONING et

al., 1999), say, “the crucial feature of the MSD process is that one can make a meaningful
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distinction between a leading fast particle and the residual one”.

Despite these differences, the classical and quantum-mechanical models, are important

to supply data for practical use. Pre-equilibrium reactions are important to provide

nuclear data for fusion reactor-design calculations, for the analysis of applications that

require accelerators, and for other scientific purposes.

Since Griffin’s pioneering work, (GRIFFIN, 1966), many papers were published and

several pre-equilibrium models were developed. The most used models were the exciton

models developed, and the hybrid model. In this work, we will not talk about the hybrid

model, but we will discuss the hybrid-Monte Carlo Simulation model instead. We will

explain pre-equilibrium nuclear reaction models developed to analyze nuclear reaction

data where a fast particle is emitted before reaching equilibrium. This fast particle is

emitted before its degrees of freedom have reached the compound nucleus equilibrium.

These reactions are characterized by having a small number of excitons.

In the next subsections, we will talk about different pre-equilibrium models. With a

brief introduction, we start with the exciton model. Then, we discuss the Hybrid-Monte

Carlo model from Blann, and the Unified model of Iwamoto and Harada.

2.1 Exciton model

The exciton model (EM) was introduced by Griffin in 1966, (GRIFFIN, 1966), to analyze

pre-equilibrium nuclear reactions and later elaborated in more detail. The EM is a semi-

classical model that classifies states of the system by the exciton number (the number of

particles + holes) and by the excitation energy E. The exciton number (n) is equal to

the sum of the number of excited particles (p) above the Fermi energy and the number

of holes (h) below the Fermi energy.

The EM assumes that the system reaches equilibrium by multiple two-body interac-

tions. Particle-hole configurations with the same exciton number and excitation energy

are assumed to be equally probable. As a result of these two-body interactions, the num-

ber of excitons changes in time. With that, one can account for the evolution of the

scattering process just by counting the exciton number.
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FIGURE 2.2 – Reaction process described by the EM. The symbols are described on the
figure. This figure was taken from (KONING et al., 1999).

In Fig. 2.2, one can see an n = 1 state starting with a projectile particle with energy

above the Fermi energy. As it interacts with the target nucleus, the system undergoes

a ∆n = +2 transition to a (2p,1h) state. As the other particles interact (following

the right arrows), the system undergoes further transitions ∆n = +2 transitions until

it reaches equilibrium. On the other hand, following the left arrows, a particle can be

emitted causing the system to undergo a ∆n = −1 transition. This transition is caused

by a nucleon in an unbound single-particle state being emitted. There is one more type

of internal transition, the ∆n = −2, in which the system changes its configuration by

reducing the exciton number, (KONING et al., 1999; CLINE; BLANN, 1971).

As Koning and Akkermans state, “in principle the exciton model enables to compute

the emission cross-sections in an unified way, without introducing arbitrary adjustments

between equilibrium and pre-equilibrium contributions”, (KONING et al., 1999). With that,

we will continue our discussion of pre-equilibrium models. The hybrid model, mentioned

before, can be considered as a variation of the EM. We will not discuss it here as we will

discuss the Hybrid-Monte Carlo Simulation Model in the next section.
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2.2 Hybrid-Monte Carlo Simulation Model

In (BLANN, 1996), Blann developed a new formulation of the hybrid model to resolve

the principal inconsistencies and limitations of earlier precompound decay models, such

as the exciton model, which assumed that the states of any p-particle h-hole density are

equally occupied. As Bisplinghoff demonstrated, this is only the case for the initial 2p1h

density, (BISPLINGHOFF, 1986).

The hybrid model was developed considering multiple precompound decay, (BLANN;

VONACH, 1983). However, it was restricted to two or fewer emissions of precompound

nucleons from each nuclide. This became a serious limitation for high energies models.

To improve the description and solve the hybrid model limitations, the Hybrid-Monte

Carlo Simulation (HMS) model was developed. The restriction on emissions of precom-

pound nucleons was removed on the HMS. It has a validity range up to about 280 or 400

MeV, depending on the effective pion threshold and on the pion production. The model

was inserted on the nuclear reaction code ALICE, and later, on the DDHMS module, in

EMPIRE, (BLANN, 1996).

2.2.1 Formulations

To prepare the Monte Carlo sampling, a collision partner for the incident nucleon is

chosen. It can be a proton or a neutron. A two particle-one hole state is than selected

from a weighted table of the energies above the Fermi energy of the scattered nucleons,

and of the hole left by the excited nucleon. The next step is to define whether the nucleons

are emitted or re-scatter. These steps are followed repeatedly until the nucleus is in a

near equilibrium state.

In the next subsections, we will show the steps of the HMS formulation. This discussion

is based on (BLANN, 1996).

2.2.2 Collision partners

There are four kinds of collisions between nucleons in the HMS: (n,n), (n,p), (p,n),

and the (p,p). The probability that an incident neutron scatters with another neutron, is
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energy dependent, is given as

Pnn(ϵ′) = σnn(ϵ′)(A− Z)
σnn(ϵ′)(A− Z) + σnp(ϵ′)Z , (2.1)

with

Pnp = 1 − Pnn, (2.2)

with ϵ′ being the nucleon energy above the Fermi energy plus the depth of the potential

well below the Fermi energy, where n represents a neutron and p a proton. The free

nucleon-nucleon scattering cross-sections are given by the σ’s, while A and Z are the

atomic mass and proton number of the target. The probability for an incident protons

colliding can be calculated analogously as eq. (2.1).

The probabilities give values for which the model will choose a result from weighted

tables. These values, as they are probabilities, are between 0 and 1. All events, such as

scattering or emission, and which collision partner will be chosen, are governed by the

results in these tables.

2.2.3 Weighted tables

Precompound models used exciton state densities given by

ρn(E) = g(gE)n−1

p!h!(n− 1)! , (2.3)

where g is the single-particle state density, p the number of particles, h the number of

holes, and E the excitation energy.

A more detailed calculation for n = 2 (1p1h) excitons, where n = p+ h, furnishes

ρ2(E) = g(gϵF ) if E > ϵF , (2.4a)

ρ2(E) = g(gE) if E ≤ ϵF . (2.4b)

with ϵF , the Fermi energy, limiting the density of states.
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For n = 3 (2p1h), with E ≥ ϵF , we have

ρ3(E) = g3[ϵF (2E − ϵF )]
4 . (2.5)

Using eq.(2.4) and eq.(2.5), one can create weighted tables in order to retrieve the energy

ϵ for a nucleon above the Fermi energy. The excitation energy E will be represented as

U = E − ϵ, with U as the final energy and ϵ as the internal excitation energy.

With that, a nucleon at energy ϵ is found in a three exciton probability distribution

by

P (ϵ)dϵ = ρ2(E − ϵ)gdϵ
ρ3(E) . (2.6)

In this weighted table given by eq. (2.6), each interval is given by ϵ+ ∆ϵ. All intervals

summed from 0 to E will give unity. A random number will identify the interval defined

by eq. (2.6) in a table prepared by

T3(ϵ′, E) =
∫ ϵ′

ϵ=0

ρ2(E − ϵ)gdϵ
ρ3(E) , (2.7)

for a three quasiparticle configuration, and

T2(ϵ′, E) =
∫ ϵ′

ϵ=0

g2dϵ

ρ2(U) , (2.8)

for a two quasiparticle configuration, with U = E − ϵ′.

One must compute T3 and T2 for all composite system excitation energies E ′ to use

during the deexcitation cascade.

2.2.4 Probabilities of emission and rescattering

The last step is the calculation of the emission and rescattering probabilities. They

will define if a nucleon will be emitted or rescatter. If they were to rescatter, all processes

will be repeated until the remaining nucleons reach equilibrium.

The energy e after emission for a nucleon, with energy ϵ above the Fermi energy, in a

potential well, is given by

e = ϵ−Q, (2.9)
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with Q being the energy released from the reaction, the Q value.

2.2.4.1 Rate of emission and rescattering

The emission rate for a nucleon to the continuum, with energy e, according to the

hybrid precompound decay model, is given by the Weisskopf expression,

λe(e) = (constant)σabs(e)e(2S + 1)µ
g(ϵ) , (2.10)

with σabs the absorption cross-section, e the emitted nucleon energy, S the nucleon spin,

µ the reduced nucleon mass, and g the single-particle density at internal excitation energy

ϵ. The constant comes from phase space factors.

In addition to emission, a nucleon can also rescatter within the nucleus. The scattering

transition rate is given by

λ+(ϵ) = ρavσNN
v

kmfp

. (2.11)

λ+(ϵ) takes into account the nucleon velocity in the nucleus and the nuclear density. ρav

is the average nuclear density, σNN is the average nucleon-nucleon cross-section, v is the

nucleon velocity, and kmfp is a mean free path multiplication factor. Blann observes in

(BLANN, 1996) that kmfp takes into account the average value over longer paths on the

diffuse nuclear surface, as well as medium modifications of the nucleon-nucleon cross-

section. One should also note that λ+(ϵ) is given by v/λmfp, when λmfp is the mean free

path in the nuclear medium.

2.2.4.2 Calculation of the Probabilities of emission and rescattering

Once we know the emission and scattering transition rates, we are able to calculate

the emission and rescattering probabilities.

The probability to emit a nucleon with energy e into the continuum is given in (BLANN,

1996) as

Pν(e) = λe(e)
λe(e) + λ+(ϵ) , (2.12)

with ν being a proton or a neutron, λe(e) given by eq. (2.10) and λ+(ϵ) given by eq. (2.11).
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The probability for rescattering is given by the interval 1 − Pν(e). With that, a random

number from 0 to 1 can be used to determine whether a particular cascade exciton will

be emitted or if it will rescatter within the nucleus.

The collisions are computed successively until no more nucleons can be emitted, a con-

dition considered as equilibrium. Any further emissions are calculated using a compound

nucleus emission model.

2.2.5 Single-particle density and transition rates

Continuing our discussion of Blann’s model, we describe in more detail the discussion

in (BLANN, 1996) of single-particle densities and transition rates. Blann discusses the

emission rate λe(ϵ), but merely mentions the scattering rate λ+(ϵ). In the next subtopic,

we will describe single-particle densities, emission and scattering widths, and, lastly, we

will discuss transition rates.

To begin our discussion, one must note that energies of composite nuclei states have

finite widths. In order to understand this idea, we start with the uncertainty principle,

where

∆E∆t ≃ ℏ. (2.13)

A state would have an energy width Γ given by ℏ/∆t. This interval of time can be

called a lifetime. As the lifetime is given by the inverse of the decay rate in units of time,

λ, we obtain

Γ = ℏλ. (2.14)

Having different partial widths for each type of decay, a nucleus can decay in different

ways. To calculate the total width, we sum the partial widths,

Γ =
∑

i

Γi =
∑

ℏλi. (2.15)

With this idea in mind, we proceed to calculate the single-particle density. After that,
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we will discuss emission and scattering widths in more details.

2.2.5.1 Single-particle density

A single-particle state with a definite spin projection is defined by a momentum vector

p⃗ in three dimensions with normalization volume,

V = 4π
3 r3

0A. (2.16)

The particle is confined in this volume and its density is given by

g(p⃗) = V
d3p

(2πℏ)3 . (2.17)

Volume

Fermi energy

Particle

N or Z number

FIGURE 2.3 – A simplistic interpretation of eq. (2.18).

Instead of having one spin projection, we could sum eq. (2.17) over all spin projections

and integrate it to the Fermi momentum, pF . By doing that, one may obtain the neutron

number N or proton number Z,

gsV
p3

F n

6π2ℏ3 = N and gsV
p3

F p

6π2ℏ3 = Z, (2.18)

where gs = 2 is the spin multiplicity, A = N+Z, and 4π
3 r

3
0 is the average volume occupied

by a nucleon. For a simplistic interpretation of this equation, see Fig. 2.3.

For typical values, N = Z = A/2 and r0 = 1.2 fm, we would have pF ≈ 250 MeV/c
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and ϵF ≈ 33 MeV (Fermi energy). When defining Aef = 2N or 2Z, we would have

pF r0 = 3
2ℏ
π

3
Aef

A

1/3

. (2.19)

One can also express the single-particle density in terms of the energy, ϵ = p2/2m.

This gives us

gsV
d3p

(2πℏ)3 = gs
2m
3π pF

(
r0

ℏ

)3

A

√
ϵ

ϵF

dϵ
dΩp

4π = g(ϵ)dϵdΩp

4π , (2.20)

where g(ϵ), the single-particle density, is given by

g(ϵ) = gs
2m
3π pF

(
r0

ℏ

)3

A

√
ϵ

ϵF

. (2.21)

2.2.5.2 Single-particle free density and single-particle nuclear level density

The single-particle free density is calculated to account for all particles in the con-

tinuum. Instead of using ϵ, the internal excitation energy, we use e, the energy after

emission. Blann defines the single-particle free density as

gfree(e)de = gs
4πp2dp

(2πℏ)3 = gs

4π2

2m
ℏ2

3/2
√
ede,

→ gs

2π2h3

√
e(2m+ e)(m+ e)de,

(2.22)

where gs is the spin multiplicity and the second line represents the relativistic value for

the single-particle free density.

Using the same idea as our g(ϵ), eq. (2.21), but for relativistic kinematics, Blann

defines the single-particle nuclear level density as

glev(ϵ)dϵ = gsV
4πp2dp

(2πℏ)3 = gs

3π2

r2
0
2m
ℏ2

3/2

A
√
ϵdϵ,

→ 2gs

3π
(r0

ℏ
)3
A
√
ϵ(2m+ ϵ)(m+ ϵ)dϵ.

(2.23)



CHAPTER 2. LITERATURE REVIEW 46

2.2.5.3 Emission width

Like the rates, the widths can be classified as emission and scattering widths. The

widths, as stated before in eq. (2.13), represent an energy width that comes from the

uncertainty principle, or in other words, is a way to represent the decay rate in terms of

energy.

The emission width Γ↑(p⃗), the energy width in which a particle with momentum p⃗ can

escape from the nucleus, is given in terms of the rate at which flux escapes through the

surface of the normalization volume,

Γ↑(p⃗)
ℏ

V
d3p

(2πℏ)3 = gs
d3pf

(2πℏ)3

∫
d3rr̂ · p⃗f

µ
θ(r̂ · p̂)δ(r −R). (2.24)

Due to the Q-value of the reaction and the Coulomb barrier, the final momentum pf de-

viates from the initial one in magnitude. We rewrite eq. (2.24) using the idea of eq. (2.17)

and changing it in terms of single-particle energies,

Γ↑(p⃗)g(ϵ)dϵdΩp

4π = gs
2µπR2

2π2ℏ2 ϵsdϵs
dΩp

4π . (2.25)

where we can see that ϵs = ϵ−Q−VB is the exit energy immediately outside the nucleus,

above the Coulomb barrier. With that, we can define the asymptotic kinetic energy as

e = ϵs + VB = ϵ−Q. (2.26)

Analyzing for the right side of eq. (2.25), we recognize a well-known approximation for

the absorption cross-section, σabs(e), given by

πR2ϵs = eπR2(1 − VB/e)θ(e− VB) ≈ eσabs(e). (2.27)

With this approximation, we can rewrite eq. (2.25) as

Γ↑(p⃗)g(ϵ)dϵdΩp

4π = gs
2µeσabs(e)

2π2ℏ2 de
dΩp

4π . (2.28)

Finally, we obtain the emission width, as
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Γ↑(p⃗) = gs
2µeσabs(e)
2π2ℏ2g(ϵ) , (2.29)

with g(ϵ) given by eq. (2.21). Note that the spin multiplicity, gs, will cancel out because

it is in both the numerator and the denominator (inside g(ϵ)).

Blann, (BLANN, 1996), uses the relativistic velocity to calculate the emission width,

vf = pf/
√
p2

f +m2 =

√
e(2m+ e)
e+m

, (2.30)

and the phase space volume,
√
e(2m+ e)/(e+m), rather than the nonrelativistic relative

velocity with reduced mass, pf/µ =
√

2e/µ, and phase space volume, µ
√

2µe. With that,

the emission width becomes

Γ↑(p⃗) = gs
(2m+ e)eσabs(e)

2π2ℏ2glev(ϵ) , (2.31)

with glev(ϵ) given by eq. (2.23). Note that µ could be substituted by the particle mass in

order to obtain the correct nonrelativistic limit.

Using the definition of the energy width, eq. (2.14), with the emission width, eq. (2.31),

one can calculate the emission rate, already mentioned in section 2.2, as eq. (2.10).

2.2.5.4 Spreading/scattering widths

Instead of being emitted, a particle has a probability to re/scatter within the nucleus.

Both the excitation of a 2p1h (Fig. 2.4) or 1p2h (Fig. 2.5) configuration contributes to

the width, which gives us the scattering width of a particle (or a hole) of momentum p⃗1.

p⃗1 p⃗3

p⃗2

p⃗4

FIGURE 2.4 – Excitation diagram for a 2p1h configuration. The incident particle 1, with
momentum p⃗1, interacts with particle 2, with momentum p⃗2 below the Fermi momentum.
Particle 1 is emitted with momentum p⃗3 and particle 2 is emitted with momentum p⃗4.
Particle 2 leaves a “hole” in the system.
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p⃗3

p⃗1

p⃗2

p⃗4

FIGURE 2.5 – Excitation diagram for a 1p2h configuration. A hole 1, with momentum
p⃗1, interacts with a particle 2, with momentum p⃗2 below Fermi momentum. Particle 2 is
excited and emitted with momentum p⃗4, leaving two holes states in the system.

To begin our calculation, one should understand the role of each particle in our reac-

tion. p⃗1 represents the incident particle before the interaction and p⃗3 is the same particle

but after the collision. p⃗2 is a particle above or below the Fermi energy and p⃗4 is particle

2 after emission. We focused on two emission mechanisms, one is represented in Fig. 2.4,

with p⃗2 below the Fermi energy, p⃗F , and the second one is represented by Fig. 2.5, with

p⃗2 above the Fermi energy.

From Fermi’s golden rule, we can calculate the scattering width for a particle as

Γ↓
1p(p⃗1) = 2πℏaV 2

∫
|U(q⃗)|2(2πℏ)3δ(p⃗1 + p⃗2 − p⃗3 − p⃗4)

× δ(p2
1/2m+ p2

2/2m− p2
3/2m− p2

4/2m)

× θ(pF 2 − |p⃗2|)
d3p2

(2πℏ)3 θ(|p⃗3| − pF 1)
d3p3

(2πℏ)3 θ(|p⃗4| − pF 2)
d3p4

(2πℏ)3 ,

(2.32)

with particle 4 representing the final particle in a 2p1h reaction. The factor a takes into

account indistinguishability. It is equal to 1/2 if the final particles are identical and 1 if

they are different.

The nucleon-nucleon interaction, which represents the interaction between the two

particles, is defined as

U(q⃗) = 1
V

∫
d3reiq⃗·r⃗U(r⃗), (2.33)

where q⃗ is the transferred momentum, given by

q⃗ = (p⃗3 − p⃗1 − p⃗4 + p⃗2)/2 = p⃗3 − p⃗1, (2.34)

when momentum conservation is taken into account.
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In order to calculate the integral, we assume that the squared interaction matrix

element can be represented by its mean value and taken out of the integral. We will also

assume that the squared matrix element is summed over final spins and averaged over

initial ones, as it is normally done for an unpolarized cross-section. We thus write for

particles,

Γ↓
1p(p⃗1) = 2π⟨|U |⟩2ρ1p→2p1h(p⃗1), (2.35)

with

ρ1p→2p1h(p⃗1) = 2aV 2

(2πℏ)6

∫
δ(p⃗1 + p⃗2 − p⃗3 − p⃗4)δ(p2

1/2m+ p2
2/2m− p2

3/2m− p2
4/2m)

× θ(pF 2 − |p⃗2|)d3p2θ(|p⃗3| − pF 1)d3p3θ(|p⃗4| − pF 2)d3p4.

(2.36)

For holes, it can be expressed in a similar way as

Γ↓
1h(p⃗1) = 2π⟨|U |⟩2ρ1h→1p2h(p⃗1), (2.37)

with

ρ1h→1p2h(p⃗1) = 2aV 2

(2πℏ)6

∫
δ(p⃗1 + p⃗2 − p⃗3 − p⃗4)δ(p2

1/2m+ p2
2/2m− p2

3/2m− p2
4/2m)

× θ(|p⃗2| − pF 2)d3p2θ(pF 1 − |p⃗3|)d3p3θ(pF 2 − |p⃗4|)d3p4.

