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Abstract

Clifford, or geometric, algebras are introduced by presenting important particular cases.

The introduction to the geometric algebra of the three-dimensional Euclidean space and

the geometric algebra of spacetime shows how these algebras provide a synthetic and

efficient way to describe geometric objects and rotations in three-dimensional Euclidean

space and Minkowski spacetime, respectively. It is shown how the former algebra is

included in the later, and how this algebra provides an elegant way to describe Lorentz

transformations, the electromagnetic field and Maxwell’s equations. The emergence of

these algebras in the quantum mechanics of spin-1/2 particles is outlined, and a systematic

study of Pauli and Dirac spinors is performed by transforming from the classical to the

algebraic description of the spinors, which leads naturally to the operator definition of such

spinors. These transformations are developed systematically for the first time in this work.

At this point, the transformations are applied to obtain the corresponding versions of the

Pauli and Dirac equations. The corresponding transformations for the adjoint spinors

are also obtained and applied to express inner products and observables. This study

concerning a single spin-1/2 particle is then extended to the context of systems of multiple

spin-1/2 particles. In this new study, the Clifford algebra appropriate for description

of non-relativistic multi-particle spinors is found to be identical to the so-called multi-

particle spacetime algebra, introduced less formally in previous studies. Multi-particle

algebraic and operator Pauli spinors are then defined for the first time, starting from the

classical ones, in an analogous manner to the single-particle case. In order to properly

define relativistic multi-particle spinors, the extension of the Dirac algebra from the usual

complex algebra of Minkowski spacetime to a six-dimensional conformal space algebra is

found to be necessary. In terms of this algebra, an extension of the algebra of operators

to a Clifford algebra is performed, and multi-particle algebraic and operator Dirac spinors

are defined for the first time, in terms of this extended algebra. Finally, the algebraic

and operator versions of the Bethe-Salpeter equation are obtained. The different versions

of spinors and their corresponding wave equations raise the possibility that the simpler

operator versions could be more fundamental than the classical ones.



Resumo

As álgebras de Clifford, ou geométricas, são introduzidas através da apresentação de casos

particulares importantes. A introdução à álgebra geométrica do espaço euclidiano tridi-

mensional e à álgebra geométrica do espaço-tempo mostra como estas álgebras fornecem

uma forma sintética e eficiente de descrever objetos geométricos e rotações no espaço

euclidiano tridimensional e no espaço-tempo de Minkowski, respectivamente. Mostra-se

como a primeira álgebra está inclusa na segunda, e como esta álgebra fornece uma forma

elegante de descrever transformações de Lorentz, o campo eletromagnético e as equações

de Maxwell. O surgimento dessas álgebras na mecânica quântica de part́ıculas de spin

1/2 é esboçado, e um estudo sistemático dos espinores de Pauli e de Dirac é executado

através da transformação da descrição clássica do espinor para a sua descrição algébrica,

a qual conduz naturalmente à definição operatória desses espinores. Estas transformações

são desenvolvidas sistematicamente pela primeira vez neste trabalho. Neste momento, as

transformações são aplicadas para obter as versões correspondentes das equações de Pauli

e de Dirac. As transformações correspondentes para os espinores adjuntos são também

obtidas e aplicadas para expressar produtos internos e observáveis. Este estudo rela-

cionado a uma única part́ıcula de spin 1/2 é então estendido para o contexto de sistemas

de múltiplas part́ıculas de spin 1/2. Neste novo estudo, a álgebra de Clifford considerada

adequada para a descrição de espinores não-relativ́ısticos de múltiplas part́ıculas é identifi-

cada com a chamada álgebra do espaço-tempo de múltiplas part́ıculas, introduzida menos

formalmente em estudos prévios. Espinores algébricos e operadores de Pauli de múltiplas

part́ıculas são então definidos pela primeira vez, a partir dos clássicos, de forma análoga

ao caso de uma única part́ıcula. A fim de definir adequadamente espinores relativ́ısticos

de múltiplas part́ıculas, a extensão da álgebra de Dirac, partindo da álgebra complexa

do espaço-tempo de Minkowski para uma álgebra do espaço conforme hexadimensional, é

determinada necessária. Em termos desta álgebra, uma extensão da álgebra de operadores

para uma álgebra de Clifford é executada, e espinores de Dirac de múltiplas part́ıculas são

então definidos pela primeira vez, em termos desta álgebra estendida. Por fim, as versões

algébrica e operatória da equação de Bethe-Salpeter são obtidas. As diferentes versões

dos espinores e suas equações de onda correspondentes levantam a possibilidade de que

as versões operatórias, mais simples, possam ser mais fundamentais que as clássicas.
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1 Introduction

Mathematics is fundamental for physics and vice versa. Geometry plays an important

role in this reciprocal relation. Most fundamental physical phenomena occur in an arena

modeled by some type of space. So an efficient approach to geometry and correlated areas

can be important for the treatment of physical problems.

There are essentially two main approaches to geometry, a coordinate-based one and

a coordinate-free one (DORAN; LASENBY, 2003). The first is chiefly based in descriptions

using coordinate systems. In this approach geometric objects are treated by manipulat-

ing their components, and in some applications considerable emphasis is given in how

components are transformed under a change of reference frame. The second tradition

is primarily based on more direct descriptions of the geometric objects. The need for

coordinates is very common in the ultimate stage of many realistic applications, but an

adequate coordinate-free approach includes naturally a coordinate description. This work

aims to apply Clifford algebras, also known as geometric algebras, in physics, given that

such algebraic structures provide a modern and promising coordinate-free approach to

geometry and physics.

As exposed by Vaz and da Rocha (2019) Clifford algebras appeared independently in

mathematics and physics. The first appearance occurred in 1878 as a species of unification

of the algebra of Grassmann and the algebra of quaternions of Hamilton by the English

mathematician W. K. Clifford, who called it “geometric algebra”. In physics, a Clifford

algebra emerged naturally in 1927 in the context of the electron theory of Pauli, as the

algebra of sigma matrices. In the following year, a Clifford algebra appeared again as the

algebra of gamma matrices in the relativistic description of the electron by Dirac. Since

then, many important results were achieved, in particular, new ways to describe spinors.

This history is much longer and richer than the previous brief paragraph can describe,

but it recognizes that Clifford algebras appeared in physics as an intrinsic part of the

description of spin-1
2

particles in quantum mechanics and that this can be an interesting

subject to explore employing Clifford algebras. In fact, this is the subject most addressed

by researchers. However, it is worth noting that almost all the studies concern single-

particle states. This suggests that studying multi-particle states could yield new results.
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This essentially defines the objective of this work. More specifically, this work aims to

answer some basic questions about the description of multi-particle states that still seem

to be unanswered.

In the next chapter, Clifford algebras are introduced in the form of important particular

cases, which are referred to as geometric algebras. Other Clifford algebras are designated

as such in the text, although the names “Clifford algebras” and “geometric algebras” could

be considered as synonyms. In this chapter, the geometric algebra of the Euclidean

plane is presented first, to pave the way to an introduction to the geometric algebra

of the three-dimensional Euclidean space, which is presented immediately after. Then,

after a brief introduction to the pseudo-Euclidean plane and its corresponding geometric

algebra, Minkowski spacetime and its corresponding geometric algebra are introduced. At

the end of each presentation, the manner in which the concepts introduced can be used

to represent reflections and rotations is shown. Chapter 3 focuses on how the Clifford

algebras introduced in the previous chapter can be used to describe relativistic physics.

In this chapter, the geometric algebra of the three-dimensional Euclidean space is included

in the geometric algebra of spacetime. Then, a brief description of relativistic observables

is presented, and the representation of Lorentz transformations in terms of the geometric

algebra of spacetime is given. Finally, the description of the electromagnetic field and

Maxwell’s equations in this context is presented. In chapter 4, the emergence of the

Clifford algebras in quantum mechanics is outlined, and a systematic presentation, both

in the non-relativistic and in the relativistic context, of the classical and of more modern

ways of representing the wave functions through spinors is presented. This is essentially

a study of the different ways to define Pauli and Dirac spinors. In each case, the relation

between the different definitions are presented, and the corresponding wave equations (the

Pauli and Dirac equations) are also presented and compared. In chapter 5, the study in

the previous chapter, concerning a single spin-1
2

particle, is extended to the context of

systems of multiple spin-1
2

particles. In this new study, the Clifford algebras suitable for

description of non-relativistic and relativistic multi-particle spinors are identified. Multi-

particle algebraic and operator spinors are then defined from the classical ones, both in

the non-relativistic and in the relativistic context, and the definitions are compared in

each context. Finally, the algebraic and operator versions of the Bethe-Salpeter equation

are obtained. Chapter 6 contains the conclusions and final considerations.



2 Introduction to Clifford Algebras

Geometric, or Clifford, algebras are introduced in this chapter by presenting important

particular cases. The basic references are two instructional articles by Vaz (1997, 2000)

and the first five chapters from the textbook by Doran and Lasenby (2003). Additional

information on quaternions was collected from an article by Lambek (1995). The Cartan-

Dieudonné theorem, which is evoked in this chapter, is treated under a weak form in the

textbook by Vaz and da Rocha (2019). Additional information about the Spin groups

was also collected from the textbook by Vaz and da Rocha (2019).

2.1 The Geometric Algebra of the Euclidean Plane

2.1.1 Construction of the Structure

Consider the vector space R2, and let its vectors be denoted by Latin letters in boldface:

u, v, etc. Let the canonical basis be denoted {e1, e2} = {(1, 0), (0, 1)} (where the ordering

of the basis is implied), in such a way that a vector is written, generally, u = u1e1 +u2e2,

v = v1e1+v2e2, etc. The interpretation for this space is the usual geometric interpretation:

R2 corresponds to the plane, and its vectors represent oriented line segments in the plane.

Consider the bilinear form g : R2 × R2 → R such that

g(ei, ej) = δij, where i, j ∈ {1, 2}. (2.1)

Taking g(u,v), where u and v are generic vectors, and then applying the bilinearity

property, one verifies that g(u,v) = g(v,u), and that g(u,u) ≥ 0, where g(u,u) = 0

if and only if u = o (o is the null vector), that is, the bilinear form g above defined is

symmetric and positive-definite, hence it corresponds to an inner product. Indeed, one
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has

g(u,v) = g(u1e1 + u2e2, v1e1 + v2e2)

= u1v1g(e1, e1) + u1v2g(e1, e2) + u2v1g(e2, e1) + u2v2g(e2, e2)

= u1v1 + u2v2 = g(v,u). (2.2)

In particular,

g(u,u) = u1
2 + u2

2 ≥ 0. (2.3)

Note that this is the usual inner product associated to R2. Endowing R2 with such an

inner product makes it a Euclidean space, called the Euclidean plane.

The geometric algebra of the Euclidean plane is determined by a space constructed

from the Euclidean plane, endowed with another product, called the geometric product,

which will be constructed in the following, as restrictions on its form are imposed. Such

a product is denoted by juxtaposition, that is, uv denotes the geometric product of the

vector u with the vector v.

The first property imposed to the geometric product is

uu = g(u,u), (2.4)

for any vector u from R2, which can be written

u2 = |u|2, (2.5)

where the notation uu = u2 is introduced, and | · | corresponds to the norm induced by

the inner product g, that is, the usual modulus. Writing u = u1e1 + u2e2, the above

equation can be written in terms of components as

(u1e1 + u2e2)(u1e1 + u2e2) = u1
2 + u2

2. (2.6)

Since bilinearity is a fundamental property for the product of an algebra, this property

need be considered for the geometric product. In this way, by applying the bilinearity

property for the geometric product in the above expression, one obtains

u1
2 e1

2 + u1u2(e1e2 + e2e1) + u2
2 e2

2 = u1
2 + u2

2. (2.7)

For this equation to be satisfied, one must have

e1
2 = 1, e2

2 = 1, and e1e2 = −e2e1. (2.8)

These relations determine the geometric product of the geometric algebra of the Euclidean
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plane in terms of the canonical basic vectors. Applying it to the computation of the

geometric product of two arbitrary vectors u = u1e1 +u2e2 and v = v1e1 +v2e2, furnishes

uv = (u1e1 + u2e2)(v1e1 + v2e2)

= u1v1e1
2 + u1v2e1e2 + u2v1e2e1 + u2v2e2

2

= (u1v1 + u2v2) + (u1v2 − u2v1)e1e2. (2.9)

Note that the first term on the right-hand side of the resulting equation is a scalar that

corresponds to the inner product introduced earlier, better known as the scalar product.

The second term, on the other hand, is neither a scalar nor a vector. For a scalar α and a

vector w if follows that αw = wα, but in particular, allowing now the geometric product

to be associative, one has

(e1e2)e1 = −(e2e1)e1 = −e2(e1e1) = −e2 (2.10)

and

e1(e1e2) = (e1e1)e2 = e2, (2.11)

so that e1e2 is not a scalar. Since for any vector w, one has ww = w2 = |w|2 ≥ 0, but

(e1e2)(e1e2) = −(e2e1)(e1e2) = −e2

(
e1(e1e2)

)
= −e2

(
(e1e1)e2

)
= −e2e2 = −1, (2.12)

e1e2 cannot be a vector from R2 either. The coefficient of e1e2 in the expression (2.9)

suggests a geometrical interpretation for such an object. |u1v2 − u2v1| corresponds to the

area of the parallelogram determined by the vectors u and v. While
√
|ww| corresponds

to the length of an oriented line segment representing the vector w, the quantity√∣∣∣((u1v2 − u2v1)e1e2

)(
(u1v2 − u2v1)e1e2

)∣∣∣ (2.13)

corresponds to the area of the parallelogram determined by the vectors u and v. This

fact suggests that e1e2 is associated with an area in the plane, more specifically, with an

area of unit magnitude. The multiplication of the object e1e2 by (u1v2− u2v1) associates

it with an area of magnitude |u1v2 − u2v1|. According to the sign of the coefficient of

(u1v2 − u2v1)e1e2, such an object has a kind of “orientation”, analogous, in some sense,

to the orientation of a vector (as an oriented line segment), lacking, for the moment, a

pertinent meaning.

Based on the suggestion made in the previous paragraph, consider the association of

the object e1e2 with the parallelogram/square determined by the vectors e1 and e2. One

can think of the orientation of this square as being determined by the direction of the

square, which is unique and corresponds to the direction of the plane, and by the sense
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of travel about the square boundary, which is uniquely associated with the order of the

vectors e1 and e2 (and their opposites) for taking the displacements needed to travel the

square boundary (starting from the origin) in some sense, clockwise or counterclockwise.

For example, the order of the geometric product e1e2 suggests associating to this object a

square with the sense of travel about its boundary being counterclockwise, since, starting

from the origin and taking the displacement given by e1 and then the displacement given

by e2, and then taking the displacements −e1 and −e2, the square border is traversed

in the counterclockwise sense (cf. figure 2.1). In the same way, e2e1 is associated with a

sense of travel about its boundary being clockwise, the opposite sense of travel associated

with e1e2, which is compatible with the fact that e1e2 = −e2e1. This interpretation leads

to the idea that the object (u1v2 − u2v1)e1e2 present in the expression for the geometric

product uv corresponds to the oriented parallelogram determined by u and v.

e1

e2

O e1

e2

O

FIGURE 2.1 – The two oriented squares associated with the basic vectors e1 and e2.

The fact that one can write the geometric product uv as a sum of a symmetric part

and an antisymmetric part relative to exchange between u and v as

uv =
1

2
(uv + vu) +

1

2
(uv − vu) (2.14)

allows one to identify the symmetric part with the inner product g(u,v) = u1v1 + u2v2

and to express such a product in terms of the geometric product as

u · v =
1

2
(uv + vu). (2.15)

The antisymmetric part of the product uv is defined as the exterior product or wedge

product of the vectors u and v:

u ∧ v =
1

2
(uv − vu) = −v ∧ u. (2.16)
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Given these definitions, the geometric product can be written as

uv = u · v + u ∧ v. (2.17)

Noting that

e1e2 = e1 · e2 + e1 ∧ e2 = e1 ∧ e2 (2.18)

and that

(u1v2 − u2v1)e1e2 = u ∧ v, (2.19)

one verifies that in general the exterior product u∧v represents the oriented parallelogram

determined by the vectors u and v, in this order.

Let u,v,w,x,y, z ∈ R2. Defining the sum of objects resulting from the exterior

product as

u ∧ v + w ∧ x = (u1v2 + w1x2 − u2v1 − w2x1)e1e2, (2.20)

one notes that such a sum furnishes an object of the same nature of the summed objects,

and one can easily verify that

(i) u ∧ v + w ∧ x = w ∧ x + u ∧ v

and

(ii) u ∧ v + (w ∧ x + y ∧ z) = (u ∧ v + w ∧ x) + y ∧ z.

Additionally, one verifies that

(iii) u ∧ v + w ∧w = u ∧ v +
1

2
(ww −ww) = u ∧ v,

that is, u∧ u = v ∧ v = w ∧w = · · · play the role of neutral element relative to the sum

operation. Such an element is unique, and at the moment, it should be denoted O. Its

uniqueness it is verified by observing that, if there is O′ which also satisfies

u ∧ v + O′ = u ∧ v, (2.21)

it follows that

u ∧ v + O = u ∧ v + O′, (2.22)

which implies O = O′. A fourth basic property of the sum of elements of the form

u ∧ v, relative to the existence of O, is that (iv) for any u ∧ v an “opposite element”

is associated, in the sense that u ∧ v summed to its opposite furnishes O. Indeed, the

property u ∧ v = −v ∧ u automatically identifies the opposite of u ∧ v with v ∧ u:

u ∧ v + v ∧ u = O. (2.23)
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One can also define naturally the multiplication of an object of the form u ∧ v by a real

scalar α through

α(u ∧ v) =
(
α(u1v2 − u2v1)

)
e1e2, (2.24)

and verify without difficulty that such an operation, which furnishes an object of the

same nature of the multiplied object, obeys the following properties (where β is also a

real scalar):

(I) α
(
β(u ∧ v)

)
= (αβ)(u ∧ v);

(II) α(u ∧ v + w ∧ x) = α(u ∧ v) + α(w ∧ x);

(III) (α + β)(u ∧ v) = α(u ∧ v) + β(u ∧ v);

(IV) 1(u ∧ v) = u ∧ v.

The properties i, ii, iii, iv, I, II, III and IV show that the set of objects of the form

u ∧ v endowed with the operations of summation and multiplication by a real scalar as

defined above determine the structure of a vector space over the field of real numbers. The

vectors from this vector space are called 2-vectors or bivectors, since they are determined

by the exterior product of two “usual” vectors. The vector space of bivectors is denoted

by
∧2 (R2).

For the sake of future construction, the space of vectors from the Euclidean plane is

denoted by
∧1 (R2), and the vectors themselves are called 1-vectors. In the same way, the

vector space of real scalars is denoted by
∧0 (R2), and its vectors can be called 0-vectors.

Since the geometric product of two vectors in the plane results in the “sum” of two

quantities of a different nature, a scalar and a bivector, this “sum” must not be a sum

in the usual sense. In fact, the sum of two objects, each belonging to a different vector

space, is a direct sum, which corresponds to a vector of the vector space resulting from

the direct sum of the spaces to which the two distinct objects belong.

In order to construct a closed algebraic structure with respect to the geometric product,

the vector space
∧

(R2) is defined as the direct sum of the spaces of the form
∧k (R2):

∧(
R2
)

=
2⊕

k=0

∧
k
(
R2
)

=
∧

0
(
R2
)
⊕
∧

1
(
R2
)
⊕
∧

2
(
R2
)
. (2.25)

The elements of this vector space are called multivectors. The null vector of this space,

0 + o + O, can be simply denoted 0, which usually does not cause any problems. An

arbitrary multivector from
∧

(R2) is then of the form

A = a+ (a1e1 + a2e2) + a12e1e2, (2.26)
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where a, a1, a2, a12 ∈ R.

Defining then the exterior product of a scalar α with a vector u of the Euclidean plane

by α ∧ u = αu, and completing the extension of the exterior product for multivectors

by considering it bilinear and associative,
(∧

(R2) ,∧
)

is established as an associative

algebra over the field of real numbers. Such an algebra is known as an exterior algebra or

Grassmann algebra associated with R2.

Defining the geometric product of a scalar with a multivector as the multiplication of

the multivector by the scalar, and extending the geometric product to any multivectors

by considering the properties of bilinearity and associativity, it follows that the vector

space
∧

(R2) endowed with the geometric product generalized in this way determines an

associative algebra over the field of real numbers. Such an algebra is called the geometric

algebra of the Euclidean plane or Clifford algebra of the Euclidean plane, and is usually

denoted by C`(R2, g), or C`2,0(R), or simply C`2,0.

2.1.2 Projection, Graded Involution, Reversion, the Norm and

the Inverse

Let Ak be an arbitrary k-vetor and A =
∑2

k=0Ak an arbitrary multivector. The projection

of A over the vector subspace
∧k(R2), also called the k-vector part of A, is defined by

〈A〉k = Ak. (2.27)

As an example, consider the multivector f = 1
2
(1 + e1), for which

〈f〉0 =
1

2
, 〈f〉1 =

1

2
e1, and 〈f〉2 = 0. (2.28)

In terms of the projection operation one can define the graded involution operation by

Â =
2∑

k=0

(−1)k〈A〉k. (2.29)

For any k-vector Ak, the number k is called the grade of Ak. If a multivector A satisfies

Â = A, it is said to be an even grade multivector, and if it satisfies Â = −A it is said to

be an odd grade multivector. Also in terms of the projection operation one can define the

reversion operation, which is given by

Ã =
2∑

k=0

(−1)
1
2
k(k−1)〈A〉k. (2.30)
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The multivector Ã is said to be the reverse of A. The reversion operation has this name

because it reverses the order of the geometric product of two vectors, that is,

(̃uv) = vu, (2.31)

for any vectors u and v. In summary, for A given by (2.26), in terms of the basic vectors,

one has

Â = a− (a1e1 + a2e2) + a12e1e2 and Ã = a+ (a1e1 + a2e2)− a12e1e2. (2.32)

A major operational advantage of the geometric algebra framework is the possibility

of defining the inverse for a vector with respect to the geometric product, and even for a

generic multivector, under certain conditions. The geometric product of a non-null vector

u with u/|u|2 furnishes the number 1, the unity of the algebra. Thus, the inverse of a

non-null vector u is defined by

u−1 =
u

|u|2
. (2.33)

For the bivector e1e2, for example, one can define the inverse as (e1e2)−1 = e2e1. Indeed,

(e1e2)(e2e1) = e1

(
e2(e2e1)

)
= e1

(
(e2e2)e1

)
= e1e1 = 1. (2.34)

However, it is not possible to define the inverse for an arbitrary multivector. For example,

the multivector f = 1
2
(1 + e1) has no inverse.

Because of the associativity of the geometric product, the products u(vw) and (uv)w

can both be simply written as uvw. In this way, one can leave the associativity implicit

in calculations and express the above calculation (equation (2.34)) more succinctly as

follows:

(e1e2)(e2e1) = e1e2e2e1 = e1e1 = 1. (2.35)

For an arbitrary multivector A, one can define the norm of A as the real scalar ‖A‖
such that

‖A‖2 =
〈
ÃA
〉

0
=
〈
AÃ
〉

0
. (2.36)

Note that, for A given by (2.26), one has

‖A‖2 = a2 + a1
2 + a2

2 + a12
2 ≥ 0. (2.37)

In this way, it follows that |u| = ‖u‖, for any vector u.

From the definition of norm of a multivector, it follows that, if〈
ÃA
〉

0
= ÃA > 0, (2.38)
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then

‖A‖2 = ÃA, (2.39)

which implies that

1

‖A‖2
ÃA =

(
Ã

‖A‖2

)
A = 1, (2.40)

which in turn induces the identification of Ã/‖A‖2 with the inverse of A:

A−1 =
Ã

‖A‖2
. (2.41)

But, it should be noted that the inverse of A is only defined if the condition given by

(2.38) is satisfied.

2.1.3 Inequalities, Parallelism and Orthogonality

Given two non-null vectors u and v, it follows that

‖u ∧ v‖2 = ˜(u ∧ v)(u ∧ v) = (v ∧ u)(u ∧ v). (2.42)

Since uv = u · v + u∧ v, if follows that u∧ v = uv− u · v, which, considering the above

equation, implies

‖u ∧ v‖2 = (vu− v · u)(uv − u · v)

= vuuv − vu(u · v)− (v · u)uv + (v · u)(u · v)

= v‖u‖2v − vu(u · v)− uv(u · v) + (u · v)2

= ‖u‖2‖v‖2 − (uv + vu)(u · v) + (u · v)2

= ‖u‖2‖v‖2 − 2(u · v)(u · v) + (u · v)2

= ‖u‖2‖v‖2 − (u · v)2. (2.43)

Then, since ‖u ∧ v‖2 ≥ 0, it follows that

(u · v)2 ≤ ‖u‖2‖v‖2, (2.44)

which is known as the Cauchy-Schwarz inequality. This result implies

−1 ≤ u · v
‖u‖‖v‖

≤ 1. (2.45)
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This expression allows one to define the angle between the vectors u and v as the number

θ such that 0 ≤ θ ≤ π and

cos(θ) =
u · v
‖u‖‖v‖

. (2.46)

From equation (2.43) one also has(
‖u ∧ v‖
‖u‖‖v‖

)2

= 1−
(

u · v
‖u‖‖v‖

)2

, (2.47)

which, given the above expression for cos(θ), implies(
‖u ∧ v‖
‖u‖‖v‖

)2

= 1− cos2(θ) = sin2(θ). (2.48)

Since 0 ≤ θ ≤ π, one has sin(θ) ≥ 0, so from the above equation it follows that

sin(θ) =
‖u ∧ v‖
‖u‖‖v‖

. (2.49)

The inequality (2.44) can also be used to obtain the triangular inequality. Indeed,

‖u + v‖2 = ‖u‖2 + ‖v‖2 + 2(u · v) ≤ ‖u‖2 + ‖v‖2 + 2‖u‖‖v‖ = (‖u‖+ ‖v‖)2, (2.50)

that is,

‖u + v‖ ≤ ‖u‖+ ‖v‖. (2.51)

If the non-null vectors u and v are parallel, that is, the angle θ between them is null,

one has equivalently sin(θ) = 0, and, from relation (2.49), this is equivalent to ‖u∧v‖ = 0,

which in turn is equivalent to u ∧ v = 0, that is, 1
2
(uv − vu) = 0. Then uv = vu is also

a condition for parallelism of the vectors u and v:

u ‖ v ⇔ u ∧ v = 0 ⇔ uv = vu. (2.52)

The same is true when θ = π, when it is also said that the vectors u and v are anti-

parallel. Whereas when θ = π/2, that is, u and v are orthogonal, one has equivalently

cos(θ) = 0, which, according to (2.46), is equivalent to u · v = 0, that is, 1
2
(uv + vu) = 0.

Then uv = −vu is also a condition for orthogonality of the vectors u and v:

u ⊥ v ⇔ u · v = 0 ⇔ uv = −vu. (2.53)
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2.1.4 Reflections and Rotations

Consider again two non-null vectors u and v from the Euclidean plane. The component

of v parallel to u, or the projection of the vector v on the vector u, is given by

v‖ = proju(v) =

(
v · u

‖u‖

)
u

‖u‖
=

1

‖u‖2
(v · u)u. (2.54)

The component of v orthogonal to u is then

v⊥ = v − v‖. (2.55)

Note from the relations of parallelism (2.52) and orthogonality (2.53) that uv‖ = v‖u and

uv⊥ = −v⊥u. Note then that the geometric product of v‖ by u furnishes

uv‖ =
1

‖u‖2
(v · u)u2, (2.56)

that is,

uv‖ = v · u =
1

2
(vu + uv). (2.57)

But, the geometric product of this expression by u gives

‖u‖2v‖ =
1

2
(uvu + ‖u‖2v), (2.58)

that is,

v‖ =
1

2

(
1

‖u‖2
uvu + v

)
, (2.59)

which, considering the definition of the inverse, can be written as

v‖ =
1

2

(
v + uvu−1

)
. (2.60)

This expression for v‖, considering the expression (2.55) for v⊥, allows one to write also

v⊥ =
1

2

(
v − uvu−1

)
. (2.61)

Now, consider the linear transformation given by

v 7→ v′ = v⊥ − v‖, (2.62)

or, equivalently, by

v 7→ v′ = v − 2v‖. (2.63)

Such a linear transformation is knwon as the reflection of the vector v through the line
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u

v

v′

FIGURE 2.2 – Reflection of the vector v through the line with orthogonal vector u.

with orthogonal vector u. This transformation is illustrated in the figure 2.2.

Considering the expression (2.60) for v‖ one can express a reflection transformation of

the vector v through the line with orthogonal vector u by

v 7→ v′ = −uvu−1. (2.64)

In particular, if the vector u is unitary, one has uu = 1, which implies u−1 = u, in such

a way that, the reflection transformation can be expressed by

v 7→ v′ = −uvu, where u2 = 1. (2.65)

A particular case of a statement known as Cartan-Dieudonné theorem concerns the

possibility of expressing a rotation in terms of reflections. Specifically: “the composition

of two reflections in the plane corresponds to a rotation”. In this way, a rotation of the

vector v can be expressed as

v 7→ v′ = −u1(−u2vu2)u1 = u1u2vu2u1, (2.66)

where u1 and u2 are unit vectors. Then, one can express this rotation by

v 7→ v′ = RvR−1, (2.67)

where R = u1u2. The object R is called a rotor, because of the role it plays in describing

a rotation. If θ is the angle between the unit vectors u1 and u2, then

R = u1 · u2 + u1 ∧ u2 = cos(θ) + sin(θ)B, (2.68)
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where B is a unit bivector. From this expression it follows that

RR̃ =
(

cos(θ)+sin(θ)B
)(

cos(θ)−sin(θ)B
)

= cos2(θ)−sin2(θ)B2 = cos2(θ)+sin2(θ) = 1,

(2.69)

then

R̃ = R−1, (2.70)

and so a rotation can be written

v 7→ v′ = RvR̃. (2.71)

There are two possibilities for the unit bivector B present in the expression for R:

B = e1e2 or B = e2e1. These two possibilities can be simulated considering the angle

θ such that 0 ≤ θ ≤ 2π, in such way that, taking B = e1e2, one has, for 0 ≤ θ ≤ π,

sin(θ)B = αe1e2, where α ≥ 0, and for π ≤ θ ≤ 2π, sin(θ)B = −αe1e2 = αe2e1.

However, it turns out that the proper choice of the unit bivector for description of a

counterclockwise rotation is B = e2e1. Indeed, for v = v1e1 + v2e2 and v′ = v1
′e1 + v2

′e2

such that v′ = RvR̃, one has:

v′ =
(

cos(θ) + sin(θ)e2e1

)
(v1e1 + v2e2)

(
cos(θ)− sin(θ)e2e1

)
=
(

cos(θ) + sin(θ)e2e1

)((
v1 cos(θ)− v2 sin(θ)

)
e1 +

(
v2 cos(θ) + v1 sin(θ)

)
e2

)
=

(
v1

(
cos2(θ)−sin2(θ)

)
− v2

(
2 sin(θ)cos(θ)

))
e1 +

(
v2

(
cos2(θ)−sin2(θ)

)
+ v1

(
2 sin(θ)cos(θ)

))
e2

=
(
v1 cos(2θ)− v2 sin(2θ)

)
e1 +

(
v2 cos(2θ) + v1 sin(2θ)

)
e2. (2.72)

The resultant equation can be expressed in matrix form as(
v1
′

v2
′

)
=

(
cos(2θ) − sin(2θ)

sin(2θ) cos(2θ)

)(
v1

v2

)
, (2.73)

which serves as a confirmation that v′ = RvR̃ express a rotation of the vector v in the

counterclockwise sense. But, note that it is a rotation by an angle 2θ. Therefore, to

describe a rotation by an angle θ one must set

R = cos

(
θ

2

)
+ sin

(
θ

2

)
e2e1. (2.74)

The rotor R can be expressed in another way by defining the exponential of a generic
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multivector A by

exp(A) =
∞∑
n=0

An

n!
= 1 + A+

A2

2
+ · · · , (2.75)

where A0 = 1, A1 = A, A2 = AA, etc. In this way, using the expressions as power series

for the sine and cosine functions in the above expression for R, and taking into account

that (e2e1)2 = −1, one has:

R = cos(θ/2) + sin(θ/2)e2e1 =
∞∑
n=0

(−1)n(θ/2)2n

(2n)!
+
∞∑
n=0

(−1)n(θ/2)2n+1

(2n+ 1)!
e2e1

=
∞∑
n=0

(e2e1)2n(θ/2)2n

(2n)!
+
∞∑
n=0

(e2e1)2n+1(θ/2)2n+1

(2n+ 1)!

=
∞∑
n=0

(e2e1θ/2)n

n!
. (2.76)

Thus, one can write

R = exp

(
1

2
θe2e1

)
. (2.77)

Note that, to describe rotations in the clockwise sense one can simply allow the angle θ

to be negative. Note also that R and −R describe the same rotation:

(−R)v(̃−R) = RvR̃. (2.78)

This fact can be understood by observing that the rotation of a vector by an angle φ in

the counterclockwise sense has the same result as the rotation of this vector by the angle

2π−φ in the clockwise sense. Indeed, if R = exp(e2e1φ/2) and R∗ = exp
(
e1e2(2π−φ)/2

)
,

then

R∗=exp
(
e1e2(2π−φ)/2

)
=exp(e1e2π) exp(−e1e2φ/2)=(−1) exp(e2e1φ/2)=−R. (2.79)

2.1.5 The Even Subalgebra and the Complex Numbers

Let C`2,0
+ be the set formed by even grade multivectors from C`2,0, that is, the set of

multivectors A satisfying Â = A. If A ∈ C`2,0
+, then A is the sum of a scalar and a

bivector:

A = a+ a12e1e2. (2.80)

Given A = a+ a12e1e2 and B = b+ b12e1e2 from C`2,0
+, if follows that

AB = (a+ a12e1e2)(b+ b12e1e2) = (ab− a12b12) + (ab12 + a12b)e1e2, (2.81)
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so that AB ∈ C`2,0
+. Thus, the vector subspace formed by multivectors from C`2,0

+

endowed with the geometric product has the properties of an algebra (closure relative to

the product and bilinearity of the product), hence it corresponds to a subalgebra of C`2,0.

This is called the even subalgebra of C`2,0, and it is denoted by C`2,0
+.

Note that the rotors introduced earlier are elements of the even subalgebra C`2,0
+,

although not all elements of this algebra are rotors. But note that the elements of C`2,0
+

can be written in the form

ψ = ρ cos(φ) + ρ sin(φ)e1e2, (2.82)

or, in terms of the exponential map,

ψ = ρ exp(φe1e2), (2.83)

where ρ and φ are real scalars. Therefore, an element of the even subalgebra can be

written as a rotor multiplied by a scalar, and a rotor can be understood as an element of

C`2,0
+ with unit norm. An even grade multivector ψ acting on a vector u through ψuψ̃

produces not only a rotation of the vector u, but also a dilation (if ρ > 1) or a contraction

(if 0 < ρ < 1).