(2.38)

The factor 2 in the definition of the densities is accounted by the sum over the spin value

of particle 2. For particle 3 and 4, it is included in the average squared matrix element.

By doing that, we ignore details of interaction, such as scattering with no exchange of

spin, when calculating the density. It is also consistent with the convention normally

adopted for unpolarized cross-sections.

When p1 ≥ pF 2, the transition density of 1p → 2p1h yields

ρ1p→2p1h(p⃗1) = 2aV 2

(2π)4ℏ6
m

p1
{(p2

1 − p2
F 1 − 2p2

F 2/5)p3
F 2/3 + 2p5

2 min/15

− θ(pF 2 − pF 1)(pF 2 − pF 1)3(p2
F 1 + 3pF 1pF 2 + p2

F 2)/15},
(2.39)
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where p2
2 min = min(0, p2

F 1 +p2
F 2 −p2

1). When p1 < pF 2, in which case necessarily pF 1 < pF 2,

it yields

ρ1p→2p1h(p⃗1) = 2aV 2

(2π)4ℏ6
m

p1
(p1 − pF 1)2(2p3

1 + 4p1p
3
F 1 + 6p2

1p
2
F 1 + 3p5

F 1)/15. (2.40)

For 1h → 1p2h, when p1 ≤ pF 2, we have

ρ1h→1p2h(p⃗1) = 2aV 2m

4(2π)4(ℏ)6

{
(p2

F 1 − p2
1)2

− θ(pF 1 − pF 2)
[
(p2

F 1 − p2
F 2)2 − 4p2

1(p2
F 1 − p2

F 2)/3

+ 8
(
p4

1 − (p2
1 + p2

F 2 − p2
F 1)5/2/p1

)
/15

]}
.

(2.41)

And, lastly, when p1 > pF 2, in which case necessarily pF 1 > pF 2, we have

ρ1h→1p2h(p⃗1) = 2aV 2

(2π)4ℏ6
m

p1

{
p3

F 2(p2
F 1 − p2

1)/3 − 2
[
p5

F 2 − (p2
1 + p2

F 2 − p2
F 1)5/2

]
/15

}
. (2.42)

To establish a relation with the scattering width that Blann uses in (BLANN, 1996), we

use the PWBA (Plane-Wave Born Approximation),

dσNN

dΩ = m2

(2πℏ)2 |ω|2, (2.43)

with ω as the matrix element of the interaction between plane wave states. It is used to

associate the integrated cross-section with our average squared matrix element as,

σNN = 4π m2V 2

(2πℏ2)2a⟨|U |⟩2, (2.44)

where it is assumed that the antisymmetrization factor is included in the cross-section.

With that, the scattering width is given by

Γ↓
1p(p⃗) = (2πℏ2)2

2m2V 2
σNN

a
ρ1p→2p1h(p⃗1). (2.45)

For the case of equal Fermi energy/momenta, we can write the scattering width as

ρ1p→2p1h(p⃗1) = 2aV 2

(2π)4ℏ6mp1
p3

F

3 Pp,P auli(p1), (2.46)



CHAPTER 2. LITERATURE REVIEW 51

where the Pauli exclusion factor is

Pp,P auli(p1) = 1 − 7
5
p2

F

p2
1

+ 2
5
p5

2min

p2
1p

3
F

, (2.47)

with p2
2min = max(0, 2p2

F − p2
1). The particle scattering width is then

Γ↓
1p(p⃗1) = 1

3(2πℏ)2p
3
F

p1

m
σNNPp,P auli(p1)

= 1
4ℏ
p1

m
ρ0σNNPp,P auli(p1),

(2.48)

with ρ0 as the neutron or proton density inside the nucleus. This must be summed

over neutrons and protons to obtain the total scattering width. This is identical to the

scattering width used by Blann, after he has taken into account the “medium correction”.

In the same way, we can calculate the scattering width for holes,

Γ↓
1h(p⃗1) = (2πℏ2)2

2m2V 2
σNN

a
ρ1h→1p2h(p⃗1), (2.49)

which we can write as

Γ↓
1h(p⃗1) = 3

16ℏ
pF

m
ρ0σNNPp,P auli(p1), (2.50)

where

Pp,P auli(p1) =
(

1 − p2
1
p2

F

)2
. (2.51)

2.3 Unified model

Based on the ideas of the Exciton Model (EM), Cline and Blann proposed a pre-

equilibrium master equation to quantitatively describe the reaction equilibration process,

(CLINE; BLANN, 1971). The master equation describes the evolution of the exciton prob-

ability distribution, (KONING et al., 1999). In summary, it accounts for the internal tran-

sition rates and the total emission rate as well as the probability that the system is in a

certain exciton state in a certain time. The most important parameters for the master

equation are the transition and emission rates.

In the Hybrid-Monte Carlo Simulation Model (HMS), the transition rates, as we have

already seen in sec. 2.2, are calculated differently than in the exciton model. According to
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Carlson et al. (2014), the HMS “is more consistent than the exciton and hybrid models

and can describe pre-equilibrium spectra and double differential data at least as well as

these”.

To develop the HMS further, instead of just accounting for nucleon emissions, a model

was necessary to combine the ideas of describing pre-equilibrium reactions with composite

particle emissions, for example, deuterons, tritiums, and alpha particles.

In 1982, Iwamoto and Harada, (IWAMOTO; HARADA, 1982), proposed a unified model

of light-composite particle emission based on the Exciton Model. This model, which we

will call the Unified Model (UM), includes the effects of the emitted particle’s intrinsic

structure. To do that, it generalizes the exciton model.

In their first published paper on the model, Iwamoto and Harada, (IWAMOTO; HARADA,

1982), proposed a description of (p,α) reactions. One year later, K. Sato published a pa-

per in collaboration with both authors, (SATO et al., 1983), expanding their model for

(p,d), (p,t), and (p,3He) reactions.

In the Unified model, the formation factor, which we are going more about on the

next topic, plays the most important role as it represents the composite particle formation

probability. In (SATO et al., 1983), the authors calculate the formation factor for (p,d),

(p,t) and (p,3He) reactions using a quasi-classical method following the Fermi-gas model

described in (IWAMOTO; HARADA, 1982). The authors had used this method for the

following reasons,

• Due to the interest in studying the formation factor properties;

• To obtain simple analytical expressions for the formation factors, which are very

convenient for analyses of light-composite particle emission in an exciton model

framework;

• Due to the plausibility of a quasi-classical calculation with an rms approximation.

As our aim is to develop a model to calculate deuteron emissions in pre-equilibrium

nuclear reactions, we will focus on the related content from (SATO et al., 1983) in the next

subsections.
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2.3.1 Definitions

In the Unified model, it is important to have an idea of how a deuteron can be formed

from two incident particles. In Fig. 2.6, we illustrate the deuteron formation from two

nucleons in momentum space. It can be interpreted as an integration in the momentum

space of all deuteron formation factors. With that in mind, the proton and deuteron

coordinates inside the nucleus are defined as r⃗1 and r⃗2, respectively. We will discuss the

formation factors shortly.

The Unified model works with the following coordinate system

R⃗d = 1
2(r⃗1 + r⃗2) and P⃗d = p⃗1 + p⃗2, (2.52)

where R⃗d and P⃗d are the deuteron center of mass coordinate and momentum, respec-

tively. The relative coordinates are given by

r⃗ = r⃗1 − r⃗2 and p⃗ = 1
2(p⃗1 − p⃗2). (2.53)

A deuteron can be emitted by different reaction mechanisms. However, as we will

focus on emissions caused by a pickup type reaction, we will not discuss further any other

mechanism at the moment. Deuteron formation by a pickup mechanism can be pictured

as in Fig. 2.6, where we have an incident proton colliding with a target (Al, Ca, Fe..) and

a neutron with momentum below the target Fermi momentum (pF ) to form a deuteron.

We call this type of formation as F1,1 (pickup).

F1,1

d

PF

FIGURE 2.6 – Deuteron formation by a pickup type reaction mechanism.
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To introduce the Unified model restrictions, we must define several parameters of the

model. First, we take the hamiltonian of deuteron-bound state to be

h = p2

2µ + 1
2µω

2r2, with µ = m

2 , (2.54)

where ω represents the oscillator parameter. The ground state of the hamiltonian is given

by

ϕd(r⃗) = 1
(πb2)3/4 exp

[
− 1

2

(
r⃗

b

)2]
, with b =

√
ℏ
µω

. (2.55)

To obtain the formation factors for a composite particle with two nucleons, we calculate

the following restricted integral

Flm(ϵd) = 1
(2πℏ)3

∫ ′

d3pd3r, (2.56)

with l and m being the number of nucleons above and below the Fermi energy ϵF , respec-

tively. For the case of this work, for deuteron, we have that l + m = 2. We also have ϵd

as the observed deuteron energy, which we take it to be

ϵd = Ed − 2ϵF + ε0

2 +Q, (2.57)

with Q as the Q-value for deuteron emission, in other words, it is the energy released

during the reaction that causes the deuteron to be emitted, and ε0 = 3
2ℏω the ground-

state energy of the deuteron. The deuteron energy in the nucleus Ed and the Fermi energy

ϵF , are given by

Ed = P⃗ 2
d

2(2m) and ϵF = p2
F

2m, (2.58)

with pF being the Fermi momentum of the target nucleus.

2.3.1.1 Phase space restrictions

The restrictions on the integral defining the formation factor Flm, eq. (2.56), can be

easier to visualize with Fig. 2.6 in mind. They are the model phase space restrictions
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governed by the following items:

1) p
2

2µ + 1
2µω

2r2 ≤ ε0 , fundamental oscillator energy;

2)
∣∣∣R⃗d

∣∣∣ = R, the deuteron center of mass is fixed at the target radius;

3) P⃗d, the deuteron momentum in the nucleus is fixed;

4) The nucleon positions are limited by |r⃗i| ≤ R0 = R + ∆R , i = 1, 2;

where ∆R is a parameter to be adjusted;

5) The nucleons momenta are limited by |p⃗i| > pF , i = 1, . . . , l ,

and |p⃗j| ≤ pF , j = 1, . . . ,m .

These restrictions are a classical version of the superposition of the neutron and proton

wave functions with the deuteron wave function in the coalescence model. The first item

defines the phase space ellipsoid, represented by Fig. 2.7, with r as the deuteron radius

on x-axis and p the deuteron momentum on y-axis.

The second restriction limits the deuteron radius to be equal to the residual nucleus

radius, consistent with the superficial nature expected of the reaction. The third one im-

plies that the model uses a fixed momentum P⃗d for the emitted deuteron. This momentum

will be used as an input in the simulation. The fourth restriction determines that the

coordinate vector of each nucleon, proton and neutron, must be less or equal to R0. R0 is

the target nucleus radius plus a parameter ∆R. The fifth and last restriction implies that

the nucleon momentum i must be greater than the Fermi momentum pF , with l nucleons

with momentum higher than pF . It also implies that the nucleon momentum j must be

lower than pF , with m nucleons below pF . Note that, in our case, for pickup, l and m are

equal to one.

p

r

√
mε0

√
ε0

mω2

FIGURE 2.7 – Equivalent energy surface defined by the first restriction on eq. (2.56).
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In (SATO et al., 1983), the authors calculated the formation factors analytically. In

this work, we calculate them numerically. For the pickup mechanism, for a reaction
40Ca(p,d)39Ca, with an incident proton with Ep = 65 MeV, F1,1 is shown in Fig. 2.8.

In (TEIXEIRA, 2018), the formation factors are discussed in great detail and including

a generalization of the calculation to other emission mechanisms instead of just for the

pickup one. One could also check Fig. ?? and Fig. ?? for an angle-integrated energy

spectra using Sato, Iwamoto and Harada formation factor.
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Deuteron formation factor - Pickup

FIGURE 2.8 – Deuteron formation factor with ∆R = 2.1 fm as function of deuteron
energy Ed with 40Ca as target with Ep = 65 MeV.

The formation factor gives us the probability of deuteron formation from nucleons with

certain characteristics in an excited target nucleus. For the pickup case, an illustration of

the process defined by the formation factor is shown in Fig. 2.9.

×

d(F1,1)

(pickup)

FIGURE 2.9 – Illustration for the pickup formation factor process (F1,1).

2.3.1.2 Emission/decay rate

Now that we know how to calculate the deuteron formation probability, we must also

determine its emission rate. The emission rate is important to relate the unified model
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with the HMS. While the HMS calculates the emission of nucleons alone, the unified model

emission rate will give us a way to insert a composite particle emission in our calculations

using the HMS. So, instead of having just nucleon emissions, with the Unified model

emission rate, we will be able to calculate proton, neutrons and deuteron emissions in a

pre-equilibrium nuclear reaction.

The emission rate for the unified model involves the formation factors, Flm. As we

are calculating only the pickup-case, Iwamoto and Harada, (IWAMOTO; HARADA, 1982),

consider that it occurs in a two-step process: the formation and the emission of the

composite particle. We have already calculated the first step, the formation. It is given

by eq. 2.56. The second step, the emission, will be discussed now.

Iwamoto and Harada treated the emitted particle as an elementary particle. From

(IWAMOTO; HARADA, 1982), we have that

dΓn(l,m)

dϵ
= 1
π2ℏ3µϵσabsFl,m(ϵ)

ω∗
n(l,m)(U)
ω(p, h, E) , (2.59)

for the emission rate per unit of energy from a n-exciton state. In our case, we will

calculate just the F11 component. ϵ is the emitted particle energy, ω∗
n(l,m)(U) is the level

density of the residual nucleus, and ω(p, h, E) is the level density of the nucleus before

its decay. E is the nucleus excitation energy, and U is the residual nucleus energy. Both

excitation and residual energy are related by

U = E − ϵ−Q. (2.60)

Iwamoto and Harada, (IWAMOTO; HARADA, 1982), state that if an initial p-particle h-

hole exciton state (p, h) is defined, the final state given by Flm will be equal to (p−l, h+m).

Thinking of the pickup case with a 2p1h state, we would have a F11 giving us a final

1p2h state. They also claim that the summation over particle configurations is already

accounted for by the newly created freedom of m holes. With that, it is not necessary to

include the change in m in ω∗
n(l,m)(U). Iwamoto and Harada assume that “the nucleons

below the Fermi level, which emerge as constituents of the [emitted] particle, come out

freely with no interaction with the remaining nucleons”. With that, the following relation
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is assumed

ω∗
n(l,m)(U) = ω(p− l, h, U), (2.61)

with

ω(p, h, E) = g[g(E − Y )]p+h−1

p!h!(p+ h− 1)! , (2.62)

where g is the single-particle level density of the target nucleus, and A is given by

Y = 1
4(p2 + h2 − p− 3h). (2.63)

Eq. (2.61) was postulated as an ansatz by Iwamoto and Harada, (IWAMOTO; HARADA,

1982).

The inverse cross-section is given by

σabs = πR2

1 − VCoul

ϵ

, (2.64)

with VCoul being the Coulomb barrier. Finally, the cross-section is given by

dσ

dϵ
= ℏ

∑
n

σn

∑
l+m

1
Γtot

n

Γn(l,m)

dϵ
, (2.65)

where, in a general case, we would sum it over n = 3, 5, 7, . . . excitons. As Iwamoto and

Harada state, “σn stands for the cross-section for the formation of the n-exciton state by

the projectile nucleon”. The last term, Γtot
n , is the total width of a n-exciton state. It

means that Γtot
n represents the total value of the emission and scattering widths. Dividing

ℏ (reduced Planck constant) by the total width gives the mean life time of the system

is in the n-exciton state. Another important thing to highlight is that eq. 2.65 is used

by Iwamoto and Harada to perform their numerical calculations in (IWAMOTO; HARADA,

1982).



3 Discussion

In this chapter, we will discuss everything we have done and that we intended to

accomplish with this work. To begin our discussion, it is important to note that we have

used some results from our last study, (TEIXEIRA, 2018). One interesting result for pickup

can be seen in Fig. 3.1. The deuteron and proton emission rate ratio for pickup decreases

when the target mass increases. It gets even smaller for heavier nuclei as one can see

when comparing the width values for 27Al, 56Fe, and 120Sn.

FIGURE 3.1 – Ratio between proton and deuteron emission rate by pickup for 27Al, 56Fe,
and 120Sn.

In the next section, we will discuss the steps that we have taken to understand why

our results were not satisfactory, how we tried to improve the model formulation and

some ideas that we have tried in order to link the unified model with a semi-classical

approximation. Furthermore, we also discuss some ideas of how a new model could

improve the Hybrid-Monte Carlo model to give better cross-section results using the

ideas of multi-step direct pre-equilibrium nuclear reactions.
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3.1 DWBA

In order to study the effects on an incident particle of the target potential while

working in a nuclear reaction, calculations are usually performed in the framework of

quantum mechanical scattering theory (SATCHLER, 1990).

The asymptotic wave function in the scattering theory is represented as

Ψ(r, θ, ϕ)
scatt,β

large r−−−−→ A0fβ(θ, ϕ)exp(ikβrβ)
rβ

ψbψB, (3.1)

where r is the direction, θ and ϕ are the scattering angles, ψb and ψB represent the wave

function for the internal states of the outgoing particle b and residual nucleus B. A0 is

the incident amplitude and fβ is a factor called the scattering amplitude in the β channel.

Solving the Schrodinger equation to obtain the scattering wave function, we can get

the scattering amplitude fβ and the differential cross-section for a nuclear reaction,

dσ

dΩ = vβ

vα

∣∣∣fβ(θ, ϕ)
∣∣∣2, (3.2)

where vα and vβ are the incident particle and residual nucleus relative velocity, respec-

tively.

In a collision with a neutral particle, we have an incident plane wave plus an outgoing

spherical wave, given by

Ψ(k, r) large r−−−−→ exp(ik · r) − exp(ikr)
4πr

∫
exp(−ik′ · r′)U(r′)Ψ(k, r′)dr′, (3.3)

where we can identify the scattering amplitude as

f(θ, ϕ) = − 1
4π

∫
exp(−ik′ · r′)U(r′)Ψ(k, r′)dr′, (3.4)

with U as the potential, k′ the momentum of the outgoing particle.
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3.1.1 Born Approximation

We can use the Born Approximation (BA) to calculate eq. 3.3. In the BA context, we

say that if the potential is weak, we can approximate the incoming wave in the plane-wave

Born approximation. With that, the scattering amplitude is given by

fBA(θ, ϕ) = − 1
4π

∫
exp(iq · r′)U(r′)dr′, (3.5)

where q = k − k′.

However, if we have a sum of potentials U = U1+U2, we can say that the scattered wave

is divided in two, as incoming scattered wave (ψ(−)) and outgoing scattered wave (ψ(+)).

By doing that, we use a distorted-wave function with a first order Born approximation.

We call it the Distorted-Wave Born Approximation (DWBA). Its general form is

fDW BA(θ, ϕ) = − 1
4π

∫
ψ(−)(k′, r′)∗U2(r′)ψ(+)(k, r′)dr′, (3.6)

where U1 is the elastic potential (used in f1), and U2 the interaction potential.

3.1.2 DWUCK4

To provide a numerical solution to DWBA problems, P. D. Kunz developed a FOR-

TRAN code called DWUCK (Distorted-Wave University of Colorado Kunz). Although

Kunz did not published an article discussing the code, one can find a description of its

formulation and how to use the software on (KUNZ; ROST, 1993). DWUCK4 uses the

DWBA to calculate the scattering amplitude for a binary nuclear reaction considering a

zero-range interaction. He also developed another version of the code called DWUCK5.

The DWUCK5 code does the same as DWUCK4 but for a finite-range interaction. In

this work, we will discuss about DWUCK4 only, as we are working with a zero-range

interaction. We will also call DWUCK4 simply DWUCK in the rest of this work.

Although we are developing our own code to perform calculations within the ideas

of the unified model, DWUCK is an interesting tool to compare the results. It is also a

well-known code which provides some useful information on calculations of interest to us.
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The results obtained using DWUCK can be varied by adjusting our inputs. With that,

we can relate these results from DWUCK to the calculations in our own code.

Kunz made documentation on DWUCK available to the user, (KUNZ; ROST, 1993),

where one can see how DWUCK performs, its description, formulation, cases of use, and

how to run the code. The documentation also has some examples of use.

3.1.2.1 Comparing results

While developing our model, we needed to compare our results with reliable data.

We started by choosing experimental data for a reaction of interest to us, 40Ca(p,d)39Ca.

With that, we started with the data from (MATOBA et al., 1993).

In (MATOBA et al., 1993), the differential cross-sections and analyzing power data were

analyzed using DWUCK. The authors state that the conventional calculations with best-

fit optical potential in the proton and deuteron channels did not reproduce the shape of

differential cross-section data well for (p,d) reactions at medium energies. Because of that,

they also used an adiabatic potential. They also state that the adiabatic potential for the

deuteron channel considerably improves the overall fitting of the angular distribution.