The proper expression for the even grade multivector ψ introduced above to produce

a rotation by an angle φ in the counterclockwise sense and a dilation/contraction by a

factor ρ through the transformation u 7→ ψuψ̃ is

ψ =
√
ρR, where R = exp

(
1

2
φe2e1

)
. (2.84)

This is easily verified by evaluating the action of ψ =
√
ρR on a vector u:

ψuψ̃ = (
√
ρR) u(̃

√
ρR) = ρRuR̃. (2.85)

The expressions (2.82) and (2.83) for elements of C`2,0
+, together with the fact that

(e2e1)2 = (e1e2)2 = −1, suggest a relation between the even subalgebra C`2,0
+ and the

algebra of the complex numbers. Similarly to the complex numbers, the elements of C`2,0
+

can be written in the form

X = x1 + x2I, (2.86)

where x1, x2 ∈ R and I = e1e2, with I2 = −1, and as can be observed from (2.81), the

geometric product of elements of C`2,0
+ has the same form as the product of complex
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numbers: given X = x1 + x2I and Y = y1 + y2I, one has

XY = (x1 + x2I)(y1 + y2I) = (x1y1 − x2y2) + (x1y2 + x2y1)I. (2.87)

Thus, the even subalgebra C`2,0
+ is isomorphic to the algebra of the complex numbers,

by means of the identification of I = e1e2 with the imaginary unit i =
√
−1 and the

identification of the geometric product with the product of complex numbers.

2.2 The Geometric Algebra of the Three-Dimensional

Euclidean Space

2.2.1 Construction of the Structure

Consider the vector space R3, and let its vectors be denoted by Latin letters in boldface:

u, v, etc. Let the canonical basis be denoted {e1, e2, e3} = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
(where the ordering of the basis is implied), in such a way that a vector is written,

generally, u = u1e1 + u2e2 + u3e3, v = v1e1 + v2e2 + v3e3, etc. The interpretation for

this space is the usual geometric interpretation: R3 corresponds to the three-dimensional

physical space, and its vectors represent oriented line segments in that space.

Consider the symmetric bilinear form g : R3 × R3 → R given by

g(ei, ej) = δij, where i, j ∈ {1, 2, 3}, (2.88)

which corresponds to the usual inner product defined for R3, also known as the scalar

product. The vector space R3 endowed with such an inner product has the status of

three-dimensional Euclidean space.

As in the case of the geometric algebra of the Euclidean plane, the geometric algebra

of the three-dimensional Euclidean space is determined by a space constructed from the

three-dimensional Euclidean space, endowed with the geometric product. As before, the

construction of the structure is made gradually. Also as before, the geometric product is

denoted by juxtaposition, which is usual in the study of geometric/Clifford algebras.

The fundamental property of the geometric product is given by

uu = g(u,u), (2.89)

for any vector u from R3, which can be written

u2 = |u|2, (2.90)
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where u2 = uu and | · | is the norm induced by the inner product g, that is, the usual

modulus of a vector from the Euclidean space. Writing u = u1e1 +u2e2 +u3e3, the above

equation can be written in terms of components as

(u1e1 + u2e2 + u3e3)(u1e1 + u2e2 + u3e3) = u1
2 + u2

2 + u3
3. (2.91)

Imposing bilinearity to the geometric product in the above expression, one obtains

u1
2e1

2+u2
2e2

2+u3
2e3

2+u1u2(e1e2+e2e1)+u1u3(e1e3+e3e1)+u2u3(e2e3+e3e2) = u1
2+u2

2+u3
2.

(2.92)

For this equation to be satisfied, one must have

ei
2 = 1 and eiej = −ejei, where i, j ∈ {1, 2, 3} and i 6= j. (2.93)

These relations determine the geometric product of the geometric algebra of the three-

dimensional Euclidean space in terms of the canonical basic vectors. Applying it to the

computation of the geometric product of two arbitrary vectors u = u1e1 + u2e2 + u3e3

and v = v1e1 + v2e2 + v3e3, one has

uv = (u1e1 + u2e2 + u3e3)(v1e1 + v2e2 + v3e3)

= (u1v1 + u2v2 + u3v3)+

+ (u1v2 − u2v1)e1e2 + (u1v3 − u3v1)e1e3 + (u2v3 − u3v2)e2e3. (2.94)

As in the two-dimensional case, the first term on the left-hand side from the resulting

equation is a scalar, which corresponds to the scalar product of the vectors u and v.

The other terms are neither scalars nor vectors, if one considers the associability of the

geometric product, as in the first construction (the same counterexamples can be taken

to demonstrate this). Such sum of terms are combinations of objects that in the two-

dimensional case were interpreted as representing oriented parallelograms. In this case,

the same interpretation can be used for each term in that combination. For example, the

term (u1v3 − u3v1)e1e3 represents the oriented parallelogram determined by the vectors

(u1e1 + u3e3) and (v1e1 + v3e3), which belong to the plane determined by the vectors

e1 and e3. The sum of the terms in the form (uivj − ujvi)eiej, with i 6= j, must then

represent a combination of the oriented parallelograms represented by them. Considering

then each component of this combination in terms of the exterior product, by writing

(uivj − ujvi)eiej as (uivj − ujvi)ei ∧ ej, and then considering a natural extension of the
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exterior product for the three-dimensional case, one obtains

(u1v2 − u2v1)e1 ∧ e2 + (u1v3 − u3v1)e1 ∧ e3 + (u2v3 − u3v2)e2 ∧ e3 =

= (u1e1 + u2e2 + u3e3) ∧ (v1e1 + v2e2 + v3e3). (2.95)

Thus, the combination of terms in question is identified with the exterior product u ∧ v,

which must represent the oriented parallelogram determined by the three-dimensional

vectors u and v. As in the two-dimensional case, one can verify that the set of objects

in this form endowed with the operations of summation and multiplication by a real

scalar has the structure of a vector space. This is the vector space of the bivectors of the

three-dimensional Euclidean space, which is denoted by
∧2(R3).

As before, the fact that one can write the geometric product uv as a sum of a symmetric

part and an antisymmetric part relative to the exchange between u and v,

uv =
1

2
(uv + vu) +

1

2
(uv − vu), (2.96)

allows one to identify the symmetric part with the inner/scalar product g(u,v) = u1v1 +

u2v2 + u3v3 and to express such a product in terms of the geometric product as

u · v =
1

2
(uv + vu). (2.97)

Again, the exterior product of the vectors u and v,

u ∧ v = (u1v2 − u2v1)e1e2 + (u1v3 − u3v1)e1e3 + (u2v3 − u3v2)e2e3, (2.98)

is identified with the antisymmetric part of the product uv:

u ∧ v =
1

2
(uv − vu) = −v ∧ u. (2.99)

These definitions allow one to write

uv = u · v + u ∧ v. (2.100)

In the two-dimensional case, by taking the geometric product of a vector of the plane

with a bivector one obtains another vector of the plane, but in the three-dimensional case

this does not always occur. For example, by taking the geometric product of the vector e1

with the bivector e2e3, one obtains e1(e2e3), which, by the associativity of the geometric

product, is equivalent to (e1e2)e3, or simply e1e2e3 = e1 ∧ e2 ∧ e3. Analogously to the

case of the oriented parallelograms in the plane, one can identify the object e1e2e3 with

an oriented volume element of the three-dimensional Euclidean space. Its orientation can
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be defined by the order of the geometric product. Since there is no longer any different

combination of geometric products involving the unit vectors e1, e2 and e3, except for the

order of the product, which determines the orientation of the volume element, any other

volume must be represented by αe1e2e3, where α is a real scalar. Real linear combinations

of objects of the form αe1e2e3 always result in objects of the same form, and it is easy

to verify that the set of such objects endowed with the operations of summation and

multiplication by a real scalar has the structure of a real vector space. Such a vector

space is denoted by
∧3(R3), and its vectors are called 3-vectors, or trivectores, or even

pseudoscalars, since
∧3(R3) is a one-dimensional vector space. The unit pseudoscalar

e1e2e3 is usually denoted by I. In general, given three non-null and linearly independent

vectors a, b and c, it is found that a ∧ b ∧ c is a trivector, which represent the oriented

paralleliped determined by the vectors a, b and c. The figure 2.3 illustrates the oriented

volume determined by I = e1e2e3.

e2

e3

e1

			
			

			

FIGURE 2.3 – The oriented volume associated with the unit pseudoscalar I = e1e2e3.

As in the two-dimensional case, in order to construct a closed algebraic structure with

respect to the geometric product, the vector space
∧

(R3) is defined as the direct sum of

the spaces of the form
∧k (R3):

∧(
R3
)

=
3⊕

k=0

∧
k
(
R3
)

=
∧

0
(
R3
)
⊕
∧

1
(
R3
)
⊕
∧

2
(
R3
)
⊕
∧

3
(
R3
)
. (2.101)

Its elements are called multivectors. The null vector of this vector space is simply denoted

by 0. An arbitrary multivector from
∧

(R3) is of the form

A = a+ (a1e1 + a2e2 + a3e3) + (a12e1e2 + a13e1e3 + a23e2e3) + a123e1e2e3, (2.102)

where a, ai, aij, aijk ∈ R, with i, j, k ∈ {1, 2, 3}.

Note that the geometric product of the unit pseudoscalar I = e1e2e3 with any vector is

commutative, so that I commutes also with bivectors, and since it commutes with scalars
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and other pseudoscalars, it commutes with any multivector of the algebra.

Defining the exterior product of a scalar α with a vector u by α ∧ u = αu, and

extending the exterior product for arbitrary multivectors by considering it, in addition to

bilinear, associative,
(∧

(R3) ,∧
)

determines an associative algebra over the field of real

scalars, the exterior algebra or Grassmann algebra associated with R3.

Establishing then the geometric product of a scalar with a multivector from
∧

(R3) as

the multiplication of the multivector by the scalar, and extending the geometric product

for arbitrary multivectors by bilinearity and associativity, the vector space
∧

(R3) endowed

with the geometric product becomes an associative algebra over the field of real scalars,

the geometric algebra of the three-dimensional Euclidean space or the Clifford algebra of

the three-dimensional Euclidean space, which can be denoted by C`(R3, g), or C`3,0(R), or

C`3,0.

2.2.2 Projection, Graded Involution, Reversion, the Norm and

the Inverse

Given an arbitrary k-vector Ak, such that A =
∑3

k=0 Ak is an arbitrary multivector from

C`3,0, the operations of projection, graded involution and reversion are defined in a similar

way to the two-dimensional case:

〈A〉k = Ak, Â =
3∑

k=0

(−1)k〈A〉k, and Ã =
3∑

k=0

(−1)
1
2
k(k−1)〈A〉k. (2.103)

In this way, for the arbitrary multivector A =
∑3

k=0Ak, one has

Â = A0 − A1 + A2 − A3 and Ã = A0 + A1 − A2 − A3 (2.104)

The operation of projection on the subspace of scalars is important, and is generally

denoted in a more simplified way by omitting the subscript number zero:

〈A〉0 = 〈A〉. (2.105)

By inspecting particular cases, one can conclude that the reversion of the geometric

product of two multivectors corresponds to the geometric product in the opposite order

of the reverses of the multivectors. That is, if A and B are two multivectors, then

(̃AB) = B̃Ã. (2.106)

From the associativity of the geometric product, this property extends to the geometric
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product of an arbitrary list of multivectors A,B, . . . , C as follows:

˜(AB · · ·C) = C̃ · · · B̃Ã. (2.107)

Note also that, the reversion operation does not alter scalars, so that the reversion of

the scalar part of any multivector is equivalent to the scalar part of the reverse of the

multivector:

〈A〉 = 〈̃A〉 =
〈
Ã
〉
. (2.108)

The above two relations imply an important property of the operation of projection on

the subspace of scalars:

〈AB〉 = 〈BA〉. (2.109)

In general, for the geometric product of any number of multivectors, the scalar part

is invariant under cyclic permutations of the multivectors present in the product. For

example, given the multivectors A, B and C, one has

〈ABC〉 = 〈BCA〉 = 〈CAB〉. (2.110)

The norm of a multivector A is defined in the same way as in the two-dimensional

case:

‖A‖2 =
〈
ÃA
〉

0
=
〈
AÃ
〉

0
. (2.111)

The inverse of a multivector is also defined in the same way as before,

A−1 =
Ã

‖A‖2
, (2.112)

provided that

‖A‖2 =
〈
ÃA
〉

0
= ÃA > 0. (2.113)

2.2.3 Interior, Exterior and Commutator Products

Considering the expression for the scalar product as the symmetric part of the geometric

product, equation (2.97), one can rewrite the geometric product of a vector u with the
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geometric product v1v2 of two arbitrary vectors as follows:

u(v1v2) = (uv1)v2

= (2u · v1 − v1u)v2

= 2(u · v1)v2 − v1(uv2)

= 2(u · v1)v2 − v1(2u · v2 − v2u)

= 2(u · v1)v2 − 2v1(u · v2) + (v1v2)u. (2.114)

The resulting expression can be written

1

2

(
u(v1v2)− (v1v2)u

)
= (u · v1)v2 − v1(u · v2). (2.115)

The fact that the right-hand side of the above equation is a vector, implies that the left-

hand side is also a vector. This motivates the definition of the contraction from the left

of v1v2 by the vector u, or the interior product of u with v1v2, as

u · (v1v2) =
1

2

(
u(v1v2)− (v1v2)u

)
= (u · v1)v2 − v1(u · v2). (2.116)

Since v1v2 is a scalar plus a bivector, and consequently an even grade multivector, one

can generally define the contraction from the left of an even grade multivector A+ by the

vector u, or the interior product of u with A+, as

u · A+ =
1

2
(uA+ − A+u). (2.117)

In the same way as above, one can rewrite the geometric product of a vector u with the

geometric product v1v2v3 of three arbitrary vectors as follows:

u(v1v2v3) = (uv1)v2v3

= (2u · v1 − v1u)v2v3

= 2(u · v1)v2v3 − v1(uv2)v3

= 2(u · v1)v2v3 − v1(2u · v2 − v2u)v3

= 2(u · v1)v2v3 − 2v1(u · v2)v3 + v1v2(uv3)

= 2(u · v1)v2v3 − 2v1(u · v2)v3 + v1v2(2u · v3 − v3u)

= 2(u · v1)v2v3 − 2v1(u · v2)v3 + 2v1v2(u · v3)− (v1v2v3)u. (2.118)

The resulting expression can be written

1

2

(
u(v1v2v3) + (v1v2v3)u

)
= (u · v1)v2v3 − v1(u · v2)v3 + v1v2(u · v3). (2.119)
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The fact that the right-hand side of the above equation is an even grade multivector,

implies that the left-hand side is also an even grade multivector. This fact, in addition

to the fact that the product v1v2v3 is necessarily an odd grade multivector, motivates

the definition of the contraction from the left of v1v2v3 by the vector u, or the interior

product of u with v1v2v3, as

u · (v1v2v3) =
1

2

(
u(v1v2v3) + (v1v2v3)u

)
= (u · v1)v2v3 − v1(u · v2)v3 + v1v2(u · v3).

(2.120)

In general, the contraction from the left of an odd grade multivector A− by the vector u,

or the interior product of u with A−, can be defined by

u · A− =
1

2
(uA− + A−u). (2.121)

The definitions (2.117) and (2.121) can be generalized by defining the contraction from

the left of the multivector A by the vector u, or the interior product of u with A, through

the expression

u · A =
1

2

(
uA− Âu

)
. (2.122)

The analysis made so far to motivate the definition of contraction from the left can be

repeated, with appropriate modifications, to define the contraction from the right of the

multivector A by the vector u, or the interior product of A with u, as

A · u =
1

2

(
Au− uÂ

)
. (2.123)

Note that the contraction of a k-vector by a vector (from the left or right), or the interior

product of a vector with a k-vector (or the opposite), always produces a (k − 1)-vector,

which justifies the terminology.

From the expression for the exterior product, equation (2.99), note that u∧u = 0, for

any vector u. From this fact, and from the associativity and bilinearity of the exterior

product, it follows that the exterior product of any set of linearly dependent vectors is null.

(In particular, a set with more than three vectors is linearly dependent, and consequently

the exterior product of these vectors is null.) Note also that any non-null exterior product

u1 ∧ u2 can be written as the geometric product of two orthogonal vectors v1 and v2:

u1 ∧ u2 = v1v2. (2.124)

In this way, given a vector u orthogonal to both v1 and v2, it follows that

u ∧ u1 ∧ u2 = uv1v2. (2.125)
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As in the two-dimensional case, the geometric product of two orthogonal vectors is anti-

commutative, so that uv1v2 = v1v2u, and the above equation allows one to write

u ∧ (u1 ∧ u2) =
1

2

(
u(v1v2) + (v1v2)u

)
. (2.126)

Since, by hypothesis, u1 ∧ u2 = v1v2, the above equation implies that

u ∧B =
1

2
(uB +Bu), (2.127)

for any bivector B. In general, the exterior product of a vector u with any even grade

multivector A+ (a scalar or a bivector, or a sum of both) is always commutative, such

that one can write

u ∧ A+ =
1

2
(uA+ + A+u). (2.128)

On the other hand, the exterior product of a vector u with any odd grade multivector A−

(a vector or a trivector, or a sum of both) is always anticommutative, in such way that,

one can write

u ∧ A− =
1

2
(uA− − A−u). (2.129)

The above two equations can be generalized for the exterior product of a vector u with

any multivector A as follows:

u ∧ A =
1

2

(
uA+ Âu

)
. (2.130)

Similar observations, but in relation to the exterior product in opposite order, can be

made to furnish:

A ∧ u =
1

2

(
Au + uÂ

)
. (2.131)

The summation of the equations (2.122) and (2.130) furnishes

uA = u · A+ u ∧ A, (2.132)

and the summation of the equations (2.123) and (2.131) furnishes

Au = A · u + A ∧ u. (2.133)

These relations for the geometric product of a vector and a multivector in terms of the

interior and exterior products are natural generalizations of the relation (2.100).

Note that, in general, neither the interior product nor the exterior product commute
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or anticommute. In general, one has

u · A = −Â · u and u ∧ A = Â ∧ u, (2.134)

which can be obtained by observing that Â·u = 1
2

(
Âu− uA

)
and Â∧u = 1

2

(
Âu + uA

)
,

which combined with (2.122) and (2.130), respectively, furnish u · A + Â · u = 0 and

u ∧ A− Â ∧ u = 0.

It should be noted that, in general, the geometric product of two generic multivectors

can not be written as the sum of a interior and a exterior product. This fact can be

illustrated by considering the geometric product of bivectors. Let A and B be arbitrary

bivectors. Consider the expression of A as the geometric product of two orthogonal vectors

u and v:

A = u ∧ v = uv. (2.135)

It follows that,

AB = uvB

= u(v ·B + v ∧B)

= u · (v ·B) + u · (v ∧B) + u ∧ (v ·B) + u ∧ v ∧B

= u · (v ·B) + u · (v ∧B) + u ∧ (v ·B), (2.136)

where was considered the fact that u ∧ v ∧ B = 0, which follows from the fact that

u ∧ v ∧ B corresponds to the exterior product of four vectors, which are necessarily

linearly dependent. The term u · (v ·B) in the resulting above equation is a scalar, since

it is the result of two followed interior products with a vector applied on a bivector. The

remain terms are bivectors, since both are the result of the combination of a interior and

an exterior product with a vector applied on a bivector. The geometric product AB can

then be written

AB = 〈AB〉0 + 〈AB〉2. (2.137)

Now, note that such a product can be written as the sum of a symmetric part and an

antisymmetric part in relation to the exchange of the bivectors:

AB =
1

2
(AB +BA) +

1

2
(AB −BA). (2.138)

Since the symmetric part is invariant and the antisymmetric part changes the sign under

the reversion operation, one identifies the symmetric part as the scalar part of the product

and the antisymmetric part as the bivector part of the product:

〈AB〉0 =
1

2
(AB +BA) and 〈AB〉2 =

1

2
(AB −BA). (2.139)
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The antisymmetric part of the geometric product AB of two bivectors, which corresponds

to another bivector, is defined as the commutator product of the bivectors A and B, and

is denoted by

A×B =
1

2
(AB −BA). (2.140)

The commutator product satisfies the Jacobi identity, that is,

A× (B × C) + C × (A×B) +B × (C × A) = 0, (2.141)

for arbitrary bivectors A, B and C, which can be verified directly by using the definition

of the commutator product.

2.2.4 Inequalities, Parallelism and Orthogonality

The Cauchy-Schwarz inequality in the form (2.44) is a general result concerning Euclidean

spaces, so it holds in the case of the three-dimensional Euclidean space. Consequently, the

angle between two vectors can be defined in the same way as in the case of the Euclidean

plane, in terms of its cosine through (2.46), and the sine of such an angle can also be

expressed by relation (2.49). Then, the conditions for parallelism and orthogonality of

vectors, given by (2.52) and (2.53), are also the same as in the two-dimensional case.

Another consequence of the preservation of the form of the Cauchy-Schwarz inequality is

that the triangular inequality, given by (2.51), also has the same form.

Since a bivector represents an oriented area, one can also consider the conditions of

parallelism and orthogonality between a vector and a bivector, and between bivectors.

As seen in the above subsection, if a set of vectors {u,v1,v2} is linearly dependent, then

u ∧ v1 ∧ v2 = 0, which can be written

u ∧B = 0, (2.142)

where B = v1 ∧ v2. Since linearly dependent vectors in the three-dimensional Euclidean

space belong to the same plane, the above equation is a condition for parallelism of the

vector u with the bivector B. On the other hand, if {u,v1,v2} is a set of mutually

orthogonal vectors, then (cf. equation (2.116))

u · (v1v2) = (u · v1)v2 − v1(u · v2) = 0, (2.143)

which implies that

u ·B = 0 (2.144)

is a condition for orthogonality of a vector u and a bivector B. As seen in the above
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subsection, given a bivector A = u ∧ v = uv and another bivector B, one has

AB = 〈AB〉+ A×B = u · (v ·B) + u · (v ∧B) + u ∧ (v ·B). (2.145)

If the bivector B is given by B = w ∧ x = wx, the above expression furnishes

AB = u ·
(
v · (wx)

)
+ u ·

(
v ∧ (wx)

)
+ u ∧

(
v · (wx)

)
= u ·

(
(v ·w)x−w(v · x)

)
+ u · (v ∧w ∧ x) + u ∧

(
(v ·w)x−w(v · x)

)
= (u · x)(v ·w)− (u ·w)(v · x)+

+ u · (v ∧w ∧ x) + (u ∧ x)(v ·w)− (u ∧w)(v · x), (2.146)

where one identifies

〈AB〉 = (u · x)(v ·w)− (u ·w)(v · x) (2.147)

and

A×B = u · (v ∧w ∧ x) + (u ∧ x)(v ·w)− (u ∧w)(v · x). (2.148)

If the bivectors A and B are associated to parallelograms/planes which are parallel, then

one can always choose the vectors w and x in such way that one is parallel to u and

orthogonal to v, and the other is parallel to v and orthogonal to u. In this case, the

commutator product above is null, and the condition for parallelism of the bivectors A

and B is

A×B = 0. (2.149)

On the other hand, if the bivectors A and B represent orthogonal parallelograms/planes,

then either u or v is mutually orthogonal to w and x. In this case, the scalar part of the

product AB above is null, that is,

〈AB〉 = 0 (2.150)

is the condition for orthogonality of the bivectors A and B.

2.2.5 Duality

The usual vector algebra, founded mainly on the cross product, emerged at the end of the

19th century as an attempt by J. W. Gibbs, and independently by O. Heaviside, to unify

the structure of the Grassmann algebra with that of the quaternion algebra, as done by

the then almost unknown Clifford algebras. The cross product is an anticommutative and

non-associative product of vectors from the three-dimensional Euclidean space resulting

in another vector of this space. This product is defined as follows. Given the vectors

u = u1e1 + u2e2 + u3e3 and v = v1e1 + v2e2 + v3e3, the cross product of u with v is the
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vector given by

u× v = (u2v3 − u3v2)e1 + (u3v1 − u1v3)e2 + (u1v2 − u2v1)e3. (2.151)

whose notation should not be confused with that of the commutator product. In this

context, it is common to use the notations e1 = i, e2 = j and e3 = k, similar to that used

in the context of the algebra of quaternions, and define the cross product as being such

that 
i× j = −j× i = k

j× k = −k× j = i

k× i = −i× k = j

 , (2.152)

where one can observe a complete analogy with the basic relations defining the product of

quaternions (cf. relations (2.166) in the next subsection). Using the above relations, and

bilinearity, one can easily obtain the relation (2.151) for the cross product of two arbitrary

vectors. These definitions are shown to be inconsistent when it is noted that any vector

transforms into its opposite under a spatial inversion transformation, but not the cross

product as defined above. Indeed, an arbitrary vector u transforms in the way u 7→ −u

under a spatial inversion transformation, whereas the cross product u × v transforms in

the way u× v 7→ (−u)× (−v) = u× v under a spatial inversion transformation. Thus,

the cross product of two vectors does not exhibit a property satisfied by any usual vector.

Historically, this fact has led the result of a cross product to be called a pseudovector.

(In addition, the result of the scalar triple product (u × v) · w changes sign under a

spatial inversion, which is not satisfied by scalars — the result of such a product is then

usually called a pseudoscalar). An inconsistency in the usual definition of cross product

is then observed: the cross product does not result in a usual vector from R3, although

the expression on the right-hand side of the equation (2.151) is clearly a vector. However,

given the vectors u = u1e1 + u2e2 + u3e3 and v = v1e1 + v2e2 + v3e3, one has

u ∧ v = (u1v2 − u2v1)e1e2 + (u3v1 − u1v3)e3e1 + (u2v3 − u3v2)e2e3, (2.153)

which can be rewritten as

u ∧ v = (u2v3 − u3v2)Ie1 + (u3v1 − u1v3)Ie2 + (u1v2 − u2v1)Ie3, (2.154)

where I = e1e2e3 is the unit pseudoscalar. This allows one to write

−(u ∧ v)I = (u2v3 − u3v2)e1 + (u3v1 − u1v3)e2 + (u1v2 − u2v1)e3, (2.155)
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that is, one can rewrite the cross product as

u× v = −(u ∧ v)I. (2.156)

Note that the right-hand side of the above equation behaves like a vector under a spatial

inversion. Indeed, since I = e1e2e3 transforms in the way I 7→ −I under a spatial

inversion, −(u ∧ v)I transforms in the way

−(u ∧ v)I 7→ −
(

(−u) ∧ (−v)
)

(−I) = (u ∧ v)I (2.157)

under a spatial inversion. The operation (u∧v) 7→ −(u∧v)I then transforms a bivector

into a vector. This operation is found to be an isomorphism between the space of vectors

and the space of bivectors, which is a special case of the Hodge isomorphism or the Hodge

duality, given by the Hodge star operator :

?(u ∧ v) = −(u ∧ v)I. (2.158)

For vectors, the Hodge duality is given by

?u = uI, (2.159)

which in fact is found to be a bivector. It should be noted that ?(u∧ v) corresponds to a

vector orthogonal to the plane described by u∧ v, and that ?u corresponds to a bivector

describing the plane orthogonal to the vector u.

Since u× v transforms like u ∧ v under a spatial inversion transformation, it is more

natural to associate physical quantities usually defined in terms of the cross product by a

bivector. For example, the angular momentum vector, which does not change sign under

a spatial inversion and is usually called a pseudovector, can be defined more naturally as

the bivector L = r∧p, also because it is a quantity that is naturally related to areas, and

not to lengths. This definition is in agreement with the description of angular momentum

as an antisymmetric tensor Lij = −Lji, since the corresponding bivector quantity can be

written

L = L12e1e2 + L31e3e1 + L23e2e3 =
∑

i<j and i,j∈{1,2,3}

Lijeiej. (2.160)

In this way, the angular momentum vector ` is described as the Hodge dual of the angular

momentum bivector: ` = ?L = ?(r ∧ p).

In the context of the geometric algebra of the three-dimensional Euclidean space, the

Hodge isomorphim, or Hodge duality, between
∧k(R3) and

∧(3−k)(R3), for k ∈ {0, 1, 2, 3},
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establishes the correspondence between a k-vector Ak and a (3− k)-vector ?Ak through

?Ak = ÃkI, (2.161)

where I = e1e2e3 is the unit pseudoscalar. The (3−k)-vector ?Ak is called the Hodge dual

of the k-vector Ak. Thus, the Hodge dual of a scalar is a pseudoscalar, and vice versa,

and the Hodge dual of a vector is a bivector (which is alternatively called a pseudovector),

and vice versa. In particular, one has the relations in the following table.

?1 = I = e1e2e3

?e1 = e2e3

?e2 = e3e1

?e3 = e1e2

?(e1e2) = e3

?(e3e1) = e2

?(e2e3) = e1

?I = ?(e1e2e3) = 1

TABLE 2.1 – Hodge duals of the basic multivectors from C`3,0.

2.2.6 The Even Subalgebra and the Algebra of Quaternions

After the demonstration of the fundamental theorem of algebra, which guarantees that a

polynomial equation of degree n has n not necessarily distinct complex solutions, there

seemed to be no further need to introduce new types of numbers. It was with a different

motivation that W. R. Hamilton conceived of the quaternions. Hamilton was looking for

numbers of the form a + bi + cj, where a, b, c ∈ R and i2 = j2 = −1, which should play

the same role in three-dimensional space as complex numbers did in the plane. Influenced

by the complex identity

(a+ bi)(a− bi) = a2 + b2, (2.162)

Hamilton observed that

(a+ bi+ cj)(a− bi− cj) = a2 + b2 + c2 − (ij + ji)bc. (2.163)

Then, in 1843, after years of study, he had the sudden idea of giving up the commutative

law of multiplication, and considered ij as a third square root of −1, ij = k, in such way

that

i2 = j2 = k2 = ijk = −1, (2.164)
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according to which, ij = −ji and

(a+ bi+ cj)(a− bi− cj) = a2 + b2 + c2. (2.165)

In general, as a consequence of equations (2.164), it follows that
ij = −ji = k

jk = −kj = i

ki = −ik = j

 , (2.166)

according to which,

(a+ bi+ cj + dk)(a− bi− cj − dk) = a2 + b2 + c2 + d2, (2.167)

where a, b, c, d ∈ R. Numbers of the form a + bi + cj + dk, where a, b, c, d ∈ R and i, j

and k are such that the equations (2.164) hold, are called quaternions. The set formed

by the quaternions is denoted by H, as a tribute to Hamilton. Quaternions are combined

through the operations of sum and product according to the usual laws of arithmetic

(commutativity, associativity, existence of the neutral element, existence of symmetric

elements, and distributivity of the product with respect to the sum), just like real and

complex numbers, except for the commutativity law of the product. Moreover, it is

possible to multiply a quaternion by a real number. Such operations always generate

other quaternions, which characterizes the closure property of H with respect to these

operations. Thus, the set of quaternions endowed with the operations of summation and

product of quaternions with the aforementioned properties forms a non-commutative field,

or a division ring. It is also verified that H endowed with the operations of summation of

quaternions and multiplication of a quaternion by a real scalar determines a vector space

over the field of real scalars. This vector space, in turn, endowed with the quaternion

product determines an algebra over the field of real scalars. It turns out that this algebra

is equivalent to the even subalgebra of the geometric algebra C`3,0, as can be seen in the

following.

Let C`3,0
+ be the set formed by even grade multivectors from C`3,0, that is, the set of

multivectors A satisfying Â = A:

C`3,0
+ =

{
A
∣∣∣ A ∈ C`3,0 and Â = A

}
. (2.168)

If A ∈ C`3,0
+, then A is the sum of a scalar and a bivector, and it can be written

A = a+ a12e1e2 + a31e3e1 + a23e2e3. (2.169)
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An even grade multivector can be expressed without reference to any basis as

M = α +B, (2.170)

where α is a scalar and B is a bivector. So, given the even grade multivectors M1 = α1+B1

and M2 = α2 +B2, it follows that

M1M2 = (α1 +B1)(α2 +B2)

= α1α2 + α1B2 + α2B1 +B1B2

=
(
α1α2 + 〈B1B2〉

)
+
(
α1B2 + α2B1 +B1 ×B2

)
. (2.171)

Thus, the geometric product of two even grade multivectos is an even grade multivector,

in such way that vector subspace formed by multivectors from C`3,0
+ endowed with the

geometric product is a subalgebra of C`3,0. This subalgebra is known as the even subalgebra

of C`3,0, which can also be denoted by C`3,0
+.

Consider now the following notation: I = e3e2, J = e1e3 and K = e2e1. In this way,

an element of C`3,0
+ can be written in the form

A = a+ bI + cJ + dK, (2.172)

and one can note without difficulty that the bivectors I, J and K satisfy:

I2 = J2 = K2 = IJK = −1. (2.173)

Direct comparison of these expressions with the relations (2.164) allows one to conclude

that the even subalgebra C`3,0
+ is isomorphic to the algebra of quaternions through the

identification of the bivectors I, J and K with the unit quaternions i, j and k, respectively,

and through the identification of the geometric product with the product of quaternions.

Since

I = e3e2 = − ? e1, J = e1e3 = − ? e2 and K = e2e1 = − ? e3, (2.174)

it follows that (i, j, k) identifies with the Hodge duals −?(e1, e2, e3), not with (e1, e2, e3) as

the usual vector algebra suggests. Thus, it is observed that the synthesis of the Grassmann

algebra (for R3) with the Hamilton’s quaternion algebra is adequately realized by Clifford’s

geometric algebra of three-dimensional Euclidean space.
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2.2.7 Reflections and Rotations

Similarly to the two-dimensional case, reflection transformations are introduced in order

to study rotations in the three-dimensional Euclidean space. Some steps are identical

to those already presented, but are repeated for completeness. A particular case of the

Cartan-Dieudonné theorem is evoked again, without any demonstration.

Let u and v be two non-null vectors from R3. The component of v parallel to u, or

the projection of the vector v on the vector u, is given by

v‖ = proju(v) =

(
v · u

‖u‖

)
u

‖u‖
=

1

‖u‖2
(v · u)u. (2.175)

The component of v orthogonal to u is then

v⊥ = v − v‖. (2.176)

From the known relations for parallelism and orthogonality of vectors, it follows that

uv‖ = v‖u and uv⊥ = −v⊥u. Note then that the geometric product of v‖ by u furnishes

uv‖ =
1

‖u‖2
(v · u)u2, (2.177)

that is,

uv‖ = v · u =
1

2
(vu + uv). (2.178)

But, the geometric product of this expression by u gives

‖u‖2v‖ =
1

2
(uvu + ‖u‖2v), (2.179)

that is,

v‖ =
1

2

(
1

‖u‖2
uvu + v

)
, (2.180)

or,

v‖ =
1

2

(
v + uvu−1

)
. (2.181)

This expression allows one to write also

v⊥ =
1

2

(
v − uvu−1

)
. (2.182)

Consider then the linear transformation given by

v 7→ v′ = v⊥ − v‖, (2.183)
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or by

v 7→ v′ = v − 2v‖. (2.184)

Such a linear transformation corresponds to the reflection of the vector v through the plane

with orthogonal vector u. Considering the expression above for v‖, such a transformation

can be written

v 7→ v′ = −uvu−1, (2.185)

or, for the case in which the vector u is unitary,

v 7→ v′ = −uvu. (2.186)

As a particular case of the Cartan-Dieudonné theorem, it is found that two reflections

describe a rotation in the three-dimensional Euclidean space. In this way, a rotation of

the vector v can be expressed as

v 7→ v′ = −u1(−u2vu2)u1 = u1u2vu2u1, (2.187)

where u1 and u2 are unit vectors. Then, one can express a rotation by

v 7→ v′ = RvR−1, (2.188)

where the object R = u1u2, corresponding to an even grade multivector, is called a rotor.