They used a global optical potential (a Wood-Saxon potential) for the incident proton

and an adiabatic potential for the emitted deuteron. As we were comparing models, we

ignored the adiabatic potential in our calculations replacing it with the same Wood-Saxon

potential used for the proton but keeping their deuteron parameters values. One can check

the section B.2 on Appendix B for formulas and parameters values of the optical potential

used here. The neutron bound-state wave function was calculated based on the separation

energy or the effective binding energy method. They also modified several parameters to

adjust the results from DWUCK to meet their experimental results, (MATOBA et al., 1993).

Our first goal was to reproduce the results from (MATOBA et al., 1993) using DWUCK

(as they did). By doing that, we would be able to analyze its functionality.
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FIGURE 3.2 – Angular distribution comparison for 40Ca(p,d)39Ca for the experimental
values and DWUCK4 results using the data input provided in (MATOBA et al., 1993).

In Fig. 3.2, we compare our calculations using DWUCK to the experimental values of

Matoba. One can see that the results for DWUCK are in good agreement at small angles

but it begins to diverge after 20 degrees. This deviation was expected as it was said

in (MATOBA et al., 1993) that the authors used an adiabatic potential for the deuteron

because it provides a better fit at medium energies. Due to this, we believe that our

DWUCK input can reproduce the cross-section at low energies but that does not reproduce

it well at medium energies because we used the same optical potential for all energy

values. We could have used the adiabatic potential to try to get a better agreement with

the results, however it was not our goal. This comparison was important to understand

how DWUCK could help our model development. In the next sections, we will discuss

several attempts that we have made to rewrite the unified model to reproduce the results

given by DWUCK. The values used as input in DWUCK were taken from (MATOBA et

al., 1993). The input values will be the same as the ones used in Fig. 3.2, and will remain

the same on the next calculations using DWUCK, unless otherwise noted.
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p⃗1

ẑ

b⃗ = r⃗1 − (r⃗1 · ẑ)ẑ

Target nucleus core

Scattering angle

FIGURE 3.3 – Incident proton with moment p⃗1 colliding with a target nucleus along the
z axis with impact parameter b⃗.

3.2 Eikonal approximation

In this section, we will further discuss our attempt to obtain a semi-classical description

of a pre-equilibrium nuclear reaction using an eikonal approximation. The reaction was

idealized as in Fig. 3.3.

In order to improve the unified model, (SATO et al., 1983), we had studied the phase

space of their model. In our last work, (TEIXEIRA, 2018), we reached the conclusion that

the simple model proposed by Sato et al. (1983) was not precise enough or that other

deuteron production mechanisms were needed to be included in their calculations. These

assumptions were made because their results were not satisfactory in comparison with

experimental data.

The eikonal approximation is a good approximation for a short-range potential in

scattering processes. It fits in our work as we are working with a proton colliding with a

target, such as 40Ca, having deuterons as the emitted composite particles. So, we hoped

that the eikonal approximation could improve the unified model by redefining its phase

space.
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3.2.1 One-step DWBA Amplitude

We started with an one-step DWBA amplitude. We expected to calculate the scatter-

ing amplitude and the differential cross-section from it. Starting from a simpler version

of our problem and complementing Fig. 3.3, one could idealize the scattering region as in

Fig. 3.4.

θ
z direction

z⃗

b⃗

r⃗

Scattering region

FIGURE 3.4 – Scattering region for a one-step DWBA calculation.

To calculate the angular distribution, we start by calculating the transition amplitude.

For the incident proton and the emitted deuteron, the transition amplitude was given by

⟨K⃗d;h|T (1)|K⃗p⟩ =
∫
d3rd

∫
d3rpϕ

∗
dψ

∗(−)
d V (r⃗d − r⃗p)ψpψ

(+)
p ,

= V0

∫
d3r exp(iq⃗ · r⃗)ψn exp

− i

ℏvp

∫
Up(z′, b⃗)dz′ − i

ℏvd

∫
Ud(z′, b⃗)dz′

,
(3.7)

with q⃗ = |⃗kp − k⃗d| = 2k sin(θ/2), v = ℏk/µ, ψn = Unl(rn)Y m
L (θn, ϕn), and b = sin(θ/2)r.

We tried two potentials for U . The potentials are introduced in appendix A, and

more details are given in appendix B. We also discuss inelastic scattering with DWBA in

appendix D.

3.2.2 Deuteron pickup

We start with the amplitude, which in the post form of the DWBA is given by

T
(
k⃗d, k⃗p

)
=
〈
ψ̃

(−)
d (k⃗d, r⃗d)ϕd(r⃗)ΨB (χ) |vpn(r⃗)| ΨA (χ, r⃗n)ψ(+)

p (k⃗p, r⃗p)
〉
, (3.8)
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where ΨA and ΨB are the initial and final nuclear wave functions, respectively. Assuming

that

ΨA (χ, r⃗n) ≈ ΨB (χ)ϕn (r⃗n) , (3.9)

this reduces to

T
(
k⃗d, k⃗p

)
=
〈
ψ̃

(−)
d (k⃗d, r⃗d)ϕd(r⃗) |vpn(r⃗)|ϕn (r⃗n)ψ(+)

p (k⃗p, r⃗p)
〉
. (3.10)

The eikonal approximation to this amplitude is

T
(
k⃗d, k⃗p

)
=

∫
d3rpd

3rn exp
[
−i⃗kd · r⃗d − i

ℏvd

∫ ∞

zd

Ud

(
z′, b⃗d

)
dz′
]

× vpn (r⃗)ϕd (r⃗)ϕn (r⃗n) exp
[
i⃗kp · r⃗p − i

ℏvp

∫ zp

−∞
Up

(
z′, b⃗p

)
dz′
]
,

with

r⃗d = r⃗p + r⃗n

2 and r⃗ = r⃗p − r⃗n . (3.11)

We rewrite this in terms of r⃗n and r⃗, substituting

r⃗p = r⃗n + r⃗ and r⃗d = r⃗n + r⃗

2 , (3.12)

and use the zero range approximation (r⃗p = r⃗n = r⃗d) in the the eikonal phases integrals.

We find

T
(
k⃗d, k⃗p

)
=

∫
d3r vpn (r⃗)ϕd (r⃗) exp

[
i
(
k⃗p − k⃗d/2

)
· r⃗
]

×
∫
d3rn ϕn (r⃗n) exp

[
i
(
k⃗p − k⃗d

)
· r⃗n

]
× exp

[
− i

ℏvd

∫ ∞

zn

Ud

(
z′, b⃗n

)
dz′ − i

ℏvp

∫ zn

−∞
Up

(
z′, b⃗n

)
dz′
]
.

Since vpn (r⃗) is of short range, the first integral modulates the amplitude slightly at large

values of
∣∣∣⃗kp − k⃗d/2

∣∣∣. The second term is the most important one. It gives the amplitude

as essentially the Fourier transform in k⃗p − k⃗d of the neutron wave function, modulated

by the eikonal integrals, which should lead to strong absorption in the nuclear interior.

We thus expect the principal contribution to the integral to come from values of
∣∣∣⃗bn

∣∣∣ ≈ R,

where R is the nuclear radius.
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3.2.3 Conclusions about the eikonal approximation

Although we had obtained the differential energy-angular distribution using the eikonal

approximation, our results have not provided the improvement to the unified model we

expected. In the next paragraphs, we discuss several results that we have obtained and

compare them using the unified model and DWUCK.

Our first attempt was to use the eikonal approximation to obtain similar values as the

unified model for the pickup mechanism. As the unified model and the eikonal approx-

imation are semi-classical, we also studied the results from DWUCK to compare them

with a quantum-mechanical result. We started by comparing the transition amplitude T .

For the following discussion, we have defined the amplitude T as

T =
∣∣∣ ⟨K⃗d;h|T (1)|K⃗p⟩

∣∣∣2. (3.13)

One can see in Fig. 3.5 that the calculations show good agreement between the three

amplitudes (including a normalization of the values). For this result, we have used the

optical potential values obtained from (MATOBA et al., 1993) and explained in appendix A.
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FIGURE 3.5 – Comparison between the transition amplitude for DWUCK (multiplied by
10), the unified model (multiplied by 10) and the eikonal approximation for 40Ca(p,d)39Ca
with Ep = 65 MeV.

Continuing our studies, we tried to understand the behavior of the transition amplitude

in terms of l = kp × b (here we forget the last definition of l, from the exciton model,
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and we are going to define it as the phase-space radius) and the deuteron energy (Ed).

Besides comparing DWUCK with eikonal, DWUCK also gives us the transition amplitude

by each orbit in the nuclear shell model. One can see in Fig. 3.6 the amplitude T for each

orbit in a 40Ca(p,d)39Ca reaction with Ep = 65 MeV.

FIGURE 3.6 – Transition amplitude for 40Ca(p,d)39Ca with Ep = 65 MeV in terms of
l = kp × b (where b is the impact parameter) and Ed (deuteron energy). The legends
represent each orbit in the nuclear shell model for this reaction. Results obtained using
DWUCK.

In contrast to DWUCK, our calculation using the eikonal approximation does not give

the amplitude orbit by orbit. However, we can obtain the total value of the amplitude

as seen in Fig. 3.7 (A). For the sake of comparison, we have also included the summed

amplitude from DWUCK in Fig. 3.7 (B). The results in Fig. 3.7 are similar to those in

Fig. 3.5.

In conclusion, the results from the last figures show that the eikonal approximation

provides good agreement with the unified model but it is slightly different than the results
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(A-Eikonal)

(B-DWUCK)

FIGURE 3.7 – Transition amplitude for 40Ca(p,d)39Ca with Ep = 65 MeV by l = kp × b
(where b is the impact parameter) and Ed (deuteron energy). The values on DWUCK
were summed by each nuclear orbit. The amplitude for DWUCK is multiplied by 4.

provided by DWUCK. In Fig. 3.7 (A), apart from the difference in magnitude between

both results, one can see that the eikonal amplitude is concentrated in the range from 0

to 45 MeV with low l values, while the results from DWUCK have two peaks at about

30 and 50 MeV spread in l values. Low l values means that the reaction occurs in the

target core, and high l values means interactions near the target surface. The different
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peaks in DWUCK are due to the nuclear orbits. The amplitude in the eikonal result has

an oscillatory behavior with low l values, which is odd.

Our goal in this study was to obtain the deuteron formation factor, the differential

cross-section and other data using this approximation. With that, we would be able to

compare it with the experimental data. We would also compare it with the results found

by Iwamoto and Harada in (SATO et al., 1983).

By improving the unified model, we would be able to implement it in the Hybrid-Monte

Carlo Model (HMS) (BLANN; CHADWICK, 1998). With this implementation, we would

have a more physically-motivated description of deuteron emission in pre-equilibrium

nuclear reactions.

One can read more about this study on Appendix C.



4 The semi-classical distorted-wave

model

To advance our understanding of this line of research, we put the last study aside

and we focused on a new phase space model for the unified model. Instead of calculating

the amplitude using the eikonal approximation, we formulate a direct calculation of the

transition rates. We also compare the results of this new model for the pickup reaction

with those from DWUCK.

4.1 One-step DWBA excitation

The semi-classical distorted-wave model, (LUO; KAWAI, 1991; WEILI et al., 1999), as-

sumes the usual form for the one-step DWBA cross-section for the excitation of a mode

α
d3σα

dk3
f

= 2π
hvi

1
(2π)3

∣∣∣〈k⃗f |Tα| k⃗i

〉∣∣∣2 δ (Ef − Ei − ϵα) , (4.1)

where we have suppressed all spin indices. The excitation energy of the mode is given

by ϵα, where α represents any and all quantum numbers needed to specify the excitation

mode. We write the T-matrix element as

〈
k⃗f |Tα| k⃗i

〉
=

∫
d3r d3r0χ

(−)†
k⃗f

(r⃗0)V (r⃗0 − r⃗) ρα (r⃗)χ(+)
k⃗i

(r⃗0) , (4.2)

where we assume that the transition density ρα (r⃗) is given by some linear combination

of nuclear states,

ρα (r⃗) =
∑
a,b

Xα
abψ

†
bµb

(r⃗)ψaµa (r⃗) . (4.3)
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We wish to approximate the squared amplitude

∣∣∣〈k⃗f |Tα| k⃗i

〉∣∣∣2 =
∫
d3r d3r0χ

(−)†
k⃗f

(r⃗0)V (r⃗0 − r⃗) ρα (r⃗)χ(+)
k⃗i

(r⃗0)

×
∫
d3r′ d3r′

0χ
(+)†
k⃗i

(r⃗ ′
0)V † (r⃗ ′

0 − r⃗ ′) ρ†
α (r⃗ ′)χ(−)

k⃗f
(r⃗ ′

0)

=
∫
d3r0 d

3r′
0χ

(−)†
k⃗f

(r⃗0)χ(−)
k⃗f

(r⃗ ′
0)χ

(+)
k⃗i

(r⃗0)χ(+)†
k⃗i

(r⃗ ′
0)

×
∫
d3r d3r′V (r⃗0 − r⃗)V † (r⃗ ′

0 − r⃗ ′) ρα (r⃗) ρ†
α (r⃗ ′) . (4.4)

To proceed, we write

V (r⃗0 − r⃗) = 1
(2π)3

∫
d3qeiq⃗·(r⃗0−r⃗)V (q⃗) (4.5)

and

V † (r⃗0 − r⃗) = 1
(2π)3

∫
d3q′e−iq⃗ ′·(r⃗ ′

0−r⃗ ′)V † (q⃗ ′) , (4.6)

and note that V (q⃗) is a smooth function of q⃗. When the interaction is a contact one, the

transformed interaction is in fact a constant. We also write

χ
(+)
k⃗i

(r⃗0)χ(+)†
k⃗i

(r⃗ ′
0) = 1

(2π)3

∫
d3κie

iκ⃗i·(r⃗0−r⃗ ′
0)Φ(+)

k⃗i

(
κ⃗i,

r⃗0 + r⃗ ′
0

2

)
, (4.7)

χ
(−)†
k⃗f

(r⃗0)χ(−)
k⃗f

(r⃗ ′
0) = 1

(2π)3

∫
d3κfe

−iκ⃗f ·(r⃗0−r⃗ ′
0)Φ(−)†

k⃗f

(
κ⃗f ,

r⃗0 + r⃗ ′
0

2

)
, (4.8)

as well as

ρα (r⃗) ρ†
α (r⃗ ′) = 1

(2π)3

∫
d3καe

iκ⃗α·(r⃗−r⃗ ′)Kα

(
κ⃗α,

r⃗ + r⃗ ′

2

)
. (4.9)

We now substitute these expressions and transform the coordinate variables to

s⃗0 = r⃗0 − r⃗ ′
0 s⃗ = r⃗ − r⃗ ′

R⃗0 = 1
2 (r⃗0 + r⃗ ′

0) R⃗ = 1
2 (r⃗ + r⃗ ′) .

(4.10)
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We have

∣∣∣〈k⃗f |Tα| k⃗i

〉∣∣∣2 =
∫
d3R0d

3s0
1

(2π)3

∫
d3κfe

−iκ⃗f ·s⃗0Φ(−)†
k⃗f

(
κ⃗f , R⃗0

)
× 1

(2π)3

∫
d3κie

iκ⃗i·s⃗0Φ(+)
k⃗i

(
κ⃗i, R⃗0

)
×
∫
d3Rd3s

1
(2π)3

∫
d3καe

iκ⃗α·s⃗Kα

(
κ⃗α, R⃗

)
× 1

(2π)6

∫
d3q d3q′ei(q⃗−q⃗ ′)·(R⃗0−R⃗)+i(q⃗+q⃗ ′)·(s⃗0−s⃗)/2

× V (q⃗)V † (q⃗ ′) .

(4.11)

We can perform the same transformation of the momenta q⃗ and q⃗ ′, writing

p⃗ = q⃗ − q⃗ ′ and Q⃗ = 1
2 (q⃗ + q⃗ ′) (4.12)

to obtain

∣∣∣〈k⃗f |Tα| k⃗i

〉∣∣∣2 =
∫
d3R0d

3s0
1

(2π)3

∫
d3κfe

−iκ⃗f ·s⃗0Φ(−)†
k⃗f

(
κ⃗f , R⃗0

)
× 1

(2π)3

∫
d3κie

iκ⃗i·s⃗0Φ(+)
k⃗i

(
κ⃗i, R⃗0

)
×
∫
d3Rd3s

1
(2π)3

∫
d3καe

iκ⃗α·s⃗Kα

(
κ⃗α, R⃗

)
× 1

(2π)6

∫
d3p d3Qeip⃗·(R⃗0−R⃗)+iQ⃗·(s⃗0−s⃗)

× V
(
Q⃗+ p⃗/2

)
V †
(
Q⃗− p⃗/2

)
.

(4.13)

Performing the integrals over s⃗ and s⃗0 and then over κ⃗α, we have

∣∣∣〈k⃗f |Tα| k⃗i

〉∣∣∣2 = 1
(2π)9

∫
d3R0

∫
d3κfΦ(−)†

k⃗f

(
κ⃗f , R⃗0

) ∫
d3κiΦ(+)

k⃗i

(
κ⃗i, R⃗0

)
×
∫
d3Rd3p d3Qeip⃗·(R⃗0−R⃗)Kα

(
Q⃗, R⃗

)
δ
(
κ⃗i − κ⃗f + Q⃗

)
(4.14)

×V
(
Q⃗+ p⃗/2

)
V †
(
Q⃗− p⃗/2

)
.

We note that this result is still exact. No approximations have been made.

If we now use the fact that the interaction V is of short-range in r⃗ and thus smooth
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in q⃗, to approximate

V
(
Q⃗+ p⃗/2

)
V †
(
Q⃗− p⃗/2

)
≈
∣∣∣V (Q⃗)∣∣∣2 (4.15)

and perform the integrals over p⃗ and R⃗0 (or R⃗), we obtain

∣∣∣〈k⃗f |Tα| k⃗i

〉∣∣∣2 ≈ 1
(2π)6

∫
d3Rd3κf d

3κi d
3QΦ(−)†

k⃗f

(
κ⃗f , R⃗

)
Φ(+)

k⃗i

(
κ⃗i, R⃗

)
×Kα

(
Q⃗, R⃗

) ∣∣∣V (Q⃗)∣∣∣2 δ (κ⃗i − κ⃗f + Q⃗
)
.

(4.16)

If we take the transition density to be a pure particle-hole one,

ρα (r⃗) → ψ†
b (r⃗)ψa (r⃗) , (4.17)

then, after defining

ψa

(
R⃗ + s⃗/2

)
ψ†

a

(
R⃗ − s⃗/2

)
= 1

(2π)3

∫
d3κae

iκ⃗a·s⃗Ψa

(
κ⃗a, R⃗

)
(4.18)

and

ψ†
b

(
R⃗ + s⃗/2

)
ψb

(
R⃗ − s⃗/2

)
= 1

(2π)3

∫
d3κbe

−iκ⃗b·s⃗Ψ†
b

(
κ⃗b, R⃗

)
, (4.19)

we can write the squared transition amplitude as

∣∣∣〈k⃗f |Tba| k⃗i

〉∣∣∣2 ≈ 1
(2π)6

∫
d3Rd3κf d

3κi d
3κa d

3κb d
3Q

× Φ(−)†
k⃗f

(
κ⃗f , R⃗

)
Ψ†

b

(
κ⃗b, R⃗

)
Ψa

(
κ⃗a, R⃗

)
Φ(+)

k⃗i

(
κ⃗i, R⃗

)
×
∣∣∣V (Q⃗)∣∣∣2 δ (κ⃗i − κ⃗f + Q⃗

)
δ
(
κ⃗a − κ⃗b − Q⃗

)
.

(4.20)

For a general transition density,

ρα (r⃗) =
∑
a,b

Xα
abψ

†
b (r⃗)ψa (r⃗) , (4.21)

the squared matrix element takes the form

∣∣∣〈k⃗f |Tα| k⃗i

〉∣∣∣2 =
∑

a,b,a′,b′
Xα

abX
α†
a′b′

∫
d3r d3r0χ

(−)†
k⃗f

(r⃗0)V (r⃗0 − r⃗)ψ†
b (r⃗)ψa (r⃗)χ(+)

k⃗i
(r⃗0)

×
∫
d3r′ d3r′

0χ
(+)†
k⃗i

(r⃗ ′
0)V † (r⃗ ′

0 − r⃗ ′)ψ†
a′ (r⃗ ′)ψb′ (r⃗ ′)χ(−)

k⃗f
(r⃗ ′

0) .