If θ is the angle between the unit vectors u1 and u2, then the rotor R = u1u2 can be

written

R = u1 · u2 + u1 ∧ u2 = cos(θ) + sin(θ)B, (2.189)

where B is a unit bivector. From this expression it follows that

RR̃ =
(

cos(θ)+sin(θ)B
)(

cos(θ)−sin(θ)B
)

= cos2(θ)−sin2(θ)B2 = cos2(θ)+sin2(θ) = 1,

(2.190)

so that

R̃ = R−1, (2.191)

and thus a rotation can be written

v 7→ v′ = RvR̃. (2.192)

If n is a unit vector orthogonal to the bivector B in the expression for R, there are two

possibilities to consider R: by taking B = ?n = In or by taking B = −?n = −In. These

two possibilities can be simulated considering the angle θ between the unit vectors u1 and

u2 such that 0 ≤ θ ≤ 2π, in such way that, choosing B = ?n = In, one has, for 0 ≤ θ ≤ π,
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sin(θ)B = αIn, where α ≥ 0, and for π ≤ θ ≤ 2π, sin(θ)B = −αIn. However, it turns out

that the proper choice of the unit bivector for description of a counterclockwise rotation,

that is, following the right-hand convention, is B = −In. Indeed, writing v = v‖ + v⊥,

where v‖ is the component of v parallel to n and v⊥ is the component of v orthogonal to

n, and v′ = RvR̃, one has:

v′ =
(

cos(θ)− sin(θ)In
)

(v‖ + v⊥)
(

cos(θ) + sin(θ)In
)

=
(

cos(θ)− sin(θ)In
)((

cos(θ) + sin(θ)In
)
v‖ +

(
cos(θ)− sin(θ)In

)
v⊥

)
=
(

cos2(θ) + sin2(θ)
)
v‖ +

(
cos2(θ)− sin2(θ)− 2 sin(θ) cos(θ)In

)
v⊥

= v‖ +
(

cos(2θ)− sin(2θ)In
)
v⊥

= v‖ +
(

cos(2θ)v⊥ − sin(2θ)I(n ∧ v⊥)
)

= v‖ +
(

cos(2θ)v⊥ + sin(2θ) ? (n ∧ v⊥)
)
. (2.193)

This in fact describes a rotation of the vector v through the plane orthogonal to the

vector n in the counterclockwise sense, since the component v‖ is unchanged and the

component v⊥ transforms into cos(2θ)v⊥ + sin(2θ) ? (n ∧ v⊥), which is v⊥ rotated by

the angle 2θ in the counterclockwise sense of the plane determined by n (following the

right-hand convention). Since the rotation described is by an angle 2θ, the corresponding

rotation by an angle θ is given by

v 7→ v′ = RvR̃, (2.194)

where

R = cos

(
θ

2

)
− sin

(
θ

2

)
In. (2.195)

This rotor can be written in terms of the exponential map (in the same way as made to

reach to the expression (2.76), since B = −In is a unit bivector, like e2e1) as follows:

R = exp

(
−1

2
θIn

)
. (2.196)

The rotation transformation considered above can be extended for any multivector A

as follows:

A 7→ A′ = RAR̃ = RAR−1. (2.197)

A bivector A = u1 ∧ u2 = u1u2, for example, transforms under a rotation in the way

A 7→ A′ = RAR̃ = Ru1u2R̃ = Ru1R̃Ru2R̃ = u1
′u2
′, (2.198)
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in such way that A′ describes the plane given by A rotated in the direction of the plane

given by In in the counterclockwise sense (i.e. following the right-hand convention relative

the normal vector n).

Note that the set of the rotors of C`3,0 can be characterized as{
R
∣∣∣ R ∈ C`3,0

+ and R̃R = RR̃ = 1
}
, (2.199)

that is, the set of even grade multivectors of C`3,0 with unit norm. Note then that, the set

of rotors endowed with the geometric product has the structure of a group. Indeed, given

the rotors R1 e R2, it follows that ˜(R1R2)(R1R2) = R̃2R̃1R1R2 = R̃2R2 = 1, that is, R1R2

is also a rotor, hence (i) the set of rotors is closed with relation to the geometric product;

in addition, (ii) the geometric product is known to be associative, (iii) there exists an

neutral element with relation to the geometric product (the number 1), and, (iv) for any

rotor R there exists the inverse, given by R−1 = R̃. This group is denoted by Spin(3),

and a rotor of C`3,0 can be characterized as an element of this group.

It should be noted that, as in the two-dimensional case, both R and −R describe the

same rotation:

(−R)v(̃−R) = RvR̃. (2.200)

This can be understood by observing that the rotation by an angle φ in a given plane, in

the counterclockwise sense, has the same result as the rotation by the angle 2π−φ in the

same plane, but in the clockwise sense. Indeed, given the rotors R = exp(−Inφ/2) and

R∗ = exp
(
In(2π − φ)/2

)
, it follows that

R∗ = exp
(
In(2π − φ)/2

)
= exp(Inπ) exp(−Inφ/2) = (−1)R = −R. (2.201)

The fact that R and −R describe the same rotation implies in a two-to-one correspondence

between the group Spin(3) and the group SO(3) (i.e. there are two rotors equivalent to a

same special orthogonal transformation in the three-dimensional Euclidean space), in the

same way that there is a two-to-one correspondence between SU(2) and SO(3), when it

is said that SU(2) is a double covering of SO(3). In the same way, it is said that Spin(3)

is a double covering of SO(3), and it is found that Spin(3) is isomorphic to SU(2).

Similarly to the two-dimensional case, an arbitrary element of the even subalgebra

C`3,0
+ can be written in the form

ψ =
√
ρR, (2.202)

where ρ is a real scalar and R is a rotor. In this way, the transformation

v 7→ v′ = ψvψ̃ = ρRvR̃ (2.203)
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corresponds to a rotation given by the rotor R and a dilation/contraction (if 0 < ρ < 1

or ρ > 1, respectively) of the vector v.

2.3 The Geometric Algebra of Minkowski Spacetime

The concept of a pseudo-Euclidean space is introduced in this section by presenting the

two-dimensional case, accompanied by comparisons with the Euclidean plane. Next, the

geometric algebra for the pseudo-Euclidean plane is presented. Then, after an introduction

to Minkowski spacetime, the corresponding geometric algebra is introduced and some of

its basic properties studied.

2.3.1 Pseudo-Euclidean Spaces

Consider the vector space R2, and let its vectors be denoted by Latin letters in boldface:

u, v, etc. Let the canonical basis be denoted {e1, e2} = {(1, 0), (0, 1)} (where the ordering

of the basis is implied), in such way that a vector is written, generally, u = u1e1 + u2e2,

v = v1e1+v2e2, etc. The interpretation for this space is the usual geometric interpretation:

R2 corresponds to the plane, and its vectors represent oriented line segments in the plane.

Consider the symmetric bilinear form h : R2 × R2 → R given by

h(e1, e1) = −h(e2, e2) = 1 and h(e1, e2) = h(e2, e1) = 0. (2.204)

The calculation of h(u,v), for two arbitrary vectors u and v, furnishes

h(u,v) = h(u1e1 + u2e2, v1e1 + v2e2)

= u1v1h(e1, e1) + u1v2h(e1, e2) + u2v1h(e2, e1) + u2v2h(e2, e2)

= u1v1 − u2v2. (2.205)

In particular,

h(u,u) = u1
2 − u2

2. (2.206)

Although h is symmetric, the above equation allows one to observe that it is not positive-

definite, that is, h(u,u) can assume any real value, including zero, without u necessarily

being the null vector. Nevertheless, R2 endowed with the symmetric bilinear form h

it is important in mathematics and physics, determining a particular case of a pseudo-

Euclidean space, the pseudo-Euclidean plane. For this space, one can define the “norm”

induced by the symmetric bilinear form h by

‖u‖h2 = h(u,u) = u1
2 − u2

2. (2.207)
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which will be called pseudo-norm (because it is not in fact a norm). In order to present

some aspects of the pseudo-Euclidean plane, its analogues in the Euclidean plane will be

recalled first.

Let g be the symmetric bilinear form given by (2.1), and let its induced norm be

denoted by ‖ · ‖g. Given the vector x = x1e1 + x2e2 of the Euclidean plane, the equation

‖x‖g2 = g(x,x) = r2, (2.208)

which can be written in terms of components as

x1
2 + x2

2 = r2 or
(x1

r

)2

+
(x2

r

)2

= 1, (2.209)

describes a circle of radius |r| centered at the origin. Such a circle can be parameterized

by the angle θ that the position vector x on the circle makes with the axis of abscissas,

as follows:

x1 = r cos(θ) and x2 = r sin(θ). (2.210)

Then, from the equation of the circle one obtains the fundamental identity

cos2(θ) + sin2(θ) = 1. (2.211)

The above mentioned parameterization allows one to express the vector x by

x = r
(

cos(θ)e1 + sin(θ)e2

)
. (2.212)

With respect to the sine and cosine functions, it is appropriate to mention Euler’s formula,

eiθ = cos(θ) + i sin(θ), (2.213)

which allows the cosine and sine functions to be written in terms of complex exponentials

as follows:

cos(θ) =
1

2

(
eiθ + e−iθ

)
and sin(θ) =

1

2i

(
eiθ − e−iθ

)
. (2.214)

As a final remark, recall that another vector x′ = x1
′e1 + x2

′e2 on the circle, obtained

from the vector x through a rotation by an angle ∆θ, is such that(
x1
′

x2
′

)
=

(
cos(∆θ) − sin(∆θ)

sin(∆θ) cos(∆θ)

)(
x1

x2

)
(2.215)

Now, analogous aspects in the case of the pseudo-Euclidean plane will be considered.
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Given the vector x = x1e1 + x2e2 of the pseudo-Euclidean plane, the equation

‖x‖h2 = h(x,x) = constant (2.216)

can describe different geometric shapes depending on whether the constant that appears

in it is (I) positive, (II) negative or (III) null. Consider first the case I, where the equation

can be written in the form

‖x‖h2 = h(x,x) = r2, (2.217)

for some non-null real number r, or more explicitly, in terms of the components of x:

x1
2 − x2

2 = r2 or
(x1

r

)2

−
(x2

r

)2

= 1. (2.218)

This is the equation of the equilateral hyperbola with vertices at (−r, 0) and (r, 0). In the

case II, the equation takes the form

‖x‖h2 = h(x,x) = −r2, (2.219)

which in terms of the components of the vector x, can be written as

x1
2 − x2

2 = −r2 or
(x2

r

)2

−
(x1

r

)2

= 1. (2.220)

This is the equation of the equilateral hyperbola with vertices at (0,−r) e (0, r). About

case III, one has the equation

‖x‖h2 = h(x,x) = 0, (2.221)

which in terms of the components of the vector x is written as

x1
2 − x2

2 = 0 or x1 = ±x2. (2.222)

These equations describe the asymptotes of the hyperbolas considered above. Figure 2.4

shows the graphs of the geometric figures considered in each case.
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e2

e1

I

I

IIII

IIIIII

FIGURE 2.4 – Curves considered in cases I, II and III in the text (the axis of abscissas
is taken vertically and the axis of ordinates horizontally, placing the “other side” of the
plane in perspective).

Just as a circle can be parameterized by an angle, a hyperbola branch can be parameterized

by a quantity called a hyperbolic angle, which does not consist of an angle in the usual

sense. The hyperbolic angle α can be understood as the argument of the hyperbolic cosine

and sine functions, which can be defined respectively by

cosh(α) =
1

2

(
eα + e−α

)
and sinh(α) =

1

2

(
eα − e−α

)
. (2.223)

Note that such functions satisfy

eα = cosh(α) + sinh(α) (2.224)

and

cosh2(α)− sinh2(α) = 1. (2.225)

The above three relations has as its analogues in the case of “circular geometry” the

relations (2.214), (2.213) and (2.211), respectively. The parameterization of the upper

branch of the hyperbola I is given by means of the relations

cosh(α) =
v1

r
and sinh(α) =

v2

r
, (2.226)
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which allow one to write a generic position vector v = v1e1 + v2e2 on the branch of

hyperbola as

v = r
(

cosh(α)e1 + sinh(α)e2

)
. (2.227)

Another position vector v′ = v1
′e1 + v2

′e2 on the considered branch of hyperbola can be

obtained from v through a hyperbolic rotation through a certain hyperbolic angle ∆α,

according to (
v1
′

v2
′

)
=

(
cosh(∆α) sinh(∆α)

sinh(∆α) cosh(∆α)

)(
v1

v2

)
(2.228)

Such a hyperbolic rotation, for a positive hyperbolic angle, is illustrated in the figure 2.5.

e2

e1

v
v′

FIGURE 2.5 – A hyperbolic rotation of the vector v on the upper branch of a hyperbola
of type I, by a positive hyperbolic angle, resulting in the vector v′.

The fact that the symmetric bilinear form h is not positive-definite implies that there

exists not just one, but an infinity of vectors u such that h(u,u) = 0, all of which are

null vectors, but not in the sense that g(u,u) = 0, but rather with respect to the form h.

According to the value of h(u,u), it is also possible to classify a vector u into two other

types: (1) u such that h(u,u) > 0, and (2) u such that h(u,u) < 0. According to the

definition of the form h (cf. equation (2.204)) the basic vector e1 is of type 1, and the

basic vector e2 is of type 2. This feature implies that the two components of a vector in

the pseudo-Euclidean plane have a distinct nature, such that each of the two subspaces

resulting from an orthogonal decomposition have a distinct nature with respect to the
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form h. In view of this fact, the pseudo-Euclidean plane is denoted by R1,1. It should be

noted that a generic pseudo-Euclidean space is construct in a similar way to the pseudo-

Euclidean plane, being denoted by Rm,n, in such way that its canonical basis contains m

vectors of type 1 and n vectors of type 2. In agreement with the physical context, vectors

of type 1 are called time-like vectors, vectors of type 2 are called space-like vectors, and

null vectors are also called light-like vectors.

2.3.2 The Geometric Algebra of the Pseudo-Euclidean Plane

As in the constructions made earlier, the geometric algebra of the pseudo-Euclidean plane

is determined by the multivector space constructed from R1,1 endowed with the geometric

product. In this case, the fundamental property of the geometric product is given by

uu = h(u,u), (2.229)

for any vector u from R1,1, or, in terms of the pseudo-norm and using the notation

u2 = uu,

u2 = ‖u‖h2. (2.230)

This expression can be written in terms of components as follows:

(u1e1 + u2e2)(u1e1 + u2e2) = u1
2 − u2

2. (2.231)

Imposing bilinearity to the geometric product, one can write

u1
2e1

2 + u1u2(e1e2 + e2e1) + u2
2e2

2 = u1
2 − u2

2, (2.232)

which implies

e1
2 = 1, e2

2 = −1, and e1e2 = −e2e1. (2.233)

These are the basic relations for calculation of the geometric product in the geometric

algebra of the pseudo-Euclidean plane in terms of the canonical basic vectors. Applying

it to the calculation of the geometric product of two arbitrary vectors u = u1e1 + u2e2

and v = v1e1 + v2e2, one obtains

uv = (u1e1 + u2e2)(v1e1 + v2e2)

= u1v1e1
2 + u1v2e1e2 + u2v1e2e1 + u2v2e2

2

= (u1v1 − u2v2) + (u1v2 − u2v1)e1e2, (2.234)
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which corresponds to the sum of a symmetric part, (u1v1 − u2v2), and an antisymmetric

part, (u1v2 − u2v1)e1e2, with relation to the exchange of u and v. Since the geometric

product of two vectors can be uniquely written in the form

uv =
1

2
(uv + vu) +

1

2
(uv − vu), (2.235)

where the first term is symmetric and the second antisymmetric under the exchange of u

and v, one can write

uv = u · v + u ∧ v, (2.236)

where are defined the scalar product and the exterior product, respectively, by

u · v =
1

2
(uv + vu) = u1v1 − u2v2 = h(u,v) (2.237)

and

u ∧ v =
1

2
(uv − vu) = (u1v2 − u2v1)e1e2. (2.238)

As in the case of the Euclidean plane, the objects of the form u∧v, such as e1∧e2 = e1e2,

are defined as bivectors and interpreted as oriented parallelograms. This is independent of

the metric properties of the space, determined in this case by the form h. Although in the

pseudo-Euclidean case (e1e2)2 = 1, whereas in the Euclidean case (e1e2)2 = −1, which

leads to different metric relations for the pseudo-Euclidean case, there is no change in the

underlying multivector structure of the algebra under consideration, and consequently

the underlying exterior algebra is the same as for the geometric algebra of the Euclidean

plane. In agreement to the notation R1,1 for the pseudo-Euclidean plane, the vector space

of real scalars can now be denoted by
∧0(R1,1), the vector space of vectors of the pseudo-

Euclidean plane can also be denoted by
∧1(R1,1), and the vector space of bivectors can

now be denoted by
∧2(R1,1). Thus, one can define the vector space

∧(
R1,1

)
=

2⊕
k=0

∧
k
(
R1,1

)
=
∧

0
(
R1,1

)
⊕
∧

1
(
R1,1

)
⊕
∧

2
(
R1,1

)
, (2.239)

whose elements, also called multivectors, can be written in terms of the basic vectors e1

and e2 under the form

A = a+ (a1e1 + a2e2) + a12e1e2. (2.240)

Defining then the geometric product of a scalar with a multivector as the multiplication

of the multivector by the scalar, and extending the geometric product to any multivectors

by bilinearity and associativity, it follows that the vector space
∧

(R1,1) endowed with

the geometric product determines an associative algebra over the field of real scalars, the

geometric algebra of the pseudo-Euclidean plane, or the Clifford algebra of the pseudo-

Euclidean plane, which can be denoted by C`(R1,1, h), or C`1,1(R), or simply C`1,1.
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Projection, Graded Involution, Reversion, the Norm and the Inverse

The operations of projection, graded involution and reversion are defined in the same

way as for C`2,0 (cf. subsection 2.1.2). The pseudo-norm of a multivector A from C`1,1 is

appropriately defined by

‖A‖h2 =
〈
ÃA
〉

=
〈
AÃ
〉
, (2.241)

and the inverse can be defined by

A−1 =
Ã

‖A‖h2
, (2.242)

provided that

‖A‖h2 =
〈
ÃA
〉

= ÃA 6= 0. (2.243)

Note the difference in the conditions for the existence of the inverse (cf. relations (2.38)).

Inequalities, Parallelism and Orthogonality

For a bivector B = a12e1e2 from C`1,1, one has

‖B‖h2 =
〈
BB̃

〉
= 〈(a12e1e2)(a12e2e1)〉 =

〈
a12

2 e1e2e2e1

〉
= −a12

2 ≤ 0. (2.244)

But note that the same calculation to obtain the equation (2.43), in the case of the

Euclidean plane, can be made to find

‖u ∧ v‖h2 = ‖u‖h2‖v‖h2 − (u · v)2, (2.245)

for two arbitrary vectors u and v of the pseudo-Euclidean plane, so that ‖u ∧ v‖h2 ≤ 0

implies

(u · v)2 ≥ ‖u‖h2‖v‖h2, (2.246)

which is the analog of the Cauchy-Schwarz inequality for vectors of the pseudo-Euclidean

plane (note the difference in relation to the original inequality, given by (2.44)). In this

way, if u and v are time-like vectors with time-like coordinate of the same sign (which is

expressed in special relativity by saying that both vectors are directed either to the future

or to the past), one has

u · v ≥ ‖u‖h‖v‖h, (2.247)

so that

‖u + v‖h2 = ‖u‖h2 + ‖v‖h2 + 2(u · v) ≥ ‖u‖h2 + ‖v‖h2 + 2‖u‖h‖v‖h = (‖u‖h + ‖v‖h)2,

(2.248)



CHAPTER 2. INTRODUCTION TO CLIFFORD ALGEBRAS 58

which implies

‖u + v‖h ≥ ‖u‖h + ‖v‖h. (2.249)

This is the triangular inequality for time-like vectors of the pseudo-Euclidean plane whose

time-like coordinate has the same sign (note the difference in relation to (2.51)). The

hyperbolic angle α between these two vectors is such that

cosh(α) =
u · v

‖u‖h‖v‖h
(2.250)

and

sinh(α) =

√
−‖u ∧ v‖h2

‖u‖h‖v‖h
. (2.251)

This can be justified by writing

u = u(cosh(β)e1 + sinh(β)e2) and v = v(cosh(γ)e1 + sinh(γ)e2), (2.252)

so that

u · v = uv cosh(β) cosh(γ)− uv sinh(β) sinh(γ) = uv cosh(γ − β) (2.253)

and

u ∧ v = uv cosh(β) sinh(γ)e1e2 − uv sinh(β) cosh(γ)e1e2 = uv sinh(γ − β)e1e2. (2.254)

Note then that the conditions for parallelism and orthogonality for such vectors are the

same as for vectors of the Euclidean plane, (2.52) and (2.53), where the products must be

reconsidered according to the pseudo-Euclidean case.

Reflections and Rotations

The fact that the form of the conditions for parallelism and orthogonality are preserved in

the pseudo-Euclidean case, although the scalar product (hence the geometric product) is

different, implies that the expression for the reflection transformation has the same form.

Thus, the reflection of a vector v through a line with orthogonal vector u is also given by

v 7→ v′ = −uvu−1. (2.255)

However, there are two cases to consider: u2 = 1, which implies v′ = −uvu, and u2 = −1,

which implies v′ = uvu. In the first case the vector u is time-like and the reflection is

through a space-like line, that is, a line with space-like parallel vector. In this case, since
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u2 = ‖u‖h2 = 1, one can write

u = cosh(β)e1 + sinh(β)e2, (2.256)

and, with v = v1e1 + v2e2, the reflected vector v′ = −uvu is given by

v′ = −uvu

= −
(

cosh(β)e1 + sinh(β)e2

)
(v1e1 + v2e2)

(
cosh(β)e1 + sinh(β)e2

)
= −

((
cosh2(β)v1 + sinh2(β)v1 − 2 sinh(β) cosh(β)v2

)
e1+

+
(

2 sinh(β) cosh(β)v1 − cosh2(β)v2 − sinh2(β)v2

)
e2

)
=
(

sinh(2β)v2 − cosh(2β)v1

)
e1 +

(
cosh(2β)v2 − sinh(2β)v1

)
e2. (2.257)

Note that, in particular, if u = e1, then β = 0, hence

v′ = −v1e1 + v2e2, (2.258)

which corresponds to the vector v with the time-like component inverted. In the case that

u is space-like, the reflection of v is through a time-like line, that is, a line with time-like

parallel vector. In this case, where u2 = ‖u‖h2 = −1, one can write

u = sinh(β)e1 + cosh(β)e2. (2.259)

The reflected vector v′ = uvu is then given by

v′ = uvu

=
(

sinh(β)e1 + cosh(β)e2

)
(v1e1 + v2e2)

(
sinh(β)e1 + cosh(β)e2

)
=
((

sinh2(β)v1 + cosh2(β)v1 − 2 sinh(β) cosh(β)v2

)
e1+

+
(

2 sinh(β) cosh(β)v1 − cosh2(β)v2 − sinh2(β)v2

)
e2

)
=
(

cosh(2β)v1 − sinh(2β)v2

)
e1 +

(
sinh(2β)v1 − cosh(2β)v2

)
e2, (2.260)

In particular, if u = e2, then β = 0, hence

v′ = v1e1 − v2e2, (2.261)

which corresponds to the vector v with the space-like component inverted.

Similarly to rotations in the Euclidean plane, a hyperbolic rotation of a vector from

the pseudo-Euclidean plane can be described as a composition of two reflections. It is
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found that a hyperbolic rotation is given by

v 7→ v′ = LvL−1 = LvL̃, (2.262)

where L = u1u2, being u1 and u2 vectors such that u1
2 = u2

2 = 1. The object L is called

a rotor and can be written as

L = u1u2 = u1 · u2 + u1 ∧ u2, (2.263)

so that, if α is the hyperbolic angle between u1 and u2, a direct calculation furnishes

(cf. equations (2.253) and (2.254))

L = cosh(α) + sinh(α)e1e2. (2.264)

Analogously to the case of rotations in the Euclidean plane, it is observed that this rotor

describes a hyperbolic rotation in the sense of decreasing hyperbolic angle, in such way

that the choice of the bivector e2e1 in place of e1e2 is the appropriated one for the rotor

L to describe a hyperbolic rotation in the sense of increasing hyperbolic angle. Indeed,

given the rotor

L = cosh(α) + sinh(α)e2e1 (2.265)

and the vector v = v1e1 + v2e2, the rotated vector v′ = LvL̃ is given by

v′ =
(

cosh(α) + sinh(α)e2e1

)
(v1e1 + v2e2)

(
cosh(α)− sinh(α)e2e1

)
=
((

cosh2(α) + sinh2(α)
)
v1 +

(
2 sinh(α) cosh(α)

)
v2

)
e1+

+
((

2 sinh(α) cosh(α)
)
v1 +

(
cosh2(α) + sinh2(α)

)
v2

)
e2

=
(

cosh(2α)v1 + sinh(2α)v2

)
e1 +

(
sinh(2α)v1 + cosh(2α)v2

)
e2. (2.266)

This result can be expressed in matrix form as(
v1
′

v2
′

)
=

(
cosh(2α) sinh(2α)

sinh(2α) cosh(2α)

)(
v1

v2

)
, (2.267)

which in fact represents a hyperbolic rotation of the vector v by 2α, in the sense of

increasing hyperbolic angle. In this way, a hyperbolic rotation by a hyperbolic angle α in

the sense of increasing hyperbolic angle is described by the rotor

L = cosh
(α

2

)
+ sinh

(α
2

)
e2e1. (2.268)

Using the expressions as power series for the hyperbolic cosine and sine functions in the

above expression, and taking into account that (e2e1)2n = 1 and (e2e1)2n+1 = e2e1 for
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any non-negative integer n, one obtains

L =
∞∑
n=0

(α/2)2n

(2n)!
+
∞∑
n=0

(α/2)2n+1

(2n+ 1)!
e2e1

=
∞∑
n=0

(e2e1α/2)2n

(2n)!
+
∞∑
n=0

(e2e1α/2)2n+1

(2n+ 1)!

=
∞∑
n=0

(e2e1α/2)n

n!
, (2.269)

which can be written in terms of the exponential map as

L = exp

(
1

2
αe2e1

)
. (2.270)

In order to better illustrate a hyperbolic rotation, consider the rotated basis {e1
′, e2

′},
given by ei

′ = LeiL̃, for i ∈ {1, 2}, where L is the rotor given by the above expression. It

follows that

e1
′ = Le1L̃ = cosh(α)e1 + sinh(α)e2 (2.271)

and

e2
′ = Le2L̃ = sinh(α)e1 + cosh(α)e2. (2.272)

For a given α, an analysis of the orientation of the rotated basic vectors above, consisting

in the analysis of the functional behavior of their components, falls into the analysis of

the behavior of the hyperbolic sine and cosine functions, which allows one to observe that

a hyperbolic rotation by α of the basic vectors is performed as illustrated in figure 2.6,

if α > 0, and is performed as illustrated in figure 2.7, if α < 0. Indeed: α > 0 implies

cosh(α) > 1 and sinh(α) > 0; α < 0 implies cosh(α) > 1 and sinh(α) < 0; furthermore,

cosh(α) > sinh(α) for any α, and limα→∞ | cosh(α)− sinh(α)| = 0.

e1

e1
′

e2

e2
′

FIGURE 2.6 – Hyperbolic rotation
of the basic vectors e1 and e2 by the
same positive hyperbolic angle.

e1

e1
′

e2

e2
′

FIGURE 2.7 – Hyperbolic rotation
of the basic vectors e1 and e2 by the
same negative hyperbolic angle.



CHAPTER 2. INTRODUCTION TO CLIFFORD ALGEBRAS 62

2.3.3 The Minkowski Spacetime

A set S, whose elements are called points, is said to be an affine space if there exists a

map ϕ : S × S → V , for some finite-dimensional real vector space V , such that:

(1) For any point P from S and vector v from V , there is a unique point Q from S such

that ϕ(P,Q) = v;

(2) ϕ(P,Q) + ϕ(Q,R) = ϕ(P,R), for any points P , Q and R from S.

In this context, a useful notation for the map ϕ is given by ϕ(P,Q) =
−→
PQ. Note, from the

above properties, that
−→
PP = o (where o is the null vector from V ) and that

−→
PQ = −

−→
QP ,

for any points P and Q from S. The dimension of the affine space S is defined as the

dimension of the vector space V : dim(S) = dim(V ). An affine space of dimension 1

is called a line, an affine space of dimension 2 is called a plane, etc. Given a point P

from S, the set of vectors TP =
{−→
PQ

∣∣∣ Q ∈ S} from V can be combined to form a real

vector space, which is found to be isomorphic to V . Intuitively this means that there is

no preferred point in an affine space, so that any point can be taken as the origin of a

reference system.

Let V be a real vector space of dimension n. This vector space can be studied in terms

of the vectors from Rn, since V ' Rn. If S is an affine space of dimension n, a reference

frame of S is a pair (O, β), where O is a point from S and β = {u1, . . . ,un} is a basis

of Rn. If β = {e1, . . . , en} is the canonical basis of Rn, then (O, β) is called a canonical

reference frame of S. If a point P from S is such that the vector
−→
OP is given in terms of

the basis β = {u1, . . . ,un} of Rn by

−→
OP = x1u1 + · · ·+ xnun, (2.273)

then x1, . . . , xn, that is, the coordinates of the vector
−→
OP with relation to the basis β, are

called the coordinates of P with relation to the reference frame (O, β).

Consider the vector space R4 and let its canonical basis be denoted by β = {e0, e1, e2, e3},
in such way that a generic vector can be expressed by

x =
3∑

µ=0

xµeµ = x0e0 + x1e1 + x2e2 + x3e3. (2.274)

Consider then the symmetric bilinear form h : R4 × R4 → R given by

h(e0, e0) = −h(ei, ei) = 1, where i ∈ {1, 2, 3}, (2.275)
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and

h(eµ, eν) = 0, where µ, ν ∈ {0, 1, 2, 3} and µ 6= ν. (2.276)

The vector space R4 endowed with the symmetric bilinear form h is a pseudo-Euclidean

space, as discussed earlier, and it is denoted by R1,3. This space is called Minkowski vector

space. The pseudo-norm induced by the form h is given by

‖x‖h2 = x0
2 − x1

2 − x2
2 − x3

2, (2.277)

or,

‖x‖h2 = x0
2 −

3∑
i=1

xi
2. (2.278)

As in the case of the pseudo-Euclidean plane, any vector x from R1,3 can be classified

according to its pseudo-norm: it is time-like if ‖x‖h2 > 0, it is space-like if ‖x‖h2 < 0,

and it is a null vector or a light-like vector if ‖x‖h2 = 0.

The affine space associated to R1,3 is called the Minkowski spacetime, and its points

are called events. The term spacetime is frequently used as synonym of Minkowski space-

time. Given a canonical reference frame (O, β), the event of reference O is called origin,

and the coordinates of an arbitrary event P with relation to (O, β) are represented by

(x0, x1, x2, x3) = (ct, x, y, z), so that the vector

−→
OP = x0e0 + x1e1 + x2e2 + x3e3 = cte0 + xe1 + ye2 + ze3 (2.279)

is the representative of the event P in R1,3, with relation to (O, β). The coordinates

x1 = x, x2 = y and x3 = z are the rectangular coordinates of the event P relative to

(O, β), which localize the event in the three-dimensional Euclidean space. The coordinate

x0 = ct is the temporal coordinate of the event P relative to (O, β), being c the speed

of light in vacuum and t the time of occurrence of the event with relation to (O, β).

Given two events A and B, given respectively by (ctA, xA, yA, zA) and (ctB, xB, yB, zB),

the interval between A and B is a generalization of the concept of distance, which is given

by∥∥∥−→AB∥∥∥2

h
= h

(−→
AB,
−→
AB
)

= c2(tB − tA)2 − (xB − xA)2 − (yB − yA)2 − (zB − zA)2. (2.280)

Adopted a canonical reference frame and given an arbitrary event represented by the

vector x =
∑3

µ=0 xµeµ, the equation

‖x‖h2 = x0
2 − x1

2 − x2
2 − x3

2 = 0 (2.281)
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determines a geometric object which is called the light cone. For such an object, there

is no graphic representation, since it is a four-dimensional object. However, if a spatial

coordinate is ignored, which corresponds to take the intersection of the light cone with

a hyperplane given by xi = 0 (i ∈ {1, 2, 3}), the light cone can be represented by a

usual three-dimensional cone. If two spatial coordinates are disregarded, the resulting

space corresponds to the pseudo-Euclidean plane, and the light cone is reduced to the

assymptotes of the hyperbolas in the figure 2.4. The equations ‖x‖h2 = ±r2, where r is

a real constant, determine “hyper-hyperboloids”. The light cone can be decomposed into

two parts, one given by the equation x0 =
√
x1

2 + x2
2 + x3

2, which is called future light

cone, and another given by the equation x0 = −
√
x1

2 + x2
2 + x3

2, which is called past light

cone. The regions of the Minkowski space given by the inequalities x0 >
√
x1

2 + x2
2 + x3

2

and x0 < −
√
x1

2 + x2
2 + x3

2 are respectively called future and past, and the region given

by x0
2 < x1

2 + x2
2 + x3

2 is called present.

Adopting a canonical reference frame, consider a curve λ in spacetime parameterized

by a real variable α, which is represented by

λ : α ∈ R 7→ x = x(α) ∈ R1,3. (2.282)

A vector tangent to the curve λ in a generic point is given by

v = v(α) =
dx

dα
. (2.283)

The curve λ can be classified according to the classification of the vector v, as being time-

like or space-like or light-like. The trajectory of a particle in spacetime is called the world

line of the particle. A particle with non-null mass has a time-like world line, and light

has a light-like world line (this is why the null vectors of spacetime are called light-like).