(4.22)
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It can be shown that the expansion coefficients Xα
ab become random already at reasonably

low excitation energy, having the property that

∑
ϵα∈∆E

Xα
abX

α†
a′b′ ≈

∑
ϵα∈∆E

|Xα
ab|

2 δaa′δbb′ , (4.23)

where the squared coefficients |Xα
ab|

2 are approximately distributed as a Breit-Wigner

function in the energy ϵα centered at the energy of the ab particle-hole state. We then

have

∑
ϵα∈∆E

∣∣∣〈k⃗f |Tα| k⃗i

〉∣∣∣2 ≈
∑

ϵα∈∆E

∑
a,b

|Xα
ab|

2
∫
d3r d3r0χ

(−)†
k⃗f

(r⃗0)V (r⃗0 − r⃗)ψ†
b (r⃗)ψa (r⃗)χ(+)

k⃗i
(r⃗0)

×
∫
d3r′ d3r′

0χ
(+)†
k⃗i

(r⃗ ′
0)V † (r⃗ ′

0 − r⃗ ′)ψ†
a (r⃗ ′)ψb (r⃗ ′)χ(−)

k⃗f
(r⃗ ′

0) ,

≈ 1
(2π)6

∑
ϵα∈∆E

∫
d3Rd3κf d

3κi d
3κa d

3κb d
3Q

× Φ(−)†
k⃗f

(
κ⃗f , R⃗

) ∑
a,b

|Xα
ab|

2 Ψ†
b

(
κ⃗b, R⃗

)
Ψa

(
κ⃗a, R⃗

)Φ(+)
k⃗i

(
κ⃗i, R⃗

)
×
∣∣∣V (Q⃗)∣∣∣2 δ (κ⃗i − κ⃗f + Q⃗

)
δ
(
κ⃗a − κ⃗b − Q⃗

)
.

(4.24)

4.1.1 Excitation to the continuum (Knockout)

In the case of excitation to the continuum, (a knockout reaction), we have

ρα (r⃗) =
∑
a,b

Xα
abψ

†
b (r⃗)ψa (r⃗) → χ

(−)†
f2 (r⃗)ψa (r⃗) , (4.25)

and

1
(2π)3

∫
d3καeiκ⃗α·s⃗Kα

(
κ⃗α, R⃗

)
→ 1

(2π)6

∫
d3κaeiκ⃗a·s⃗Ψa

(
κ⃗a, R⃗

) ∫
d3κf2e−iκ⃗f2 ·s⃗Φ(−)†

k⃗f2

(
κ⃗f2 , R⃗

)
,

(4.26)

where

ψa

(
R⃗ + s⃗/2

)
ψ†

a

(
R⃗ − s⃗/2

)
= 1

(2π)3

∫
d3κae

iκ⃗a·s⃗Ψa

(
κ⃗a, R⃗

)
, (4.27)

while the expression for the second outgoing particle is similar to that of the first.
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The squared matrix element is then

∣∣∣〈k⃗f1 k⃗f2 |Tα| k⃗i

〉∣∣∣2 ≈ 1
(2π)9

∫
d3Rd3κf1 d

3κf2 d
3κa d

3κi d
3Q

× Φ(−)†
k⃗f1

(
κ⃗f1 , R⃗

)
Φ(−)†

k⃗f2

(
κ⃗f2 , R⃗

)
Ψa

(
κ⃗a, R⃗

)
Φ(+)

k⃗i

(
κ⃗i, R⃗

)
×
∣∣∣V (Q⃗)∣∣∣2 δ (κ⃗i − κ⃗f1 + Q⃗

)
δ
(
κ⃗a − κ⃗f2 − Q⃗

)
.

(4.28)

4.2 Wigner functions in the eikonal approximation

The Wigner transforms of the wave functions play an essential role in the semi-classical

distorted-wave model. We investigate them here in the eikonal approximation. The

Wigner transforms of the wave functions are given by

Φ(±)
k⃗

(
κ⃗, R⃗

)
=
∫
d3s e−iκ⃗·s⃗χ

(±)
k⃗

(
R⃗ + s⃗/2

)
χ

(±)†
k⃗

(
R⃗ − s⃗/2

)
. (4.29)

4.2.1 The incoming wave function

Following Goldberger-Watson, (GOLDBERGER et al., 1964), the eikonal approximation

to the wave functions is given by

χ
(+)
k⃗

(r⃗) = exp
[
i
∫ z

−∞
p
(
z′, b⃗

)
dz′ − 1

2 ln
(
p
(
z, b⃗

)
/k
)]

(4.30)

and

χ
(−)
k⃗

(r⃗) = exp
[
−i
∫ ∞

z
p∗
(
z′, b⃗

)
dz′ − 1

2 ln
(
p∗
(
z, b⃗

)
/k
)]
, (4.31)

where

p (r⃗) =
√
k2 − 2µ

ℏ2 U (r⃗) =
√
k2 − 2µ

ℏ2 (V (r⃗) − iW (r⃗)) (4.32)

with

z = k̂ · r⃗ and b⃗ = r⃗ − zk̂ = −k̂ ×
(
k̂ × r⃗

)
. (4.33)

Denoting R⃗ = B⃗ + Zk̂ and s⃗ = s⃗b + szk̂, we write the incoming wave product as

χ
(+)
k⃗

(
R⃗ + s⃗/2

)
χ

(+)†
k⃗

(
R⃗ − s⃗/2

)
= exp

[
iϕ+

(
R⃗ + s⃗/2, k⃗

)
− iϕ∗

+

(
R⃗ − s⃗/2, k⃗

)]
(4.34)



CHAPTER 4. THE SEMI-CLASSICAL DISTORTED-WAVE MODEL 77

where

ϕ+
(
r⃗, k⃗

)
=
∫ z

−∞
p
(
z′, b⃗

)
dz′ + i

2 ln
(
p
(
z, b⃗

)
/k
)
, (4.35)

and expand to first order in s⃗,

ϕ+
(
R⃗ + s⃗/2, k⃗

)
− ϕ∗

+
(
R⃗ − s⃗/2, k⃗

)
= ϕ+

(
R⃗, k⃗

)
− ϕ∗

+
(
R⃗, k⃗

)
+ s⃗

2 ·
(−→

∇ϕ+
(
R⃗, k⃗

)
+ −→

∇ϕ∗
+
(
R⃗, k⃗

))
= 2i

∫ Z

−∞
Im p

(
z′, B⃗

)
dz′ + i ln

(
p
(
Z, B⃗

)
/k
)

+ Re p
(
Z, B⃗

)
sz

+
∫ Z

−∞

−→
∇B⃗Re p

(
z′, B⃗

)
dz′ · s⃗b ,

= 2i

∫ Z

−∞
Im p

(
z′, B⃗

)
dz′ + i ln

(
p
(
Z, B⃗

)
/k
)

+ s⃗ ·
∫ Z

−∞
Re −→

∇p
(
z′, B⃗

)
dz′ + ksz .

(4.36)

Substituting, we have

χ
(+)
k⃗

(
R⃗ + s⃗/2

)
χ

(+)†
k⃗

(
R⃗ − s⃗/2

)
≈ exp

[
ip⃗+

(
R⃗, k⃗

)
· s⃗
] ∣∣∣χ(+)

k⃗

(
R⃗
)∣∣∣2 , (4.37)

where ∣∣∣χ(+)
k⃗

(
R⃗
)∣∣∣2 = exp

[
−2

∫ Z

−∞
Im p

(
z′, B⃗

)
dz′ − ln

(
Re p

(
Z, B⃗

)
/k
)]

(4.38)

and

p⃗+
(
R⃗, k⃗

)
= k⃗ +

∫ Z

−∞
Re−→

∇p
(
z′, B⃗

)
dz′ (4.39)

Note that

p (r⃗) =
√
k2 − 2m

ℏ2 U (r⃗) ≈ k − 1
ℏv

(V (r⃗) − iW (r⃗)) , (4.40)

so that we can interpret

∫ Z

−∞
Re−→

∇p
(
z′, B⃗

)
dz′ ≈ − 1

ℏv

∫ Z

−∞

−→
∇ ′V

(
z′, B⃗

)
dz′ ≈ 1

ℏ

∫ t

−∞
F⃗ (t′) dt′ = ∆p⃗

ℏ
= ∆k⃗

(4.41)

as the change in wave number along the trajectory, where we interpret

F⃗ (t′) = −
−→
∇ ′V (r⃗ ′) and dt′ = 1

v
dz′ . (4.42)
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The Wigner transform of the incoming wave function is then

Φ(+)
k⃗

(
κ⃗, R⃗

)
=
∫
d3s e−iκ⃗·s⃗χ

(+)
k⃗

(
R⃗ + s⃗/2

)
χ

(+)†
k⃗

(
R⃗ − s⃗/2

)
≈ (2π)3 δ

(
κ⃗− p⃗+

(
R⃗, k⃗

)) ∣∣∣χ(+)
k⃗

(
R⃗
)∣∣∣2 . (4.43)

4.2.2 The outgoing wave function

The outgoing wave product of interest to us is

χ
(−)†
k⃗

(
R⃗ + s⃗/2

)
χ

(−)
k⃗

(
R⃗ − s⃗/2

)
= exp

[
iϕ−

(
R⃗ + s⃗/2, k⃗

)
− iϕ∗

−

(
R⃗ − s⃗/2, k⃗

)]
(4.44)

where

ϕ−
(
r⃗, k⃗

)
=
∫ ∞

z
p
(
z′, b⃗

)
dz′ + i

2 ln (p (r⃗) /k) . (4.45)

Expanding to first order in s⃗, as before, we find

ϕ−
(
R⃗ + s⃗/2, k⃗

)
− ϕ∗

−

(
R⃗ − s⃗/2, k⃗

)
= ϕ−

(
R⃗, k⃗

)
− ϕ∗

−

(
R⃗, k⃗

)
+ s⃗

2 ·
(−→

∇ϕ−
(
R⃗, k⃗

)
+ −→

∇ϕ∗
−

(
R⃗, k⃗

))
= 2i

∫ ∞

Z
Im p

(
z′, B⃗

)
dz′ + i ln

(
p
(
Z, B⃗

)
/k
)

+ Re p
(
Z, B⃗

)
sz

+
∫ ∞

Z

−→
∇B⃗Re p

(
z′, B⃗

)
dz′ · s⃗b

= 2i

∫ ∞

Z
Im p

(
z′, B⃗

)
dz′ + i ln

(
p
(
Z, B⃗

)
/k
)

+ s⃗ ·
∫ ∞

Z
Re −→

∇p
(
z′, B⃗

)
dz′ − ksz .

(4.46)

Substituting, we have

χ
(−)†
k⃗

(
R⃗ + s⃗/2

)
χ

(−)
k⃗

(
R⃗ − s⃗/2

)
≈ exp

[
−ip⃗−

(
R⃗, k⃗

)
· s⃗
] ∣∣∣χ(−)

k⃗

(
R⃗
)∣∣∣2 , (4.47)

where ∣∣∣χ(−)
k⃗

(
R⃗
)∣∣∣2 = exp

[
−2

∫ ∞

Z
Im p

(
z′, B⃗

)
dz′ − ln

(
Rep

(
Z, B⃗

)
/k
)]

(4.48)

and

p⃗−
(
R⃗, k⃗

)
= k⃗ −

∫ ∞

Z
Re−→

∇p
(
z′, B⃗

)
dz′ . (4.49)
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We then find for the Wigner transform

Φ(−)†
k⃗

(
κ⃗, R⃗

)
=
∫
d3s eiκ⃗·s⃗χ

(−)†
k⃗

(
R⃗ + s⃗/2

)
χ

(−)
k⃗

(
R⃗ − s⃗/2

)
≈ (2π)3 δ

(
κ⃗− p⃗−

(
R⃗, k⃗

)) ∣∣∣χ(−)
k⃗

(
R⃗
)∣∣∣2 . (4.50)

4.2.3 The propagator

The eikonal approximation to the propagator can be written as

G(+) (r⃗2, r⃗1;Em) = 2µ
4π

exp
[
i
∫ z2

z1
p
(
z′, b⃗1

)
dz′ − 1

2 ln (p (r⃗2) p (r⃗1) /k2
m)
]

|r⃗2 − r⃗1|
θ (z2 − z1) , (4.51)

where

p
(
z, b⃗

)
=
√

2µ
ℏ2 (Em − U (r⃗)) =

√
k2

m − 2µ
ℏ2 U (r⃗), (4.52)

and the integral is along the direction

k̂ = r⃗2 − r⃗1

|r⃗2 − r⃗1|
, (4.53)

with

z1 = k̂ · r⃗1 b⃗1 = r⃗1 −
(
k̂ · r⃗1

)
k̂

z2 = k̂ · r⃗2 b⃗2 = r⃗2 −
(
k̂ · r⃗2

)
k̂ .

(4.54)

One can easily show that

z2 − z1 = |r⃗2 − r⃗1| and b⃗1 = b⃗2 . (4.55)

After a fairly extensive calculation, the Wigner transform of the propagator can be
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put into the form

Γ(+)
(
κ⃗2, R⃗2; κ⃗1, R⃗1;Em

)
=
(2µ

4π

)2 ∫
d3s2 d

3s1e
−iκ⃗2·s⃗2+iκ⃗1·s⃗1G(+)

(
R⃗2 + s⃗2/2, R⃗1 + s⃗1/2;Em

)
×G(+)†

(
R⃗2 − s⃗2/2, R⃗1 − s⃗1/2;Em

)
=
(2µ

4π

)2
(2π)6 δ

(
κ⃗2 − p⃗+

(
R⃗2, k⃗m

))

× δ
(
κ⃗1 − p⃗+

(
R⃗1, k⃗m

)) ∣∣∣G (R⃗2, R⃗1;Em

)∣∣∣2∣∣∣R⃗2 − R⃗1
∣∣∣2 ,

(4.56)

where

∣∣∣G (R⃗2, R⃗1;Em

)∣∣∣2 = exp
[
−2

∫ Z2

Z1
Im p

(
z′, B⃗

)
dz′ − ln

(
Rep

(
Z1, B⃗1

)
Rep

(
Z2, B⃗2

)
/k2

m

)]
,

(4.57)

p⃗+
(
R⃗i, k⃗m

)
= k⃗m +

∫ Zi

−∞
Re−→

∇p
(
z′, B⃗

)
dz′ , (4.58)

with

k⃗m = kmk̂m , k̂m = R⃗2 − R⃗1∣∣∣R⃗2 − R⃗1
∣∣∣ , Em = ℏ2

2µk
2
m , (4.59)

and

Zi = k⃗m · R⃗i and B⃗ = B⃗i = R⃗i − Zik̂m . (4.60)

4.2.4 Asymptotic limit of the propagator

Here we analyze the propagator in the limit
∣∣∣R⃗2

∣∣∣ → ∞. For the values κ⃗1 and κ⃗2 of

the local momentum satisfying the momentum conservation δ functions, we have

κ⃗2 = k⃗m +
∫ Z2

−∞
Re−→

∇p
(
z′, B⃗

)
dz′,

= κ⃗1 +
∫ Z2

Z1
Re−→

∇p
(
z′, B⃗

)
dz′ .

(4.61)

When
∣∣∣R⃗2

∣∣∣ → ∞, due to the geometry of the problem, we have κ⃗2 → κ2k̂m. But to

the extent to which the momentum integral is energy conserving, we should also have
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κ2 → km. We can thus write, in the limit,

κ⃗1 = lim
|R⃗2|→∞

(
κ⃗2 −

∫ Z2

Z1
Re−→

∇p
(
z′, B⃗

)
dz′
)

= k⃗m −
∫ ∞

Z1
Re−→

∇p
(
z′, B⃗

)
dz′

= p⃗−
(
R⃗1, k⃗m

)
.

(4.62)

Noting that

lim
|R⃗2|→∞

∣∣∣G (R⃗2, R⃗1;Em

)∣∣∣2 = exp
[
−2

∫ ∞

Z1
Im p

(
z′, B⃗

)
dz′ − ln

(
Rep

(
Z1, B⃗1

)
/km

)]
,

(4.63)
and that in the eikonal approximation,

Φ(−)†
k⃗

(
κ⃗, R⃗

)
≈ (2π)3 δ

(
κ⃗ − p⃗−

(
R⃗, k⃗

))
exp

[
−2
∫ ∞

Z
Im p

(
z′, B⃗

)
dz′ − ln

(
Rep

(
Z1, B⃗1

)
/km

)]
,

(4.64)

we can write

lim
|R⃗2|→∞

(2π)3 δ
(
κ⃗2 − p⃗+

(
R⃗2, k⃗m

))
δ
(
κ⃗1 − p⃗+

(
R⃗1, k⃗m

))
(4.65)

×
∣∣∣G (R⃗2, R⃗1;Em

)∣∣∣2 = 1
km

Φ(−)†
k⃗m

(
κ⃗1, R⃗1

)
δ
(
κ⃗2 − k⃗m

)
.

(4.66)

We thus have

lim
|R⃗2|→∞

Γ(+)
(
κ⃗2, R⃗2; κ⃗1, R⃗1;Em

)
d3κ2 d

3R2 →
(2µ

4π

)2 (2π)3

km

Φ(−)†
k⃗m

(
κ⃗1, R⃗1

)
× δ

(
κ⃗2 − k⃗m

)
d3κ2 dR2dΩm .

(4.67)
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4.3 Monte Carlo evaluation of the scattering series

When the eikonal form of the wave functions is substituted in the one-step excitation

squared matrix element, we find

∣∣∣〈k⃗f |Tα| k⃗i

〉∣∣∣2 ≈ 1
(2π)6

∫
d3Rd3κf d

3κi d
3κa d

3κb d
3Q

× Φ(−)†
k⃗f

(
κ⃗f , R⃗

) ∑
a,b

|Xα
ab|

2 Ψ†
b

(
κ⃗b, R⃗

)
Ψa

(
κ⃗a, R⃗

)Φ(+)
k⃗i

(
κ⃗i, R⃗

)
×
∣∣∣V (Q⃗)∣∣∣2 δ (κ⃗i − κ⃗f + Q⃗

)
δ
(
κ⃗a − κ⃗b − Q⃗

)
.

=
∫
d3Rd3κa d

3κb d
3Q

∣∣∣∣ϕ(−)
k⃗f

(
R⃗
)∣∣∣∣2 ∣∣∣ϕ(+)

k⃗i

(
R⃗
)∣∣∣2

×
∣∣∣V (Q⃗)∣∣∣2 δ (κ⃗a − κ⃗b − Q⃗

) ∑
a,b

|Xα
ab|

2 Ψ†
b

(
κ⃗b, R⃗

)
Ψa

(
κ⃗a, R⃗

)
× δ

(
p⃗+
(
R⃗, k⃗i

)
+ κ⃗a − p⃗−

(
R⃗, k⃗f

)
− κ⃗b

)
.

(4.68)

We can interpret the integrand as propagation along an absorptive eikonal trajectory de-

fined by k⃗i with the absorption factor
∣∣∣ϕ(+)

k⃗i

(
R⃗
)∣∣∣2, followed by a momentum and energy

conserving collision at R⃗ and subsequent propagation along the final absorptive eikonal

trajectory defined by k⃗f . The momentum and energy conservation at the collision coor-

dinate R⃗ are determined by the local values of the momenta, κ⃗i + κ⃗a = κ⃗f + κ⃗b. For fixed

values of the initial and final momenta, one must integrate over all values of the internal

momenta κ⃗a and κ⃗b consistent with momentum conservation at the collision coordinate

R⃗.

Considering now the propagation of the Wigner function after the collision in an one-

step process, we have

Φ(+)
k⃗

(
κ⃗2, R⃗2

)
= 1

(2π)9
1
km

δ
(
κ⃗2 − k⃗m

) ∫
d3R1 d

3κ1 d
3κb d

3κa d
3κi d

3Q

× Γ(+)
(
κ⃗2, R⃗2; κ⃗1, R⃗1;Em

)
×
∣∣∣V (Q⃗)∣∣∣ δ (κ⃗i + Q⃗− κ⃗1

)
δ
(
κ⃗a − Q⃗− κ⃗b

)
×

∑
a,b

|Xα
ab|

2 Ψ†
b

(
κ⃗b, R⃗1

)
Ψa

(
κ⃗a, R⃗1

)Φ(+)
k⃗i

(
κ⃗i, R⃗1

)
.