Consider now a smooth time-like curve given by

λ : α ∈ [α0, α1] 7→ x = x(α) ∈ R1,3, (2.284)

where [α0, α1] is a real interval. The length L of λ is given by

L =

α1w

α0

√
h(v(α),v(α))dα. (2.285)

The time-like curve λ can be parameterized by its length `, such that 0 ≤ ` ≤ L, by

writing ` as function of α as

` = `(α) =

αw

α0

√
h(v(α′),v(α′))dα′, (2.286)
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and then inverting this equation in order to write α as function of `. According to the

fundamental theorem of calculus, the derivative of `(α) is given by

d`

dα
=

d

dα

αw

α0

√
h(v(α′),v(α′))dα′ =

√
h(v(α),v(α)). (2.287)

According to this result, another vector tangent to the curve λ is given by

v̂ =
dx

d`
=

dx

dα

dα

d`
= v

1√
h(v,v)

, (2.288)

which is a unit vector. In this way, a smooth time-like curve parameterized by its length

has unit tangent vector. In practice, one writes ` = cτ , where the parameter τ , which has

dimension of time, is called the proper time associated to the curve.

An observer is defined by a time-like curve parameterized by its proper time and

oriented towards the future, in the sense that its unit tangent vector has positive time

coordinate. In this way, an observer corresponds to the world line of a particle. If an

observer is given by a straight line, it is said to be an inertial observer ; in the corresponding

case of a particle, it is said to be in uniform motion. Since a straight line is determined

by a point and a parallel vector, one can define an inertial observer by a future-oriented

unit time-like vector, with the origin implied as the reference point.

An observer naturally “splits” spacetime into two “parts”, “time” and “space”. If an

observer has unit tangent vector v̂, this fact is formally described by

R1,3 = T ⊕ E, (2.289)

where T is the vector subspace of R1,3 generated by the unit tangent vector v̂, and E

is the orthogonal complement of T , that is, the vector subspace generated by any set of

vectors mutually orthogonal to v̂. Another observer also “splits” the spacetime into “time”

and “space”, although in a distinct way, according to its unit tangent vector.

2.3.4 The Geometric Algebra of Minkowski Spacetime

In practice, events in Minkowski spacetime are considered with relation to a reference

frame, so that the study of phenomena in spacetime is generally made in terms of the

Minkowski vector space, R1,3. In this respect, in order to study geometry and physics of

spacetime, the geometric algebra of Minkowski vector space can be constructed as follows.

The fundamental property of the geometric product is given by

u2 = h(u,u) = ‖u‖h2, (2.290)



CHAPTER 2. INTRODUCTION TO CLIFFORD ALGEBRAS 66

for any vector u from R1,3, or, in terms of components relative to the canonical basis,

(u0e0 + u1e1 + u2e2 + u3e3)(u0e0 + u1e1 + u2e2 + u3e3) = u0
2 − u1

2 − u2
2 − u3

2. (2.291)

Considering the bilinearity of the geometric product, one can write

u0
2e0

2 + u1
2e1

2 + u2
2e2

2 + u3
2e3

2+

+ u0u1(e0e1 + e1e0) + u0u2(e0e2 + e2e0) + u0u3(e0e3 + e3e0)+

+ u1u2(e1e2 + e2e1) + u1u3(e1e3 + e3e1) + u2u3(e2e3 + e3e2) =

= u0
2 − u1

2 − u2
2 − u3

2. (2.292)

For this equation to be satisfied, one must have

e0
2 = 1 and ei

2 = −1, where i ∈ {1, 2, 3}, (2.293)

and

eµeν = −eµeν , where µ, ν ∈ {0, 1, 2, 3} and µ 6= ν. (2.294)

These are the basic relations for calculation of the geometric product of the geometric

algebra of the Minkowski vector space in terms of the canonical basic vectors. Applying

it to the calculation of the geometric product of two arbitrary vectors u =
∑3

µ=0 uµeµ and

v =
∑3

µ=0 vµeµ, one obtains

uv = (u0e0 + u1e1 + u2e2 + u3e3)(v0e0 + v1e1 + v2e2 + v3e3)

= (u0v0 − u1v1 − u2v2 − u3v3)+

+ (u0v1 − u1v0)e0e1 + (u0v2 − u2v0)e0e2 + (u0v3 − u3v0)e0e3+

+ (u1v2 − u2v1)e1e2 + (u1v3 − u3v1)e1e3 + (u2v3 − u3v2)e2e3, (2.295)

which corresponds to the sum of a symmetric part and an antisymmetric part under the

exchange of the vectors u and v. Since the geometric product of two vectors can be

uniquely written in the form

uv =
1

2
(uv + vu) +

1

2
(uv − vu), (2.296)

where the first term is symmetric and the second term antisymmetric under the exchange

of u and v, one can write

uv = u · v + u ∧ v, (2.297)

where are defined the scalar product and the exterior product, respectively, by

u · v =
1

2
(uv + vu) = u0v0 − u1v1 − u2v2 − u3v3 = h(u,v) (2.298)
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and

u ∧ v =
1

2
(uv − vu)

= (u0v1 − u1v0)e0e1 + (u0v2 − u2v0)e0e2 + (u0v3 − u3v0)e0e3+

+ (u1v2 − u2v1)e1e2 + (u1v3 − u3v1)e1e3 + (u2v3 − u3v2)e2e3. (2.299)

As in the cases considered before, the objects of the form u ∧ v, such as e0 ∧ e1 = e0e1,

e1∧e2 = e1e2, etc., define bivectors, which form their own vector space and are interpreted

as oriented parallelograms in a four-dimensional space (this interpretation is independent

on the metric properties of R1,3, determined by the form h). The exterior product can

then be taken successively, by considering it to be associative, in order to produce higher

dimensional objects. In this manner, by considering the possible combinations of the basic

vectors eµ (µ ∈ {0, 1, 2, 3}) to form a higher dimensional exterior product with a certain

number of vectors, it is found that there is, up to a sign, in addition to 6 basic bivectors

(i.e. e0e1, e0e2, e0e3, e1e2, e1e3, e2e3), 4 basic trivectors (i.e. e0e1e2, e0e1e3, e0e2e3, e1e2e3),

and 1 quadrivector (i.e. e0e1e2e3). The vector space of real scalars can now be denoted

by
∧0(R1,3) and the vector space of vectors can be denoted by

∧1(R1,3). The bivectors

form a 6-dimensional vector space, which is denoted by
∧2(R1,3), the trivectors form

a 4-dimensional vector space denoted by
∧3(R1,3), and the quadrivectors form an one-

dimensional vector space denoted by
∧4(R1,3). The vector spaces of the form

∧k(R1,3)

can then be combined through a direct sum to form the multivector space

∧(
R1,3

)
=

4⊕
k=0

∧
k
(
R1,3

)
, (2.300)

whose elements are called multivectors. Defining then the geometric product of a scalar

with a multivector as the multiplication of the multivector by the scalar, and extending the

geometric product to arbitrary multivectors by bilinearity and associativity, it follows that

the vector space
∧

(R1,3) endowed with the geometric product determines an associative

algebra over the field of real scalars, the geometric algebra of Minkowski spacetime, or the

Clifford algebra of Minkowski spacetime, which is denoted by C`(R1,3, h), or C`1,3(R), or

C`1,3.

Projection, Graded Involution, Reversion, the Norm and the Inverse

The operations of projection, graded involution and reversion are defined for multivectors

of the geometric algebra of spacetime in the same way as for the algebras introduced
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earlier, but with the maximum grade of the multivectors taken as 4:

〈A〉k = Ak, Â =
4∑

k=0

(−1)k〈A〉k, and Ã =
4∑

k=0

(−1)
1
2
k(k−1)〈A〉k. (2.301)

In this way, for an arbitrary multivector A =
∑4

k=0Ak, one has

Â = A0 − A1 + A2 − A3 + A4 and Ã = A0 + A1 − A2 − A3 + A4. (2.302)

The properties of these operations already presented remain valid, since they are inherent

to the multivector structure. In particular, one has

〈AB〉 = 〈BA〉, (2.303)

for arbitrary multivectors A and B, which implies in the invariance of the scalar part of a

geometric product under cyclic permutations of the multivectors in the product. The fact

that the reversion of a geometric product of multivectors corresponds to the geometric

product in the opposite order of the reverses of the multivectors also holds,

˜(AB · · ·C) = C̃ · · · B̃Ã. (2.304)

Differently from the geometric algebras already considered, there is no standard way

to define a pseudo-norm for an arbitrary multivector A from C`1,3, since AÃ is not a

scalar, in general. However, the pattern of the previous definitions of norm/pseudo-norm

fits naturally for most multivectors of C`1,3, and does not represent any complication for

future constructions. Then, the pseudo-norm of a multivector A from C`1,3 can be defined

by

‖A‖h2 =
〈
ÃA
〉

=
〈
AÃ
〉
. (2.305)

Note that AÃ is an even grade multivector and that it is equal to its reverse, so that it

is a scalar plus a pseudoscalar. It follows that AÃ has a multiplicative inverse, provided

it is different from zero. Indeed, by writing AÃ = ρeIβ, where ρ, β ∈ R and ρ > 0, one

can identify
(
AÃ
)−1

= ρ−1e−Iβ as the inverse of AÃ = ρeIβ. In this way, the definition

of pseudo-norm is not necessary for defining the inverse, which can be defined by

A−1 = Ã
(
AÃ
)−1

, (2.306)

provided that

AÃ 6= 0. (2.307)
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Interior, Exterior and Commutator Products

A similar argumentation to that used in the case of the geometric algebra of the three-

dimensional Euclidean space (cf. subsection 2.2.3) leads to the definition of contraction

from the left of the multivector A by the vector u, or interior product of the vector u with

the multivector A,

u · A =
1

2

(
uA− Âu

)
. (2.308)

As in that subsection, it is found that the exterior product of a vector u with a multivector

A can be expressed as

u ∧ A =
1

2

(
uA+ Âu

)
. (2.309)

In terms of these two operations the geometric product of u with A can be written

uA = u · A+ u ∧ A. (2.310)

In the same way, the contraction from the right of the multivector A by the vector u, or

the interior product of the vector u with the multivector A, is defined by

A · u =
1

2

(
Au− uÂ

)
. (2.311)

The exterior product of A with u can also be written

A ∧ u =
1

2

(
Au + uÂ

)
. (2.312)

In this way, the geometric product of the multivector A with the vector u can be expressed

as

Au = A · u + A ∧ u. (2.313)

As before, it is found that, in general, the interior and exterior products do not commute

or anticommute, but satisfy

u · A = −Â · u and u ∧ A = Â ∧ u. (2.314)

If A and B are bivectors, writing A = u∧v = uv, where u and v are vectors satisfying

u · v = 0, it follows that

AB = uvB

= u(v ·B + v ∧B)

= u · (v ·B) + u · (v ∧B) + u ∧ (v ·B) + u ∧ v ∧B

= u · (v ·B) + u · (v ∧B) + u ∧ (v ·B) + A ∧B. (2.315)
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The term u·(v·B) in the resulting expression is a scalar, since it is the result of two followed

interior products with a vector applied on a bivector. The term A ∧B is a quadrivector,

since it is the exterior product of two bivectors. The remain terms are bivectors, since

both are the result of the combination of an interior and an exterior product with a vector

applied on a bivector. The geometric product AB can then be written

AB = 〈AB〉0 + 〈AB〉2 + 〈AB〉4. (2.316)

But, note that such a product can be written as the sum of a symmetric part and an

antisymmetric part in relation to the exchange of the bivectors:

AB =
1

2
(AB +BA) +

1

2
(AB −BA). (2.317)

Since the symmetric part is invariant and the antisymmetric part changes the sign under

the reversion operation, one identifies the symmetric part as the scalar part plus the

quadrivector part and the antisymmetric part as the bivector part:

〈AB〉0 + 〈AB〉4 =
1

2
(AB +BA) and 〈AB〉2 =

1

2
(AB −BA). (2.318)

In general, the antisymmetric part of the geometric product of two arbitrary multivectors

A and B is defined as the commutator product of A and B, which is denoted by

A×B =
1

2
(AB −BA). (2.319)

It is found that the commutator product satisfies the Jacobi identity, that is,

A× (B × C) + C × (A×B) +B × (C × A) = 0, (2.320)

for any multivectors A, B and C, which can be verified by applying directly the definition

of the commutator product.

Note that, given a bivector B and a vector u, one has

B × u =
1

2
(Bu− uB) = B · u, (2.321)

which results in a vector. In this way, for a bivector B and a k-vector Ak = u1 · · ·uk,
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being the k vectors (2 ≤ k ≤ 4) u1, . . . ,uk mutually orthogonal, one has

B(u1 · · ·uk) = (2B · u1 + u1B)u2 · · ·uk
= 2(B · u1)u2 · · ·uk + u1Bu2 · · ·uk
= 2(B · u1)u2 · · ·uk + u1(2B · u2 + u2B)u3 · · ·uk
= 2(B · u1)u2 · · ·uk + · · ·+ 2u1 · · ·uk−1(B · uk) + (u1 · · ·uk)B, (2.322)

that is,

B × (u1 · · ·uk) =
k∑
i=1

u1 · · · (B · ui) · · ·uk. (2.323)

The right-hand side of the resulting expression is at principle a multivector with grades

k and k − 2. But, it follows that

˜(B × Ak) =
1

2

(
ÃkB̃ − B̃Ãk

)
=

1

2

(
−ÃkB +BÃk

)
= B × Ãk
= (−1)

1
2
k(k−1)B × Ak (2.324)

that is, B × Ak transforms in the same way as Ak under reversion. Since multivectors

of grade k and k − 2 transform in different ways under reversion, which follows from the

fact that (−1)
1
2
k(k−1)/(−1)

1
2

(k−2)(k−3) = −1, the multivector B × Ak must have grade k.

Therefore, the commutator product of a bivector with any multivector preserves the grade

of the multivector:

B × Ak = 〈B × Ak〉k. (2.325)

This result is general and applies to multivectors of an arbitrary geometric algebra.

Inequalities, Parallelism and Orthogonality

The hyperbolic angle α between two time-like vectors u and v, both either directed to

the future or to the past, is given by

cosh(α) =
u · v

‖u‖h‖v‖h
. (2.326)

From this expression, one can write also

sinh(α) =

√
−‖u ∧ v‖h2

‖u‖h‖v‖h
. (2.327)



CHAPTER 2. INTRODUCTION TO CLIFFORD ALGEBRAS 72

Furthermore, expression (2.326) implies also in the reversed Cauchy-Schwarz inequality:

(u · v)2 ≥ ‖u‖h2‖v‖h2. (2.328)

From this inequality it follows, in turn, that

‖u + v‖h2 = ‖u‖h2 + ‖v‖h2 + 2(u · v) ≥ ‖u‖h2 + ‖v‖h2 + 2‖u‖h‖v‖h = (‖u‖h + ‖v‖h)2,

(2.329)

which implies the reversed triangular inequality:

‖u + v‖h ≥ ‖u‖h + ‖v‖h. (2.330)

The angle θ between two space-like vectors u and v is given by

cos(θ) =
u · v

‖u‖h‖v‖h
. (2.331)

From this expression, one can write

sin(θ) =
‖u ∧ v‖h
‖u‖h‖v‖h

. (2.332)

For space-like vectors, the Cauchy-Schwarz inequality in its usual form holds:

(u · v)2 ≤ ‖u‖h2‖v‖h2. (2.333)

For two arbitrary vectors u and v, one can define the condition for orthogonality as

u · v, or, in terms of the geometric product, uv = −vu. The condition for parallelism

can be taken as u ∧ v = 0, that is, uv = vu. As in the three-dimensional Euclidean

case, given a vector u and a bivector B, the condition for orthogonality can be taken as

u ·B = 0, and the condition for parallelism can be taken as u ∧B = 0. In the same way,

given two bivectors A and B, the condition for orthogonality is taken to be 〈AB〉 = 0,

and the condition for parallelism is taken to be A×B = 0.

Now, observe that a trivector, like e0e1e2, determine a hyperplane (a hyperplane in an

n-dimensional space is an (n − 1)-dimensional subspace), which can also be determined

by its orthogonal line. Observe then that, for example, the vector e3 is orthogonal to the

vectors e0, e1 and e2, and one has

e3 · (e0e1e2) = 0. (2.334)

In general, it follows that

eµ · (eνeρeσ) = 0, (2.335)
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for distinct µ, ν, ρ and σ, and one can say that the vector eµ is orthogonal to the trivector

eνeρeσ, and also to the hyperplane determined by this trivector. Thus the condition for

orthogonality of a vector u and a trivector T can be taken as u · T = 0. On the other

hand, since the exterior product of four linearly dependent vectors from R1,3 is zero, the

exterior product of a vector u with a trivector T = v∧w∧x is zero if and only if the set of

vectors {u,v,w,x} is linearly dependent, which means that u belongs to the hyperplane

determined by T . The condition for parallelism of a vector u and a trivector T is then

u ∧ T = 0.

Pseudoscalars, Orientation and Duality

Quadrivectors are also called pseudoscalars, since any quadrivector is a scalar multiple

of the unit pseudoscalar I = e0e1e2e3. Note that the unit pseudoscalar is equal to its

reverse,

Ĩ = I, (2.336)

and that

I2 = ĨI = (e3e2e1e0)(e0e1e2e3) = −1. (2.337)

Another important property of pseudoscalars is that they anticommute with vectors, from

which follows that they also anticommute with trivectors and commute with any even

grade multivector. Note also that

(̂AkI) = ÂkI, (2.338)

for any k-vector Ak from C`1,3. Therefore, given a vector u and a k-vector Ak, it follows

that

u · (AkI) =
1

2

(
uAkI − (̂AkI)u

)
=

1

2

(
uAkI − ÂkIu

)
=

1

2

(
uAk + Âku

)
I

= (u ∧ Ak)I. (2.339)

The unit pseudoscalar I defines an orientation for Minkowski spacetime, which is

conventionally considered as a positive orientation. Another unit pseudoscalar defines

either the same or the opposite orientation, depending on whether its sign is the same

or different from that of I. In the case of the three-dimensional Euclidean space, the

orientation conventionally considered to be positive is that determined by the pseudoscalar

e1e2e3.
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The Hodge isomorphism or Hodge duality is defined for C`1,3 in a way analogous to

that for C`3,0. The Hodge dual of a k-vector Ak is a (4− k)-vector ?Ak given by

?Ak = ÃkI. (2.340)

Observe that, the Hodge dual of a scalar is a pseudoscalar, and vice versa, the Hodge dual

of a vector is a trivector (also called in this context a pseudovector), and vice versa, and

the Hodge dual of a bivector is another bivector. In particular, one has the relations in

the following table.

?1 = I = e0e1e2e3

?e0 = e1e2e3

?e1 = e2e3e0

?e2 = e3e1e0

?e3 = e1e2e0

?(e1e0) = e2e3

?(e2e0) = e3e1

?(e3e0) = e1e2

?(e1e2) = −e3e0

?(e3e1) = −e2e0

?(e2e3) = −e1e0

?(e1e2e3) = e0

?(e1e2e0) = e3

?(e3e1e0) = e2

?(e2e3e0) = e1

?I = ?(e0e1e2e3) = −1

TABLE 2.2 – Hodge duals of the basic multivectors from C`1,3.

In general, ?Ak furnishes a (4− k)-vector determining the orthogonal complement of the

subspace determined by Ak.

The Even Subalgebra and the Algebra of Biquaternions

Let C`1,3
+ be the set formed by even grade multivectors from C`1,3, that is, the set of

multivectors A satisfying Â = A:

C`1,3
+ =

{
A
∣∣∣ A ∈ C`1,3 and Â = A

}
. (2.341)
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If C`1,3
+, then A is the sum of a scalar, a bivector and a pseudoscalar, and it can be

written

A = a+ a10e1e0 + a20e2e0 + a30e3e0 + a12e1e2 + a31e3e1 + a23e2e3 + a0123I. (2.342)

An even grade multivector can be expressed without reference to any basis as

M = α +B + βI, (2.343)

where α and β are scalars and B is a bivector. So, given the even grade multivectors

M1 = α1 +B1 + β1I and M2 = α2 +B2 + β2I, it follows that

M1M2 = (α1 +B1 + β1I)(α2 +B2 + β2I)

= α1α2 + α1B2 + α1β2I + α2B1 +B1B2 + β2B1I + β1α2I + β1B2I − β1β2

=
(
α1α2 + 〈B1B2〉 − β1β2

)
+

+
(
α1B2 + α2B1 +B1 ×B2 + β2B1I + β1B2I

)
+

+
(
α1β2I + β1α2I +B1 ∧B2

)
. (2.344)

Therefore, the geometric product of two even grade multivectos is also an even grade mul-

tivector, in such way that the vector subspace determined by elements of C`1,3
+ endowed

with the geometric product is a subalgebra of C`1,3, the even subalgebra of C`1,3, which is

also denoted by C`1,3
+.

Consider the following notation: I = e2e3, J = e3e1, K = e1e2, and i = I. Observe

then from (2.342), and from the relations on the table 2.2, that an element of C`1,3
+ can

be written in the form

A = (x0 + y0i) + (x1 + y1i)I + (x2 + y2i)J + (x3 + y3i)K, (2.345)

which resembles a quaternion, although with complex components. Quaternions with

complex components are called biquaternions and form an 8-dimensional real algebra (or

a 4-dimensional complex algebra), denoted by C ⊗ H. Note then that the bivectors I, J

and K satisfy

I2 = J2 = K2 = IJK = −1, (2.346)

which are identical to the basic relations defining the product of quaternions (cf. relations

(2.164)), which also hold for biquaternions. Therefore, one can conclude that the even

subalgebra C`1,3
+ is isomorphic to the real algebra of biquaternions, C⊗H, through the

identification of the bivectors I, J and K with the unit quaternions i, j and k, and through

the identification of the unit pseudoscalar i = I with the imaginary unit
√
−1, in addition
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to the identification of the geometric product with the product of biquaternions.

Reflections and Rotations

As seen before, the form of the conditions for parallelism and orthogonality for vectors are

preserved in the pseudo-Euclidean case, although the scalar product (hence the geometric

product) is different. This implies that the expression for a reflection transformation has

the same form: the reflection of a vector v through a hyperplane with orthogonal vector

u is given by

v 7→ v′ = −uvu−1. (2.347)

As in the cases already considered, it is found that two reflections describe a rotation

in Minkowski spacetime. But, as in the case of the pseudo-Euclidean plane, there are

two types of reflections to consider, that performed through a hyperplane with time-like

orthogonal vector and that performed through a hyperplane with space-like orthogonal

vector. A generic reflection of a vector v through a hyperplane with orthogonal vector u

reverses the component of v parallel to u and preserves the component of v orthogonal to

u. In this way, a time-like reflection reverses the corresponding time-like component of a

vector, but preserves its space-like component, whereas a space-like reflection reverses the

corresponding space-like component of a vector, reversing also the orientation of a three-

dimensional volume element, but preserves time-like components. In this respect, the

“proper rotations”, understood as orthogonal transformations with determinant +1 which

preserve both the orientation of time-like components (future or past) and the orientation

of a three-dimensional volume element, consist in either (I) a pair of time-like reflections,

or (II) a pair space-like reflections, or, more generally, the composition of a type I and a

type II rotations. These types of rotations are considered in the following.

A rotation of type I can be expressed by

v 7→ v′ = RvR−1 = RvR̃, (2.348)

where R = u2u1 and u1
2 = u2

2 = 1. If the unit time-like vectors u1 and u2 are both

either future-oriented or past-oriented, the rotor R can be written

R = u2 · u1 + u2 ∧ u1 = cosh
(α

2

)
+ sinh

(α
2

)
B, (2.349)

where α/2 is the hyperbolic angle between u1 and u2, and

B =
u2 ∧ u1√
−‖u2 ∧ u1‖h2

. (2.350)

The bivector B satisfies B2 = −‖B‖h2 = 1 and is called a time-like bivector. Expressing
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the cosine and sine hyperbolic functions in the expression for R as power series, one can

write

R = exp

(
1

2
αB

)
. (2.351)

Analogously to the case of the pseudo-Euclidean plane, the rotation given by (2.348),

where the rotor R is given by (2.351), is a hyperbolic rotation by a hyperbolic angle α

through the plane given by the unit time-like bivector B, in this case, in the sense from

u1 to u2. For the case where the unit time-like vectors u1 and u2 are such that one is

future-oriented and the other is past-oriented, one can write the rotor R in (2.348) as

R = u2 · u1 + u2 ∧ u1 = −
(
u2 · (−u1) + u2 ∧ (−u1)

)
, (2.352)

where the resulting scalar and exterior products involve a pair of either future-oriented or

past-oriented vectors. In this case, the rotor R can be written as

R = −
(

cosh
(α

2

)
+ sinh

(α
2

)
B
)
, (2.353)

where α/2 is the hyperbolic angle between −u1 and u2 (or, equivalently, the hyperbolic

angle between u1 and −u2), and

B =
u2 ∧ (−u1)√
−‖u2 ∧ (−u1)‖h2

(2.354)

is a unit time-like bivector. The rotor R in this case can be expressed by

R = − exp

(
1

2
αB

)
. (2.355)

The rotation in question is a hyperbolic rotation by a hyperbolic angle α through the

plane given by the unit time-like bivector B in the sense from −u1 to u2 (or, equivalently,

in the sense from u1 to −u2). Note that the negative sign in the expression for the rotor

R has no influence in the result of its application in a vector.

A rotation of type II can be expressed by

v 7→ v′ = RvR−1 = RvR̃, (2.356)

where R = u2u1 and u1
2 = u2

2 = −1. In this case, the rotor R can be written

R = u2 · u1 + u2 ∧ u1 = cos

(
θ

2

)
+ sin

(
θ

2

)
B, (2.357)
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where θ/2 is the angle between u1 and u2, and

B =
u2 ∧ u1

‖u2 ∧ u1‖h
. (2.358)

The bivector B satisfies B2 = −‖B‖h2 = −1 and is called a space-like bivector. Expressing

the cosine and sine functions in the expression for R as power series, one can write

R = exp

(
1

2
θB

)
. (2.359)

Analogously to the case of rotations in the three-dimensional Euclidean space, the rotation

given by (2.356), where the rotor R is given by (2.359), it is found to be a “circular” or

a “spatial” rotation (to differ from hyperbolic rotations) by an angle θ through the plane

given by the unit space-like bivector B, in this case, in the sense from u1 to u2.

A general rotation in spacetime is given by

v 7→ v′ = RvR−1 = RvR̃, (2.360)

where

R = LU, (2.361)

with L being a rotor describing a hyperbolic rotation and U being a rotor describing a

spatial rotation. Such a general rotation in spacetime can be extended to be applied to a

generic multivector A through the expression

A 7→ A′ = RAR−1 = RAR̃. (2.362)

Note that, as in the three-dimensional Euclidean case, the set of the rotors of C`1,3
+

can be characterized as {
R
∣∣∣ R ∈ C`1,3

+ and R̃R = RR̃ = 1
}
. (2.363)

As in the three-dimensional Euclidean case, it is easy to verify that the set of rotors

endowed with the geometric product has the structure of a group. This group is denoted

by Spin+(1, 3), and a rotor of C`1,3
+ can be characterized as an element of this group.

The fact that the rotors R and −R produce the same rotation is an expression of

the fact that Spin+(1, 3) is a double covering of SO+(1, 3) (i.e. there is a two-to-one

correspondence between rotors from Spin+(1, 3) and special orthogonal transformations

in spacetime). Since it is known that the group SL(2,C) is also a double covering of

SO+(1, 3), one can conclude that Spin+(1, 3) is isomorphic to SL(2,C).
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In the same way as an even grade multivector ψ from C`3,0
+ can be written in the

form ψ =
√
ρR, where ρ ∈ R and R ∈ Spin(3), an even grade multivector from C`1,3

+

admits also a factored form, as can be seen below. Given an even grade multivector ψ

from C`1,3
+, it follows that ψψ̃ is also an even grade multivector, and it is equal to its

reverse. Then, ψψ̃ is a scalar plus a pseudoscalar, which can be written as

ψψ̃ = ρeIβ, (2.364)

where ρ, β ∈ R and ρ > 0. In this way, from ψ one can define an even grade multivector

of unit pseudo-norm, more precisely a rotor, given by

R = ψ
(
ψψ̃
)− 1

2 = ψρ−
1
2 e−

1
2
Iβ. (2.365)

From this expression it follows that ψ can be written as

ψ = ρ
1
2 e

1
2
IβR, (2.366)

which is the desired factored form for ψ. Thus, any even grade multivector of the geometric

algebra of spacetime can be factored as a geometric product of a scalar, an exponential

of a pseudoscalar and a rotor.



3 Relativistic Physics in terms of

Clifford Algebras

Based essentially on chapters 5 and 7 of the textbook by Doran and Lasenby (2003),

this chapter is intended to serve as a concise introduction to the basics of the relativistic

formalism in terms of the geometric algebra of spacetime. The focus is on the Lorentz

transformations and the covariant formulation of Maxwell’s equations. Any standard

introduction to relativity can be considered as a background reference, e.g. the texts of

Rindler (2006) and d’Inverno (1992). For the part on Maxwell’s equations, the texts by

Jackson (1999) and Schwinger et al. (1998) are taken as background references.

3.1 Preliminaries

It is natural that the three-dimensional Euclidean space is included in the Minkowski

spacetime. In this way, it is very sensible to propose an inclusion of C`3,0 into C`1,3. In

order to introduce and apply this inclusion, appropriate notations and conventions must

be used.

3.1.1 Notation and Conventions

Regarding the notation to be used, vectors from R3 are represented by letters in boldface

(usually lowercase, not necessarily Latin), e.g. a, b, α, β, etc. In particular, the canonical

basis from R3 is represented by {σ1,σ2,σ3}. Vectors from R1,3 are represented by letters

in normal font (usually lowercase letters, not necessarily Latin), e.g. a, b, α, β, etc. In

particular, the canonical basis from R1,3 is represented by {γ0, γ1, γ2, γ3}. As a convention,

unless specified, lowercase Greek letters (e.g. µ, ν) are used to represent indices assuming

integer values from 0 to 3, and lowercase Latin letters (e.g. i, j, k) are used to represent

indices assuming integer values from 1 to 3. The Einstein summation convention is also

used: if an index appear twice in a term, once as subscript and once as superscript, then

a summation is implied with relation to this index (e.g. the vector a =
∑3

µ=0 a
µγµ can be
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expressed simply by a = aµγµ).

3.1.2 The Isomorphism C`3,0 ' C`1,3
+

Note that the basic time-like bivectors from C`1,3, γ1γ0, γ2γ0 and γ3γ0, are all square roots

of the unit and satisfy

1

2

(
(γiγ0)(γjγ0) + (γjγ0)(γiγ0)

)
=

1

2
(−γiγj − γjγi) = −γi · γj = δij, (3.1)

Note also that

1

2

(
(γiγ0)(γjγ0)− (γjγ0)(γiγ0)

)
=

1

2
(−γiγj + γjγi)

=
1

2

(
− εijk ? (γkγ0) + εji` ? (γ`γ0)

)
= −εijk ? (γkγ0)

= εijkI(γkγ0) = γj ∧ γi, (3.2)

where I = γ0γ1γ2γ3 is the unit pseudoscalar of C`1,3. The sum of (3.1) and (3.2) then

furnishes

(γiγ0)(γjγ0) = δij + εijkI(γkγ0), (3.3)

which is either a scalar or a space-like bivector. The basic space-like bivectors can be

expressed as I(γiγ0), and from relations (3.1) and (3.2) one can write also

1

2

(
(Iγiγ0)(Iγjγ0) + (Iγjγ0)(Iγiγ0)

)
= −1

2

(
(γiγ0)(γjγ0) + (γjγ0)(γiγ0)

)
= −δij (3.4)

and

1

2

(
(Iγiγ0)(Iγjγ0)−(Iγjγ0)(Iγiγ0)

)
=−1

2

(
(γiγ0)(γjγ0)−(γjγ0)(γiγ0)

)
=−εijkI(γkγ0), (3.5)

the sum of which gives

(Iγiγ0)(Iγjγ0) = −δij − εijkI(γkγ0), (3.6)

which in turn is either a scalar or a space-like bivector. Also from relations (3.1) and (3.2)

one can write

1

2

(
(γiγ0)(Iγjγ0) + (Iγjγ0)(γiγ0)

)
= I

1

2

(
(γiγ0)(γjγ0) + (γjγ0)(γiγ0)

)
= δijI (3.7)
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and

1

2

(
(γiγ0)(Iγjγ0)−(Iγjγ0)(γiγ0)

)
= I

1

2

(
(γiγ0)(γjγ0)−(γjγ0)(γiγ0)

)
= −εijk(γkγ0). (3.8)

whose sum gives

(γiγ0)(Iγjγ0) = δijI − εijk(γkγ0), (3.9)

which in turn is either a pseudoscalar or a time-like bivector. The relations (3.3), (3.6)

and (3.9), in conjunction with the relations for the products involving 1 and I, determine

the product of the even subalgebra C`1,3
+ in terms of the basic even grade multivectors.

On the other hand, the basic vectors σ1, σ2 and σ3 from C`3,0 are also found to be

square roots of the unit and satisfy relations analogous to (3.1) and (3.2), that is,

1

2
(σiσj + σjσi) = σi · σj = δij (3.10)

and
1

2
(σiσj − σjσi) = σi ∧ σj = εijkIσk, (3.11)

where, in this case, I = σ1σ2σ3 is the unit pseudoscalar from C`3,0. The sum of the

relations (3.10) and (3.11) provides

σiσj = δij + εijkIσk, (3.12)

which is either a scalar or a bivector. From relations (3.10) and (3.11) one can write

1

2
(IσiIσj + IσjIσi) = −σi · σj = −δij (3.13)

and
1

2
(IσiIσj − IσjIσi) = −σi ∧ σj = −εijkIσk, (3.14)

whose sum gives

(Iσi)(Iσj) = −δij − εijkIσk, (3.15)

which in turn is either a scalar or a bivector. Also from relations (3.10) and (3.11) one

can write
1

2
(σiIσj + Iσjσi) = I(σi · σj) = δijI (3.16)

and
1

2
(σiIσj − Iσjσi) = I(σi ∧ σj) = −εijkσk, (3.17)

whose sum gives

(σi)(Iσj) = δijI − εijkσk, (3.18)

which in turn is either a pseudoscalar or a vector. The relations (3.12), (3.15) and (3.18),
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in conjunction with the relations for the products involving 1 and I, determine the product

of the algebra C`3,0. It is remarkable that these relations are identical to (3.3), (3.6) and

(3.9), respectively, if one replaces σi by γiγ0. In addition, note that this replacement

implies

σ1σ1σ3 = (γ1γ0)(γ2γ0)(γ3γ0) = γ0γ1γ2γ3, (3.19)

which is compatible with the correspondence between the pseudoscalars from both sets of

relations. The conclusion is that the geometric algebra of the three-dimensional Euclidean

space is isomorphic to the even subalgebra of the algebra of Minkowski spacetime through

the identification of σi with γiγ0, and through the identification of the units and the

geometric products of both. This fact is denoted by C`3,0 ' C`1,3
+. This isomorphism

determines the inclusion of C`3,0 into C`1,3.