(4.69)

If no further collisions occur, we can calculate the asymptotic behavior of the Wigner

function using the asymptotic behavior of the wave function in the eikonal approximation.
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We recover the one-step amplitude squared, up to factor of the final momentum,

lim
|R⃗2|→∞

Φ(+)
k⃗

(
κ⃗2, R⃗2

)
→ 1

km

δ
(
κ⃗2 − k⃗m

) 1
(2π)6

∫
d3R1 d

3κ1 d
3κb d

3κa d
3κi d

3Q

× Φ(−)†
k⃗m

(
κ⃗1, R⃗1

) ∑
a,b

|Xα
ab|

2 Ψ†
b

(
κ⃗b, R⃗1

)
Ψa

(
κ⃗a, R⃗1

)Φ(+)
k⃗i

(
κ⃗i, R⃗1

)
×
∣∣∣V (Q⃗)∣∣∣ δ (κ⃗i + Q⃗− κ⃗1

)
δ
(
κ⃗a − Q⃗− κ⃗b

)
,

= 1
km

δ
(
κ⃗2 − k⃗m

) ∫
d3Rd3κa d

3κb d
3Q

∣∣∣∣ϕ(−)
k⃗f

(
R⃗
)∣∣∣∣2 ∣∣∣ϕ(+)

k⃗m

(
R⃗
)∣∣∣2

×
∣∣∣V (Q⃗)∣∣∣2 δ (κ⃗a − κ⃗b − Q⃗

) ∑
a,b

|Xα
ab|

2 Ψ†
b

(
κ⃗b, R⃗

)
Ψa

(
κ⃗a, R⃗

)
× δ

(
p⃗+
(
R⃗, k⃗i

)
+ κ⃗a − p⃗−

(
R⃗, k⃗m

)
− κ⃗b

)
.

(4.70)

If we were to consider the asymptotic wave function after two collisions, we would obtain

the two step amplitude squared times the same factor of the final momentum. The entire

scattering series could be calculated by considering the asymptotic limits of a series of

Wigner functions with an increasing number of collisions. However, this sum quickly

becomes numerically prohibitive.

Instead, we can use a Monte Carlo method similar to the HMS one, but now better

founded in theory, to estimate all terms in the scattering series simultaneously. To do so,

we use the absorption factor
∣∣∣ϕ(+)

k⃗

(
R⃗
)∣∣∣2as a measure of the distance propagated between

collisions. When compared to a random number, its value determines the position of the

first collision. The momenta of the two particles and hole that result from the collision

can be chosen randomly according to the phase space distribution of the collision term,

just as is done in the HMS model. The subsequent propagation will take place according

to the absorption factors of the two particles and the hole produced in the collision, just

as in the HMS calculation. These can collide again or escape, in accord with the Monte

Carlo evaluation of the absorption factors. By following a series of initial collisions until

all particles escape or are bound, the entire scattering series can be evaluated, just as in

the HMS calculation. The advantage here is that this Monte Carlo evaluation has as its

basis a well-defined theoretical foundation.

The goal of this thesis is to insert the deuteron production into a Monte Carlo evalua-

tion in a pre-equilibrium reaction. Although several paths to this goal have been studied,
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none of them have been found successful until now. By offering a clear theoretical basis

for the calculation of scattering cross-sections, the semi-classical distorted-wave model

gives us hope that it will provide a framework for the systematic inclusion of deuteron

production as well as other processes.

4.4 Deuteron pickup

We expect the deuteron pickup process to be fairly easy to be included in the Monte

Carlo evaluation. In a collision, the phase space volume for deuteron pickup would be

compared to that of a simple nucleon-nucleon collision to determine the relative frequency

of each. A subsequent collision of the deuteron with a nucleon would require the com-

parison of the phase space volume for its scattering relative to that for its breakup into a

pair of nucleons. The formalism provides a clear prescription for the calculation of these

volumes, however.

In the case of a deuteron pickup reaction, we write the matrix element as

〈
k⃗d |Td| k⃗p

〉
=
∫
d3r d3rdχ

(−)†
k⃗d

(r⃗d)ψd (r⃗)V (r⃗)ψa (r⃗nA)χ(+)
k⃗p

(r⃗pB) , (4.71)

where ψa denotes the single particle state of the neutron in the nucleus, ψd the deuteron

wave function and B denotes the nucleus A+ 1. With the coordinates defined as

r⃗ = r⃗p − r⃗n

r⃗d = r⃗p + r⃗n

2 − r⃗A

r⃗nA = r⃗n − r⃗A = r⃗d − r⃗

2
r⃗pB = r⃗p − Ar⃗A + r⃗n

A+ 1 = A

A+ 1 r⃗d + A+ 2
2A+ 2 r⃗ ≡ αr⃗d + βr⃗ ,

(4.72)

with

α = A

A+ 1 and β = A+ 2
2A+ 2 , (4.73)

we have

〈
k⃗d |Td| k⃗p

〉
=
∫
d3r d3rdχ

(−)†
k⃗d

(r⃗d)ψd (r⃗)V (r⃗)ψa (r⃗d − r⃗/2)χ(+)
k⃗p

(αr⃗d + βr⃗) . (4.74)
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We now define the variables

s⃗d = r⃗d − r⃗ ′
d s⃗ = r⃗ − r⃗ ′ (4.75)

R⃗d = r⃗d + r⃗ ′
d

2 R⃗ = r⃗ + r⃗ ′

2 , (4.76)

to simplify the expressions of the Wigner transforms,

χ
(+)
k⃗p

(αr⃗d + βr⃗/2)χ(+)†
k⃗p

(αr⃗ ′
d + βr⃗ ′/2) = 1

(2π)3

∫
d3κpe

ik⃗p·(αs⃗d+βs⃗/2)Φ(+)
k⃗p

(
κ⃗p, αR⃗d + βR⃗/2

)
,

(4.77)

ψa (r⃗d − r⃗/2)ψ†
a (r⃗ ′

d − r⃗ ′/2) = 1
(2π)3

∫
d3κne

ik⃗n·(s⃗d−s⃗/2)Ψa

(
κ⃗n, R⃗d − R⃗/2

)
, (4.78)

χ
(−)†
k⃗d

(r⃗d)χ(−)
k⃗d

(r⃗ ′
d) = 1

(2π)3

∫
d3κde

−iκ⃗d·s⃗dΦ(−)†
k⃗d

(
κ⃗d, R⃗d

)
, (4.79)

as well as

ψd (r⃗)ψ†
d (r⃗ ′) = 1

(2π)3

∫
d3κeiκ⃗·s⃗Ψd

(
κ⃗, R⃗

)
. (4.80)

Here, we have

V (r⃗) = 1
(2π)3

∫
d3qeiq⃗·r⃗V (q⃗) (4.81)

and

V † (r⃗ ′) = 1
(2π)3

∫
d3q′e−iq⃗ ′·r⃗ ′

V † (q⃗ ′) . (4.82)

Putting all the pieces together, we have

∣∣∣〈k⃗d |Td| k⃗p

〉∣∣∣2 =
∫
d3r d3rdχ

(−)†
k⃗d

(r⃗d)ψd (r⃗)V (r⃗)ψa (r⃗d − r⃗/2)χ(+)
k⃗p

(αr⃗d + βr⃗)

×
∫
d3r′ d3r′

dχ
(+)†
k⃗p

(αr⃗ ′
d + βr⃗ ′)ψ†

a (r⃗ ′
d − r⃗ ′/2)V † (r⃗ ′)ψ†

d (r⃗ ′)χ(−)
k⃗d

(r⃗ ′
d)

=
∫
d3Rd d

3sd d
3Rd3s

1
(2π)3

∫
d3κde

−iκ⃗d·s⃗dΦ(−)†
k⃗d

(
κ⃗d, R⃗d

)
× 1

(2π)3

∫
d3κeiκ⃗·s⃗Ψd

(
κ⃗, R⃗

)
× 1

(2π)3

∫
d3qeiq⃗·r⃗V (q⃗)

× 1
(2π)3

∫
d3q′e−iq⃗ ′·r⃗ ′

V † (q⃗ ′) × 1
(2π)3

∫
d3κne

iκ⃗n·(s⃗d−s⃗/2)Ψa

(
κ⃗n, R⃗d − R⃗/2

)
× 1

(2π)3

∫
d3κpe

iκ⃗p·(αs⃗d+βs⃗)Φ(+)
k⃗p

(
κ⃗p, αR⃗d + βR⃗

)
.

(4.83)
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Defining

Q⃗ = q⃗ + q⃗ ′

2 and p⃗ = q⃗ − q⃗ ′, (4.84)

and noting that

q⃗ · r⃗ − q⃗ ′ · r⃗ ′ = Q⃗ · s⃗+ p⃗ · R⃗ (4.85)

we can rearrange the integrals above to

∣∣∣〈k⃗d |Td| k⃗p

〉∣∣∣2 = 1
(2π)18

∫
d3Rd d

3sd d
3Rd3s d3κd d

3κ d3κn d
3κp d

3Qd3p

× ei(ακ⃗p+κ⃗n−κ⃗d)·s⃗dei(κ⃗+Q⃗+βκ⃗p−κ⃗n/2)·s⃗eip⃗·R⃗

× Φ(−)†
k⃗d

(
κ⃗d, R⃗d

)
Ψd

(
κ⃗, R⃗

)
V
(
Q⃗+ p⃗/2

)
V †
(
Q⃗− p⃗/2

)
× Ψa

(
κ⃗n, R⃗d − R⃗/2

)
Φ(+)

k⃗p

(
κ⃗p, αR⃗d + βR⃗

)
.

(4.86)

Integrating over s⃗d and s⃗, we find

∣∣∣〈k⃗d |Td| k⃗p

〉∣∣∣2 = 1
(2π)12

∫
d3Rd d

3Rd3κd d
3κ d3κn d

3κp d
3Qd3p

× δ (ακ⃗p + κ⃗n − κ⃗d) δ
(
κ⃗+ Q⃗+ βκ⃗p − κ⃗n/2

)
eip⃗·R⃗

× Φ(−)†
k⃗d

(
κ⃗d, R⃗d

)
Ψd

(
κ⃗, R⃗

)
V
(
Q⃗+ p⃗/2

)
V †
(
Q⃗− p⃗/2

)
× Ψa

(
κ⃗n, R⃗d − R⃗/2

)
Φ(+)

k⃗p

(
κ⃗p, αR⃗d + βR⃗

)
.

(4.87)

This result is still exact. If we assume that the interactions is a slowly-varying function

of Q⃗, as before, so that

V
(
Q⃗+ p⃗/2

)
V †
(
Q⃗− p⃗/2

)
≈
∣∣∣V (Q⃗)∣∣∣2 , (4.88)

we can perform the integrals in p⃗ and R⃗ to obtain

∣∣∣〈k⃗d |Td| k⃗p

〉∣∣∣2 = 1
(2π)9

∫
d3Rd d

3κd d
3κ d3κn d

3κp d
3Q

× Φ(−)†
k⃗d

(
κ⃗d, R⃗d

)
Ψd

(
κ⃗, R⃗ = 0

)
Ψa

(
κ⃗n, R⃗d

)
Φ(+)

k⃗p

(
κ⃗p, αR⃗d

)
×
∣∣∣V (Q⃗)∣∣∣2 δ (ακ⃗p + κ⃗n − κ⃗d) δ

(
κ⃗+ Q⃗+ βκ⃗p − κ⃗n/2

)
.

(4.89)

When the interaction V (r⃗) is of short range, as it is here, a zero-range approximation can
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be useful. In the case of deuteron stripping and pickup reactions, one defines

D0 =
∫
d3r ψd (r⃗)V (r⃗) . (4.90)

We then find

D2
0 =

∫
d3r d3r′ψd (r⃗)ψd (r⃗ ′)V (r⃗)V (r⃗ ′)

= 1
(2π)9

∫
d3Rd3sd3κd3Qd3peiκ⃗·s⃗Ψd

(
κ⃗, R⃗

)
× ei(Q⃗+p⃗/2)·(R⃗+s⃗/2)V

(
Q⃗+ p⃗/2

)
ei(Q⃗−p⃗/2)·(R⃗−s⃗/2)V †

(
Q⃗− p⃗/2

)
= 1

(2π)9

∫
d3Rd3sd3κd3Qd3pei(κ⃗+Q⃗)·s⃗eip⃗·R⃗

× Ψd

(
κ⃗, R⃗

)
V
(
Q⃗+ p⃗/2

)
V †
(
Q⃗− p⃗/2

)
.

(4.91)

Neglecting the p⃗ dependence in V
(
Q⃗
)
, we have

D2
0 = 1

(2π)9

∫
d3Rd3sd3κd3Qd3pei(κ⃗+Q⃗)·s⃗eip⃗·R⃗Ψd

(
κ⃗, R⃗

) ∣∣∣V (Q⃗)∣∣∣2
= 1

(2π)3

∫
d3κd3Qδ

(
κ⃗+ Q⃗

)
Ψd

(
κ⃗, R⃗ = 0

) ∣∣∣V (Q⃗)∣∣∣2 . (4.92)

Equivalently, in the expression for the squared scattering amplitude, we take

1
(2π)3

∫
d3κ d3QΨd

(
κ⃗, R⃗ = 0

) ∣∣∣V (Q⃗)∣∣∣2 δ (κ⃗+ Q⃗+ βκ⃗p − κ⃗n/2
)

= D2
0 . (4.93)

We then have (after eliminating the subscript on the remaining position vector)

∣∣∣〈k⃗d |Td| k⃗p

〉∣∣∣2 = D2
0

(2π)6

∫
d3Rd3κd d

3κn d
3κp

× Φ(−)†
k⃗d

(
κ⃗d, R⃗

)
Ψa

(
κ⃗n, R⃗

)
Φ(+)

k⃗p

(
κ⃗p, R⃗

)
δ (ακ⃗p + κ⃗n − κ⃗d)

= D2
0

(2π)6

∫
d3Rd3κd d

3κp

× Φ(−)†
k⃗d

(
κ⃗d, R⃗

)
Ψa

(
κ⃗d − ακ⃗p, R⃗

)
Φ(+)

k⃗p

(
κ⃗p, αR⃗

)
.

(4.94)

If we now substitute the Wigner eikonal approximations to the incoming and outgoing
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waves, we have

∣∣∣〈k⃗d |Td| k⃗p

〉∣∣∣2 = D2
0

∫
d3R/ d

3κd d
3κp

∣∣∣χ(−)
k⃗d

(
R⃗
)∣∣∣2 ∣∣∣∣χ(+)

k⃗p

(
αR⃗

)∣∣∣∣2
× δ

(
κ⃗d − p⃗−

(
R⃗, k⃗d

))
Ψa

(
κ⃗d − ακ⃗p, R⃗

)
δ
(
κ⃗p − p⃗+

(
αR⃗, k⃗p

))
,

= D2
0

∫
d3R

∣∣∣χ(−)
k⃗d

(
R⃗
)∣∣∣2 ∣∣∣∣χ(+)

k⃗p

(
αR⃗

)∣∣∣∣2
× Ψa

(
p⃗−
(
R⃗, k⃗d

)
− αp⃗+

(
αR⃗, k⃗p

)
, R⃗
)
.

(4.95)

The remaining integral must be performed numerically.

Assuming that the initial proton momentum is in the z direction, k⃗p = kpẑ, we write

the integral as

∣∣∣〈k⃗d |Td| k⃗p

〉∣∣∣2 =D2
0

∫
bdb dϕb dz

∣∣∣χ(−)
k⃗d

(
R⃗
)∣∣∣2 ∣∣∣∣χ(+)

k⃗p

(
αR⃗

)∣∣∣∣2
× Ψa

(
p⃗−
(
R⃗, k⃗d

)
− αp⃗+

(
αR⃗, k⃗p

)
, R⃗
)
,

(4.96)

with

R⃗ = b cosϕb x̂+ b sinϕb ŷ + z ẑ. (4.97)

For a fixed transition, with

kd =
∣∣∣⃗kd

∣∣∣ = constant , (4.98)

we must calculate the scattering for all values of the direction of the deuteron momentum,

k̂d = sin θd cosϕd x̂+ sin θd sinϕd ŷ + cos θd ẑ. (4.99)

However, the angular distribution will be azimuthally symmetric, if the potential depends

only on R =
∣∣∣R⃗∣∣∣. We will assume this to be the case. We can then calculate the angular

distribution using the momentum vector k⃗d with ϕd = 0. Equivalently, we can set the

impact parameter angle ϕb = 0 and integrate over the angle ϕd. Since the momenta p⃗±

remain in the plane defined by the corresponding b and z, it is convenient to do the latter.

Taking

R⃗ = b x̂+ z ẑ , (4.100)
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we find for the local proton momentum

p⃗+
(
R⃗, k⃗p

)
= x̂

∫ z

−∞
Re ∂
∂b
pp (z′, b) dz′ + ẑ pp (z, b) (4.101)

with

pp (z, b) =
√
k2

p − 2m
ℏ2 Vp (z, b) . (4.102)

The equivalent coordinates for the deuteron with momentum in the k̂d direction are

zd = k̂d · R⃗ = b sin θd cosϕd + z cos θd (4.103)

and

bd =
∣∣∣R⃗ − zd k̂d

∣∣∣ =
√
R2 − z2

d . (4.104)

The deuteron scattering plane is defined by the two unit vectors, k̂d and

b̂d =
(
R⃗ − zd k̂d

)
/bd,. (4.105)

Note that

R⃗ = b x̂+ z ẑ = bd b̂d + zd k̂d . (4.106)

For the local deuteron momentum, we find

p⃗−
(
R⃗, k⃗d

)
= −b̂d

∫ ∞

zd

Re∂pd

∂b
(z′, bd) dz′ + k̂d pd (zd, bd) (4.107)

with

pd (zd, bd) =
√
k2

d − 2m
ℏ2 Vd (zd, bd) . (4.108)

The matrix element can now be calculated as

∣∣∣〈k⃗d |Td| k⃗p

〉∣∣∣2 =D2
0

∫
bdb dz dϕd

∣∣∣χ(−)
k⃗d

(
R⃗
)∣∣∣2 ∣∣∣∣χ(+)

k⃗p

(
αR⃗

)∣∣∣∣2
× Ψa

(
p⃗−
(
R⃗, k⃗d

)
− αp⃗+

(
αR⃗, k⃗p

)
, R⃗
)
.

(4.109)
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The differential cross-section is given by

dσ = 2π
ℏvp

d3kd

(2π)3

∣∣∣〈k⃗d |Td| k⃗p

〉∣∣∣2 δ (Ed − Ep −Q) ,

= µdµp

(2πℏ2)2
kd

kp

∣∣∣〈k⃗d |Td| k⃗p

〉∣∣∣2 dΩd δ (Ed − Ep −Q) dEd ,

(4.110)

so that
dσ

dΩd

= µdµp

(2πℏ2)2
kd

kp

∣∣∣〈k⃗d |Td| k⃗p

〉∣∣∣2 . (4.111)

4.5 Comparison of semi-classical calculations of deuteron

pickup with DWUCK

Here we compare cross-sections and angular distributions obtained with the semi-

classical expressions of the preceding section with quantum mechanical calculations using

the code DWUCK4.

The deuteron pickup reaction requires that a bound state neutron orbital be given.

DWUCK calculates the wave function for the orbital, given the n, l and j quantum

numbers of the orbital, as well as its binding energy. We use harmonic oscillator orbitals

in the semi-classical calculations. Their Wigner functions can be calculated directly, using

the expressions derived in the work of Martorell and Moya de Guerra (MARTORELL; Moya

de Guerra, 1984).

Our calculations were developed using FORTRAN (as was DWUCK), Python and the

Wolfram Language. For the cases discussed below, our code took just few minutes to

run in a personal computer. Python and the Wolfram Language were used mostly to run

and parse the data from the FORTRAN calculations. They were also used to improve

the automation process of the numerical calculations, and to make the plots. As stated

before in the subsection 3.1.2, all instances of DWUCK means DWUCK4.

We have performed calculations for two cases: (p,d) and (n,d). For (p,d), the reactions

are: 40Ca(p,d)39Ca, 120Sn(p,d)119Sn, and 208Pb(p,d)207Pb. For (n,d), we have the following

reactions: 40Ca(n,d)39K, 120Sn(n,d)119In, and 208Pb(n,d)207Tl. We start by looking at the

(p,d) cases. In all cases, our results are denoted by Pickup (solid lines).
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4.5.1 The (p,d) reaction

4.5.1.1 Ground state to ground-state cross-section

We begin our study by considering the ground state to ground-state (p,d) reaction.