In applications involving the geometric algebra of spacetime, it is common practice

to use the isomorphism C`3,0 ' C`1,3
+ and set σi = γiγ0, in addition to the use of the

same notation for the pseudoscalars from the equivalent algebras. In this context, the

time-like bivectors, which correspond to three-dimensional vectors, are denoted as such,

in boldface, and scalar and exterior products involving only vectors denoted in boldface

correspond to the three-dimensional Euclidean scalar and exterior products. Otherwise

the products are interpreted as those from the geometric algebra of spacetime.

According to the isomorphism C`3,0 ' C`1,3
+, scalars from C`3,0 are mapped to scalars

from C`1,3
+, vectors from C`3,0 are mapped to time-like bivectors from C`1,3

+, bivectors

from C`3,0 are mapped to space-like bivectors from C`1,3
+, and pseudoscalars from C`3,0

are mapped to pseudoscalars from C`1,3
+. In this respect, one notes that the reversion

operation for C`3,0 is not coincident to that for C`1,3
+. The three-dimensional Euclidean

reversion operation is then denoted by a superscript dagger symbol, e.g. A†, while the

spacetime reversion continues to be denoted by an overwritten tilde symbol, e.g. Ã.

3.2 Relativistic Observables

As outlined before (cf. subsection 2.3.3), adopted a canonical reference frame, determined

by the canonical basis of R1,3, the trajectory of a particle with non-null mass in spacetime

is a time-like curve, that is, a curve with a time-like tangent vector. The trajectory of

light (or a massless particle, in general) is a light-like curve. Since two events with a

space-like separation do not have a causal connection, space-like curves cannot represent

trajectories of known particles. These facts are consequences of the two postulates of

the special theory of relativity, the principle of relativity and the invariance of the speed

of light c. Thus, all of the above applies only if the canonical reference frame adopted

complies with the principle of inertia of classical mechanics.
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A natural parameterization for a curve is made through its length `, since a curve

parameterized by its length has unit tangent vector. For a time-like curve, one writes

` = cτ , where the new parameter τ corresponds to the elapsed time for an observer

following this curve, the proper time associated to the curve. For a massive particle

following a curve x = x(τ), the spacetime velocity v = v(τ) is defined by

v = ẋ =
dx

dτ
, (3.20)

where the dot denotes the derivative relative to the proper time. It follows that the

spacetime velocity for such a particle is proportional to the unit tangent vector, with

proportionality constant c, so that

v2 = c2. (3.21)

Since different time-like curves can have different lengths, particles in relative motion

experience time elapsing differently.

An observer is defined by a time-like curve parameterized by its proper time and

oriented to the future. An inertial observer, in particular, is given by a time-like straight

line. Such an observer has constant spacetime velocity. In this way, an inertial observer

can construct a reference frame given by a basis {e0, e1, e2, e3}, where e0 = v̂ = v/c, with

v being the spacetime velocity for the observer, and {e1, e2, e3} a set of orthogonal unit

space-like vectors mutually orthogonal to e0 and whose implied orientation follows the

right-hand convention. The reciprocal basis {e0, e1, e2, e3} is defined by

eµ · eν = δµν , (3.22)

in such way that

e0 = e0 and ei = −ei. (3.23)

Therefore, if an event is given by a vector x, its coordinates relative to the reference frame

constructed by the above inertial observer are

xµ = x · eµ and xµ = x · eµ, (3.24)

and the event can be expressed in terms of the basis constructed by the inertial observer

and its reciprocal basis as

x = xµeµ = (x · eµ)eµ and x = xµe
µ = (x · eµ)eµ. (3.25)

Such an event can then be written

x = cte0 + xiei, (3.26)
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where ct = x0 = x0. Its space-like component can be written as

xiei = x− (x · e0)e0 = xv̂v̂ − (x · v̂)v̂ = (xv̂ − x · v̂)v̂ = (x ∧ v̂)v̂. (3.27)

The time-like bivector x ∧ v̂ corresponds to a vector in the three-dimensional Euclidean

rest space of the inertial observer of spacetime velocity v, defining the relative position of

the event x, which is denoted by

x = x ∧ v̂. (3.28)

This correspondence is explained by the fact that an inertial observer with spacetime

velocity v “splits” the Minkowski spacetime in two subspaces, “time” and “space”, the

first generated by its spacetime velocity, while the second is the orthogonal complement

of the first and corresponds to the hyperplane orthogonal to the vector v. A vector

xiei = (x ∧ v̂)v̂ from the hyperplane orthogonal to v is identified with the time-like

bivector x ∧ v̂, which according to the ismorphism C`3,0 ' C`1,3
+, corresponds to the

three-dimensional vector x representing the three-dimensional position of the event x

according to the above mentioned inertial observer. For this observer, the time of the

event x is ct = x · v̂. Note then that

xv̂ = x · v̂ + x ∧ v̂ = ct+ x, (3.29)

which allows one write the magnitude of x as

x2 = xv̂v̂x = (x · v̂ + x ∧ v̂)(x · v̂ + v̂ ∧ x) = (ct+ x)(ct− x) = c2t2 − x2. (3.30)

This corresponds to the invariant interval between x and the origin in terms of the time and

distance as measured by the inertial observer with spacetime velocity v. Another inertial

observer, with a different spacetime velocity, performs a different “split” of spacetime, so

that it expresses the event x in a different, but equivalent way, in such a manner that the

measured interval is the same.

Given an inertial observer with spacetime velocity v and a massive particle following

a trajectory given by x = x(τ), with a spacetime velocity u = u(τ) = ẋ, where τ is the

proper time of the particle, one has

uv̂ =
d

dτ
(xv̂) =

d

dτ
(ct+ x), (3.31)

where x · v̂ = ct and x = x∧ v̂ correspond to the relative time and position for the particle

as measured by the observer. In this way, it follows that

dt

dτ
= û · v̂ and

dx

dτ
= u ∧ v̂. (3.32)
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The relative velocity u of the particle, as measured by the inertial observer of spacetime

velocity v, is therefore given by

u =
dx

dt
=

dx

dτ

dτ

dt
=
u ∧ v̂
û · v̂

= c
û ∧ v̂
û · v̂

. (3.33)

From this expression, it follows that

(u

c

)2

=
(û ∧ v̂)2

(û · v̂)2 = −(û ∧ v̂) (v̂ ∧ û)

(û · v̂)2

= −(ûv̂ − û · v̂) (v̂û− û · v̂)

(û · v̂)2

= − ûv̂v̂û− (ûv̂ + v̂û) (û · v̂) + (û · v̂)2

(û · v̂)2

= −1− 2 (û · v̂) (û · v̂) + (û · v̂)2

(û · v̂)2

= 1− 1

(û · v̂)2

< 1, (3.34)

that is, the relative velocity of a massive particle as measured by an inertial observer has

magnitude less than the speed of light. The Lorentz factor γ is given by

γ2 =
1

1−
(
u
c

)2 =
1

1−
(

1− 1
(û·v̂)2

) = (û · v̂)2 . (3.35)

The spacetime velocity of the particle can then be written

u = uv̂v̂ = (u · v̂ + u ∧ v̂) v̂ = cγv̂ + γuv̂, (3.36)

which is the sum of a component along the spacetime velocity v of the observer and a

component belonging to the hyperplane orthogonal to v.

If the above considered massive particle has mass m, its spacetime momentum or

energy-momentum is defined by

p = mu. (3.37)

The inertial observer with spacetime velocity v measures the energy and momentum for

the particle as
E

c
= p · v̂ and p = p ∧ v̂. (3.38)

The energy-momentum of the particle can then be written

p = pv̂v̂ = (p · v̂ + p ∧ v̂) v̂ =
E

c
v̂ + pv̂, (3.39)
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which is the sum of a component along the spacetime velocity v of the observer and a

component belonging to the hyperplane orthogonal to v. Note that the magnitude of the

energy-momentum of the particle is

p2 = (mu)2 = m2c2, (3.40)

which in terms of the energy and momentum as measured by the observer is given by

p2 = pv̂v̂p = (p · v̂ + p ∧ v̂) (p · v̂ + v̂ ∧ p) =

(
E

c
+ p

)(
E

c
− p

)
=
E2

c2
− p2. (3.41)

Thus, it follows that
E2

c2
− p2 = m2c2. (3.42)

The spacetime acceleration of the considered particle is defined by

u̇ =
du

dτ
. (3.43)

It follows that spacetime acceleration and velocity are orthogonal:

0 =
d

dτ

(
u2
)

= 2u̇ · u. (3.44)

A useful concept is that of the acceleration bivector, given by

Bu = u̇ ∧ u = u̇u, (3.45)

which corresponds to the three-dimensional acceleration of the particle relative to its own

instantaneous reference frame.

3.3 Lorentz Transformations

3.3.1 Lorentz Boosts

Consider two inertial observers, each with its reference frame (constructed as described

in the previous section), given by the bases {e0, e1, e2, e3} and {e′0, e′1, e′2, e′3}. A generic

event x has the respective coordinates

xµ = x · eµ and x′µ = x · e′µ (3.46)

relative to these reference frames. If the inertial observers construct their reference frames

in such way that x1 = x′1 and x2 = x′2 for any event, and so that for (x1, x2, x3) =
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(x′1, x′2, x′3) = (0, 0, 0), one has ct = x0 = ct′ = x′0 = 0, then the coordinates of a generic

event according to these inertial observers are related by the coordinate transformation

ct′ = γ(ct− βx3), x′1 = x1, x′2 = x2, x′3 = γ(x3 − βct), (3.47)

where β is the speed of the second observer relative to the first, in units of the speed of

light, and γ = e0 · e′0 = (1− β2)−1/2 is the Lorentz factor. Such a transformation is called

a Lorentz boost, or simply boost. The inverse transformation is given by

ct = γ(ct′ + βx′3), x1 = x′1, x2 = x′2, x3 = γ(x′3 + βct′). (3.48)

Since the generic event x can be expressed by

x = xµeµ = x′µe′µ, (3.49)

the inverse coordinate transformation, taking into account that e′1 = e1 and e′2 = e2,

imply:

ct′e′0 + x′3e′3 = cte0 + x3e3

= γ(ct′ + βx′3)e0 + γ(x′3 + βct′)e3

= ct′
(
γ(e0 + βe3)

)
+ x′3

(
γ(βe0 + e3)

)
. (3.50)

This relation in turn implies

e′0 = γ(e0 + βe3) and e′3 = γ(βe0 + e3), (3.51)

which express the considered Lorentz boost in terms of a reference frame transformation.

The relation

γ2(1− β2) = 1 (3.52)

suggests a parameterization of the Lorentz boost in terms of a parameter α such that

γ = cosh(α) and γβ = sinh(α). (3.53)

In this way, one can write:

e′0 = cosh(α)e0 + sinh(α)e3

=
(

cosh(α) + sinh(α)e3e0

)
e0

= exp(αe3e0)e0 (3.54)
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and

e′3 = sinh(α)e0 + cosh(α)e3

=
(

cosh(α) + sinh(α)e3e0

)
e3

= exp(αe3e0)e3. (3.55)

But, both e0 and e3 anticommutes with the bivector e3e0, which allows one write also:

e′0 = exp

(
1

2
αe3e0

)
e0 exp

(
−1

2
αe3e0

)
(3.56)

and

e′3 = exp

(
1

2
αe3e0

)
e3 exp

(
−1

2
αe3e0

)
. (3.57)

Since both e1 and e2 commutes with the bivector e3e0, one can express the considered

Lorentz boost in a general way by

e′µ = ReµR̃, (3.58)

where

R = exp

(
1

2
αe3e0

)
. (3.59)

It is immediate that the considered Lorentz boost is precisely the hyperbolic rotation

of the basis {eµ} through the time-like plane e3e0 by a hyperbolic angle α in the sense

of increasing hyperbolic angle. Since the relative speed β = tanh(α) increases with the

increase of α and β → 1 as α→∞, the hyperbolic angle in this context is usually called

rapidity.

3.3.2 The Lorentz Group

A restricted Lorentz transformation is the composition of a Lorentz boost and a spa-

tial rotation. Since a Lorentz boost corresponds to a hyperbolic rotation, a restricted

Lorentz transformation corresponds to a general rotation in spacetime. In this way, the

group formed by restricted Lorentz transformations, called the restricted Lorentz group,

it is found correspond to the group SO+(1, 3). Since Spin+(1, 3) is a double covering of

SO+(1, 3), the restricted Lorentz group can be represented by Spin+(1, 3), and a restricted

Lorentz transformation can be expressed by

v 7→ v′ = RvR̃, where R ∈ Spin+(1, 3). (3.60)
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A restricted Lorentz transformation is also known as a proper orthochronous Lorentz

transformation, because it is both a time-order-preserving transformation and a parity-

preserving transformation, that is, a transformation preserving both the orientation of

time-like components of vectors (future or past) and the orientation of a three-dimensional

volume element. A reflection through a hyperplane with time-like orthogonal vector, also

called a time reversal, is a time-reversing transformation and is also a parity-preserving

transformation, e.g. I 7→ −γ0Iγ0 = I. Conversely, a reflection through a hyperplane

with space-like orthogonal vector is a time-order-preserving transformation, but a non-

parity-preserving transformation — the composition of three such reflections, in non-

coplanar directions, is called a parity inversion, and is also a time-order-preserving but

non-parity-preserving transformation, e.g. I 7→ γ0Iγ0 = −I. The composition of a proper

orthochronous Lorentz transformation with a time reversal is a time-reversing and parity-

preserving transformation. On the other hand, the composition of a proper orthochronous

Lorentz transformation with a parity inversion is a time-order-preserving and non-parity-

preserving transformation. In turn, the composition of a proper orthochronous Lorentz

transformation with a time reversal and a parity inversion is a time-reversing and non-

parity-preserving transformation. All transformations considered preserve distances and

angles in Minkowski spacetime and compose a group of transformations called the Lorentz

group. As described above, the Lorentz group has four sectors, which are summarized in

the table 3.1. The sector of proper orthocrhonous transformations, corresponding to the

subgroup of restricted Lorentz transformations containing the identity transformation, is

the most relevant in physics and is often called itself the Lorentz group.

parity-preserving non-parity-preserving

time-order-preserving proper orthochronous (PO) PO with a parity inversion

time-reversing PO with a time reversal PO with a 7→ −a

TABLE 3.1 – The four sectors of the Lorentz group.

3.3.3 Invariant Decomposition of a Rotor

Any rotor from G(R1,3) can be written in terms of a bivector B in the form

R = ±e
1
2
B. (3.61)

If the bivector B is non-null, that is B2 6= 0, and since B2 = B̃2, one can write

B2 = 〈B2〉0 + 〈B2〉4 = ρeIφ, (3.62)
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where ρ and φ are scalars and ρ 6= 0. Consider then the bivector

B̂ = ρ−
1
2 e−

1
2
IφB, (3.63)

so that

B̂2 =
(
ρ−

1
2 e−

1
2
IφB

)(
ρ−

1
2 e−

1
2
IφB

)
= ρ−1e−IφB2 = 1. (3.64)

Therefore, the bivector B can be written in terms of the unit time-like bivector B̂ as

B = ρ
1
2 e

1
2
IφB̂, (3.65)

that is,

B = αB̂ + βIB̂, (3.66)

where α = ρ
1
2 cos

(
1
2
φ
)

and β = ρ
1
2 sin

(
1
2
φ
)
. Since

B̂
(
IB̂
)

=
(
IB̂
)
B̂ = I, (3.67)

the rotor R = ±e 1
2
B can be decomposed as

R = e
1
2
αB̂e

1
2
βIB̂ = e

1
2
βIB̂e

1
2
αB̂. (3.68)

This is an invariant decomposition of the rotor R into a boost, generated by B̂, and a

spatial rotation, generated by IB̂.

3.3.4 Observer-Dependent Decomposition of a Rotor

Given spacetime velocities u and v, the rotor L transforming u into v through a pure

boost,

v = LuL̃, (3.69)

is necessarily generated by the unit time-like bivector determined by u and v,

v ∧ u
|v ∧ u|

, (3.70)

where |v ∧ u| is an abbreviated manner to write
√
−‖v ∧ u‖h2. The rotor L can then be

written as

L = exp

(
1

2
α
v ∧ u
|v ∧ u|

)
, (3.71)

where α is the hyperbolic angle between u and v. It is also possible to determine the rotor

L transforming u into v through a pure boost, taking into account that such a boost can

be decomposed into two reflections, first the reflection through the hyperplane orthogonal
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to the vector w = (u+ v)/|u+ v|, then the reflection through the hyperplane orthogonal

to the vector v. The resulting transformation is given by

u 7→ (−v(−wuw)v) = vwuwv, (3.72)

so that the rotor L can be written

L = vw = v

(
u+ v

|u+ v|

)
=

vu+ 1√
(u+ v) · (u+ v)

, (3.73)

that is,

L =
1 + vu√

2(1 + u · v)
. (3.74)

This is not the unique rotor performing the required boost, the rotor

−vw = − 1 + vu√
2(1 + u · v)

(3.75)

also performs the same boost.

It is natural to question the form for a general rotor transforming u into v. For

simplicity, set u = γ0. The pure boost for this transformation can be taken as given by

the rotor

L =
1 + vγ0√

2(1 + v · γ0)
= exp

(
1

2
α
v ∧ γ0

|v ∧ γ0|

)
. (3.76)

Then, one can define the rotor U given by

U = L̃R, (3.77)

where R is the general rotor desired. Note that U satisfies

UŨ = L̃RR̃L = 1, (3.78)

as required for a rotor. The rotor U also satisfies

Uγ0Ũ = L̃Rγ0R̃L = L̃vL = γ0, (3.79)

that is, U commutes with γ0 and its action has no effect under γ0. Thus, one must have

U = exp

(
1

2
Ib

)
, (3.80)

where b is relative vector according to an inertial observer with spacetime velocity γ0, so

that Ib is a space-like bivector generating pure spatial rotations in the reference frame

constructed by its observer. The rotor U is then a pure spatial rotation and the general
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rotor R can be written

R = LU. (3.81)

Differently from the invariant decomposition given by (3.68), the rotors L and U do not

commute in general. Since the rotor U is constructed in such way that its action does not

affect the velocity γ0 of the observer, this decomposition is observer-dependent.

3.4 Maxwell’s Equations

Classical electrodynamics is founded in Maxwell’s equations, which in terms of SI units

are usually written as:

∇ ·D = ρ, ∇× E +
∂B

∂t
= 0,

∇ ·B = 0, ∇×H− ∂D

∂t
= J.

(3.82)

In these equations, ρ and J are the free electric charge density and free electric current

density, E and B are the electric field and magnetic induction field, D and H the electric

displacement field and the magnetic field. The latter two quantities are defined by

D = ε0E + P and H =
1

µ0

B−M, (3.83)

where the constants ε0 and µ0 are the electric permittivity and magnetic permeability of

vacuum, P is the electric polarization field (the electric dipole moment density) and M

is the magnetization field (the magnetic dipole moment density). In general, Maxwell’s

equations must be complemented with constitutive relations which relate P and M to E

and B, or equivalently, relate D and H to E and B. In some applications, additional

constitutive relations may be needed. Also essential, especially for description of the

motion of electric charged particles, is the Lorentz force law,

F = q(E + v ×B), (3.84)

which gives the force acting on a particle of electric charge q and velocity v in the presence

of electromagnetic fields.

In the vacuum, the polarization fields are null, the free charge and current densities

correspond to the total charge and current densities, and the macroscopic fields are given

by D = ε0E and H = B/µ0. In this case, defining c2 = 1/(µ0ε0), Maxwell’s equations can
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be written as:

∇ · E =
ρ

ε0
, ∇× E = −∂B

∂t
,

∇ ·B = 0, ∇×B =
1

c2

∂E

∂t
+ µ0J.

(3.85)

Using the relation ∇× a = −I(∇ ∧ a), the equations can be rewritten as:

∇ · E =
ρ

ε0
, ∇ ∧ E = − ∂

∂t
(IB),

∇ ·B = 0, ∇ ∧B = I

(
1

c2

∂E

∂t
+ µ0J

)
.

(3.86)

Summing the first and the second pair of the above equations gives:

∇E =
1

ε0
ρ− ∂

∂t
(IB),

∇B = I

(
1

c2

∂E

∂t
+ µ0J

)
.

(3.87)

This pair of equations can be rewritten as:

∇
(

1

c
E

)
=

1

cε0
ρ− 1

c

∂

∂t
(IB),

∇(IB) = −µ0J−
1

c

∂

∂t

(
1

c
E

)
.

(3.88)

This new pair of equations can be combined to form

∇
(

1

c
E + IB

)
+

1

c

∂

∂t

(
1

c
E + IB

)
= µ0(cρ− J). (3.89)

The equality between even grade terms and the equality between odd grade terms (vectors,

in this case) in this equation imply that the equations (3.88) are equivalent to equation

(3.89). This resulting equation is entirely written in terms of the geometric algebra of

three-dimensional Euclidean space, C`3,0. But there is the isomorphism between this

algebra and the even subalgebra of spacetime algebra: C`3,0 ' C`1,3
+. This isomorphism

consists in the correspondence between vectors from C`3,0 and time-like bivectors from

C`1,3
+, and between bivectors from C`3,0 and space-like bivectors from C`1,3

+, in addition

to the correspondence between scalars from both algebras and the correspondence between

pseudoscalars from both algebras. In terms of the spacetime algebra, the multivector
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E/c + IB in the equation (3.89) is a bivector, which is denoted by F and called the

Faraday bivector,

F =
1

c
E + IB. (3.90)

The Faraday bivector represents the covariant form of the electromagnetic field strength.

The equation (3.89) can now be written

∇F +
1

c

∂

∂t
F = µ0(cρ− J) (3.91)

and be understood in terms of the spacetime algebra. In order to write this equation

in manifestly Lorentz covariant form, consider that the quantities present in it reflect

measurements performed by an observer which, having normalized spacetime velocity γ0,

employs a spacetime reference frame represented by a basis {γµ} of Minkowski spacetime,

satisfying

γ0 · γ0 = 1, γ0 · γi = 0, and γi · γj = −δij, for i, j ∈ {1, 2, 3}. (3.92)

Consider also that this basis has reciprocal basis {γµ} (that is, the basic vectors γµ are

related to those of the first considered basis by γµ · γν = δµν ). In terms of these basis, the

spacetime vector derivative can be written

∇ = γµ∂µ = γµ
∂

∂xµ
, (3.93)

where xµ = x · γµ are the coordinates of the spacetime position vector x, as measured by

the above considered observer. The three-dimensional vector derivative ∇ in the equation

(3.91) can then be written

∇ = σi∂i = σi
∂

∂xi
, (3.94)

where the spacetime time-like bivectors σi = γiγ0 correspond algebraically to the three-

dimensional basic vectors defining the three-dimensional orthonormal basis employed by

the observer to measure the relative quantities represented in his/her three-dimensional

rest space. Now, observe that the geometric product of the spacetime derivative with γ0,

to the left, gives

γ0∇ = γ0γ
0∂0 + γ0γ

i∂i = γ0γ0∂0 − γ0γi∂i = ∂0 + σi∂i =
1

c

∂

∂t
+ ∇. (3.95)

Therefore, the equation (3.91) can be written:

γ0∇F = µ0(cρ− J). (3.96)

Finally, introduction of the spacetime electric current density J , which is a spacetime
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vector related to the charge density ρ and three-dimensional current density J by

J · γ0 = cρ and J ∧ γ0 = J, (3.97)

furnishes

cρ− J = J · γ0 − J ∧ γ0 = γ0 · J + γ0 ∧ J = γ0J. (3.98)

Thus, from this equation, using the fact that the geometric product with γ0 is invertible,

the equation (3.96) can be written

∇F = µ0J. (3.99)

This is the representation of Maxwell’s equations for fields in vacuum in the geometric

algebra approach, which is Lorentz covariant as desired. From (3.99) it follows that

∇2F = µ0∇J = µ0∇ · J + µ0∇∧ J. (3.100)

The scalar part of this equation is

∇ · J = 0, (3.101)

or, equivalently,

0 = ∇ · J = 〈∇J〉 = 〈γ0∇Jγ0〉 =

〈(
1

c

∂

∂t
+ ∇

)
(cρ+ J)

〉
=
∂ρ

∂t
+ ∇ · J, (3.102)

which is the continuity equation expressing charge conservation, implicit in Maxwell’s

equations.

3.4.1 Relationship with the Component-Based Version

Equation ∇F = µ0J can be split into

∇ · F = µ0J and ∇∧ F = 0. (3.103)

These correspond to the tensor equations

∂µF
µν = µ0J

ν and εµνρσ∂νFρσ = 0. (3.104)

In these equations, ∂µ = γµ · ∇ and Jµ = γµ · J are respectively the components of the

spacetime vector derivative and spacetime current density relative to the reference frame

given by the basis {γµ} and its reciprocal basis {γµ}, εµνρσ represents the totally anti-
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symmetric symbol of rank 4, and Fµν and F µν are the components of the electromagnetic

field strength in terms of the basis {γµ} and its reciprocal. These field components can

be obtained from the Faraday bivector through

Fµν = γν · (γµ ·F ) = (γν ∧ γµ) ·F and F µν = γν · (γµ ·F ) = (γν ∧ γµ) ·F. (3.105)

In the usual matrix form, these components are represented by

(Fµν) =


0 Ex/c Ey/c Ez/c

−Ex/c 0 −Bz By

−Ey/c Bz 0 −Bx

−Ez/c −By Bx 0

 (3.106)

and

(F µν) =


0 −Ex/c −Ey/c −Ez/c
Ex/c 0 −Bz By

Ey/c Bz 0 −Bx

Ez/c −By Bx 0

 , (3.107)

where is used F0i = −F 0i = Ei/c and Fij = F ij = −εijkBk, with i, j, k ∈ {1, 2, 3}, and

with (E1, E2, E3) = (Ex, Ey, Ez) and (B1, B2, B3) = (Bx, By, Bz).

3.4.2 Vector Potential

As seen above, equation ∇F = µ0J can be split into

∇ · F = µ0J and ∇∧ F = 0. (3.108)

From the fact that ∇∧∇∧M = 0 for any multivector field M , the second equation above

is automatically satisfied if F is written as

F = ∇∧ A, (3.109)

where A is a vector field. This vector field is known as the vector potential. An observer

with normalized spacetime velocity γ0 measures the vector potential A split into a scalar

potential φ given by φ/c = A · γ0 and a three-dimensional vector potential A = A ∧ γ0.

Note that, A is defined modulo the gradient of a scalar field λ:

∇∧ (A+∇λ) = ∇∧ (A+∇∧ λ) = ∇∧ A+∇∧∇ ∧ λ = F. (3.110)

For historical reasons, this freedom in defining the vector potential is known as a gauge
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freedom. This residual freedom can be eliminated in order to obtain a wave equation for A.

This process is usually called a gauge fixing, and it is also necessary for the quantization

of the field. From the first equation in (3.108),

∇ · (∇∧ A) = ∇2A+∇(∇ · A) = µ0J, (3.111)

so, a natural way to fix the gauge of the vector potential is to impose that

∇ · A = 0, (3.112)

in such way that

F = ∇A and ∇2A = µ0J. (3.113)

Equations (3.113) provide a way to solve Maxwell’s equations: solve the associated wave

equation for A and then compute F from F = ∇A. Equation (3.112), which is known as

the Lorenz gauge condition, does not totally specify A, but the remaining freedom can be

eliminated by imposing appropriate boundary conditions to the problem.

3.4.3 Electromagnetic Field Transformation

As seen above, in the geometric algebra approach, the electromagnetic field strength is

represented by a Lorentz covariant bivector, the Faraday bivector, which has the standard

form

F =
1

c
E + IB, (3.114)

where E and B are time-like bivectors representing respectively the electric and magnetic

fields as measured by an observer. Consider this observer as having spacetime velocity

cγ0. Consider then that this observer employs a spacetime basis {γµ} such that γ0
2 = 1,

γ0 · γi = 0, and γi · γj = −δij, for i and j in {1, 2, 3}. In terms of this basis, the electric

and magnetic fields can be expressed

E = Eiσi and IB = BiIσi, (3.115)

where σi = γiγ0. Thus, one finds that these fields can be obtained separately from the

Faraday bivector F = E/c+ IB by

1

c
E =

1

2
(F − γ0Fγ0) and IB =

1

2
(F + γ0Fγ0). (3.116)

These expressions show that the decomposition of F into E/c and IB is dependent on the

observer (normalized) velocity γ0, which implies that observers in relative motion measure

different fields. This can be quantified by supposing a second observer of normalized
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spacetime velocity v̂ = Rγ0R̃, where R is a spacetime rotor. This observer is associated

to the basis

γ′µ = RγµR̃, (3.117)

and measures a electric field of components E ′i such that

1

c
E ′i = F ′0i

= (γ′i ∧ γ′0) · F

=
(
RσiR̃

)
· F

=
〈
RσiR̃F

〉
=
〈
σiR̃FR

〉
= σi ·

(
R̃FR

)
, (3.118)

and a magnetic field of components B′i such that (with summation only relative to j and

k in all steps and using the relation σi ∧ σj ∧ σk = εijkI in the ultimate step)

−B′i = εijkF
′jk

= εijk
(
γ′k ∧ γ′j

)
· F

= εijk
(
γk ∧ γj

)
·
(
R̃FR

)
= εijk (γk ∧ γj) ·

(
R̃FR

)
= εijk (σj ∧ σk) ·

(
R̃FR

)
= εijk

(
σi · (σi ∧ σj ∧ σk)

)
·
(
R̃FR

)
= (Iσi) ·

(
R̃FR

)
. (3.119)

These correspond to the components of the electromagnetic field strength R̃FR in the

{γµ} basis, as seen in the subsection 3.4.1. Thus, under a Lorentz transformation given

by the rotor R, the electromagnetic field strength transforms as F 7→ R̃FR.

Remember that the rotor R can be written in terms of the normalized velocities v̂ and

γ0 and the hyperbolic angle α between them (the rapidity) as

R = exp

(
1

2

v̂ ∧ γ0

|v̂ ∧ γ0|
α

)
. (3.120)

Remember also that the three-dimensional velocity of the second observer relative to the
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first (conveniently taken in units of speed of light) is

v =
v̂ ∧ γ0

v̂ · γ0

=
v̂ ∧ γ0

cosh(α)
=

v̂ ∧ γ0

|v̂ ∧ γ0|
sinh(α)

cosh(α)
=

v̂ ∧ γ0

|v̂ ∧ γ0|
tanh(α), (3.121)

where cosh(α) corresponds to the Lorentz factor γ and tanh(α) is the relative speed β (in

units of the speed of light). The rotor R can now be written

R = exp

(
1

2
v̂α

)
, (3.122)

where v̂ = v/ tanh(α). Consider then F in terms of components parallel and orthogonal

to v,

F = F‖ + F⊥, (3.123)

such that

vF‖ = F‖v and vF⊥ = −F⊥v. (3.124)

In this way, the field components parallel and orthogonal to v as measured by the second

observer are

F ′‖ = R̃F‖R = exp

(
−1

2
v̂α

)
F‖ exp

(
1

2
v̂α

)
= F‖ (3.125)

and

F ′⊥ = R̃F⊥R = exp

(
−1

2
v̂α

)
F⊥ exp

(
1

2
v̂α

)
= exp (−v̂α)F⊥

=
(

cosh(α)− v̂ sinh(α)
)
F⊥

= (γ − γv)F⊥

= γ(1− v)F⊥. (3.126)

Therefore, the observers measure the same components of electric and magnetic fields in

the direction of the relative motion, however the components orthogonal to the relative

motion are such that

F ′⊥ = E′⊥ + IB′⊥ = γ(1− v) (E⊥ + IB⊥)

= γE⊥ + γIB⊥ − γv ∧ E⊥ − γI (v ∧B⊥)

= γE⊥ + γIB⊥ − γIv × E⊥ + γv ×B⊥, (3.127)

where is considered the fact that the orthogonality of v in relation to E⊥ and B⊥ implies

that the geometric product of v with either of these fields is an exterior product. Equation
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(3.127) express:

E′⊥ = γ (E⊥ + v ×B⊥) ,

B′⊥ = γ (B⊥ − v × E⊥) .

(3.128)

These are the known expressions for transformation of the field components orthogonal

to the relative velocity between the two observers. Observe that the transformed fields

has new components, but also relative to the {γµ} basis, that is, the transformed fields

are formed as E′ = E ′iσi and B′ = B′iσi.

Since the square of a spacetime bivector is a scalar plus a pseudoscalar, it is noted

that the square of the electromagnetic field strength is Lorentz invariant. Indeed, if

F 2 = 〈FF 〉+ 〈FF 〉4 = a0 + Ia4, (3.129)

then (
R̃FR

)(
R̃FR

)
= R̃F 2R = F 2 = a0 + Ia4. (3.130)

Both the scalar and pseudoscalar parts are independent of the reference frame. According

to the first observer, these are

a0 =

〈(
1

c
E + IB

)(
1

c
E + IB

)〉
=

1

c2
E2 −B2 (3.131)

and

a4 =
〈
I−1F 2

〉
=

〈
(−I)

(
1

c
E + IB

)(
1

c
E + IB

)〉
=

2

c
E ·B. (3.132)

The first Lorentz invariant above appears in the expression of the Lagrangian density for

the electromagnetic field. The second encodes the relative orientation of the electric and

magnetic fields.



4 Quantum Mechanics Revisited:

From the Classical, through the

Algebraic, to the Geometric Picture

This chapter is designed to serve as an outline of the emergence of Clifford algebras

in quantum mechanics, as well as to explain concisely how such algebras provide an

alternative language to express it. This is accomplished by transitioning from the“classical

picture”, based on the classical definition of a spinor, to the “algebraic picture”, based on

the algebraic definition of a spinor, which leads naturally to a “geometric picture”, based

on the operator definition of a spinor.

4.1 Non-Relativistic Theory

This section, on non-relativistic states, begins with a contextualization, based on chapter

6 of the textbook by Piza (2003). A better-known English text, such as chapter XIII

of Messiah (2014), for example, can also be taken as reference. These textbooks can be

taken as background references for the well-established quantum-mechanical concepts to

be introduced in the remaining subsections.

4.1.1 Introduction

The observation of the splitting of the spectral lines of the hydrogen atom evidences the

existence of a structure of four states associated with the fundamental energy level of

the simple model for the hydrogen atom, which is based on classical analogies. This

fact suggests that such a simple model needs improvement through the introduction of

additional degrees of freedom. Since this is a two-body system, one can conjecture that

both the proton and the electron possess, in addition to the degrees of freedom associated

with position, intrinsic properties associated to observables acting in a two-dimensional

state space. This hypothesis is supported by experiments, which suggest that the supposed
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additional degrees of freedom have a character similar to angular momentum. If such

an intrinsic angular momentum is represented by a vector observable ŝ = (ŝ1, ŝ2, ŝ3),

whose component operators satisfy commutation relations analogous to those for angular

momentum,

[ŝj, ŝk] = i~εjklŝl, (4.1)

then the eigenvalues of ŝ2 are of the form ~2s(s+ 1), where s is an integer or semi-integer

number. The number of states associated to a specific s is 2s+ 1, which is 2 for s = 1/2.