In Figs. 4.1, 4.2 and 4.3, we compare the cross-section results from our code (Pickup)

and DWUCK for pickup from the (1d3/2) orbital in the reaction 40Ca(p,d)39Ca, from the

(2d3/2) orbital in the reaction 120Sn(p,d)119Sn to the ground-state, and from the (3p1/2)

orbital in the reaction 208Pb(p,d)207Pb.
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40Ca(p,d)39Ca - Cross Section by Energy (GS 1d3/2)
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FIGURE 4.1 – Comparison of the cross-sections for the 40Ca(p,d)39Ca ground state to
ground-state reaction as a function of proton incident energy.
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FIGURE 4.2 – Comparison of the cross-sections for the 120Sn(p,d)119Sn ground state to
ground-state reaction as a function of proton incident energy.
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FIGURE 4.3 – Comparison of the cross-sections for the 208Pb(p,d)207Pb ground state to
ground-state reaction as a function of proton incident energy.

One can observe that for high energies, above 60 MeV, our results are very close to the

ones from DWUCK, while for lower energies, at 30 MeV for example, we have a difference

of about 1/2 of the DWUCK result for the first case and about 1/4 for the second case.

However, for the last case, 208Pb(p,d)207Pb, the largest mass, our result for 30 MeV is

almost 2 times the result from DWUCK. So, as the mass of the target increases, our

cross-section also increases at low energies, while the results tend to agree with DWUCK

at higher energies.

To investigate the sensitivity to a variation of the level energy, we have applied a

change of ±10% of the ground-state level energy in DWUCK and ±5% in Pickup. These

variations are shown in Figs. 4.7, 4.8, and 4.9, for 40Ca(p,d)39Ca, 120Sn(p,d)119Sn, and
208Pb(p,d)207Pb, respectively. The results of the calculations are also given on Table 4.1
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FIGURE 4.4 – Comparison of the cross-sections for the 40Ca(p,d)39Ca ground state to
ground-state reaction as a function of proton incident energy, including sensitivity bands.
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FIGURE 4.5 – Comparison of the cross-sections for the 120Sn(p,d)119Sn ground state to
ground-state reaction as a function of proton incident energy, including sensitivity bands.
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FIGURE 4.6 – Comparison of the cross-sections for the 208Pb(p,d)207Pb ground state to
ground-state reaction as a function of proton incident energy, including sensitivity bands.

rms radii (fm) Cross-section (mb)

Pickup DWUCK
Ep = 30MeV Ep = 120MeV

Pickup DWUCK Pickup DWUCK
40Ca 3.5244 ± 0.0882 3.4579 ± 0.0434 0.2706 ± 0.0647 0.5473 ± 0.0114 0.1034 ± 0.0030 0.1013 ± 0.0043

120Sn 5.3058 ± 0.1329 5.1235 ± 0.0598 0.5754 ± 0.2327 0.7965 ± 0.0752 0.0267 ± 0.0011 0.0205 ± 0.0012
208Pb 6.3218 ± 0.1584 5.9730 ± 0.0780 0.5533 ± 0.2546 0.2842 ± 0.0391 0.0053 ± 0.0005 0.0025 ± 0.0001

TABLE 4.1 – Rms radii and cross-sections for Pickup and DWUCK with Ep = 30 MeV
and Ep = 120 MeV for 40Ca(p,d)39Ca, 120Sn(p,d)119Sn, and 208Pb(p,d)207Pb. The values
with ± represent the standard deviation of the changes due to the sensitivity analysis.

Radii of the potentials (fm)

Incident nucleon Deuteron

Volume Surface Volume Surface

Re/Im Im Re Im Im
40Ca 4.0540 4.4056 3.8989 4.5246 4.6744

120Sn 6.0259 6.0259 5.6585 6.5182 6.7130
208Pb 7.3203 7.3974 6.8069 7.8191 8.0433

TABLE 4.2 – Potential radii used for (p,d) reactions: 40Ca(p,d)39Ca, 120Sn(p,d)119Sn,
and 208Pb(p,d)207Pb, and also for (n,d) reactions: 40Ca(n,d)39K, 120Sn(n,d)119In, and
208Pb(n,d)207Tl.

One can see that for all cases the variation of the cross-sections from Pickup change

much more than the ones from DWUCK for Ep = 30 MeV. We also note that the change
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for Ep = 30 MeV increase with the increase of the target mass. For DWUCK, the devi-

ations are relatively small but we also note that they are slightly bigger for 120Sn with

Ep = 30 MeV. We have used the following formula to calculate the standard deviation:√
([Σi=1,2(xi − x0)2]/2), where x0 is the value without any change. We made three calcu-

lations, one without changing the factors, and one with an increased factor and another

one with a decreased factor (total of three values). Although we see that the Pickup

calculation is much more sensitive than DWUCK to variations of the level energy, we do

not understand the reason for this heightened sensitivity.

As we expect the (p,d) reaction to be predominantly a peripheral one, due to the

absorption of the proton and deuteron in the interior region of the nucleus, we have

looked for correlations between the rms radii of the neutron orbital of the pickup reaction

and the resulting cross-section. We can also compare these and their variations with the

radii of the potentials used in the calculations, given Table 4.2, which are the same at all

energies. Note that the potentials values also apply for the (n,d) reactions that we will

discuss after this subsection.

A comparison of the radii in the two tables shows that the neutron orbital involved

in the pickup reactions is always well within the radii of the optical potentials. However,

in each case, the orbital involved is the one with the largest rms radius and the closest

to the nuclear surface. If we compare the orbital radii with the pickup cross-sections, we

see some correlation between the Sn and Pb results. The rms radius of the Pb orbital in

Pickup is about 10% larger than the one for DWUCK, which could explain the much larger

cross-section obtained in this case. In the case of Sn, on the other hand, the rms radii of

the two orbitals are similar, as are the cross-sections. The Ca results seem to contradict

this line of reasoning, however, where similar radii result in very different cross-sections,

at least at low energy. Here, the fact that the high energy cross-sections are quite similar

could lead us to conclude that the limitations of the eikonal approximation should also

be taken into account when making this comparison.

To perform a more complete analysis, this study should be extended to other levels

beyond the ground-state. It will then be possible to have a better idea of the general

sensitivity of the model to the other parameters. Before turning to these calculations, we

analyze the ground state to ground-state angular distributions.
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4.5.1.2 Angular distributions

We next compare the angular distributions from Pickup and DWUCK. We discuss the

same reactions as in the previous section: the ground state to ground-state transitions for
40Ca(p,d)39Ca, 120Sn(p,d)119Sn, and 208Pb(p,d)207Pb.

0 50 100 150

10-7

10-4

0.1

θ (deg)

dσ
/d
Ω

(m
b
/s
r)

40Ca(p,d)39Ca - Angular distribution (Ep=30MeV - GS d3/2)

Pickup DWUCK

0 50 100 150

10-9

10-7

10-5

0.001

0.100

θ (deg)

dσ
/d
Ω

(m
b
/s
r)

40Ca(p,d)39Ca - Angular distribution (Ep=120MeV - GS d3/2)

FIGURE 4.7 – Comparison of the angular distributions for the ground state to ground-
state 40Ca(p,d)39Ca reaction with Ep equal to 30 MeV (top) and 120 MeV (bottom).

One can see that for all cases with Ep = 30 MeV, DWUCK gives results with an

oscillatory behavior while Pickup does not. For 40Ca, the results are quite good for low

angles. For 120Sn, both results are reasonable with the results for low angles (except for

the oscillatory behavior). In the last case, 208Pb, we can see almost the same pattern for

the Pickup results. However, the oscillatory behavior for DWUCK is more present for

this case.
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FIGURE 4.8 – Comparison of the angular distributions for the ground state to ground-
state 120Sn(p,d)119Sn reaction with Ep equal to 30 MeV (top) and 120 MeV (bottom).

For angles greater than 120 degrees, our angular distributions tend to zero while

DWUCK gives low but nonzero values. The discrepancies between the two calculations

at back angles is larger at 30 MeV than at 120 MeV. This is in great part due to the

eikonal approximation that we use to calculate the proton and deuteron Wigner func-

tions. The eikonal approximation assumes straight line trajectories and systematically

underestimates the angular distributions at back angles. We also note that the results for

the angular distribution improve with increasing target mass.
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FIGURE 4.9 – Comparison of the angular distributions for the ground state to ground-
state 208Pb(p,d)207Pb reaction with Ep equal to 30 MeV (top) and 120 MeV (bottom).

4.5.1.3 Cross-section summed over the orbitals

In order to extend our study to have a more physical idea of each reaction, we have cal-

culated the cross-section for all orbitals for each case. For example, for the 40Ca(p,d)39Ca

reaction, we were calculating the cross-section just for the ground-state (GS), the 1d3/2

orbit. Now, we calculate the cross-section for each orbital, starting from the 1s1/2, up to

the 1d3/2 (for this case), and we sum over the values. The energy levels needed for the

DWUCK calculation can be found on the Appendix E.

One can see the results for each reaction: 40Ca(p,d)39Ca, 120Sn(p,d)119Sn, and 208Pb(p,d)207Pb,

in Figs. 4.10, 4.11, and 4.12, respectively.
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FIGURE 4.10 – Comparison of the cross-sections summed for all orbitals of the
40Ca(p,d)39Ca reaction as a function of the proton incident energy.

40 60 80 100 120

0

1

2

3

Ecm(MeV)

σ
(m
b
)

120Sn(p,d)119Sn - Cross Section by Energy (All orbits)

Pickup

DWUCK

FIGURE 4.11 – Comparison of the cross-sections summed for all orbitals of the
120Sn(p,d)119Sn reaction as a function of the proton incident energy.
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FIGURE 4.12 – Comparison of the cross-sections summed for all orbitals of the
208Pb(p,d)207Pb reaction as a function of the proton incident energy.

We found all results from Figs. 4.10, 4.11, and 4.12, to behave like the ones for the

ground state to ground-state reaction. Nevertheless, we would like to point it out that as

the target mass increased, the total cross-section for Pickup increased compared to the

one for the ground state. Another point is that the results for 208Pb cross-section are

more discrepant than for the ground state.

A complete analysis for all orbitals should be made in order to have a deep under-

standing of these reactions and their differences.

4.5.1.4 Angular distributions summed over the orbitals

As we did for the cross-sections, we have extended our study to include all orbitals. One

can see the results for each reaction: 40Ca(p,d)39Ca, 120Sn(p,d)119Sn, and 208Pb(p,d)207Pb,

in Figs. 4.13, 4.14, and 4.15, respectively.

Except for 208Pb, the results show good agreement for low angles (below 100 degrees).

One should note that the oscillatory behavior in DWUCK has almost disappeared when

we sum all the contributions from all orbitals. As for the ground state to ground-state

reactions, the values for Pickup tend to zero for high angles while DWUCK has nonzero

values.
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FIGURE 4.13 – Comparison of the angular distributions summed for all orbitals of the
40Ca(p,d)39Ca reaction with Ep equal to 30 MeV (top) and 120 MeV (bottom).

4.5.2 The (n,d) reaction

4.5.2.1 Ground state to ground-state cross-section

Now, we discuss the (n,d) cases. As we did for incident protons, we start discussing

the ground state to ground-state reactions. The ground-state orbitals have changed (for
120Sn and 208Pb) since we are working with an incident neutron instead of a proton one.

The neutron now pickups up a proton from the target. With that, we compare the cross-

section results from our code (Pickup) and DWUCK for pickup from the (1d3/2) orbital

in the reaction 40Ca(n,d)39K, from the (1g9/2) orbital in the reaction 120Sn(n,d)119In, and

from the (3s1/2) orbital in the reaction 208Pb(n,d)207Tl.
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FIGURE 4.14 – Comparison of the angular distributions summed for all orbitals of the
120Sn(p,d)119Sn reaction with Ep equal to 30 MeV (top) and 120 MeV (bottom).

in Figs. 4.16, 4.17 and 4.18, we compiled the cross-sections and their deviations for a

change of ±10%/±5% of the ground-state level energy in DWUCK/pickup for 40Ca(n,d)39K,
120Sn(n,d)119In, and 208Pb(n,d)207Tl, respectively. One can also see the data for the rms

radii and for the cross-sections for En = 30 MeV and En = 120 MeV on Table 4.3.
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FIGURE 4.15 – Comparison of the angular distributions summed for all orbitals of the
208Pb(p,d)207Pb reaction with Ep equal to 30 MeV (top) and 120 MeV (bottom).
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FIGURE 4.16 – Comparison of the cross-sections for the 40Ca(n,d)39K ground state to
ground-state reaction as a function of proton incident energy, including sensitivity bands.
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FIGURE 4.17 – Comparison of the cross-sections for the 120Sn(n,d)119In ground state to
ground-state reaction as a function of proton incident energy, including sensitivity bands.
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FIGURE 4.18 – Comparison of the cross-sections for the 208Pb(n,d)207Tl ground state to
ground-state reaction as a function of proton incident energy, including sensitivity bands.

Before we discuss the Figs., one should note that for (n,d) reactions, the target loses

one proton, resulting in a different element in the end of the reaction. While, for (p,d),

the target loses one neutron, yielding a different isotope of the same element.

The results for all three cases of (n,d) look quite good. If we compare them with the

(p,d) reactions, we see almost the same pattern for all cases. We can see that the (n,d)

reactions contribute with a slightly larger cross-section than the (p,d) for the emission of

deuterons in pre-equilibrium reactions.

A point to observe, while we compare (p,d) with (n,d), is that for 208Pb(n,d)207Tl, we
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have an inversion of results (with DWUCK being larger than Pickup) for Ecm = 30 MeV.

As 208Pb has 82 protons and 126 neutrons, we note that for (n,d) the GS orbital (3s1/2)

is than the GS orbital (3p1/2) for the (p,d) reaction.

All results tend to converge for Ecm > 60 MeV. We suspect the differences between

the results and the large deviation for low energy in all reactions is related to the use of

the eikonal approximation, as in the (p,d) reactions.

Looking at the the data on Table 4.3, we must observe that they are not equal to

the one discussed for (p,d) reactions. First, one sees that the rms radii for Pickup are

similar, except for 208Pb (which is lower than the rms radius for an incident proton).

For DWUCK, all values has changed. The rms radii decrease for 40Ca and 208Pb, and

increases for 120Sn. These changes are due to the differences on the potential used for

each case (proton or neutron). The cross-section values were seen at the figures and have

been discussed before.

rms radii (fm) Cross-section (mb)

Pickup DWUCK
En = 30MeV En = 120MeV

Pickup DWUCK Pickup DWUCK
40Ca 3.5244 ± 0.0883 3.7280 ± 0.0448 0.3005 ± 0.0552 0.8422 ± 0.0651 0.0958 ± 0.0004 0.0734 ± 0.0254

120Sn 5.3058 ± 0.1329 5.0424 ± 0.0354 0.7780 ± 0.2278 1.0236 ± 0.0463 0.2099 ± 0.0209 0.2297 ± 0.0146
208Pb 5.8152 ± 0.1457 5.7278 ± 0.0785 0.1583 ± 0.0702 0.5364 ± 0.0900 0.0056 ± 0.0004 0.0038 ± 0.0009

TABLE 4.3 – Rms radii and cross-sections for Pickup and DWUCK with En = 30 MeV
and En = 120 MeV for 40Ca(n,d)39K, 120Sn(n,d)119In, and 208Pb(n,d)207Tl. The values
with ± represent the standard deviation of the changes due to the sensitivity analysis.

4.5.2.2 Ground state to Ground-state Angular distribution

As we did for the (p,d) case, we next compare the angular distribution for (n,d)

reactions. We discuss the same reactions as in the previous section: the ground state

to ground-state transitions for 40Ca(n,d)39K, 120Sn(n,d)119In, and 208Pb(n,d)207Tl. One

can observe the angular distributions for these reactions in Figs. 4.19, 4.20 and 4.21,

respectively.

The (n,d) angular distributions show similar results to the (p,d) ones. The results

show good agreement for back angles but they diverge for high angles. We note the high

oscillatory behavior for the 208Pb(n,d)207Tl reaction for DWUCK.
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FIGURE 4.19 – Comparison of the angular distributions for the ground state to ground-
state 40Ca(n,d)39K reaction with En equal to 30 MeV (top) and 120 MeV (bottom).

4.5.2.3 Cross-section summed over the orbitals

As we did before for the (p,d) case, we have also calculated the total cross-section for

the (n,d) case.

One can see the results for each reaction: 40Ca(n,d)39K, 120Sn(n,d)119In, and 208Pb(n,d)207Tl,

in Figs. 4.22, 4.23, and 4.24, respectively.

As before, for the (p,d) case, the results from Figs. 4.22, 4.23, and 4.24, behave like

the ones for the ground state to ground-state reaction. Here, we highlight the differences

for the total cross-section for 208Pb(n,d)207Tl. The Pickup-total cross-section surpassed

the value from DWUCK. Even with this behavior, we can conclude that both values are
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FIGURE 4.20 – Comparison of the angular distributions for the ground state to ground-
state 120Sn(n,d)119In reaction with En equal to 30 MeV (top) and 120 MeV (bottom).

similar.

As stated before, a complete analysis for all orbitals should be made in order to have

a deep understanding of these reactions and their differences.

4.5.2.4 Angular distribution summed over the orbitals

We have also extended our study for all orbitals of the (n,d) reactions. One can see

the results for each reaction: 40Ca(n,d)39K, 120Sn(n,d)119In, and 208Pb(n,d)207Tl, in Figs.

4.25, 4.26, and 4.27, respectively.

All total angular distributions have good agreement between Pickup and DWUCK.
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FIGURE 4.21 – Comparison of the angular distributions for the ground state to ground-
state 208Pb(n,d)207Tl reaction with En equal to 30 MeV (top) and 120 MeV (bottom).

We can say that the results are even better than the ones obtained for the ground state to

ground-state reactions. Except for 40Ca, which the Pickup result diverges from DWUCK

for angles greater than 100 degrees, the other results are similar up to 150 degrees. We also

note that the oscillatory behavior for DWUCK is almost vanished for the total angular

distribution. And again, as for the ground state to ground-state reactions, the values for

Pickup tend to zero for high angles while DWUCK has nonzero values.
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FIGURE 4.22 – Comparison of the cross-sections summed for all orbitals of the
40Ca(n,d)39K reaction as a function of the neutron incident energy.
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FIGURE 4.23 – Comparison of the cross-sections summed for all orbitals of the
120Sn(n,d)119In reaction as a function of the neutron incident energy.



CHAPTER 4. THE SEMI-CLASSICAL DISTORTED-WAVE MODEL 110

40 60 80 100 120

0.0

0.5

1.0

1.5

2.0

Ecm(MeV)

σ
(m
b
)

208Pb(n,d)207Tl – Cross Section by Energy (All orbits)

Pickup

DWUCK

FIGURE 4.24 – Comparison of the cross-sections summed for all orbitals of the
208Pb(n,d)207Tl reaction as a function of the neutron incident energy.
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FIGURE 4.25 – Comparison of the angular distributions summed for all orbitals of the
40Ca(n,d)39K reaction with En equal to 30 MeV (top) and 120 MeV (bottom).
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FIGURE 4.26 – Comparison of the angular distributions summed for all orbitals of the
120Sn(n,d)119In reaction with En equal to 30 MeV (top) and 120 MeV (bottom).
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FIGURE 4.27 – Comparison of the angular distributions summed for all orbitals of the
208Pb(n,d)207Tl reaction with En equal to 30 MeV (top) and 120 MeV (bottom).



5 Conclusions

EMPIRE, (HERMAN et al., 2007), is a well-known software used for theoretical inves-

tigations of nuclear reactions and for nuclear data evaluation. EMPIRE is constituted of

several modules, two of which are the PCROSS module (based on the exciton model), and

the DDHMS module (based on the Hybrid-Monte Carlo model). As already discussed in

this work, both models are used for pre-equilibrium nuclear reactions.

The unified model of Iwamoto and Harada is implemented in PCROSS, which has

been discussed extensively in this work. The unified model in the PCROSS module is

used for cluster emission. On the other hand, in the DDHMS, the Hybrid-Monte Carlo

model (HMS) furnishes a more precise approach to pre-equilibrium nuclear emission. In

numerical calculations, the “HMS and PCROSS mutually exclude each other”, (HERMAN

et al., 2007). To avoid errors while combining models, EMPIRE applies some priorities. In

the case of pre-equilibrium, EMPIRE uses the HMS and suppresses the PCROSS results

for particle emission, when it is used.

Apart from this, the HMS also has a limitation of calculating nucleon emission only.

Due to this limitation, we started this work in (TEIXEIRA, 2018) to extend the HMS to

calculate emission of composite particles, such as deuteron, tritium, and alpha particles.

The unified model, (IWAMOTO; HARADA, 1982), is already included in PCROSS. As

stated, the DDHMS has priority over the results from PCROSS. In consideration of that,

our intention is to combine the unified model ideas with those of the HMS. By combining

these models, the HMS would be extended to include composite particle emissions. This

extension is seen as an improvement in EMPIRE’s features because one would be able to

obtain a more physically-motivated description of pre-equilibrium nuclear reactions.

We started our research by studying the unified model. In (TEIXEIRA, 2018), we
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concluded that more investigation is needed to understand the deuteron emission mecha-

nisms. Broeders and Konobeyev, (BROEDERS; KONOBEYEV, 2005), had already discussed

these different mechanisms and concluded that each of them contribute to the formation

factor of the composite particle. As a result of that, we started to investigate the pickup

reaction mechanism for deuterons.

As discussed earlier, we started with the unified model, and then used DWUCK calcu-

lations to compare them with our previous results. We also tried an eikonal approximation

to improve the unified model. DWUCK was used in most of the steps of our investiga-

tions as it is a well-known software for differential cross-section calculations. It gave us

important information while we were trying to obtain the angular distribution from the

unified model.

Continuing our research, further investigations for the unified model phase space were

needed. These investigations of the phase space are important for understanding the

semi-classical limitations and restrictions of the unified model.

With the semi-classical distorted-wave model described in this work, we believe that

we now have a theoretical basis that will permit the development of a more precise Monte

Carlo model of nucleon and deuteron emission. We also hope this model can provide the

framework for other composite particle production.

We have developed and discussed the calculations for the pickup mechanism for

deuteron production from an incident proton and also from an incident neutron. Al-

though we have not compared our data with experimental values, we have run the

cross-section and angular distribution calculations using our code (Pickup) and com-

pared with reference calculations from DWUCK4 for three different reactions for (p,d):
40Ca(p,d)39Ca, 120Sn(p,d)119Sn, and 208Pb(p,d)207Pb, and three different reactions for

(n,d): 40Ca(n,d)39K, 120Sn(n,d)119In, and 208Pb(n,d)207Ti. We also compared the sensi-

tivity of the cross-sections to a variation in the level energy for all cases.

We conclude from these calculations that our results are promising. For the (p,d) reac-

tions, the cross-section results for Pickup increase compared to the reference calculations

of DWUCK as the target mass increased for low energies. The results for DWUCK in-

crease for 120Sn but decrease considerably for 208Pb, if one compare them with the results

for 40Ca. As for the (n,d) reactions, the Pickup results were lower than the results from
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DWUCK for low energies. All results are promising, to the extent that they have quite

similar behavior. For all cases in both (p,d) and (n,d) reactions, the results were quite

similar for high energies.

We have also discussed the sensitivity to a variation of the level energy, and we con-

cluded that these variations were more effective in Pickup than DWUCK for (p,d). For

(n,d), we observe that both Pickup and DWUCK furnish similar variations except for the
120Sn(n,d)119In case. However, we still do not understand this sensitivity of the Pickup

results.

By comparing the potential radii used for all reactions, we could conclude that the

neutron orbital involved in the pickup reactions is always well within the radii of the

optical potentials, as it should be. The comparisons show that the radii used could

explain the results obtained for each reaction, if we have into account the limitations of

the eikonal approximation. It is important to note that more studies should be done to

get a broader idea of the general sensitivity of the model.

For the angular distribution, we have also made a comparison for the reactions dis-

cussed. DWUCK gives an oscillatory behavior for all cases at E = 30 MeV. For En = 120,

the Pb case for the (n,d) reaction also oscillates (with a high frequency). However, the

oscillatory behavior almost disappear for the total angular distributions. For all cases

studied, the results were in good agreement for low angles. For angles greater than 120

degrees, our results tend to zero while DWUCK gave low but nonzero values. We also

note that the eikonal approximation used to calculate the proton and deuteron Wigner

functions can cause discrepancies in the angular distribution at low angles for low ener-

gies. But, one should note that more reactions need to be studied in order to confirm this

conclusion.

Finally, we should say that this work was more difficult than expected. We had many

results that were not promising, and we tried many different ways to reach our goal. It is

clear that the physics involved in the process was the biggest challenge, but we can say

we had promising results in the end. Even though the Monte Carlo part of this work is

discussed, there was not enough time to develop this. We leave it to future research.

To conclude, we note that a substantial part of this work was performed during the

pandemic of 2020–2021.
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Appendix A - Papers

We present a proceedings paper published in 2019, (TEIXEIRA; CARLSON, 2019), for

your appreciation. The studies included in this paper were presented at the XLI Brazilian

Meeting on Nuclear Physics, in Campos do Jordão, São Paulo, Brazil, in 2018.

We began the paper by introducing pre-equilibrium reactions, their importance, the

exciton model, the HMS model, and the Iwamoto and Harada model. The second topic

briefly describes the Iwamoto and Harada unified model. In the third topic, we give a

brief description of our attempt to use an eikonal approximation with DWBA in order to

have a better representation of the Iwamoto and Harada phase space. In the fourth topic,

we discuss our preliminary results at that time, mentioning that we were using DWUCK4

code to analyze the differential cross section and comparing it with experimental data.

In the final topic, we concluded that our results were yet not satisfactory and that we

needed to investigate further to improve the unified model.

The proceedings paper follows on the next page.
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Abstract. Nucleon-induced pre-equilibrium reactions are important in many applications
of nuclear physics. About 20% of the particles emitted in such reactions are composites,
such as deuterons and alpha particles. Deuterons are produced through emission from the
compound nucleus, as well as through two important direct reaction mechanisms - “pick-up”
and coalescence. Iwamoto and Harada developed a semi-classical pre-equilibrium model that
describes both direct mechanisms as a generalization of coalescence. We have implemented the
Iwamato and Harada unified model of deuteron emission in Blann and Chadwick’s hybrid Monte
Carlo model. This implementation was made in order to analyse data of reactions of the type
(p,d), that is, proton induced reactions having deuterons as emitted particles, but our previous
results were not satisfactory. In order to find a new approach for the deuteron emission, we
are investigating an eikonal approximation to the phase space of Iwamoto and Harada model.
We are also comparing our angular distributions with the experimental ones using DWUCK4.
Nevertheless, our results are not satisfactory yet and our work is under development.

1. Introduction

Nucleon-induced pre-equilibrium reactions are important in the description and modeling of fast
reactors, accelerator-driven systems (ADS) and radiotherapy with particle beams. The exciton
model of pre-equilibrium reactions assumes the excitation of a chain of particle-hole states of the
pre-compound nucleus that results from the fusion of the incident particle with the target (two
particles and one hole, three particles and two holes, etc.) [1]. To estimate emission from the
stage of n+1 particles and n holes, it assumes that each state of this kind is equally probable.
However, Bisplinghoff demonstrated that in general this hypothesis is satisfied only for the initial
configuration of two particles and one hole states [2].

With the goal of defining a pre-equilibrium reactions model without this defect, Blann
developed a model called the “hybrid Monte Carlo” model (HMS), which takes into account
the chain of particles and holes states of the exciton model through independent excitations of
two particles and one hole [3, 4]. A detailed comparison between both models shows that while
the exciton model assumes that the interaction between the configuration of n+1 particle and
n hole states is so strong that these reach equilibrium before making another transition, the
“hybrid Monte Carlo” model neglects any interaction between the particle - hole states of each
configuration. Obviously, the physical case should lie between these two extremes.

About 20% of the pre-equilibrium emissions in these reactions correspond to composite
particles, such as deuterons and alpha particles. An important reaction mechanism for the



XLI Brazilian Meeting on Nuclear Physics (RTFNB)

IOP Conf. Series: Journal of Physics: Conf. Series 1291 (2019) 012036

IOP Publishing

doi:10.1088/1742-6596/1291/1/012036

2

production of deuterons is “pick-up”, in which an incident nucleon takes another nucleon from
the target nucleus. Another pre-equilibrium deuteron production mechanism is coalescence
[5, 6, 7], in which a deuteron is formed from two fast nucleons that are emitted close to
one another in phase-space. In the context of the exciton model of pre-equilibrium reactions,
Iwamoto and Harada developed a model that unifies these two mechanism of deuteron emission
[8, 9, 10].

2. Iwamoto and Harada unified model

We started with the model proposed in Ref. [9], in which deuteron formation is represented by a
quasi-classical phase space factor. As we were trying to reproduce their results, we found some
inconsistencies in their calculations. With that, we tried to improve this model by making the
necessary adjustments to implement it in Blann and Chadwick’s model, [4]. This implementation
would allow us to obtain more realistic results in pre-equilibrium nuclear reactions.

Even with the treatment of the inconsistencies in the Iwamoto and Harada model, our results
were not satisfactory. Our values did not fit with the experimental values and the results of
the deuteron formation mechanisms did not follow the same pattern as the experimental data.
As an example, our ratio of the deuteron pick-up partial emission widths and proton partial
emission widths decreased with the increase of the target mass while the experimental data kept
the same ratio.

3. Eikonal phase space

We decided to investigate an alternative approximation to the phase space as a way to improve
our last results. With that, we have begun to investigate an eikonal phase space.

To begin, we calculate the one-step distorted-wave Born approximation (DWBA) amplitude
of a proton-induced (p,d) reaction in the following way:

〈 ~Kd;h|T (1)| ~Kp〉 =

∫
d3rd

∫
d3rpφ

†
dψ

†(−)
d V (~rd − ~rp)φnψ(+)

p , (1)

where ψ
(−)
d is the outgoing deuteron wave function and ψ

(+)
p is the incoming proton wave

function. Both of these include the information of the plane wave plus the spherical wave
that reach the detector. φn is the neutron wave function and φd is the internal wave function of
the deuteron.

4. Preliminary results

We started analyzing the differential cross section for the (p, d) reaction on 40Ca in the 1d3/2
ground-state. However, our simulations did not achieve the same pattern as the experimental
data [13].

In order to see why the differential angular cross section did not fit with the experimental
data, we searched for the cause of the difference between the results. At first, we tested the tρ
potential against the optical potential that Ref. [13] uses.

In our work, the incident proton is subject to a potential represented by the tρ approximation,

U(~r) = − h̄v
2

[
σTpp(i+ αpp)

Z

A
+ σTpn(i+ αpn)

N

A

]
ρm(~r). (2)

with σTn1n2
being the total cross section and αn1n2 a scattering phase factor, both energy

dependent. ρm(~r) is the target density distribution, v = h̄k/µ, Z and N are the proton and
neutron number of the nucleus of mass number A = Z + N . We interpolated the values found
in Ref. [14] to obtain α and σ.
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In Ref [13], a phenomenological optical potential is used. It is given by

V (r) = VC(rC)−V (ex+1)−1−i
[
W−4WDa

′ d
dr

]
(ex

′
+1)−1+

[
h̄c

mpc2

]2
VSO

1

r

d

dr
(ex

′′
+1)−1σI, (3)

where x = (r − R0)/a0, x
′ = (r − R′)/a′, x

′′
= (r − R′′)/a′′, with R0 = r0A

1/3, etc., and
the Coulomb potential VC is that for a uniformly charged sphere of radius RC = rCA

1/3. W0

and WD are the volume and surface parts, respectively, of the imaginary potential, and VSO
is the real part of the spin-orbit potential, σ is the projectile spin and I is the orbital angular
momentum. The values of the parameters are given in Ref. [13].

Figure 1. Comparison between
the tρ approximation and the opti-
cal potential used in Ref. [13]. The
abscissa represents the nucleus ra-
dius in fm and the ordinate repre-
sents the potential value in MeV.
The red vertical line represents the
target radius.

In Fig. 1, one can see that our potential is in a good agreement with the optical potential just
at large radii but much deeper at smaller radii.

In Ref. [13], the distorted-wave Born approximation (DWBA) code DWUCK (Distorted Wave
University of Colorado Kunz) [15] was used to analyze the differential cross section. As we are
trying to build our code and using their experimental values as our source, we decided to compare
results. In Fig. 2, one can see their experimental values (dots) and our calculations using their
values input in DWUCK4 (line). In their work, they used an adiabatic potential for the deuteron
channel but we did not include it in our input. It may be what causes the difference between
our results, but such a conclusion is preliminary.

As our next step, we expect to conclude our comparison of the optical model potential and the
tρ potential. With that, we expect to have a good idea of how the tρ approximation should
behave in our differential cross section results. This step is important in order to validate the
phase space that we are studying. Our hope is to improve the calculations of our model of
deuteron emission in pre-equilibrium reaction.

5. Goal and Conclusion

Our ultimate goal is to implement a version of the Iwamoto and Harada model in the DDHMS
module of the nuclear reaction code EMPIRE[11] which performs calculations of pre-equilibrium
reactions within the HMS model, and then use it to analyze data of reactions of the type (p,d).

As our previous results using Iwamoto and Harada model were not satisfactory, we are
analyzing the phase space of the “pick-up” reactions using an eikonal approximation. With
that, we hope to get better results and to improve the Iwamoto and Harada model.

As next steps, we will investigate the relation between our transition matrix as function of the
energy and of the nucleus radius. Achieving better results, we plan to implement the Iwamato
and Harada unified model with our modifications in Blann and Chadwick’s “hybrid Monte Carlo”
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Figure 2. Angular distribution data of cross section for the ground state 3/2+ state in
40Ca(p,d)39Ca. The dots are the experimental values from Ref. [13] and the line are the
predictions of the DWBA theory calculated using DWUCK [15].

model, to obtain a more physically-motivated description of pre-equilibrium deuteron emission.
Inserting this result in the nuclear reactions code EMPIRE, we hope to improve the analysis of
(p,d) reaction data.
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Appendix B - Potentials used in the

eikonal approximation

In this appendix, we discuss two potentials used in our studies with the eikonal ap-

proximation. This subject was introduced before in appendix A. One can also see our

conclusion about the comparison between both potentials there.

B.1 tρ approximation

A possible choice for the nucleon-nucleus optical potential is the tρ approximation.

The forward-angle nucleon-nucleon t-matrix is often parameterized as

tn1n2 (q⃗ = 0) = −2πℏ2

µ
fn1n2 (q⃗ = 0) = −ℏv

2 σT
n1n2 (αn1n2 + i) , (B.1)

where fn1n2 is the n1 − n2 scattering amplitude (n1,2 = n, p) and σT
pp = σT

nn and σT
pn are

the proton-proton, neutron-neutron and proton-neutron total cross-sections. In this case,

we take for the proton-target optical potential

U (r⃗) = −ℏv
2
[
σT

pp (i+ αpp) ρp (r⃗) + σT
pn (i+ αpn) ρn (r⃗)

]
, (B.2)

The total cross sections σT
n1n2 as well as the factors αn1n2 are energy dependent. We

will assume that the cross sections and factors αn1n2 used in the optical potential also

contain the effects of Pauli blocking in the nuclear medium. The position dependent

quantities ρp (r⃗) and ρn (r⃗) are the target proton and neutron densities. These are often

approximated as Z/A and N/A times the total nucleon density, ρm (r⃗), where Z and N

are the proton and neutron number of the nucleus of mass number A = Z +N .
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Using ρm (r⃗), we can change U (r⃗) to

U(r⃗) = −ℏv
2
[
σT

pp(i+ αpp)Z
A

+ σT
pn(i+ αpn)N

A

]
ρm(r⃗). (B.3)

The total nucleon density ρm(r⃗) is given by

ρm(z, b⃗) =
∫ ∞

0

ρ0

1 + exp
[
(
√
b2 + z2 −R)/a

]dz, (B.4)

with ρ0 ≃ 0.165 nucleons/F 3, R ≃ 1.25A1/3 F, and a ≃ 0.55 F. Inserting all these ideas

in eq. (B.3), we get

U(r⃗) = −ℏv
2

[
σT

pp(i+ αpp)Z
A

+ σT
pn(i+ αpn)N

A

] ∫ ∞

0

ρ0

1 + exp
[
(
√
b2 + z2 −R)/a

]dz, (B.5)

where µc2 = (A − 1)mc2/(A + 1), Kp =
√

2µEcm/ℏc, Ep = 65 MeV, and Ecm =

(A × Ep)/(A + 1). For σnn and αnn, we had used the values for Elab ≤ 100 MeV from

(BERTULANI et al., 2003) to get these constant values, as shown in table B.1. For Ep = 65

MeV, we interpolated the values to obtain α = 0.9772 fm2, and σ = 12.6745 fm2.

TABLE B.1 – Parameters values from (BERTULANI et al., 2003) for the nucleon-nucleon
amplitude. The values are averaged over pp and pn collisions.

E[MeV/nucl] ⟨σNN⟩ [fm2] ⟨αNN⟩

30 19.6 0.87

38 14.6 0.89

40 13.5 0.90

49 10.4 0.94

85 6.10 1.00

As we are working with (p,d) reactions, the nucleons have to “feel” some Coulomb

repulsion. We represent the Coulomb repulsion as

exp
 iZe2

(ℏc)2 (∆p+ ∆d)
, (B.6)

where Z is the proton number of the target nucleus, e is the electron charge, ∆p and ∆d

are represented by
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∆p(b) = log(kpb)µ
2kp

, and ∆d(b) = log(kdb)mc2

kd

, (B.7)

where µ is the reduced mass of the center of mass, mc2 is the proton mass, kp is the

incident proton kinetic energy, and kd is the deuteron kinetic energy. The kinetic energies

are given by

kp =
√
µEcm/ℏc, and kd =

√
4µEd/ℏc, (B.8)

with

Ecm = AElab

A+ 1 , and Ed = Ecm +MA +Mp −Md −MB − Elvl, (B.9)

where MA is the mass of the target, Mp is the proton mass, Md is the deuteron mass, MB

is the mass of the target less one neutron, and Elvl is the level energy, which is given by

experimental values. We used the mass excess instead of the real masses.

From this perspective, we can include eq. (B.6) in eq. (3.7) to have our final amplitude

equation with all variables on it,

⟨K⃗d;h|T (1)|K⃗p⟩ = 2πV0

∫ ∞

0
bdb exp

 iZe2

(ℏc)2 (∆p+ ∆d)
Jm(2kb sin(θ/2))

×
∫ ∞

−∞
dzY m

l (θn, ϕn)
(√

mω

ℏ

)3/2

×

 1
π1/4

√√√√2l−(n+1)(2n+ 2l − 1)!!
(n− 1)!

1
(2l + 1)!!

(⃗b+ zẑ)l

×

1 − (n− 1)
l + 3/2 (⃗b+ zẑ)2 + (n− 1)(n− 2)

(l + 3/2)(l + 5/2)
(⃗b+ zẑ)4

2!

e−(⃗b+zẑ)2/2

× exp
 i

2

[
σT

pp(i+ αpp)Z
A

+ σT
pn(i+ αpn)N

A

]
ρ0

∫ z

−∞

1

1 + exp
[
(
√
b2 + z′2 −R)/a

]dz′


p

+ i
[
σT

pp(i+ αpp)Z
A

+ σT
pn(i+ αpn)N

A

]
ρ0

∫ ∞

z

1

1 + exp
[
(
√
b2 + z′2 −R)/a

]dz′


d

.
(B.10)

Most of the variables were already defined. The second, third, and fourth lines come

from the neutron radial function.

Eq. B.10 concludes our discussion about the tρ approximation. Using it on eq. ?? gives
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us the differential angular distribution.

B.2 Optical potential

Another potential used in our calculations with the eikonal approximation is the optical

potential used in (MATOBA et al., 1993). We equate our U with their V (r):

V (r) = VC(rC)−V (ex+1)−1−i

W−4WDa
′ d

dr

(ex′ +1)−1+
 ℏc
mpc2

2

VSO
1
r

d

dr
(ex′′ +1)−1σI,

(B.11)

where x = (r − R0)/a0, x′ = (r − R′)/a′, x′′ = (r − R′′)/a′′, with R0 = r0A
1/3, etc., and

the Coulomb potential VC is that for a uniformly charged sphere of radius RC = rCA
1/3.

W0 and WD are the volume and surface parts, respectively, of the imaginary potential,

and VSO is the real part of the spin-orbit potential. The imaginary part of the spin-orbit

potential was always set to zero in (MATOBA et al., 1993) as they found that its value

turned out to be very small in all cases. The other parameters are also given by them as

V = (49.9 − 0.22Ep + 26.4(N − Z)/A+ 0.4Z/A1/3) MeV,

r0 = 1.16 fm, a0 = 0.75 fm,

W = 1.2 + 0.09Ep (MeV),

WD = 4.2 − 0.05Ep + 15.5(N − Z)/A or 0 (MeV) (whichever is greater),

r′ = 1.37 fm, a′ = 0.74 − 0.0008Ep + 1.0(N − Z)/A fm,

r′′ = 1.064 fm, a′′ = 0.78 fm,

rC = 1.25 fm, VSO = 6.04 MeV.