Thus, by associating to both proton and electron an intrinsic angular momentum, or spin,

as it is currently termed, associated with s = 1/2, the state space of the hydrogen atom

becomes the tensor product of the space corresponding to the simple model with the

four-dimensional space corresponding to the new degrees of freedom.

The vectors of the two-dimensional state space acted on by the spin observable ŝ of

a particle with s = 1/2 (such as an electron or a proton) can be expressed in terms of

the basis formed by the concomitant eigenvectors of ŝ2 and ŝ3, which can be denoted

generically by |s ms〉, with the eigenvalue equations taking a form analogous to those for

angular momentum,

ŝ2
∣∣1

2
ms

〉
= ~2 1

2

(
1

2
+ 1

) ∣∣1
2
ms

〉
and ŝ3

∣∣1
2
ms

〉
= ~ms

∣∣1
2
ms

〉
, (4.2)

where the eigenvectors, which are necessarily orthogonal, are taken to be normalized, that

is, 〈
1
2
ms

∣∣1
2
m′s
〉

= δmsm′s , for ms,m
′
s ∈

{
−1

2
,+1

2

}
. (4.3)

A generic vector |ψ〉 of the spin state space can then be expressed as the linear combination

|ψ〉 = ζ
∣∣1

2
+1

2

〉
+ η
∣∣1

2
−1

2

〉
, (4.4)

where ζ and η are complex numbers. Its representation in terms of components relative

to the adopted basis is given by the column matrix

Ψ =

(〈
1
2

+1
2

∣∣ψ〉〈
1
2
−1

2

∣∣ψ〉
)

=

(
ζ

η

)
. (4.5)

This is a representative of a class of objects called spinors — this type of spinor, in

particular, is known as a Pauli spinor.

In the same way as spin states, a linear operator â defined on the spin state space can

also be represented in terms of components, relative to the basis of normalized eigenvectors
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of ŝ2 and ŝ3, by the matrix

A =

(〈
1
2

+1
2

∣∣â∣∣1
2

+1
2

〉 〈
1
2

+1
2

∣∣â∣∣1
2
−1

2

〉〈
1
2
−1

2

∣∣â∣∣1
2

+1
2

〉 〈
1
2
−1

2

∣∣â∣∣1
2
−1

2

〉) . (4.6)

In particular, one has the following matrix representations:

ŝ2 ∼ S2 =
3

4
~2

(
1 0

0 1

)
(4.7)

and

ŝ3 ∼ S3 =
1

2
~

(
1 0

0 −1

)
. (4.8)

In order to determine the corresponding matrix representations for ŝ1 and ŝ2, consider

the new operators

ŝ± = ŝ1 ± iŝ2. (4.9)

Note that the addition or subtraction of ŝ+ by ŝ− reproduces ŝ1 or ŝ2:

ŝ1 =
1

2
(ŝ+ + ŝ−), ŝ2 =

1

2i
(ŝ+ − ŝ−). (4.10)

Observe now that, from the commutation relations (4.1), it follows that:

[ŝ3, ŝ±] = [ŝ3, ŝ1]± i[ŝ3, ŝ2] = i~ŝ2 ± ~ŝ1 = ±~ŝ±. (4.11)

These commutation relations, in addition to the eigenvalue equation for ŝ3 (cf. the second

equation in (4.2)), furnish:

ŝ3ŝ±
∣∣1

2
ms

〉
= [ŝ3, ŝ±]

∣∣1
2
ms

〉
+ ŝ±ŝ3

∣∣1
2
ms

〉
= ±~ŝ±

∣∣1
2
ms

〉
+ ~msŝ±

∣∣1
2
ms

〉
= ~(ms ± 1)ŝ±

∣∣1
2
ms

〉
. (4.12)

This resulting equation implies in the “proportionality” relation

ŝ±
∣∣1

2
ms

〉
= λ±

∣∣1
2
ms± 1

〉
, (4.13)

where the scalars λ± can be determined, disregarding a possible phase factor (that is,
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considering λ± as non-negative reals), as follows:

|λ±|2 =
〈

1
2
ms

∣∣ŝ±†ŝ±∣∣12 ms

〉
=
〈

1
2
ms

∣∣ŝ∓ŝ±∣∣12 ms

〉
=
〈

1
2
ms

∣∣ (ŝ1
2 ± iŝ1ŝ2 ∓ iŝ2ŝ1 + ŝ2

2
) ∣∣1

2
ms

〉
=
〈

1
2
ms

∣∣ (ŝ1
2 + ŝ2

2 ± i[ŝ1, ŝ2]
) ∣∣1

2
ms

〉
=
〈

1
2
ms

∣∣ (ŝ1
2 + ŝ2

2 ∓ ~ŝ3

) ∣∣1
2
ms

〉
=
〈

1
2
ms

∣∣ (ŝ2 − ŝ3(ŝ3 ± ~)
) ∣∣1

2
ms

〉
= ~2

(
3

4
−ms(ms ± 1)

)
. (4.14)

The matrix representations of ŝ± relative to the basis of normalized eigenvectors of ŝ2 and

ŝ3 (or only of ŝ3, since ŝ2 is proportional to the identity operator) are then obtained just

applying the relation (4.13) in the standard expression (4.6), with the use of the values of

λ± given by the square root of (4.14):

ŝ+ ∼ S+ = ~

(
0 1

0 0

)
and ŝ− ∼ S− = ~

(
0 0

1 0

)
. (4.15)

Thus, from the relations (4.10), one obtains the corresponding matrix representations for

ŝ1 and ŝ2:

ŝ1 ∼ S1 =
1

2
~

(
0 1

1 0

)
and ŝ2 ∼ S2 =

1

2
~

(
0 −i
i 0

)
. (4.16)

The spin vector observable ŝ = (ŝ1, ŝ2, ŝ3) is now determined in terms of the matrix

representations (4.16) and (4.8). It can be conveniently written as

ŝ =
1

2
~σ̂ =

1

2
~(σ̂1, σ̂2, σ̂3), (4.17)

where the operators σ̂1, σ̂2 and σ̂3 have the following corresponding matrix representations:

σ̂1 ∼ Σ1 =

(
0 1

1 0

)
, σ̂2 ∼ Σ2 =

(
0 −i
i 0

)
and σ̂3 ∼ Σ3 =

(
1 0

0 −1

)
. (4.18)

The above matrices are known as the Pauli matrices. Note that the square of any Pauli

matrix equals to the identity matrix, which implies

σ̂1
2 = σ̂2

2 = σ̂3
2 = 1̂, (4.19)
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where 1̂ is the identity operator. Note also that the commutation relations (4.1) imply

[σ̂j, σ̂k] = 2iεjklσ̂l. (4.20)

These commutation relations, in addition to the property (4.19), furnish

0 = [σ̂j
2, σ̂k] = σ̂jσ̂jσ̂k − σ̂kσ̂jσ̂j

= σ̂jσ̂jσ̂k − σ̂jσ̂kσ̂j + σ̂jσ̂kσ̂j − σ̂kσ̂jσ̂j
= σ̂j[σ̂j, σ̂k] + [σ̂j, σ̂k]σ̂j

= 2iεjkl(σ̂jσ̂l + σ̂lσ̂j). (4.21)

Since εjkl is not identically null for j 6= l, it follows from the above equation that

{σ̂j, σ̂k} = σ̂jσ̂k + σ̂kσ̂j = 0̂, for j 6= k, (4.22)

where 0̂ is the null operator. The properties (4.19) and (4.22) can be summarized by

1

2
{σ̂j, σ̂k} =

1

2
(σ̂jσ̂k + σ̂kσ̂j) = δjk1̂. (4.23)

Finally, observe that any observable dependent on the spin ŝ can be written as a (real)

linear combination of the “Pauli operators” σ̂1, σ̂2 and σ̂3, and that the anticommutation

relations (4.23) are equivalent to the relations

σj · σk =
1

2
(σjσk + σkσj) = δjk (4.24)

for the vectors of the orthonormal basis {σ1,σ2,σ3} of the three-dimensional Euclidean

space R3, in such a way that the linear space of spin dependent observables is isomorphic to

R3. Observe also the equivalence of the commutation relations (4.20) and the expressions

σj ∧ σk =
1

2
(σjσk − σkσj) = εjklIσl. (4.25)

These equivalences imply that the algebra generated by the Pauli operators, or the algebra

of spin dependent observables (with the composition operation as product), is isomorphic

to the geometric algebra of the three-dimensional Euclidean space, C`3,0, through the

identifications 1̂ ∼ 1 and σ̂j ∼ σj, and through the identification of the composition

operation of observables with the geometric product of multivectors.

Observe now that, in calculations involving a Pauli spinor, it can be replaced by the

2× 2 matrix (
ζ 0

η 0

)
, (4.26)
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since the product of such a matrix from the left by an arbitrary 2 × 2 complex matrix

produces another matrix of the form (4.26). This fact allows one to work with spin

dependent observables and Pauli spinors represented in the same matrix algebra. It is

natural then to imagine the possibility to work with spin dependent observables and

Pauli spinors both represented in the geometric algebra C`3,0. A way to realize this idea

is presented in subsequent subsections. The following subsection, based on Vaz and da

Rocha (2019), is dedicated to the introduction of some mathematical concepts useful for

the understanding of future considerations.

4.1.2 Ideals and Idempotents of an Algebra

Given an algebra A, a subset of its elements which is closed with relation to the addition

operation and is invariant under the product from the left by elements of the algebra is

said to be a left ideal of the algebra A. That is, a left ideal of an algebra A is a subset

I such that (x + y) ∈ I, for x, y ∈ I, and ax ∈ I, for a ∈ A and x ∈ I. A right ideal

is defined in a similar way. A subset of elements of an algebra which is both a left and a

right ideal is called a two-sided ideal. Any algebra contains at least two trivial ideals, the

set formed by the zero element only and the set of all elements of the algebra — both are

two-sided ideals. A subset of an ideal I which is also an ideal is called a subideal of I.

An ideal is said to be minimal if it contains no non-trivial subideals.

An element f of an algebra A is said to be an idempotent if its square reproduces

itself, f 2 = f . If the product of two idempotents is zero they are called orthogonal. An

idempotent is said to be primitive if it can not be written as a sum of two other orthogonal

idempotents.

Given an arbitrary element x of an algebra A, the set of elements of the form ax, for

any a in A, defines a left ideal I. Consider the case where the element x is an idempotent.

In this case, the set of elements af , where a ∈ A and f is a primitive idempotent of the

algebra A, defines a minimal left ideal. Otherwise, if f is a non-primitive idempotent, it

can be written as the sum of two orthogonal idempotents, f = f1 + f2, and it is possible

to construct two non-trivial subideals whose elements are of the form a1f1f and a2f2f ,

where a1, a2 ∈ A. In summary, given a primitive idempotent f of an algebra A, the set

of elements of the form af , where a ∈ A, is a minimal left ideal of A. In a similar way,

one can verify that, given a primitive idempotent f of an algebra A, the set of elements

of the form fa, where a ∈ A, is a minimal right ideal of A.
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4.1.3 From Classical, through Algebraic, to Operator Pauli Spinors

As seen above, a column matrix with two complex entries defines a Pauli spinor. This

corresponds essentially to the classical definition of a Pauli spinor (FIGUEIREDO et al.,

1990; VAZ; DA ROCHA, 2019). In this way, a classical Pauli spinor is given by

Ψ =

(
ψ1

ψ2

)
, (4.27)

where ψ1, ψ2 ∈ C. Note then that, in any calculation involving such a classical Pauli

spinor, it can be replaced by the 2× 2 matrix

Ψ =

(
ψ1 0

ψ2 0

)
, (4.28)

since the product of such a matrix from the left by an arbitrary 2 × 2 complex matrix

produces another matrix with null entries in the second column. In this way, the following

equivalence relation is valid:

Ψ =

(
ψ1

ψ2

)
∼ Ψ =

(
ψ1 0

ψ2 0

)
. (4.29)

It is easy to note that the matrix Ψ can be put in the form

Ψ =

(
ψ1 0

ψ2 0

)
=

(
ψ1 ψ12

ψ2 ψ22

)(
1 0

0 0

)
, (4.30)

where the entries ψ12 and ψ22 are arbitrary complex numbers. Note now that the matrix

F =

(
1 0

0 0

)
(4.31)

is idempotent, that is, F2 = F, and it can be expressed in terms of the identity matrix

and the Pauli matrix Σ3 by

F =
1

2
(1 + Σ3) (4.32)

(where was used the convention that in any equation involving 2× 2 matrices, 1 denotes

the identity matrix). Consider then the matrix

Σ1F = Σ1
1

2
(1 + Σ3) =

(
0 0

1 0

)
(4.33)
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and note that Ψ can be written as the linear combination

Ψ = ψ1F + ψ2Σ1F = (ψ1 + ψ2Σ1)F. (4.34)

By writing ψA = rA + isA, where rA, sA ∈ R and A ∈ {1, 2}, and using the property

Σ3F = F, in addition to the basic property 1
2
{Σi,Σj} = δij1 and the fact that Σ1Σ2Σ3 = i1,

one can rewrite Ψ as follows:

Ψ = (r1 + is1 + r2Σ1 + s2iΣ1)F

= (r1 + s1iΣ3 + r2Σ1Σ3 + s2iΣ1)F

= (r1 + s1iΣ3 − r2iΣ2 + s2iΣ1)F. (4.35)

Now, recall that the algebra of Pauli operators is isomorphic to the geometric algebra of

the three-dimensional Euclidean space, C`3,0, via the identifications 1̂ ∼ 1 and σ̂j ∼ σj,
and via the identification of the composition of observables with the geometric product.

This isomorphism establishes also the correspondences 1 ∼ 1 (i.e. the identity matrix is

equivalent to the number one) and Σj ∼ σj, in addition to the correspondence between the

matrix product and the geometric product. These correspondences imply, in particular,

the correspondences Σ1Σ2Σ3 = i1 ∼ σ1σ2σ3 = I and iΣj ∼ Iσj. In this way, the square

matrix Ψ given by equation (4.35) is in correspondence with the multivector

¯
ψ = (r1 + s1Iσ3 − r2Iσ2 + s2Iσ1)f, (4.36)

where f = 1
2
(1+σ3). This representation defines a Pauli spinor as an element of a minimal

left ideal of the algebra C`3,0. This is demonstrated below.

Assume that the idempotent f = 1
2
(1 + σ3) is non-primitive, that is, that there exist

idempotents f1 and f2 such that f1f2 = f2f1 = 0 and f1 + f2 = f . These imply that

fA = fAf = ffA, for A ∈ {1, 2}. The commutativity of the product between fA and

f = 1
2
(1 + σ3) show that fA must be of the form

fA = aA + bAσ3 + cAIσ3 + dAI. (4.37)

Since, by hypothesis, f1 and f2 are idempotents, i.e. f1 = f1
2 and f2 = f2

2, it follows that

aA + bAσ3 + cAIσ3 + dAI = aA
2 + bA

2 − cA2 − dA2 + 2(aAbA − cAdA)σ3

+ 2(aAcA + bAdA)Iσ3 + 2(aAdA + bAcA)I. (4.38)

This equation imply a system of equations which clearly has no non-trivial solutions, so

there are no idempotents f1 and f2 satisfying f1f2 = f2f1 = 0 and f1 + f2 = f . By
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contradiction, the idempotent f is primitive. Now, note that, given a multivector

A = a+ biσi + ciIσi + dI, (4.39)

the multivector
¯
ψ = Af , where f = 1

2
(1 + σ3), is an element of the left ideal I =

{Af | A ∈ C`3,0 and f = 1
2
(1+σ3)}, which is minimal since the idempotent f is primitive.

By considering the property σ3f = f of the idempotent f , in addition to the bilinearity

of the geometric product, one can rewrite the generic element
¯
ψ = Af of the ideal I as

follows:

¯
ψ =

(
a+ b1σ1 + b2σ2 + b3σ3 + c1Iσ1 + c2Iσ2 + c3Iσ3 + dI

)
f

=
(
a− b1Iσ2 + b2Iσ1 + b3 + c1Iσ1 + c2Iσ2 + c3Iσ3 + dIσ3

)
f

=
(

(a+ b3) + (b2 + c1)Iσ1 + (−b1 + c2)Iσ2 + (c3 + d)Iσ3

)
f. (4.40)

This multivector represents a Pauli spinor, as seen in the last paragraph (cf. equation

(4.36)). This fact allows one to define a Pauli spinor as an element of the minimal left

ideal I = {Af | A ∈ C`3,0 and f = 1
2
(1 +σ3)} (HESTENES, 2015; FIGUEIREDO et al., 1990;

LOUNESTO, 2001; VAZ; DA ROCHA, 2019). This way of characterizing a spinor, introduced

by Riesz in the 1950s (RIESZ, 1993), is called the algebraic definition of a spinor, and a

Pauli spinor defined in this way is usually called an algebraic Pauli spinor (FIGUEIREDO et

al., 1990; LOUNESTO, 2001; VAZ; DA ROCHA, 2019). In fact, an algebraic Pauli spinor can

be defined as an element of a minimal left ideal generated by any idempotent obtained

from f through a rotation. As explained by Hiley and Callaghan (2010), the choice of

the idempotent reflects merely the choice of a quantization direction, and consequently

the adoption of a matrix representation. The conventional choice for f = 1
2
(1 + σ3)

corresponds to the choice of the z-axis as the quantization direction, and corresponds to

the usual matrix representation adopted in this context.

The above developments allow one to conclude that an even grade multivector from

C`3,0 is sufficient to describe a Pauli spinor, since an algebraic Pauli spinor as expressed by

equation (4.36), or equation (4.40), is the geometric product of an even grade multivector

with the idempotent f = 1
2
(1+σ3), which is a fixed factor. This fact allows one to describe

a Pauli spinor by an element of the even subalgebra C`3,0
+. This way of describing a spinor

was implemented by Hestenes in the 1960s (HESTENES, 1967; HESTENES, 1971; HESTENES;

GÜRTLER, 1971; HESTENES, 1975), and today is known as the operator definition of

a spinor (FIGUEIREDO et al., 1990; LOUNESTO, 2001; VAZ; DA ROCHA, 2019). A Pauli

spinor defined in this way is usually known as an operator Pauli spinor (FIGUEIREDO et

al., 1990; LOUNESTO, 2001; VAZ; DA ROCHA, 2019). In these terms, note that the operator

Pauli spinor ψ corresponding to the algebraic Pauli spinor
¯
ψ given by equation (4.36) can
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be expressed in terms of this latter as

ψ = 2〈
¯
ψ〉+, (4.41)

where 〈A〉+ denotes the even grade part of the multivector A from C`3,0 (LOUNESTO,

2001). Another way to express ψ in terms of
¯
ψ is given by

ψ = 2〈
¯
ψ〉−σ3, (4.42)

where 〈A〉− denotes the odd grade part of the multivector A from C`3,0. Thus, the

information of an operator Pauli spinor is encoded two times in the corresponding algebraic

Pauli spinor, in its even grade part and in its odd grade part. This fact becomes clear

when one observes that, from equation (4.36), by using the property σ3f = f , one can

rewrite
¯
ψ as

¯
ψ = (r1σ3 + s1I + r2σ1 + s2σ2)f, (4.43)

which shows the possibility of describe a Pauli spinor through an odd grade multivector.

However, it seems more attractive to describe spinors through even grade multivectors,

mainly because such elements compose a subalgebra.

By comparing the classical Pauli spinor given by equation (4.27) and the corresponding

algebraic Pauli spinor, given by equation (4.36), where ψA = rA + isA and A ∈ {1, 2},
and by considering the relation between an algebraic Pauli spinor and its corresponding

operator Pauli spinor introduced above, one is able to express the correspondence between

classical, algebraic and operator Pauli spinors through the following maps,

Ψ =

(
a0 + ia3

−a2 + ia1

)
¯
ψ = (a0 + aiIσi)f = ψf

ψ = a0 + aiIσi = 2〈
¯
ψ〉+ = 2〈

¯
ψ〉−σ3.

α

β◦α
β

(4.44)

These explicit transformations are presented for the first time here. The composite map

β◦α reproduces the known relation between a classical Pauli spinor and an operator Pauli

spinor, as presented by Doran and Lasenby (2003).

The maps α, β and β ◦ α can be used now to translate the action of observables on

Pauli spinors. This translation is given by

ΣjΨ σj
¯
ψ = σjψf = σjψσ3f

2〈σj
¯
ψ〉+ = 2〈σj

¯
ψ〉−σ3 = σjψσ3

α

β◦α
β (4.45)
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and
iΨ I

¯
ψ = Iψf = ψIσ3f

2〈I
¯
ψ〉+ = 2〈I

¯
ψ〉−σ3 = ψIσ3,

α

β◦α
β (4.46)

where the property σ3f = f was used. It should be noted that the composite map

β ◦ α reproduces the transformation for action of operators from the classical to the

operator representation (cf. Doran and Lasenby (2003)). The explicit expression of the

transformations above is presented for the first time here.

4.1.4 Hermitian Adjoint and Hermitian Inner Products

The Hermitian adjoint of the classical Pauli spinor in equation (4.27) is given by

Ψ † =
(
ΨT
)∗

= (Ψ ∗)T =
(
ψ1
∗ ψ2

∗
)
, (4.47)

so that its representation as a square matrix is given by

Ψ† =
(
ΨT
)∗

= (Ψ∗)T =

(
ψ1
∗ ψ2

∗

0 0

)
. (4.48)

This can be written as

Ψ† = ψ1
∗F + ψ2

∗(Σ1F)†, (4.49)

that is,

Ψ† = ψ1
∗F + ψ2

∗FΣ1 = F(ψ1
∗ + ψ2

∗Σ1). (4.50)

By considering that ψA = rA + isA, where rA, sA ∈ R and A ∈ {1, 2}, and by using the

property Σ3F = FΣ3 = F, in addition to the basic property 1
2
{Σi,Σj} = δij1 and the fact

that Σ1Σ2Σ3 = i1, one can rewrite Ψ† as follows:

Ψ† = F(r1 − is1 + r2Σ1 − is2Σ1)

= F(r1 − s1iΣ3 + r2Σ3Σ1 − s2iΣ1)

= F(r1 − s1iΣ3 + r2iΣ2 − s2iΣ1). (4.51)

Now, by using the correspondences Σj ∼ σj, in addition to the correspondence between

the identity matrix and the number one, which imply, in particular, the correspondences

Σ1Σ2Σ3 = i1 ∼ σ1σ2σ3 = I and iΣj ∼ Iσj, one can write the multivector corresponding

to the adjoint Pauli spinor in question as

¯
ψ† = f(r1 − s1Iσ3 + r2Iσ2 − s2Iσ1). (4.52)
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This is just the reverse of the algebraic Pauli spinor given by equation (4.36), which

justifies the use of a superscript dagger to denote the reverse of an element of the algebra

C`3,0. (Note that this adjoint algebraic Pauli spinor is an element of the minimal right

ideal I† = {fA | A ∈ C`3,0 and f = 1
2
(1 + σ3)}.) In this way, the map which maps the

adjoint classical Pauli spinor Ψ † to the corresponding adjoint algebraic Pauli spinor
¯
ψ†

is found to be ᾱ = rev ◦ α ◦ adj, where adj denotes the Hermitian adjoint operation, rev

denotes the reversion operation and the map α is that in the relations (4.44). The operator

adjoint Pauli spinor ψ† corresponding to the algebraic adjoint Pauli spinor
¯
ψ† is obtained

in the same way as ψ is obtained from
¯
ψ, through the map β :

¯
ψ 7→ ψ = 〈

¯
ψ〉+ = 〈

¯
ψ〉−σ3.

In summary, the maps between adjoint Pauli spinors are the following:

Ψ † =
(
a0 − ia3 −a2 − ia1

)
¯
ψ† = f(a0 − aiIσi) = fψ†

ψ† = a0 − aiIσi = 2〈
¯
ψ†〉+ = 2〈

¯
ψ†〉−σ3.

ᾱ

β◦ᾱ
β (4.53)

The Hermitian inner product of the classical Pauli spinors Ψ =
(
ψ1 ψ2

)T

and Φ =(
φ1 φ2

)T

is given by

Ψ †Φ =
(
ψ1
∗ ψ2

∗
)(φ1

φ2

)
= ψ1

∗φ1 + ψ2
∗φ2. (4.54)

In this way, if Ψ and Φ are the square matrices corresponding to the classical Pauli spinors

Ψ and Φ, it follows that

Ψ†Φ =

(
ψ1
∗ ψ2

∗

0 0

)(
φ1 0

φ2 0

)
=

(
ψ1
∗φ1 + ψ2

∗φ2 0

0 0

)
=
(
ψ1
∗φ1 + ψ2

∗φ2

)
F, (4.55)

so that the Hermitian inner product Ψ †Φ can be expressed as the trace of the product

Ψ†Φ:

Ψ †Φ = tr
(
Ψ†Φ

)
. (4.56)

Now, taking

Ψ =

(
ψ1

ψ2

)
=

(
a0 + ia3

−a2 + ia1

)
and Φ =

(
φ1

φ2

)
=

(
b0 + ib3

−b2 + ib1

)
, (4.57)

it follows that

Ψ †Φ =
(
a0b0 + a1b1 + a2b2 + a3b3

)
+ i
(
a0b3 − a3b0 − a2b1 + a1b2

)
, (4.58)
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so that

Re
(
Ψ †Φ

)
= Re

(
tr
(
Ψ†Φ

))
= a0b0 + a1b1 + a2b2 + a3b3 (4.59)

and

Im
(
Ψ †Φ

)
= −Re

(
iΨ †Φ

)
= −Re

(
tr
(
iΨ†Φ

))
= a0b3 − a3b0 − a2b1 + a1b2. (4.60)

Given that
¯
ψ = (a0 + aiIσi)f = ψf and

¯
φ = (b0 + biIσi)f = φf are the algebraic Pauli

spinors corresponding to Ψ and Φ, the geometric product corresponding to Ψ†Φ is given

by

¯
ψ†

¯
φ = fψ†φf

= f
(
a0 − a1Iσ1 − a2Iσ2 − a3Iσ3

)(
b0 + b1Iσ1 + b2Iσ2 + b3Iσ3

)
f

= f
((
a0b0 + a1b1 + a2b2 + a3b3

)
+

+
(
a0b1Iσ1 + a0b2Iσ2 + a0b3Iσ3 + a1b0Iσ1 + a1b2Iσ3 − a1b3Iσ2

− a2b0Iσ2 − a2b1Iσ3 + a2b3Iσ1 − a3b0Iσ3 + a3b1Iσ2 − a3b2Iσ1

))
f.

(4.61)

Then, by noting that 1
2
(1 + σ3)Iσk = Iσk

1
2
(1 − σ3) for k = 1 or k = 2, and that

1
2
(1 + σ3)1

2
(1− σ3) = 0, which imply fIσkf = 0 for k = 1 or k = 2, one can rewrite the

above expression as

¯
ψ†

¯
φ =

((
a0b0 + a1b1 + a2b2 + a3b3

)
+ Iσ3

(
a0b3 − a3b0 − a2b1 + a1b2

))
f

=
((
a0b0 + a1b1 + a2b2 + a3b3

)
+ I
(
a0b3 − a3b0 − a2b1 + a1b2

))
f. (4.62)

This is the corresponding to the equation (4.55) in terms of algebraic Pauli spinors. By

comparing it with equations (4.59) and (4.60) one notes that the real and imaginary parts

of the Hermitian inner product Ψ †Φ can be written respectively as 2〈
¯
ψ†

¯
φ〉 and −2〈I

¯
ψ†

¯
φ〉.

These in turn can be expressed in terms of operator Pauli spinors as

2〈
¯
ψ†

¯
φ〉 = 2〈fψ†φf〉 = 2〈ψ†φf〉 = 〈ψ†φ〉 (4.63)

and

−2〈I
¯
ψ†

¯
φ〉 = −2〈Ifψ†φf〉 = −2〈ψ†φIf〉 = −〈ψ†φIσ3〉, (4.64)

where was considered the invarance of the scalar part of a geometric product under cyclic

permutations of the factors, the fact that odd grade multivectors has null scalar part,
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and the fact that the geometric product of even grade multivectors is also an even grade

multivector. Then, one can write:

Re
(
Ψ †Φ

)
= Re

(
tr
(
Ψ†Φ

))
= 2〈

¯
ψ†

¯
φ〉 = 〈ψ†φ〉 (4.65)

and

Im
(
Ψ †Φ

)
= −Re

(
iΨ †Φ

)
= −Re

(
tr
(
iΨ†Φ

))
= −2〈I

¯
ψ†

¯
φ〉 = −〈ψ†φIσ3〉. (4.66)

Finally, note that the expression (4.62) can be understood as an element of the minimal

left ideal I = {Af | A ∈ C`3,0 and f = 1
2
(1 + σ3)}. In particular, it is the image of the

classical Pauli spinor (Ψ †Φ)
(

1 0
)T

by the map α given in relations (4.44). In this way,

the map β in relations (4.44) transforms the expression (4.62) into

〈ψ†φ〉 − 〈ψ†φIσ3〉Iσ3, (4.67)

which represents the Hermitian inner product Ψ †Φ in terms of operator Pauli spinors,

in agreement with Doran and Lasenby (2003), who denote this expression by 〈ψ†φ〉q. In

summary, Hermitian inner products of classical, algebraic and operator Pauli spinors can

be translated through the mappings

(Ψ †Φ)F
¯
ψ†

¯
φ =

(
〈ψ†φ〉 − 〈ψ†φIσ3〉Iσ3

)
f

〈ψ†φ〉q = 〈ψ†φ〉 − 〈ψ†φIσ3〉Iσ3,

α

β◦α β
(4.68)

where

F =

(
1

0

)
. (4.69)

In general, given a third Pauli spinor Ξ
α7→

¯
ξ

β7→ ξ, it follows the maps

(
Ψ †Φ

)
Ξ = Ξ

(
Ψ †Φ

)
¯
ξ
(
¯
ψ†

¯
φ
)

= ξ
(
〈ψ†φ〉 − 〈ψ†φIσ3〉Iσ3

)
f

ξ〈ψ†φ〉q = ξ
(
〈ψ†φ〉 − 〈ψ†φIσ3〉Iσ3

)
,

α

β◦α β (4.70)

where it is worth noting the ordering of the product in each case: although the Hermitian

inner product commutes with the third Pauli spinor in the classical case, it necessarily

appears as a factor on the right in the algebraic case, and this order for the product is

preserved in terms of operator spinors, which is in agreement with Doran and Lasenby
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(2003).

The probability density for a particle with spin 1
2

described by the classical Pauli spinor

Ψ is given by the real and positive-definite quantity

ρ = Ψ †Ψ = |ψ1|2 + |ψ2|2 = (a0)2 + (a1)2 + (a2)2 + (a3)2. (4.71)

It can be written in terms of square matrices as tr
(
Ψ†Ψ

)
. In terms of algebraic Pauli

spinors, it is given by 2〈
¯
ψ†

¯
ψ〉. In terms of operator Pauli spniors, it reduces to 〈ψ†ψ〉q =

〈ψ†ψ〉 = ψ†ψ. In summary,

ρ = Ψ †Ψ = tr
(
Ψ†Ψ

)
= 2〈

¯
ψ†

¯
ψ〉 = ψ†ψ. (4.72)

For the considered particle, the Hermitian inner product

ρsj =
~
2

Ψ †ΣjΨ (4.73)

defines the components of a vector, which can be understood as a spin density. In terms

of square matrices these components are given by ~
2
tr
(
Ψ†ΣjΨ

)
. The expression in terms of

algebraic Pauli spinors is given by ~〈
¯
ψ†σj

¯
ψ〉. These furnish the corresponding expressions

in terms of operator Pauli spinors as

~〈fψ†σjψf〉 = ~〈σjψfψ†〉 =
~
2
〈σjψσ3ψ

†〉. (4.74)

Note then that ψσ3ψ
† is an odd grade multivector (since the product of an even grade

multivector with an odd grade multivector is an odd grade multivector) and it is equal

to its reverse. This shows that ψσ3ψ
† is a vector, so that the above expression is a scalar

product,
~
2
〈σjψσ3ψ

†〉 =
~
2
σj ·

(
ψσ3ψ

†). (4.75)

In this way, the components of the spin density can be expressed by

~
2

Ψ †ΣjΨ =
~
2

tr
(
Ψ†ΣjΨ

)
= ~〈

¯
ψ†

¯
ψ〉 =

~
2
σj ·

(
ψσ3ψ

†). (4.76)

The spin density vector is then identified as

ρs =
~
2
ψσ3ψ

† (4.77)

(cf. Doran and Lasenby (2003)). Since ψ is an even grade multivector, it can be expressed

by

ψ = ρ
1
2R, (4.78)
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where ρ is the probability density and R is a rotor, that is, an even grade multivector

satisfying R†R = RR† = 1. Application of this expression in the expression for the spin

density vector furnishes the spin vector as

s =
~
2
Rσ3R

† (4.79)

(cf. Doran and Lasenby (2003)). This expression shows as the spin vector can be obtained

through the rotation transformation u 7→ RuR† applied on the reference vector ~
2
σ3,

which makes clear also that the spin density vector can be obtained through such a

rotation transformation followed by a dilation transformation, given by multiplication by

ρ, applied on the same reference vector ~
2
σ3 (cf. Doran and Lasenby (2003)).

4.1.5 Pauli Equation

The Lagrangian function for a non-relativistic particle of mass m and charge q moving

under the action of an electromagnetic field described by a scalar potential φ and a vector

potential A is given by

L =
1

2
mẋ2 − qφ+ qẋ ·A. (4.80)

Since the canonical momentum of the particle is given by

p = ∇ẋL = mẋ + qA, (4.81)

which is clearly different from the “kinematic” momentum mẋ, the Hamiltonian function

for the particle is

H = ẋ · p− L =
1

2
mẋ2 + qφ =

1

2m

(
p− qA

)2
+ qφ. (4.82)

As explained by Fock (1978), the transition to the quantum treatment of a non-relativistic

particle with spin 1
2

is made by expressing the vector observables for the particle in terms of

the Pauli matrices, in the same way as the spin observable. In this way, the wave equation

for such a particle can be written by converting the functional value of the Hamiltonian

function H, i.e. the energy, into the operator i~ ∂
∂t

and the canonical momentum p into

the momentum operator −i~Σj∂
j, as usual in the Schrödinger representation, but now

expressing the vector observables as linear combinations of the Pauli matrices (the scalar

potential is converted simply through a multiplication by the identity matrix), and then

applying the resulting expression for the Hamiltonian operator on a “two-component wave

function” Ψ , i.e. a classical Pauli spinor. The resulting wave equation is then(
1

2m

(
− i~Σj∂

j − qΣjA
j
)2

+ qφ

)
Ψ = i~

∂

∂t
Ψ . (4.83)
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This equation, known as the Pauli equation, encodes the interaction of the non-relativistic

spin-1
2

particle with the external electromagnetic field.

In terms of the algebraic Pauli spinor
¯
ψ corresponding to the classical Pauli spinor Ψ ,

and by converting the matrix operators into the corresponding elements of the geometric

algebra of the three-dimensional Euclidean space, C`3,0, one can write the algebraic version

of the Pauli equation as(
1

2m

(
− I~σj∂j − qσjAj

)2

+ qφ

)
¯
ψ = I~

∂

∂t¯
ψ, (4.84)

or better, (
1

2m

(
− I~∇− qA

)2

+ qφ

)
¯
ψ = I~

∂

∂t¯
ψ, (4.85)

where ∇ = σj∂
j is the vector derivative for C`3,0, and A = σjA

j is the vector potential.

Now, this equation can be expressed in terms of the operator Pauli spinor ψ corresponding

to the algebraic Pauli spinor
¯
ψ = ψf as follows,(

1

2m

(
− I~∇− qA

)2

+ qφ

)
ψ

1

2
(1 + σ3) = I~

∂

∂t
ψ

1

2
(1 + σ3). (4.86)

From the linear independence of the even grade and odd grade parts of a multivector, the

above equation must be equivalent to its even grade and odd grade parts, which can be

written respectively as (
1

2m

(
p̂− qA

)2

+ qφ

)
(ψ) = I~

∂

∂t
ψσ3 (4.87)

and (
1

2m

(
p̂− qA

)2

+ qφ

)
(ψ)σ3 = I~

∂

∂t
ψ, (4.88)

where it was necessary to introduce the multivector operator p̂, given by

p̂(ψ) = −I~∇ψσ3 = −~∇ψIσ3, (4.89)

which is the corresponding to the momentum operator. The equations (4.87) and (4.88)

are exactly the same equation, since the product from the right by σ3 is invertible, and

it can be written as (
1

2m

(
p̂− qA

)2

+ qφ

)
(ψ) = ~

∂ψ

∂t
Iσ3. (4.90)

This is the Pauli equation for an operator Pauli spinor, in agreement with Hestenes (1971).

It follows that this operator version of the Pauli equation is encoded two times in the

algebraic version, equation (4.85), as its even grade and odd grade parts. It is worth to note
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that these translations of the Pauli equation can be understood in terms of applications

of the maps α and β in relations (4.44).

4.2 Relativistic Theory

4.2.1 Introduction

As can be seen in the vast literature on quantum mechanics (see, for example, the already

quoted texts by Piza (2003) and Messiah (2014), and the text on quantum field theory by

Ryder (1996)), the relativistic generalization of the Schödinger equation can be obtained

directly from the energy-momentum-mass relation,

pµpµ =
E2

c2
− p2 = (mc)2, (4.91)

by performing the replacement of pµ by the differential operator i~∂µ and applying the

resulting differential operator in a wave function φ (a complex scalar field) to obtain the

equation (
∂µ∂µ + κ2

)
φ = 0, (4.92)

where κ = mc/~. This equation of motion, known as the Klein-Gordon equation, describes

the wave function for a free spin-0 particle of mass m.

The relativistic quantum mechanics of a particle with spin 1
2

is founded on the Dirac

equation,

i~Γµ∂µΨ = mcΨ , (4.93)

obtained by Dirac through a heuristic procedure which can be intuitively understood as

an“extraction of the square root”of the differential operator in the Klein-Gordon equation

to obtain the differential operator i~Γµ∂µ−mc, where Γµ, with µ ∈ {0, 1, 2, 3}, form a set

of operators which can be represented by matrices, m is the mass and Ψ represents the

wave function for the particle, which can be represented by a column matrix with complex

entries (DIRAC, 1982). Following this idea, the equation can be justified by requiring that

the energy-momentum-mass relation must be satisfied also in this case, so that Ψ must

satisfy also the Klein-Gordon equation. Along this line, by applying again the matrix

operator i~Γµ∂µ = mc in the Dirac equation, one obtains

−~2ΓµΓν∂µ∂νΨ = (mc)2Ψ . (4.94)
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The requirement of symmetry of the second derivatives allows one to write

−~2 1

2
(ΓµΓν + ΓνΓµ)∂µ∂νΨ = (mc)2Ψ , (4.95)

which reduces to the Klein-Gordon equation for Ψ provided that

1

2
(ΓµΓν + ΓνΓµ)∂µ∂ν = ∂µ∂ν , (4.96)

that is, in the context of the Dirac theory, the symmetric part of the product of two of

the Dirac matrices Γµ must act “raising spacetime indices” in the same way as the metric

tensor for Minkowski spacetime: the product of operators associated to the observables,

which are generated by the Dirac matrices Γµ, must satisfy the basic property

1

2

(
ΓµΓν + ΓνΓµ

)
= ηµν1, (4.97)

where 1 is the identity matrix and ηµν is the metric tensor for Minkowski spacetime, given

by η00 = 1, ηij = −δij for i, j ∈ {1, 2, 3} and ηµν = 0 for µ, ν ∈ {0, 1, 2, 3} and µ 6= ν.

In the same way, the symmetric part of the product of a pair of the covariant version

of the Dirac matrices, Γµ, must act “lowering spacetime indices” in the same way as the

covariant version of the metric tensor for Minkowski spacetime ηµν , which is such that

ηµληλν = δµν . The index of a Dirac matrix itself acts as a spacetime index, which can be

“raised” or “lowered” by the metric tensor. In this way, it follows the relations Γ0 = Γ0

and Γi = −Γi, for i ∈ {1, 2, 3}.

Dirac concluded that the matrices representing his operators must be 4 × 4 complex

matrices, and so he obtained such a representation (PIZA, 2003; MESSIAH, 2014; RYDER,

1996). However, there is not a unique matrix representation for the Dirac operators,

although it is always possible to represent them as 2 × 2 block matrices in terms of the

Pauli matrices and the 2× 2 identity and null matrices. The most usual representation is

given by

Γ0 =

(
1 0

0 −1

)
and Γi =

(
0 −Σi

Σi 0

)
, (4.98)

where the entries 1 and 0 are respectively the 2× 2 identity and null matrices, and Σi are

the Pauli matrices. The matrix

Γ5 = −iΓ0Γ1Γ2Γ3 (4.99)

is important and, according to the above representation is given by

Γ5 =

(
0 1

1 0

)
. (4.100)
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In agreement with this representation the wave function is given by a column matrix with

four complex entries,

Ψ =


ψ1

ψ2

ψ3

ψ4

 . (4.101)

Such a wave function corresponds to a Dirac spinor, more precisely, it defines a classical

Dirac spinor (FIGUEIREDO et al., 1990; VAZ; DA ROCHA, 2019).

4.2.2 From Dirac Equation to Dirac-Hestenes Equation

It is a known fact, whose possibility had already been outlined in the early 1930s by Sauter

(1930) and Juvet (1930, 1932), that the traditional Dirac equation can be rewritten in

an equivalent way by replacing the wave function by a suitable element from the Dirac

algebra, which is currently recognized to be C`1,3(C) ' C ⊗ C`1,3, that is, the geometric

algebra of spacetime with the field of real scalars replaced by the field of complex scalars,

usually called the complexified geometric algebra of spacetime (FIGUEIREDO et al., 1990;

LOUNESTO, 2001; DA ROCHA; VAZ, 2007). More precisely, thinking in terms of matrices,

the following equivalence relation holds,

Ψ =


ψ1

ψ2

ψ3

ψ4

 ∼ Ψ =


ψ1 0 0 0

ψ2 0 0 0

ψ3 0 0 0

ψ4 0 0 0

 , (4.102)

so that the Dirac equation can be written in the form

i~Γµ∂µΨ− qΓµAµΨ = mcΨ, (4.103)

where the term encoding the interaction of the spin-1
2

particle with an electromagnetic

field, expressible through the potential Aµ, is included. Note then that the wave function

Ψ can be put in the form

Ψ =


ψ1 0 0 0

ψ2 0 0 0

ψ3 0 0 0

ψ4 0 0 0

 =


ψ1 ψ12 ψ13 ψ14

ψ2 ψ22 ψ23 ψ24

ψ3 ψ32 ψ33 ψ34

ψ4 ψ42 ψ43 ψ44




1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 , (4.104)
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where the entries of the matrix to the left at the right-hand side, with exception of the

first column, are arbitrary. Note also that the matrix

F =


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 (4.105)

is idempotent, that is F2 = F, and it can be expressed in terms of Dirac matrices by

F =
1

2
(1 + Γ0)

1

2
(1 + iΓ1Γ2). (4.106)

Consider then the matrices

iΓ2Γ3F=


0 0 0 0

1 0 0 0

0 0 0 0

0 0 0 0

, Γ3Γ0F=


0 0 0 0

0 0 0 0

1 0 0 0

0 0 0 0

, Γ1Γ0F=


0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

, (4.107)

and note that the wave function Ψ can be expressed as

Ψ = ψ1F + ψ2iΓ2Γ3F + ψ3Γ3Γ0F + ψ4Γ1Γ0F. (4.108)

Now the matrix representation can be abandoned and the Dirac equation can be written

i~γµ∂µ
¯
ψ − qγµAµ

¯
ψ = mc

¯
ψ, (4.109)

where the Dirac matrices were replaced by the corresponding elements of the canonical

basis {γµ} of the Minkowski vector space, R1,3, the matrix product was replaced by the

geometric product of the geometric algebra of spacetime, C`1,3, and the wave function is

now given by

¯
ψ = (ψ1 + ψ2iγ23 + ψ3γ30 + ψ4γ10)f, (4.110)

with f being an idempotent from C⊗ C`1,3 given by

f =
1

2
(1 + γ0)

1

2
(1 + iγ12) (4.111)

(note that the notation γµν = γµγν has been introduced). At this point, a connection has

been established with the algebraic definition of a spinor, as an element of a minimal left

ideal of a Clifford algebra (FIGUEIREDO et al., 1990; LOUNESTO, 2001; VAZ; DA ROCHA,

2019), since f is a primitive idempotent from the algebra C⊗C`1,3 and the multivector in

parentheses in the expression (4.110) is an element from C⊗C`1,3. Such an element need
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not to be a complex multivector. Indeed, by writing ψA = rA + isA, where rA, sA ∈ R and

A ∈ {1, 2, 3, 4}, and by considering the property iγ12f = f of the idempotent f , one can

rewrite
¯
ψ in (4.110) as follows,

¯
ψ =

(
(r1 + is1) + (r2 + is2)iγ23 + (r3 + is3)γ30 + (r4 + is4)γ10

)
f

=
(

(r1 + s1γ21) + (r2γ31 + s2γ32) + (r3γ30 + s3I) + (r4γ10 + s4γ20)
)
f, (4.112)

where I = γ0γ1γ2γ3. In this way, it is noted that an algebraic Dirac spinor can be written

in the form

¯
ψ = ψf, (4.113)

where ψ ∈ C`1,3
+, which allows one to define it as an element of the minimal left ideal

I = {Af | A ∈ C⊗C`1,3 and f = 1
2
(1+γ0)1

2
(1+ iγ12)}. In fact, similarly to the case of the

algebraic Pauli spinors, an algebraic Dirac spinor can be defined as an element of a minimal

left ideal generated by any idempotent obtained from f through a Lorentz transformation

(HILEY; CALLAGHAN, 2010), and the choice of an idempotent reflects the choice of a

reference frame and a quantization direction, which consequently define the particular

choice for the matrix representation. The conventional choice for f = 1
2
(1 + γ0)1

2
(1 + σ3)

corresponds to the choice of the reference frame determined by γ0 and the choice of

the z-axis as the quantization direction. This choice determines the standard matrix

representation adopted in this context.

As observed from the expression (4.113), all the content of the wave function reduces

to an even grade element of the real algebra C`1,3. Such an element defines an operator

Dirac spinor (FIGUEIREDO et al., 1990; LOUNESTO, 2001; VAZ; DA ROCHA, 2019). It is

natural to ask for an equation, or a set of equations, equivalent to the Dirac equation but

expressed entirely in terms of the real algebra C`1,3. This can be accomplished as follows.

The algebraic version of Dirac equation, that is, equation (4.109), can be expressed as

i~γµ∂µψ
1

4
(1+γ0)(1+iγ12)−qγµAµψ

1

4
(1+γ0)(1+iγ12) = mcψ

1

4
(1+γ0)(1+iγ12), (4.114)

where, as seen above, ψ is an even grade multivector from the real geometric algebra of

spacetime, C`1,3. This equation is equivalent to its real and imaginary parts, respectively

given by

~γµ∂µψ(1 + γ0)γ21 − qγµAµψ(1 + γ0) = mcψ(1 + γ0) (4.115)

and

~γµ∂µψ(1 + γ0)− qγµAµψ(1 + γ0)γ12 = mcψ(1 + γ0)γ12. (4.116)

These equations, which are equivalent (since the product from the right by the bivector
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γ12 is invertible), are expressed in terms of the real algebra C`1,3. In additon, each of

these equations should be equivalent to its even grade and odd grade parts. In particular,

equation (4.115) is equivalent to its even grade and odd grade parts, respectively given

by

~γµ∂µψγ0γ21 − qγµAµψγ0 = mcψ (4.117)

and

~γµ∂µψγ21 − qγµAµψ = mcψγ0, (4.118)

and equation (4.116) it is also equivalent to its even grade and odd grade parts, respectively

given by

~γµ∂µψγ0 − qγµAµψγ0γ12 = mcψγ12 (4.119)

and

~γµ∂µψ − qγµAµψγ12 = mcψγ0γ12. (4.120)

Equations (4.117), (4.118), (4.119) and (4.120) are all equivalent and correspond to the

usual Dirac equation for an operator Dirac spinor (LOUNESTO, 2001; DORAN; LASENBY,

2003), which is usually known as the Dirac-Hestenes equation, since it was obtained by

Hestenes in the 1960s (HESTENES, 1967; HESTENES, 1975). The quadruplicate derivation

above is not known to the author prior to this work.

This result means that not only is the traditional Dirac equation equivalent to the

Dirac-Hestenes equation as the latter is encoded four times in the former, under the form

of (I) the even grade part of the real part, (II) the odd grade part of the real part, (III) the

even grade part of the imaginary part, and (IV) the odd grade part of the imaginary part

of the algebraic version of Dirac equation, that is, equation (4.109), or equation (4.114).

This fact suggests that both the classical version and the algebraic version of the Dirac

equation contain redundant information and that the Dirac-Hestenes equation eventually

contains the minimum information required to describe a spin-1
2

particle. This idea seems

sensible, given that the traditional Dirac theory is described through a complex algebra of

operators, corresponding to C⊗C`1,3, acting on a Hilbert space, and the algebraic version,

although described through a single structure, employs also the complexified geometric

algebra of spacetime, C⊗C`1,3. The formulation in terms of the Dirac-Hestenes equation,

in turn, is based on the real geometric algebra of spacetime, C`1,3, which has half of the

real dimension of the complexified algebra C⊗ C`1,3.
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4.2.3 The Relation between Classical, Algebraic and Operator

Dirac Spinors

Once a version of the Dirac equation expressed entirely of a real algebra has been obtained,

it is desirable to obtain a scheme of translation from the classical wave function to its

operator version. This has been done implicitly in the previous subsection. When relation

(4.112) was obtained, at the same time, the following correspondence between a classical

and an algebraic Dirac spinor was established (cf. equations (4.102), (4.108) and (4.112)),

Ψ =


a0 + ia21

a31 + ia32

a30 + ia5

a10 + ia20

 ∼
¯
ψ =

(
a0 +

∑
µ>ν

aµνγµν + a5I

)
f, (4.121)

where a0, aµν , a5 ∈ R. Note that, by considering the isomorphism C`1,3
+ ' C`3,0 via the

correspondences σi = γiγ0 (cf. section 3.1), where {σi} is an orthonormal basis of R3, the

above equivalence relation can be put in the form

Ψ =


a0 + ia3

−a2 + ia1

b0 + ib3

−b2 + ib1

 ∼
¯
ψ =

(
(a0 + akIσk) + (b0 + bkIσk)σ3

)
f, (4.122)

where aµ, bµ ∈ R, which is similar to the usual correspondence between a classical and

an operator Dirac spinor (cf. e.g. Doran and Lasenby (2003)) except for the idempotent

f as factor on the right. This fact shows that, given an algebraic Dirac spinor
¯
ψ and its

corresponding operator spinor ψ, it follows that the latter is four times the even grade

part of the real part of the former (cf. e.g. Lounesto (2001)). This fact can be denoted

by ψ = 4〈Re(
¯
ψ)〉+, where 〈A〉+ denotes the even grade part of the multivector A from

C`1,3. It can be noted that ψ can also be obtained from the odd grade part of the real

part of
¯
ψ, more precisely, ψ = 4〈Re(

¯
ψ)〉−γ0, where 〈A〉− denotes the odd grade part

of the multivector A from C`1,3. But there are also two other ways of expressing ψ in

terms of
¯
ψ, namely, 4〈Im(

¯
ψ)〉+γ21 = 4〈Im(

¯
ψ)〉−γ0γ21. Thus, the correspondence relations

between classical, algebraic and operator Dirac spinors, respectively, can be expressed by
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the following maps:

Ψ =


a0 + ia3

−a2 + ia1

b0 + ib3

−b2 + ib1

 ¯
ψ =

(
(a0 + akIσk) + (b0 + bkIσk)σ3

)
f = ψf

ψ = (a0 + akIσk) + (b0 + bkIσk)σ3 = 4〈Re(
¯
ψ)〉+

= 4〈Re(
¯
ψ)〉−γ0

= 4〈Im(
¯
ψ)〉+γ21

= 4〈Im(
¯
ψ)〉−γ0γ21.

α

β◦α β

(4.123)

In this way, an operator Dirac spinor can be obtained in four equivalent ways from its

algebraic counterpart, and consequently from its classical counterpart, a fact already out-

lined by Hiley and Callaghan (2010). The transformations above are presented explicitly

for the first time here.

The action of operators is now translated in a straightforward manner, given by the

correspondences

ΓµΨ γµ
¯
ψ = γµψf = γµψγ0f

4〈Re(γµ
¯
ψ)〉+ = γµψγ0,

α

β◦α β (4.124)

Γ5Ψ γ5
¯
ψ = γ5ψf = ψγ5iγ12f = ψσ3f

4〈Re(γ5
¯
ψ)〉+ = ψσ3,

α

β◦α β (4.125)

and
iΨ i

¯
ψ = iψf = iψiγ12f = ψIσ3f

4〈Re(i
¯
ψ)〉+ = ψIσ3,

α

β◦α β (4.126)

where γ5 = −iI = −iγ0γ1γ2γ3 and the properties γ0f = f and iγ12f = f have been

used. As before, the map β ◦α reproduces the transformation for action of operators from

the classical to the operator representation (cf. Doran and Lasenby (2003)). The explicit

derivation of the above relations are presented for the first time here.
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4.2.4 Dirac Adjoint and Bilinear Covariant Expressions

The Dirac adjoint of the classical Dirac spinor Ψ in relation (4.102) is given by

Ψ̄ = Ψ †Γ0 =
(
ψ1
∗ ψ2

∗ −ψ3
∗ −ψ4

∗
)
, (4.127)

so that its representation as a square matrix is given by

Ψ̄ = Ψ†Γ0 =


ψ1
∗ ψ2

∗ −ψ3
∗ −ψ∗4

0 0 0 0

0 0 0 0

0 0 0 0

 . (4.128)

This can be written as

Ψ̄ =


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0



ψ1
∗ ψ2

∗ −ψ3
∗ −ψ4

∗

ψ12
∗ ψ22

∗ −ψ32
∗ −ψ42

∗

ψ13
∗ ψ23

∗ −ψ33
∗ −ψ43

∗

ψ14
∗ ψ24

∗ −ψ34
∗ −ψ44

∗

 , (4.129)

where the entries of the matrix to the right at the right-hand side, with exception of the

first row, are arbitrary. In terms of Dirac matrices, this expression reads

Ψ̄ = ψ1
∗F + ψ2

∗(iΓ2Γ3F)† − ψ3
∗(Γ3Γ0F)† − ψ4

∗(Γ1Γ0F)†, (4.130)

that is,

Ψ̄ = ψ1
∗F− ψ2

∗iFΓ3Γ2 + ψ3
∗FΓ0Γ3 + ψ4

∗FΓ0Γ1. (4.131)

As before, the matrix representation can be abandoned, and the algebraic version of the

above adjoint classical Dirac spinor can be written as

ψ̄ = f(ψ1
∗ + ψ2

∗iγ23 − ψ3
∗γ30 − ψ4

∗γ10). (4.132)

Again as before, by writing ψA = rA + isA, where rA, sA ∈ R and A ∈ {1, 2, 3, 4}, and by

considering the property iγ12f = f of the idempotent f , one can rewrite ψ̄ as

ψ̄ = f
(

(r1 − is1) + (r2 − is2)iγ23 − (r3 − is3)γ30 − (r4 − is4)γ10

)
= f

(
(r1 − s1γ21) + (−r2γ31 − s2γ32) + (−r3γ30 + s3I) + (−r4γ10 − s4γ20)

)
, (4.133)

which corresponds to the complex conjugate of the reverse of
¯
ψ. In this way, in view

of the relations (4.123), one obtains the following correspondence relations between the
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classical adjoint Dirac spinor and its algebraic and operator counterparts:

Ψ̄ = Ψ †Γ0 ψ̄ = ˜
¯
ψ∗ = fψ̃

4〈Re(ψ̄)〉+ = ψ̃.

α

β◦α β (4.134)

Now, products of the form Ψ̄Φ, where Ψ and Φ are classical Dirac spinors, can be

expressed in terms of algebraic and operator Dirac spinors. For this, note that, since such

a product is a scalar, it corresponds to the trace of the corresponding product in terms of

square matrices, that is,

Ψ̄Φ = tr(Ψ̄Φ), (4.135)

where Ψ and Φ are the square matrices corresponding to Ψ and Φ. This is easily visualized

by noting that

Ψ̄Φ = (ψ1
∗φ1 + ψ2

∗φ2 − ψ3
∗φ3 − ψ4

∗φ4)F, (4.136)

whose trace corresponds to Ψ̄Φ = ψ1
∗φ1 + ψ2

∗φ2 − ψ3
∗φ3 − ψ4

∗φ4. Since the algebraic

version of the above expression is

ψ̄
¯
φ = (ψ1

∗φ1 + ψ2
∗φ2 − ψ3

∗φ3 − ψ4
∗φ4)f, (4.137)

where
¯
ψ and

¯
φ are the algebraic spinors corresponding to Ψ and Φ, the trace operation

furnishing Ψ̄Φ corresponds to four times the scalar part of ψ̄
¯
φ:

Ψ̄Φ = tr(Ψ̄Φ) = 4〈ψ̄
¯
φ〉. (4.138)

In this way, if ψ = 4〈Re(
¯
ψ)〉+ and φ = 4〈Re(

¯
φ)〉+, that is, ψ and φ are the operator

spinors corresponding to
¯
ψ and

¯
φ, then

¯
ψ = ψf and

¯
φ = φf , and the above product can

be written also as

4〈 ˜
¯
ψ∗

¯
φ〉 = 4〈fψ̃φf〉 = 4〈ψ̃φf〉, (4.139)

where the property of invariance of the scalar part of a geometric product with relation

to cyclic permutations of the factors and the fact that f is idempotent were used. Then,

by expressing the idempotent f in expanded form, one can write the last expression as

4〈ψ̃φf〉 = 〈ψ̃φ(1 + γ0 + iγ12 + iγ0γ12)〉. (4.140)

From the fact that the geometric product of even grade multivectors is also an even grade

multivector and the geometric product of an even grade multivector and an odd grade

multivector is an odd grade multivector, it follows that the multivectors ψ̃φγ0 and ψ̃φγ0γ12

are odd grade and, consequently, 〈ψ̃φγ0〉 = 〈ψ̃φγ0γ12〉 = 0. Thus, the above expression
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reduces to

〈ψ̃φ〉+ i〈ψ̃φγ12〉. (4.141)

In summary, one has the following equivalent expressions:

Ψ̄Φ = tr(Ψ̄Φ) = 4〈ψ̄
¯
φ〉 = 〈ψ̃φ〉+ i〈ψ̃φγ12〉. (4.142)

Analogously to the non-relativistic case, the classical Dirac spinor (Ψ̄Φ)
(

1 0 0 0
)T

can be transformed through the maps α and β, defined in relations (4.123), to furnish

the equivalent expressions for the “Dirac inner product” Ψ̄Φ in the algebraic and operator

forms,

(Ψ̄Φ)F 4〈ψ̄
¯
φ〉f =

(
〈ψ̃φ〉+ i〈ψ̃φγ12〉

)
f

〈ψ̃φ〉q = 〈ψ̃φ〉 − 〈ψ̃φIσ3〉Iσ3,

α

β◦α β
(4.143)

where

F =


1

0

0

0

 . (4.144)

In general, given a third Dirac spinor Ξ
α7→

¯
ξ

β7→ ξ, it follows the maps

(
Ψ̄Φ
)
Ξ = Ξ

(
Ψ̄Φ
)

¯
ξ
(
4〈ψ̄

¯
φ〉f
)

= ξ
(
〈ψ̃φ〉+ i〈ψ̃φγ12〉

)
f

ξ〈ψ̃φ〉q = ξ
(
〈ψ̃φ〉 − 〈ψ̃φIσ3〉Iσ3

)
,

α

β◦α β (4.145)

where it is worth noting that, although the Dirac inner product commutes with the third

Dirac spinor in the classical expression, it necessarily appears as a factor on the right in

the algebraic expression, and this order for the product is preserved in terms of operator

spinors. These maps are in agreement with the relation between the classical and the

operator version of the Dirac inner product as presented by Doran and Lasenby (2003).

A particular case of a Dirac inner product Ψ̄Φ of great importance is that for which

Φ = AΨ , where the matrix A represents a linear operator which is covariant under Lorentz

transformations. A product of the form Ψ̄AΨ is usually known as a bilinear covariant

expression and in general it corresponds to an observable quantity. The basic bilinear

covariant expressions and the corresponding observable quantities are considered case by

case in the following in their classical, algebraic and operator forms with assistance of the

relations (4.143).
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The simplest bilinear covariant expression is Ψ̄Ψ , which is usually associated with the

probability density ρ. For this case, relations (4.143) furnish the following mappings

(Ψ̄Ψ)F 4〈ψ̄
¯
ψ〉f =

(
〈ψψ̃〉+ i〈ψγ12ψ̃〉

)
f

〈ψ̃ψ〉q = 〈ψψ̃〉 − 〈ψIσ3ψ̃〉Iσ3,

α

β◦α β
(4.146)

where the invariance of the scalar part of a geometric product with relation to cyclic

permutations of the factors was used. The multivector ψγ12ψ̃ = −ψIσ3ψ̃ is even grade

and is the opposite of its reverse, then it is a bivector and has no scalar part. In this way,

the above relations reduce to

(Ψ̄Ψ)F 4〈ψ̄
¯
ψ〉f = 〈ψψ̃〉f

〈ψ̃ψ〉q = 〈ψψ̃〉.

α

β◦α
β (4.147)

By using the factored expression of an even grade multivector from C`1,3
+ for the operator

spinor ψ, given by ψ = ρ
1
2 e

1
2
IβR (see the final paragraph of the chapter 2), one obtains

ψψ̃ = ρeIβ, which allows one to express

〈ψ̃ψ〉q = 〈ψψ̃〉 = ρ cos(β). (4.148)

Another basic bilinear covariant expression is Ψ̄ΓµΨ , which multiplied by c defines the

components jµ of the probability current density vector. In this case, taking into account

the translation for the action of operators (cf. the mappings (4.124)), relations (4.143)

furnish:

(Ψ̄ΓµΨ)F 4〈ψ̄γµ
¯
ψ〉f =

(
〈ψ̃γµψγ0〉+ i〈ψ̃γµψγ0γ12〉

)
f

〈ψ̃γµψγ0〉q = 〈ψ̃γµψγ0〉 − 〈ψ̃γµψγ0Iσ3〉Iσ3.

α

β◦α β
(4.149)

These can be rewritten as

(Ψ̄ΓµΨ)F 4〈ψ̄γµ
¯
ψ〉f =

(
〈γµψγ0ψ̃〉+ i〈γµψγ0γ12ψ̃〉

)
f

〈ψ̃γµψγ0〉q = 〈γµψγ0ψ̃〉 − 〈γµψγ0Iσ3ψ̃〉Iσ3.

α

β◦α β
(4.150)
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Since ψγ0γ12ψ̃ = −ψγ0Iσ3ψ̃ is an odd grade multivector which is the opposite of its

reverse, it is a trivector and has no scalar part. The multivector ψγ0ψ̃ is odd grade

and is equal to its reverse, so it is a vector and, consequently, the projection 〈γµψγ0ψ̃〉
corresponds to the scalar product γµ · (ψγ0ψ̃). In this way, the above mappings can be

written simply as

(Ψ̄ΓµΨ)F 4〈ψ̄γµ
¯
ψ〉f =

(
γµ · (ψγ0ψ̃)

)
f

〈ψ̃γµψγ0〉q = γµ · (ψγ0ψ̃).

α

β◦α β
(4.151)

Given that Ψ̄ΓµΨ = γµ · (ψγ0ψ̃) multiplied by c correspond to the components of the

probability current density, such a vector is given by

j = cψγ0ψ̃. (4.152)

The next basic bilinear covariant expression to be considered is Ψ̄ i
2
[Γµ,Γν ]Ψ , where

the square brackets denote a commutator, [Γµ,Γν ] = ΓµΓν−ΓνΓµ. This bilinear covariant

expression, as multiplied by ~
2
, defines the components Sµν of the spin tensor, which is

clearly antisymmetric. In this case, again taking into account the mappings for the action

of operators, relations (4.143) furnish:

(
Ψ̄ i

2
[Γµ,Γν ]Ψ

)
F

4〈ψ̄i(γµ ∧ γν)
¯
ψ〉f =

(
i〈ψ̃(γµ ∧ γν)ψ〉 − 〈ψ̃(γµ ∧ γν)ψγ12〉

)
f

=
(
〈ψ̃(γµ ∧ γν)ψγ21〉+ i〈ψ̃(γµ ∧ γν)ψ〉

)
f

〈ψ̃(γµ ∧ γν)ψIσ3〉q = 〈ψ̃(γµ ∧ γν)ψIσ3〉+ 〈ψ̃(γµ ∧ γν)ψ〉Iσ3.

α

β◦α β

(4.153)

Since ψ̃(γµ ∧ γν)ψ is an even grade multivector which is the opposite of its reverse, it

corresponds to a bivector and has no scalar part. In this way, by noting also that

〈ψ̃(γµ ∧ γν)ψIσ3〉 = 〈(γµ ∧ γν)ψIσ3ψ̃〉, (4.154)

and noting that ψIσ3ψ̃ is a bivector, one can rewrite the above mappings as

(
Ψ̄ i

2
[Γµ,Γν ]Ψ

)
F 4〈ψ̄i(γµ ∧ γν)

¯
ψ〉f =

(
(γµ ∧ γν) · (ψγ21ψ̃)

)
f

〈ψ̃(γµ ∧ γν)ψIσ3〉q = (γµ ∧ γν) · (ψIσ3ψ̃).

α

β◦α β
(4.155)
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Once Ψ̄ i
2
[Γµ,Γν ]Ψ = (γµ ∧ γν) · (ψIσ3ψ̃) multiplied by ~

2
correspond to the components

of the spin tensor, one can define the spin bivector by

S =
~
2
ψIσ3ψ̃. (4.156)

Consider now the basic bilinear covariant expression given by Ψ̄ΓµΓ5Ψ , which are

usually associated to the components of an axial vector. For this case, taking into account

the translation for action of operators (cf. the mappings (4.124) and (4.125)), relations

(4.143) furnish:

(Ψ̄ΓµΓ5Ψ)F
4〈ψ̄γµγ5

¯
ψ〉f =

(
〈ψ̃γµψσ3γ0〉+ i〈ψ̃γµψσ3γ0γ12〉

)
f

=
(
〈ψ̃γµψγ3〉+ i〈ψ̃γµψγ3γ12〉

)
f

〈ψ̃γµψγ3〉q = 〈ψ̃γµψγ3〉 − 〈ψ̃γµψγ3Iσ3〉Iσ3.

α

β◦α β

(4.157)

These can be rewritten as

(Ψ̄ΓµΓ5Ψ)F 4〈ψ̄γµγ5
¯
ψ〉f =

(
〈γµψγ3ψ̃〉+ i〈γµψγ3γ12ψ̃〉

)
f

〈ψ̃γµψγ3〉q = 〈γµψγ3ψ̃〉 − 〈γµψγ3Iσ3ψ̃〉Iσ3.

α

β◦α β
(4.158)

Since ψγ3γ12ψ̃ = −ψγ3Iσ3ψ̃ is an odd grade multivector which is the opposite of its

reverse, it is a trivector and has no scalar part. The multivector ψγ3ψ̃ is odd grade and

is equal to its reverse, so it is a vector and, consequently, 〈γµψγ0ψ̃〉 corresponds to the

scalar product γµ · (ψγ3ψ̃). In this way, the above relations reduce to

(Ψ̄ΓµΓ5Ψ)F 4〈ψ̄γµγ5
¯
ψ〉f =

(
γµ · (ψγ3ψ̃)

)
f

〈ψ̃γµψγ3〉q = γµ · (ψγ3ψ̃).

α

β◦α β
(4.159)

The components γµ · (ψγ3ψ̃) multiplied by ~
2

can be identified as the components ρsµ of

the spin density vector, which is then given by

ρs =
~
2
ψγ3ψ̃. (4.160)

The last basic bilinear covariant expression to be considered is Ψ̄iΓ5Ψ . In this case,

taking into account that γ5 = −iI and using the mappings (4.124) for action of operators,
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relations (4.143) furnish:

(Ψ̄iΓ5Ψ)F 4〈ψ̄iγ5
¯
ψ〉f =

(
〈ψ̃Iψ〉+ i〈ψ̃Iψγ12〉

)
f

〈ψ̃Iψ〉q = 〈ψ̃Iψ〉 − 〈ψ̃IψIσ3〉Iσ3.

α

β◦α β
(4.161)

These can be rewritten as

(Ψ̄iΓ5Ψ)F 4〈ψ̄iγ5
¯
ψ〉f =

(
〈ψψ̃I〉+ i〈ψγ30ψ̃〉

)
f

〈ψ̃Iψ〉q = 〈ψψ̃I〉+ 〈ψσ3ψ̃〉Iσ3.

α

β◦α β
(4.162)

The fact that ψγ30ψ̃ = ψσ3ψ̃ is even grade and is the opposite of its reverse implies that

it is a bivector and has no scalar part. This reduces the above relations to

(Ψ̄iΓ5Ψ)F 4〈ψ̄iγ5
¯
ψ〉f = 〈ψψ̃I〉f

〈ψ̃Iψ〉q = 〈ψψ̃I〉.