(B.12)

The Coulomb potential given by

VC(rC) =


Ze2

4πε0RC

1 + 1
2

(
1 −

(
rC

RC

)2) when rC < RC ,

Ze2

4πε0rC

when rC > RC .

(B.13)
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Inserting all these values in eq. B.11, we get

V (r) = VC(rC) − V (ex + 1)−1 − iW (ex′ + 1)−1

− 4iWD
ex′

(ex′ + 1)2 −

 ℏc
mpc2

2

VSO
1
r

ex′′

a′′(ex′′ + 1)2σI.
(B.14)

With V (r) being our U , the exponential part of eq. 3.7 will change and the new tran-

sition amplitude will be given as

⟨K⃗d;h|T (1)|K⃗p⟩ = V0

∫
d3r exp(iq⃗ · r⃗)ψn

× exp
− iµc2

(ℏc)2kp

∫
Vp(r)dz′ − imc2

(ℏc)2kd

∫
Vd(r)dz′

, (B.15)

where Vp and Vd are the potential for proton and deuteron, respectively. The values used

for each nucleon is given in table B.2.

TABLE B.2 – Parameters values used for the optical potential.

Parameter Proton (p) Deuteron (d)

Z 20

A 40

α 0.988

σ 9.219

ρ0 0.165

ℏc 197.32

a 0.75 0.779

R0 3.9671 4.0013

kn 1.7051 2.1412

We used the optical potential in all calculations performed on sec. 3.1.2.1, sec. 3.2 and

in our proceedings paper published and available on appendix A



Appendix C - Redefining our phase

space

Besides trying to find a new formulation to improve the unified model, we have also

investigated its implications in more detail by looking more closely at the restrictions that

are applied in the model. We start by using the ideas from (IWAMOTO; HARADA, 1982).

One can see in Fig. C.1 a comparison between our attempt to calculate the amplitude T ,

eq. 3.13, using the unified model and the one from DWUCK. The DWUCK amplitude is

multiplied by 3. The interesting thing to observe in this figure is that both results has

the same behavior.

0 50 100 150 200

0.0

0.1

0.2

0.3

0.4

0.5

Ed(MeV)

T

Amplitudes for Ca40(p,d)Ca39 - Ep=65MeV

DWUCK (3x)

Unified model

FIGURE C.1 – Comparison between the unified model amplitude and DWUCK for
40Ca(p,d)39Ca with Ep = 65 MeV. DWUCK is multiplied by 3.

C.0.1 Semi-classical pickup by Iwamoto and Harada

Consider a differential pickup rate consisting of the velocity at which protons pass a

target nucleus times the differential phase space for a deuteron being emitted. We use
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the semi-classical phase space approximation of Iwamoto and Harada. We write this as

dλ = pp

m
θ
(
ϵ0 − p2

2µ − µω2r2

2

)
θ(pF n − |p⃗n|)δ

( |r⃗p + r⃗n|
2 −R

)

× θ(R + ∆ − |r⃗n|)θ(R + ∆ − |r⃗p|)d
3rpd

3pp

(2πℏ)3
d3rnd

3pn

(2πℏ)3 ,

(C.1)

where R is the radius of the nucleus, ∆ an adjustable length, pF n the neutron Fermi mo-

mentum, µ = m/2, with m the nucleon mass, and ϵ0 and ω are the parameters describing

the deuteron phase space,

p⃗ = 1
2(p⃗p − p⃗n) and r⃗ = r⃗p − r⃗n. (C.2)

The deuteron momentum and position are given by

P⃗d = p⃗p + p⃗n and R⃗d = 1
2(r⃗p + r⃗n). (C.3)

The initial proton momentum is given and we would like to determine the pickup rate

as a function of the deuteron momentum. We thus use the definition of the deuteron

momentum to write

p⃗n = P⃗d − p⃗p and p⃗ = p⃗p − P⃗d/2. (C.4)

These definitions place two constraints on P⃗d, since p⃗p is given. These are

p2
n =

(
P⃗d − p⃗p

)2
≤ p2

F n and p2 =
(
p⃗p − P⃗d/2

)2
≤ 2µϵ0. (C.5)

We also transform the differential momentum volume as

d3ppd
3pn → d3ppd

3Pd. (C.6)

It is interesting to analyze the momentum constraints on P⃗d independently of the addi-

tional coordinate constraints in the deuteron phase space factor. The constraints above

furnish

P 2
d + p2

p−2Pdpp cos θp ≤ p2
F n,

P 2
d + 4p2

p−4Pdpp cos θp ≤ 8µϵ0,
(C.7)
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or

(Pd − pp cos θp)2 ≤ p2
F n − p2

n sin2 θp,

(Pd − 2pp cos θp)2 ≤ 4(2µϵ0 − p2
p sin2 θp),

(C.8)

where θp is the angle between the two momenta. These inequalities have solutions when

sin2 θ ≤ min(p2
F n, 2µϵ0)/p2

p. (C.9)

In this case, we have

pp cos θp −
√
p2

F n − p2
p sin2 θp ≤Pd ≤ pp cos θp +

√
p2

fn − p2
p sin2 θp,

2pp cos θp − 2
√

2µϵ0 − p2
p sin2 θp ≤Pd ≤ 2pp cos θp + 2

√
2µϵ0 − p2

p sin2 θp.
(C.10)

Since both conditions must be satisfied simultaneously, we see that no solution will exist

at sufficiently high initial momentum pp. This will be the case when

pp cos θp +
√
p2

F n − p2
p sin2 θp < 2pp cos θp − 2

√
2µϵ0 − p2

p sin2 θp, (C.11)

or

pp cos θp >
√
p2

F n − p2
p sin2 θp + 2

√
2µϵ0 − p2

p sin2 θp. (C.12)

Let us assume that this occurs at θp = 0. Then, no solution will exist for

pp > pF n + 2
√

2µϵ0. (C.13)

Using the Iwamoto and Harada value of ϵ0 = 12.1 MeV, pF n = 270 MeV, and m = 938

MeV, we find a limit of pp > 483 MeV, which would correspond to Ep > 124 MeV.

At this limiting value of the proton momentum, the only allowed value of the deuteron

momentum would be Pd = 753 MeV, corresponding to an energy Ed = 151 MeV. Note

that the restrictions on pp and Pd are even tighter when r2 ̸= 0.

Turning now to the radii, which we will integrate, let us consider the vector r⃗n relative

to r⃗p, and write the constraint on the deuteron center-of-mass radius as

r2
n + r2

p + 2rnrp cos θn = 4R2, (C.14)
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where we consider rp fixed. As the definition of r⃗ gives

r2 = r2
n + r2

p − 2rnrp cos θn, (C.15)

we can use the center-of-mass radius to eliminate the cosine in the r2, and write it as

r2 = 2(r2
n + r2

p − 2R2). (C.16)

With cos θn = 1, we obtain the lower limit for rn, as

rn,min = 2R − rp with cos θn,min = 1. (C.17)

Its maximum value will be

rn,max = R + ∆ with θ cosn,max =
4R20(R + ∆)2 − r2

p

2(R + ∆)rp

. (C.18)

Leaving out the deuteron phase space factor for the moment, which is independent of the

angular variables ϕn and θn, the integral over r⃗n can be simplified as

∫
d3rnδ

( |r⃗p + r⃗n|
2 −R

)
= 2π

∫ rn,max

rn,min
r2

ndrn

∫ 1

−1
dxδ(f(x) −R)

= 2π
∫ rn,max

rn,min
r2drn

1
f ′(x)

∣∣∣∣∣∣
f(x)=R

,
(C.19)

where we have used the azimuthal symmetry to integrate over ϕn and written

f(x) = 1
2
√
r2

p + r2
n + 2rnrpx with f ′(x) = rnrp

2f(x) , (C.20)

with x = cos θn, so that

∫
d3rnδ

( |r⃗p + r⃗n|
2 −R

)
= 2π4R

rp

∫ rn,max

rn,min
rndrn. (C.21)

To make the r⃗p integral conform to the geometry of the collision, we write d3rp = d2bpdzp,
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so that

dλ =pp

m

d3ppd
3Pd

(2πℏ)6 θ

pF n − |P⃗d − p⃗p|

(4π)2R

×
∫ R+∆=Rd

0
bpdbp

∫ zp,max

−zp,max

dzp

rp

∫ Rd

2R−rp

rndrn

× θ

ϵ0 −

(
p⃗p − P⃗d/2

)2

2µ − µω2(r2
n + r2

p − 2R2)
,

(C.22)

with µ = m/2, r2
p = b2

p +z2
p , zp,max =

√
R2

d − b2
p, and pp given by the problem. As-a-result,

we can open up eq. C.22,

dλ =(4π)2R

m

d3Pd

(2πℏ)6pp

× θ

pF n −
√
P 2

d − 2Pdpp cos θpp,P d + p2
p


×
∫ Rd

0
bpdbp

∫ zp,max

−zp,max

dzp

rp

∫ Rd

2R−rp

rndrn

× θ

ϵ0 −
p2

p − Pdpp cos θd + (Pd/2)2

2µ − mc2

2

ωℏ
ℏc

2

(r2
n + r2

p − 2R2)
,

(C.23)

with

cos θd = max
p2

1 + P 2
d − p2

F

2p1Pd

,
p2

1 + P 2
d /4 − 2µε0

p1Pd

, (C.24)

we get the final equation (remember that P⃗d, eq. C.3, is constant here),

dλ = R

4π4ℏ6m
pp × 2π

3 P 3
d

× θ

pF n −
√
P 2

d − 2Pdpp cos θd + p2
p


×
∫ Rd

0
bpdbp

∫ zp,max

−zp,max

dzp

rp

×
∫ θd

0
sin θdθ

∫ Rd

2R−rp

rndrn

× θ

ϵ0 −
p2

p − Pdpp cos θd + (Pd/2)2

2µ − mc2

2

ωℏ
ℏc

2

(r2
n + r2

p − 2R2)
.

(C.25)

We have calculated the differential pickup rate using the last equation. The result can

be seen in Fig. C.2. Even though the rate has low values, we are interested in the behavior
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of the result. One can observe that the curve starts to behave as the curve for the pickup

formation factor, Fig. 2.8, but it drops abruptly and goes to zero after ϵd = 56 MeV. This

behavior is odd and needs to be investigated further.

50 52 54 56 58

0

5.× 10-7

1.× 10-6

1.5× 10-6

2.× 10-6

2.5× 10-6

d (MeV)

d
λ

FIGURE C.2 – Differential pickup rate (dλ) for 40Ca(p,d)39Ca with Ep = 65 MeV by
ϵd = Ed − 2ϵF (where Ed is the deuteron energy, and ϵF is the Fermi energy).



Appendix D - Inelastic scattering

with DWBA

D.1 One-step inelastic scattering

The one-step DWBA amplitude of a nucleon-induced reaction has the general form

TDW BA =
∫
d3r ψ

(−)∗
kf

(r⃗)
〈
B

∣∣∣∣∣∣
A∑

j=1
V (r⃗ − r⃗j)

∣∣∣∣∣∣A
〉
ψ

(+)
ki

(r⃗) , (D.1)

where we have written the nucleon-nucleus interaction as a sum of nucleon-nucleon inter-

actions V (r⃗ − r⃗′). Any individual interaction can be written as

〈
k⃗f ; ph |T | k⃗i

〉
=
∫
d3r d3r′ ψ

(−)∗
kf

(r⃗) ψ∗
p (r⃗′)V (r⃗ − r⃗′) ψh (r⃗′) ψ(+)

ki
(r⃗) , (D.2)

where ψh is an occupied orbital in the initial nucleus (a hole state after the collision) and

ψp is an unoccupied orbital or continuum state of the initial nucleus. There are three

possibilities for the final state:

1. One of the two particles remains in the continuum while the second occupies a

previously unoccupied bound state of the nucleus. This is the situation assumed in

all multi-step direct models and corresponds to the amplitude given above.

2. At sufficiently high incident energy, both of the final particles can be in the contin-

uum. The DWBA amplitude will then be

〈
k⃗f1 , k⃗f2 ;h |T | k⃗i

〉
=
∫
d3r d3r′ ψ

(−)∗
kf1

(r⃗) ψ(−)∗
kf2

(r⃗′) V (r⃗ − r⃗′) ψh (r⃗′) ψ(+)
ki

(r⃗) .

(D.3)
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3. At extremely low energy, both of the particles can occupy previously unoccupied

bound states of the nucleus. In this case, we would say that the incident nucleon

was absorbed. The corresponding DWBA amplitude is

〈
p1p2h |T | k⃗i

〉
=
∫
d3r d3r′ ψ∗

p1 (r⃗) ψ∗
p2 (r⃗′)V (r⃗ − r⃗′) ψh (r⃗′) ψ(+)

ki
(r⃗) . (D.4)

To simplify the development of the possible amplitudes, we will assume that the nucleon-

nucleon interaction can be well represented by a contact interaction,

V (r⃗ − r⃗′) ≈ V0δ (r⃗ − r⃗′) . (D.5)

For the first case above, in which only one of the particles is in the continuum after

the interaction, we have for the eikonal scattering amplitude,

〈
k⃗f ; ph

∣∣∣T (1)
∣∣∣ k⃗i

〉
=
∫
d3r ψ

(−)∗
kf

(
z, b⃗

)
V0 ψ

∗
p

(
z, b⃗

)
ψh

(
z, b⃗

)
ψ

(+)
ki

(
z, b⃗

)
= V0

∫
d3r eiq⃗·r⃗ψ∗

p

(
z, b⃗

)
ψh

(
z, b⃗

)
× exp

[
− i

ℏvf

∫ ∞

z
Uf

(
z′, b⃗

)
dz′ − i

ℏvi

∫ z

−∞
Ui

(
z′, b⃗

)
dz′
]

= V0

∫
d2b eiq⃗·⃗bei(δi(b)+δf (b))

×
∫ ∞

−∞
dz ψ∗

p

(
z, b⃗

)
ψh

(
z, b⃗

)
× exp

[
iqzz + i

ℏvf

∫ z

0
Uf

(
z′, b⃗

)
dz′ − i

ℏvi

∫ z

0
Ui

(
z′, b⃗

)
dz′
]
,

(D.6)

with q⃗ = k⃗i − k⃗f . We rewrite this as

〈
k⃗f ; ph

∣∣∣T (1)
∣∣∣ k⃗i

〉
= V0

∫
d2b eiq⃗·⃗bei(δi(b)+δf (b))

×
∫ ∞

−∞
dz ψ∗

p

(
z, b⃗

)
ψh

(
z, b⃗

)
exp

[
iqzz − iϕf

(
z, b⃗

)
+ iϕi

(
z, b⃗

)]
,

(D.7)

where

ϕm

(
z, b⃗

)
= − 1

ℏvm

∫ z

0
Um

(
z′, b⃗

)
dz′ , (D.8)

and

δm (b) = lim
z→∞

ϕm

(
z, b⃗

)
. (D.9)
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The amplitude of the second case above, in which both final state nucleons are in the

continuum, takes the form

〈
k⃗f1 , k⃗f2 ;h

∣∣∣T (1)
∣∣∣ k⃗i

〉
= V0

∫
d3r ψ

(−)∗
kf1

(
z, b⃗

)
ψ

(−)∗
kf2

(
z, b⃗

)
ψh

(
z, b⃗

)
ψ

(+)
ki

(
z, b⃗

)
= V0

∫
d2b eiq⃗·⃗bei(δi(b)+δf1 (b)+δf2 (b))

×
∫ ∞

−∞
dz ψh

(
z, b⃗

)
exp

[
iqzz − iϕf1

(
z, b⃗

)
− iϕf2

(
z, b⃗

)
+ iϕi

(
z, b⃗

)]
.

where we now have q⃗ = k⃗i − k⃗f1 − k⃗f2 .

The final amplitude, in which the interaction de-excites the incoming projectile to a

bound state and there is no outgoing wave, can be written as

〈
p1p2h

∣∣∣T (1)
∣∣∣ k⃗i

〉
= V0

∫
d2b eiδi(b)

∫ ∞

−∞
dz ψ∗

p1

(
z, b⃗

)
ψ∗

p2

(
z, b⃗

)
ψh

(
z, b⃗

)
exp

[
ikzz + iϕi

(
z, b⃗

)]
.

(D.10)



Appendix E - Energy levels used in

DWUCK

In this appendix, we list all values used for the energy levels in DWUCK. One can

see the values on Table E.1 through E.4. All binding energies were calculated using the

Dirac-Hartree-Bogouliobov (DHB) method. The Q-value calculation is well known, but

if the reader needs guidance to calculate it, we suggest the Q-Value online calculator

(QCalc) from the National Nuclear Data Center (NNDC), developed by the Brookhaven

National Laboratory, https://www.nndc.bnl.gov/qcalc/. By the time of publication

of this thesis, the QCalc uses the 2020 Atomic Mass Evaluation by M. Wang et al.

Reaction
Target Ground state orbital

A Z Orbital Q (MeV) n l j Binding (MeV)
40Ca(p,d)39Ca

40 20 1d3/2
-13.4104

0 2 3/2
-16.470

40Ca(n,d)39K -6.1036 -8.911
120Sn(p,d)119Sn

120 50
2d3/2 -6.880 1 2 3/2 -8.383

120Sn(n,d)119In 1g9/2 -6.880 0 4 9/2 -11.254
208Pb(p,d)207Pb

208 82
3p1/2 -5.143

2
1

1/2
-7.857

208Pb(n,d)207Tl 3s1/2 -5.779 0 -8.356

TABLE E.1 – Energy levels used for our calculations in DWUCK for each reaction de-
scribed on the Table.

https://www.nndc.bnl.gov/qcalc/
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40Ca reactions orbitals data

Orbital n l 2×j (n,d) binding (MeV) (p,d) binding (MeV)

s1/2 0 0 1 -47.248 -55.734

p1/2 0 1 1 -26.834 -34.892

p3/2 0 1 3 -31.136 -39.172

d5/2 0 2 5 -15.608 -23.225

2s1/2 1 0 1 -9.785 -17.333

d3/2 0 2 3 -8.911 (GS) -16.464 (GS)

TABLE E.2 – Energy levels used for our calculations in DWUCK for the 40Ca reac-
tions. (n,d)/(p,d) represents the proton/neutron picked up at the orbital by the incident
neutron/proton. Binding means the binding energy of the orbital. GS means the ground-
state orbital.

120Sn reactions orbitals data

Orbital n l 2×j (n,d) binding (MeV) (p,d) binding (MeV)

s1/2 0 0 1 -53.127 -61.920

p1/2 0 1 1 -44.016 -52.396

p3/2 0 1 3 -42.724 -51.183

d5/2 0 2 5 -33.546 -41.504

2s1/2 1 0 1 -27.282 -35.390

d3/2 0 2 3 -30.584 -38.674

f7/2 0 3 7 -22.462 -29.916

f5/2 0 3 5 -17.532 -25.148

2p3/2 1 1 3 -14.918 -22.214

2p1/2 1 1 1 -13.497 -20.817

g9/2 0 4 9 -11.254 (GS) -18.152

g7/2 0 4 7 – -11.542

2d5/2 1 2 5 – -10.477

2d3/2 1 2 3 – -8.383 (GS)

3s1/2 2 0 1 – -8.273

TABLE E.3 – Same as Table E.2 but for 120Sn reactions.
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208Pb reactions orbitals data

Orbital n l 2×j (n,d) binding (MeV) (p,d) binding (MeV)

s1/2 0 0 1 -50.538 -63.393

p3/2 0 1 3 -44.563 -56.605

p1/2 0 1 1 -43.853 -56.028

d5/2 0 2 5 -37.137 -48.483

2s1/2 1 0 1 -31.716 -43.896

d3/2 0 2 3 -35.513 -47.100

f7/2 0 3 7 -28.712 -39.386

f5/2 0 3 5 -25.808 -36.813

2p3/2 1 1 3 -21.205 -32.510

2p1/2 1 1 1 -20.061 -31.393

g9/2 0 4 9 -19.661 -29.666

g7/2 0 4 7 -15.234 -25.614

2d5/2 1 2 5 -11.086 -21.600

2d3/2 1 2 3 -9.308 -19.804

3s1/2 2 0 1 -8.356 (GS) -19.132

h11/2 0 5 11 -10.267 -19.634

h9/2 0 5 9 – -14.009

2f7/2 1 3 7 – -11.455

2f5/2 1 3 5 – -9.162

3p3/2 2 1 3 – -8.771

3p1/2 2 1 1 – -7.857 (GS)

i13/2 0 6 13 – -9.614

TABLE E.4 – Same as Table E.2 but for 208Pb reactions.
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