α

β◦α
β (4.163)

By considering the factored expression of an even grade multivector from C`1,3
+ for ψ,

given by ψ = ρ
1
2 e

1
2
IβR (see the final paragraph of the chapter 2), one obtains ψψ̃ = ρeIβ,

which furnishes

〈ψ̃Iψ〉q = 〈ψψ̃I〉 = −ρ sin(β). (4.164)

It should be noted that the basic bilinear covariant expressions in terms of operator

spinors obtained, as well as the corresponding expressions for the observables, reproduce

the expressions presented by Doran and Lasenby (2003).

4.2.5 Plane Waves

As a simple illustration of some of the above results concerning the Dirac equation and

Dirac spinors, one can consider the particular case of the plane wave equation and its

associated solutions.

The positive energy plane wave solutions of equation (4.109) can be stated to be of

the form

¯
ψ(x) =

¯
ψ0(p)e−

i
~ (p·x), (4.165)

where
¯
ψ0(p) is an algebraic Dirac spinor depending only on the spacetime momentum p
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of the particle. By writing
¯
ψ0(p) = ψ0(p)f , where ψ0(p) = 4〈Re(

¯
ψ0(p))〉+ is the operator

spinor corresponding to
¯
ψ0(p), and using the property iγ12f = f this solution can be

written

¯
ψ(x) = ψ0(p)e−

i
~ (p·x)f = ψ0(p)e−γ21

1
~ (p·x)f. (4.166)

Substitution of this expression in the equation (4.109), with Aµ = 0, furnishes

i~γµψ0(p)

(
−1

~
γ21pµ

)
e−

1
~γ21(p·x)f = mcψ0(p)e−

1
~γ21(p·x)f, (4.167)

that is,

pψ0(p)
1

2
(1 + γ0)

1

2
(1 + iγ12) = mcψ0(p)

1

2
(1 + γ0)

1

2
(1 + iγ12) (4.168)

(note that the form
¯
ψ(x) = ψ0(p)e−

i
~ (p·x)f for the assumed solution could be used in place

of
¯
ψ(x) = ψ0(p)e−γ21

1
~ (p·x)f in the same way to obtain the above expression). The real

and imaginary parts of this equation correspond to the same equation,

pψ0(p)(1 + γ0) = mcψ0(p)(1 + γ0), (4.169)

and the even grade and odd grade parts of this new equation are also the same, and

correspond to

pψ0(p) = mcψ0(p)γ0. (4.170)

This is the expected equation in terms of the algebra C`1,3 (cf. Doran and Lasenby (2003)).

In addition, this equation is obtained four times from the equation (4.168), and this latter

is known to be equivalent to the traditional plane wave equation, p/u(p) = mcu(p).

The negative energy plane wave solutions of the equation (4.109) can be stated to be

of the form

¯
ψ(x) =

¯
ψ0(p)e

i
~ (p·x) = ψ0(p)eγ21

1
~ (p·x)f. (4.171)

Similarly to the above above, this solution furnishes the equation

pψ0(p)
1

2
(1 + γ0)

1

2
(1 + iγ12) = −mcψ0(p)

1

2
(1 + γ0)

1

2
(1 + iγ12), (4.172)

where either the even or odd grade part of either its real or imaginary part corresponds

to

pψ0(p) = −mcψ0(p)γ0. (4.173)

Again this is the expected plane wave equation in terms of C`1,3 (cf. Doran and Lasenby

(2003)), which is encoded four times in equation (4.172), as well as in its classical coun-

terpart, p/v(p) = −mcv(p).

The plane wave solutions in terms of the real geometric algebra of spacetime can be
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obtained as follows (DORAN; LASENBY, 2003). The equations (4.170) and (4.173) imply

that

pψ± = ±mcψ±γ0, (4.174)

where the plus and minus signs superscripts distinguish positive and negative energy

solutions, given by

ψ± = ψ±(x) = ψ±0 (p)e∓Iσ3
1
~ (p·x). (4.175)

The above equations allow one to write

pψ±ψ̃± = ±mcψ±γ0ψ̃
± = ±mj, (4.176)

where j is the probability current density vector. Now, by using the factored expression

ψ = ρ
1
2 e

1
2
IβR for an even grade multivector from C`1,3

+ (see the final paragraph of the

chapter 2) in the equation (4.176), one obtains

pρeIβ = ±mj. (4.177)

Since both p and j are vectors, one must have eIβ = ±1, that is, β = 0 or β = π. Given

that j · γ0 = cρ > 0 and p · γ0 = E/c > 0, where E is the energy, one must have β = 0

for the positive energy solutions and β = π for the negative energy solutions. The plane

wave solutions can then be written in the form

ψ± = ρ
1
2 e

1
2
Iβ±LUe∓Iσ3

1
~ (p·x), (4.178)

where β+ = 0, β− = π and R = LU is a spacetime rotor, L being a rotor describing a boost

and U being a rotor describing a spatial rotation. The rotor Re∓Iσ3
1
~ (p·x) = LUe∓Iσ3

1
~ (p·x)

must transform mcγ0 in the momentum p of the particle, so that the rotor U must be a

spatial rotor relative to an observer of normalized spacetime velocity γ0; in particular, it

must correspond to a definite spin state. In this way, one must have

p

m
= LUe±Iσ3

1
~ (p·x)γ0e

±Iσ3
1
~ (p·x)Ũ L̃ = Lγ0L̃. (4.179)

From the known expression for a boost transforming a time-like vector into another

(cf. subsection 3.3.4), the rotor L can be written as

L =
1 + pγ0/mc√

2(1 + p · γ0/mc)
=

mc+ pγ0√
2mc(mc+ p · γ0)

=
mc+ E/c+ p√
2mc(mc+ E/c)

, (4.180)

where p = p ∧ γ0 is the relative momentum of the particle. In summary, the plane wave
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solutions of positive and negative energies are respectively given by

ψ+
r = ρ

1
2L(p)Ure

−Iσ3
1
~ (p·x) and ψ−r = ρ

1
2 IL(p)Ure

Iσ3
1
~ (p·x), (4.181)

where L(p) is the rotor given by equation (4.180) and the spatial rotor Ur describes a

well-defined spin state (a “spin-up” or a “spin-down” state), with U1 = 1 and U2 = −Iσ2.

4.2.6 Energy-Momentum Tensor

The ambiguity in the definition of the energy-momentum tensor allows one to define it

for the Dirac field to be

T µν =
1

2

(
Ψ̄i~Γµ∂νΨ +

(
Ψ̄i~Γµ∂νΨ

)†)
. (4.182)

This can be rewritten as

T µν =
1

2

(
Ψ̄i~Γµ∂νΨ − ∂νΨ̄Γ0i~Γµ†Γ0Ψ

)
. (4.183)

Since Γ0Γµ†Γ0 = Γµ, the above expression can be simplified to

T µν =
1

2

(
i~Ψ̄Γµ∂νΨ − i~∂νΨ̄ΓµΨ

)
. (4.184)

This corresponds to a choice similar to that made by Hiley and Callaghan (2010), for the

energy-momentum tensor, except for a sign. Note now that the above expression can be

written in terms of square matrices as follows:

T µν =
1

2

(
tr
(
i~Ψ̄Γµ∂νΨ

)
− tr

(
i~∂νΨ̄ΓµΨ

))
. (4.185)

In terms of algebraic Dirac spinors, this expression reads

T µν =
1

2

(
4〈i~ψ̄γµ∂ν

¯
ψ〉 − 4〈i~∂νψ̄γµ

¯
ψ〉
)
. (4.186)

In terms of operator Dirac spinors, this is given by

T µν =
1

2

(
4〈i~fψ̃γµ∂νψf〉 − 4〈i~f∂νψ̃γµψf〉

)
, (4.187)

or, considering the property of the scalar part of invariance under cyclic permutations of

the factors in its argument,

T µν =
1

2

(
4〈i~γµ∂νψfψ̃〉 − 4〈i~γµψf∂νψ̃〉

)
. (4.188)
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Since γµ is a vector, only the terms in the expressions

∂νψfψ̃ = ∂νψ
1

4
(1 + γ0 + iγ12 + iγ0γ12)ψ̃ (4.189)

and

ψf∂νψ̃ = ψ
1

4
(1 + γ0 + iγ12 + iγ0γ12)∂νψ̃ (4.190)

which have a non-null vector part furnish in principle non-null scalar parts in the above

expression for the energy-momentum tensor. It is found that the terms ∂νψψ̃, ∂νψiγ12ψ̃,

ψ∂νψ̃ and ψiγ12∂νψ̃ are all even grade multivectors (since they are products of even grade

multivectors), so that they furnish null contributions for the energy-momentum tensor.

The remaining terms are odd grade multivectors which can have a vector part. The above

expression for the energy-momentum tensor can then be written as

T µν =
1

2

(
〈i~γµ∂νψγ0ψ̃〉+ 〈i~γµ∂νψiγ0γ12ψ̃〉

− 〈i~γµψγ0∂νψ̃〉 − 〈i~γµψiγ0γ12∂νψ̃〉
)
. (4.191)

This can be rewritten as

T µν =
1

2

(
〈i~γµ∂νψγ0ψ̃〉+ 〈~γµ∂νψγ0γ21ψ̃〉

− 〈i~ψγ0∂νψ̃γ
µ〉 − 〈~ψγ0γ21∂νψ̃γ

µ〉
)
. (4.192)

Now, by using the property of invariance of the scalar part under the reversion operation,

one can rewrite the above expression with the third and fourth terms reversed:

T µν =
1

2

(
〈i~γµ∂νψγ0ψ̃〉+ 〈~γµ∂νψγ0γ21ψ̃〉

− 〈i~γµ∂νψγ0ψ̃〉+ 〈~γµ∂νψγ0γ21ψ̃〉
)
. (4.193)

This furnishes the following expression for the energy-momentum tensor:

T µν = ~〈γµ∂νψγ0Iσ3ψ̃〉. (4.194)

These match to the components of the canonical energy-momentum tensor as presented

by Doran and Lasenby (2003), which express it in a coordinate-free manner, in terms of

its action in a vector a, as

T (a) = ~〈(a · ∇)ψγ0Iσ3ψ̃〉1. (4.195)
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The relation to the expression in terms of components is given by

T µν = γµ · T (γν) = T (γν) · γµ. (4.196)



5 Multi-Particle Spinors

The study in the previous chapter treats states of a single spin-1
2

particle. The objective

here is to extend that study to states of a system of multiple particles with spin 1
2
. This

objective and its motivation are clarified in the following section.

5.1 Introduction

In the context of quantum mechanics (PIZA, 2003; MESSIAH, 2014), the state space for

a system composed of two or more particles is usually described by the tensor product

of the state spaces for the individual particles. States for the composite system are then

described in terms of tensor products of states for the individual particles, considered in a

fixed order, compatible with the labeling of the particles (recalling that the tensor product

is associative, but non-commutative). As an example, consider a system composed of two

particles, labeled as “particle 1” and “particle 2”, whose state spaces are the Hilbert spaces

H1 and H2, respectively. In this case, the space of possible states of the composite system

is the tensor product H1 ⊗ H2, and a state of the form |φ〉 ⊗ |χ〉, where |φ〉 ∈ H1 and

|χ〉 ∈ H2, is a possible state for the composite system. Although not all states from

H1 ⊗ H2 can be written in the form |φ〉 ⊗ |χ〉, a general state for the composite system

is a linear combination of tensor products of this form. For this case of a system of

two particles, given the states |ψ〉 = |φ〉 ⊗ |χ〉 and |ψ′〉 = |φ′〉 ⊗ |χ′〉 from H1 ⊗ H2, the

Hermitian inner product of the two is naturally defined as

〈ψ|ψ′〉 = 〈φ|φ′〉〈χ|χ′〉. (5.1)

The action of operators is also extended in a natural way. Given an operator â defined on

the state space of particle 1, H1, its extension to the tensor product space H1 ⊗H2 can

be denoted by â1 and defined to act on a state |ψ〉 = |φ〉 ⊗ |χ〉 through the expression

â1|ψ〉 = (â|φ〉)⊗ |χ〉. (5.2)



CHAPTER 5. MULTI-PARTICLE SPINORS 140

It follows that â1 is the tensor product of the operator â with the identity operator for

the state space of particle 2:

â1 = â⊗ 1̂. (5.3)

The same applies to operators defined on the state space of particle 2. In general, an

operator defined on the tensor product space is a linear combination of tensor products

of operators defined on each factor space. All the constructions defined for the case of

two-particle systems extend naturally to the case of systems composed of any number

N of particles by considering tensor products with N factors, each corresponding to a

particle. These are the basic elements for the description of N -particle systems in quantum

mechanics.

One question that arises is whether it is possible to implement such a description in

terms of Clifford algebras, as in the case of a single particle. Doran et al. (1993, 1996)

have addressed this question by introducing the multi-particle spacetime algebra, which,

for the case of a system of N non-relativistic spin-1
2

particles, is an algebra constructed

from N copies of the Minkowski spacetime, each copy associated to a geometric algebra

of spacetime, with the following defining property

1

2

(
γµ

aγν
b + γν

bγµ
a
)

= δabηµν , (5.4)

where γµ
a is the µ-th canonical basic vector of the a-th copy of Minkowski spacetime, so

that µ, ν ∈ {0, 1, 2, 3} and a, b ∈ {1, . . . , N}. This property implies, in particular, that

the geometric product of vectors from the same copy of Minkowski spacetime obeys the

standard property of the geometric algebra of spacetime, while the geometric product of

vectors from different copies of Minkowski spacetime anticommutes. Through this algebra,

Doran et al. (1993, 1996) were able to describe states for multi-particle systems, at least

in the non-relativistic context, in a similar way to the description provided by Hestenes

(HESTENES, 1967; HESTENES, 1971; HESTENES; GÜRTLER, 1971; HESTENES, 1975) for the

case of a single particle.

Since their introduction, multi-particle spacetime algebras have been applied in several

contexts — cf. e.g. Doran et al. (1996), Lasenby et al. (1993), Somaroo et al. (1998, 1999),

Havel et al. (2001), Parker and Doran (2002), Havel and Doran (2002a, 2002b), Lasenby

et al. (2004), and Arcaute and Lasenby (2008). Moreover, Doran et al. (1996) argue that

the approach in terms of this algebra brings advances in clarity and insight to the subject

of multi-particle quantum systems. Despite this, the topic is still little explored and there

are still fundamental questions to be answered. Which Clifford algebra does the multi-

particle spacetime algebra correspond to? Is this the same as the algebra of operators

acting on classical multi-particle states? How can a spinor be defined in terms of these

algebras? How do the different definitions of spinors relate in this context?
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Adopting as a basic premise the adequacy of the multi-particle spacetime algebras in

their descriptions, the aim of this work is to answer the above questions by extending the

study realized in the previous chapter to the case of multi-particle states.

5.2 Non-Relativistic Multi-Particle Spinors

As shown above, a possible state for a system of two non-relativistic spin-1
2

particles can

be expressed by the tensor product |φ〉⊗|χ〉, where |φ〉 and |χ〉 are states for the particles

1 and 2, respectively. In this case, an operator defined on the tensor product space is

represented by a linear combination of tensor products of the form â ⊗ b̂, where â and b̂

are operators acting on the spaces of the particles 1 and 2, respectively. Since the algebra

of operators for each of the two particles is C`3,0, the algebra of operators acting on the

tensor product space corresponds to C`3,0 ⊗ C`3,0. Analogously to the case of a single

particle, the algebra C`3,0 ⊗ C`3,0 can be used to represent states as well as operators for

the system of two particles.

5.2.1 The Tensor Product Algebra Acting on Two-Particle States

According to the usual definition of the tensor product of algebras (LANG, 2002), the

tensor product C`3,0⊗C`3,0 is defined to be another algebra, whose product is defined by

(A⊗B)(A′ ⊗B′) = (AA′)⊗ (BB′), (5.5)

where A,A′, B,B′ ∈ C`3,0, and extended by bilinearity. It is noted from this definition

that the product of elements of the form u ⊗ 1, where u is a vector from C`3,0, obeys a

property similar to that for the algebra C`3,0, with the element 1 ⊗ 1 playing the role of

the unity. The same is observed about the product of elements of the form 1⊗ v, where

v is a vector from C`3,0. Note also from the definition (5.5) that

(σi ⊗ 1)(1⊗ σj) = (1⊗ σj)(σi ⊗ 1) = σi ⊗ σj, (5.6)

that is, the product of elements of the form u ⊗ 1 with elements of the form 1 ⊗ v is

commutative. At this point, it is useful to denote

1⊗ 1 = 1, σi ⊗ 1 = σi
1 and 1⊗ σi = σi

2. (5.7)

The defining property of the algebra C`3,0 ⊗ C`3,0 can then be expressed by

1

2
(σi

aσj
b + σj

bσi
a) = δij, if a = b, (5.8)
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and
1

2
(σi

aσj
b − σjbσia) = 0, if a 6= b. (5.9)

These properties define the algebra C`3,0 ⊗ C`3,0 as a commuting product of two copies

of C`3,0. An inconvenience is that this is not a Clifford algebra. As an alternative, one

would think that a suitable algebra to replace C`3,0 ⊗ C`3,0 would be that satisfying the

properties
1

2
(σi

aσj
b + σj

bσi
a) = δij, if a = b, (5.10)

and
1

2
(σi

aσj
b + σj

bσi
a) = 0, if a 6= b. (5.11)

This could be obtained by redefining the product (5.5) in such way that the relation

(σi⊗̂1)(1⊗̂σj) = −(1⊗̂σj)(σi⊗̂1) = σi⊗̂σj (5.12)

holds instead of relation (5.6), but the product of elements of the form u⊗̂1, and in the

same way the product of elements of the form 1⊗̂v, still obey the same fundamental

properties of C`3,0, with 1⊗̂1 playing the role of the unity. This alternative way to define

the tensor product yields a new Clifford algebra and is called an alternating tensor product,

or a graded tensor product (VAZ; DA ROCHA, 2019; CRUMEYROLLE, 1990). But this

definition does not allow one to construct the adequate idempotents and corresponding

ideals to define spinors, since in this case

1

2
(1 + σ3

1)
1

2
(1 + σ3

2) 6= 1

2
(1 + σ3

2)
1

2
(1 + σ3

1). (5.13)

A solution requires the extension of the algebra defined by the usual tensor product

C`3,0 ⊗ C`3,0.

5.2.2 The Two-Particle Spacetime Algebra

As shown in section 3.1, the algebra C`3,0 is isomorphic to the even subalgebra C`1,3
+ of

the Clifford algebra C`1,3. Thus, a way to extend the algebra C`3,0 ⊗ C`3,0 would be to

consider it as C`1,3
+⊗̂C`1,3

+, included as the even subalgebra into the algebra C`1,3⊗̂C`1,3,

which is taken as an alternating tensor product, ensuring it to be a Clifford algebra. The

product of this larger algebra is then defined by expressions similar to the relations (5.10)

and (5.11), which can be summarized in this case by

1

2
(γµ

aγν
b + γν

bγµ
a) = δabηµν , (5.14)
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where γµ
1 = γµ⊗̂1 and γµ

2 = 1⊗̂γµ. This is identical to the defining property of the

multi-particle spacetime algebra introduced by Doran et al. (1993, 1996), equation (5.4),

for a two-particle system. In this way, the Clifford algebra C`1,3⊗̂C`1,3, understood as

an alternating tensor product, is identified as the two-particle spacetime algebra. The

inclusion of the algebra C`3,0 ⊗ C`3,0 ' C`1,3
+⊗̂C`1,3

+ into the two-particle spacetime

algebra, C`1,3⊗̂C`1,3, can then be defined by

σi
a = γi

aγ0
a. (5.15)

From this relations, it is simple to verify that

1

2
(σi

aσj
b + σj

bσi
a) = δij, for a = b, (5.16)

while

σi
aσj

b = σj
bσi

a, for a 6= b. (5.17)

This construction also conveniently allows one to associate the inclusion with the fixing

of a common spacetime reference frame, defined by γ0
1 and γ0

2.

5.2.3 Two-Particle Pauli Spinors

According to the above, the tensor product Φ ⊗ X, where Φ and X are classical Pauli

spinors, can be understood as a classical two-particle Pauli spinor. If Φ and X are the

square matrices corresponding to Φ and X, then the tensor product Φ ⊗ X corresponds

to Φ ⊗X in terms of square matrices. This can be written as

Φ⊗ X = (Φ⊗ 1)(1⊗ X) = (1⊗ X)(Φ⊗ 1), (5.18)

and corresponds to a matrix representation for an element of C`3,0⊗C`3,0 ' C`1,3
+⊗̂C`1,3

+.

Such an element can be written as

¯
φ⊗̂

¯
χ =

¯
φ1

¯
χ2 =

¯
χ2

¯
φ1, (5.19)

where
¯
φ1 =

¯
φ⊗̂1 and

¯
χ2 = 1⊗̂

¯
χ, and

¯
φ and

¯
χ are the algebraic Pauli spinors corresponding

to Φ and X, and consequently to the classical Pauli spinors Φ and X. Since both
¯
φ and

¯
χ

correspond to elements of the minimal left ideal I = {Af | A ∈ C`3,0 and f = 1
2
(1 +σ3)},

they can be written as
¯
φ = φf and

¯
χ = χf , where φ and χ are the even grade elements

defining the corresponding operator Pauli spinors. In this way, from the above equation,

one can write

¯
φ⊗̂

¯
χ =

¯
φ1

¯
χ2 = φ1f 1χ2f 2, (5.20)
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where φ1 = φ⊗̂1 and χ2 = 1⊗̂χ, and

f 1 =
1

2
(1 + σ3

1) and f 2 =
1

2
(1 + σ3

2). (5.21)

Since one expects the product of elements of the algebra C`3,0 ⊗ C`3,0 ' C`1,3
+⊗̂C`1,3

+

belonging to different copies of C`3,0 ' C`1,3
+ to commute, one can write

¯
φ⊗̂

¯
χ =

¯
φ1

¯
χ2 = φ1χ2f 1f 2. (5.22)

The fact that f 1 and f 2 are commuting primitive idempotents imply that f 1f 2 is also

a primitive idempotent. In this way, the above expression defines the algebraic two-

particle Pauli spinor corresponding to Φ ⊗X to be an element of the minimal left ideal

I2 = {Af | A ∈ C`1,3
+⊗̂C`1,3

+ and f = 1
2
(1 + σ3

1)1
2
(1 + σ3

2)}. The reduction of an

algebraic two-particle Pauli spinor A1B2f 1f 2 to an element of the form (5.22), where the

multivectors A1 and B2 are replaced by even grade multivectors from their respective

copies of C`3,0
+ ' C`1,3

++ (note the notation introduced), is straightforward from the

commutativity of elements of different copies of C`3,0 ' C`1,3
+ and from the known way in

which the reduction is performed in the case of a single copy (cf. subsection 4.1.3), which

follows in this case from the property σ3
afa = fa.

As in the single-particle case, this reduction and the fact that the idempotent f 1f 2 is

a fixed factor in the expression for an algebraic two-particle Pauli spinor imply that the

even grade multivectors belonging to the subalgebra C`3,0
+ ⊗ C`3,0

+ ' C`1,3
++⊗̂C`1,3

++

can be sufficient to describe the states in question. This allows one to define an operator

two-particle Pauli spinor as an element of the subalgebra C`1,3
++⊗̂C`1,3

++. Since the

single-particle operator spinors φ and χ in equation (5.22) are given in terms of their

algebraic counterparts by φ = 2〈
¯
φ〉+ = 2〈

¯
φ〉−σ3 and χ = 2〈

¯
χ〉+ = 2〈

¯
χ〉−σ3 (cf. subsection

4.1.3), there are four ways to express the operator two-particle Pauli spinor φ1χ2 in terms

of its algebraic counterpart,
¯
φ1

¯
χ2, namely

φ1χ2 = 4〈
¯
φ1

¯
χ2〉++

= 4〈
¯
φ1

¯
χ2〉+−σ3

1

= 4〈
¯
φ1

¯
χ2〉−+σ3

2

= 4〈
¯
φ1

¯
χ2〉−−σ3

1σ3
2, (5.23)

where 〈A〉++ denotes the extraction of the even grade part of both factors of an element

A from C`3,0 ⊗C`3,0 ' C`1,3
+⊗̂C`1,3

+, and 〈A〉+−, 〈A〉−+ and 〈A〉−− are defined similarly.

This is an expression of the fact that an operator two-particle Pauli spinor is encoded four

times in its algebraic counterpart.

The relation between the above definitions for two-particle spinors can be expressed
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through the following extensions of the maps α and β, introduced in the previous chapter

(cf. subsection 4.1.3, equation (4.44)):

Φ⊗X=

(
a0+ia3

−a2+ia1

)
⊗

(
b0+ib3

−b2+ib1

)
¯
φ1

¯
χ2 =(a0+aiIσi

1)(b0+biIσi
2)f 1f 2 =φ1χ2f 1f 2

φ1χ2 =(a0+aiIσi
1)(b0+biIσi

2)=4〈
¯
φ1

¯
χ2〉++.

α

β◦α β

(5.24)

In this case, by writing Ψ = Φ ⊗ X,
¯
ψ =

¯
φ1

¯
χ2 and ψ = φ1χ2, and using the following

notations

A1Ψ = (AΦ)⊗X and A2Ψ = Φ ⊗ (AX), (5.25)

the action of operators is translated through

Σj
aΨ σj

a

¯
ψ = σj

aψσ3
af 1f 2

4〈σja
¯
ψ〉++ = σj

aψσ3
a

α

β◦α β (5.26)

and
iaΨ Ia

¯
ψ = ψIaσ3

af 1f 2

4〈Ia
¯
ψ〉++ = ψIaσ3

a.

α

β◦α β (5.27)

It is worth mentioning that the above definition of an operator two-particle Pauli

spinor can be identified with the representation introduced by Doran et al. (1993, 1996)

for the case of non-relativistic two-particle states. In this representation, a basis for the

state space is given by

{1, Iσi1, Iσi2, Iσi1Iσj2}, where i, j ∈ {1, 2, 3}, (5.28)

and the shorthand notation Iσi
a = Iaσi

a was used. This basis has 16 elements, while

a classical two-particle Pauli spinor can be expressed in terms of 4 complex or 8 real

coefficients. This doubling is a consequence of the fact that the algebraic and operator

representations of the spinors include a distinct substitute for the imaginary unit i =
√
−1.

Indeed, from relations (5.27) it follows that iΨ is mapped by

iΨ = (iΦ)⊗X α7→ I1

¯
ψ

β7→ ψIσ3
1 (5.29)
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and

iΨ = Φ ⊗ (iX)
α7→ I2

¯
ψ

β7→ ψIσ3
2. (5.30)

This ambiguity can be eliminated by requiring that the algebraic and operator two-particle

Pauli spinors satisfy

I1

¯
ψ = I2

¯
ψ and ψIσ3

1 = ψIσ3
2. (5.31)

These requirements, whose ramifications can be analyzed simply from either the algebraic

or the operator representation, imply in this later that

ψ = −ψIσ3
1Iσ3

2, (5.32)

which allows one to write

ψ = ψ
1

2

(
1− Iσ3

1Iσ3
2
)
. (5.33)

Then, the considered state can be described by

Ψ = Φ ⊗X α7→
¯
ψ =

¯
φ1

¯
χ2E

β7→ ψ = φ1χ2E, (5.34)

where

E =
1

2

(
1− Iσ3

1Iσ3
2
)
. (5.35)

The multivector E is an idempotent and its product on the right with a state represents

a projection operation (E2 = E and E(1 − E) = 0). The meaning of this projection

operation can be understood by noting that the product of E with both Iσ3
1 and Iσ3

2

results in the bivector 1
2
(Iσ3

1 + Iσ3
2), which implies that the product on the right of

ψ = φ1χ2E with both Iσ3
1 and Iσ3

2 has the same result. Thus, the resulting effect of

the projection operation is to halve the number of degrees of freedom in the algebraic and

operator spinors. In this representation, the product on the right with the multivector

J = EIσ3
1 = EIσ3

2 =
1

2

(
Iσ3

1 + Iσ3
2
)
, (5.36)

which satisfies

J2 = −E, (5.37)

is the representative for multiplication by the imaginary unit i =
√
−1 in the classical

representation. The complex linear combinations of states are then expressed by sums of

products on the right with multivectors of the form a+ bJ , where a and b are real scalars.

The four complex basic states of a system of two spin-1
2

particles are represented in this
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context by: (
1

0

)
⊗

(
1

0

)
α7→ f 1f 2E

β7→ E,

(
1

0

)
⊗

(
0

1

)
α7→ −Iσ2

2f 1f 2E
β7→ −Iσ2

2E,

(
0

1

)
⊗

(
1

0

)
α7→ −Iσ2

1f 1f 2E
β7→ −Iσ2

1E,

(
0

1

)
⊗

(
0

1

)
α7→ Iσ2

1Iσ2
2f 1f 2E

β7→ Iσ2
1Iσ2

2E.

(5.38)

5.2.4 The N-Particle Case

The generalization of the above results for the case of a system of N spin-1
2

particles is

simple, and essentially consists of introducing a factor algebra in the tensor product for

each particle introduced in the system. More precisely, the algebra of operators in this

case is given by

TNC`3,0 = C`3,0 ⊗ · · · ⊗ C`3,0︸ ︷︷ ︸
N factors

, (5.39)

corresponding to

T̂NC`1,3
+ = C`1,3

+⊗̂ · · · ⊗̂C`1,3
+︸ ︷︷ ︸

N factors

, (5.40)

and included through the relations σi
a = γi

aγ0
a in the N -particle spacetime algebra,

T̂NC`1,3 = C`1,3⊗̂ · · · ⊗̂C`1,3︸ ︷︷ ︸
N factors

, (5.41)

whose fundamental property is given by

1

2
(γµ

aγν
b + γν

bγµ
a) = δabηµν , (5.42)

where γµ
1 = γµ⊗̂ · · · ⊗̂1, . . . , γµ

N = 1⊗̂ · · · ⊗̂γµ.

The representation of a wave function given by a simple tensor product is represented

with an extra factor corresponding to each new particle introduced in the system. A

classical N-particle Pauli spinor is then defined in terms of tensor products of N single-

particle Pauli spinors. The expression of such a classical spinor in terms of square matrices

gives an element of the algebra of operators, leading naturally to the algebraic description

for the spinor, guaranteed by the commutativity of elements of the algebra of operators
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from different factor algebras (this guarantees the commutativity of the idempotents with

other elements of the algebra). In this way, an algebraic N-particle Pauli spinor can be

defined as an element of the minimal left ideal

IN =

{
Af

∣∣∣∣ A ∈ T̂NC`1,3
+ and f =

1

2

(
1 + σ3

1
)
· · · 1

2

(
1 + σ3

N
)}
. (5.43)

The reduction of an algebraic N -particle Pauli spinor,

A1 · · ·BNf 1 · · · fN →
¯
φ1 · · ·

¯
χN = φ1 · · ·χNf 1 · · · fN (5.44)

where the elements A1, . . . , BN , each belonging to a copy of C`3,0 ' C`1,3
+, are replaced by

the elements φ1, . . . , χN , each belonging to a copy of C`3,0
+ ' C`1,3

++, is straightforward

from the commutativity of elements of different copies of C`3,0 ' C`1,3
+ and from the

property σ3
afa = fa.

This reduction and the fact that the idempotent f 1 · · · fN is a fixed factor in the

expression for an algebraic N -particle Pauli spinor leads to the definition of an operator

N-particle Pauli spinor as an element of the subalgebra TNC`3,0
+ ' T̂NC`1,3

++. Given

that a single-particle operator spinor φ is given in terms of its algebraic counterpart

by φ = 2〈
¯
φ〉+ = 2〈

¯
φ〉−σ3, there are 2N ways to express the operator N -particle Pauli

spinor φ1 · · ·χN in terms of its algebraic counterpart,
¯
φ1 · · ·

¯
χN . The simplest is given by

φ1 · · ·χN = 2N〈
¯
φ1 · · ·

¯
χN〉+···+, where 〈A〉+···+ denotes the extraction of the even grade

part of all factors of an element A from TNC`3,0 ' T̂NC`1,3
+. This is an expression of

the fact that an operator N -particle Pauli spinor is encoded 2N times in its algebraic

counterpart.

The generalization of the transformations (5.24) are immediate and, at the same time,

too extensive to be given here.

The representation (5.34) of the algebraic and operator spinors, required to make the

algebraic and operator descriptions compatible with the classical one, can be extended to

systems of any number of spin-1
2

states as follows. Any multivector corresponding to a

state for a system of N spin-1
2

states contains the multivector EN as a factor on the right.

For this general case, the multivector EN is required to be idempotent and satisfy

ENIσ3
1 = ENIσ3

2 = · · · = ENIσ3
a = · · · = ENIσ3

N . (5.45)

These conditions are equivalent to

EN = −ENIσ3
1Iσ3

2 = · · · = −ENIσ3
1Iσ3

a = · · · = −ENIσ3
1Iσ3

n, (5.46)
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which in turn can be expressed by

EN = EN
1

2

(
1− Iσ3

1Iσ3
2
)

= · · · = EN
1

2

(
1− Iσ3

1Iσ3
a
)

= · · · = EN
1

2

(
1− Iσ3

1Iσ3
n
)
.

(5.47)

The fact that each multivector in these equations is idempotent allows one to write

EN = EN

n∏
a=2

1

2

(
1− Iσ3

1Iσ3
a
)
, (5.48)

where the product in question is the geometric product. The idempotent EN can then be

defined by

EN =
N∏
a=1

1

2

(
1− Iσ3

1Iσ3
a
)
. (5.49)

The complex structure is provided by the multivector

JN = ENIσ3
a, for a ∈ {1, . . . , n}. (5.50)

A basic example is provided by the case of N = 3, for which

E3 =
1

2

(
1− Iσ3

1Iσ3
2
)1

2

(
1− Iσ3

1Iσ3
3
)

=
1

4

(
1− Iσ3

1Iσ3
2 − Iσ3

1Iσ3
3 − Iσ3

2Iσ3
3
)

(5.51)

and

J3 =
1

4

(
Iσ3

1 + Iσ3
2 + Iσ3

3 − Iσ3
1Iσ3

2Iσ3
3
)
. (5.52)

5.2.5 Inner Product of Two-Particle Pauli Spinors

The Hermitian adjoint of the classical two-particle Pauli spinor Ψ = Φ⊗X can be defined

to be

Ψ † = Φ† ⊗X†. (5.53)

It can be translated to the algebraic and operator forms as

Ψ † = Φ† ⊗X†
¯
ψ† =

¯
φ1†

¯
χ2† = f 1f 2φ1†χ2†

ψ† = φ1†χ2†.

α

β◦α β (5.54)
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The Hermitian inner product of Ψ = Φ ⊗ X with a second classical two-particle Pauli

spinor, Ψ ′ = Φ ′ ⊗X ′, is given by

Ψ †Ψ ′ = (Φ†Φ ′)(X†X ′). (5.55)

As a generalization of relations (4.68), in section 4.1.4, this Hermitian inner product can

be mapped through the maps α and β, given by relations (5.24), to its algebraic and

operator counterparts, as follows:

(
1

0

)
⊗
(

1

0

)
Ψ†Ψ ′

¯
ψ†

¯
ψ′ = (

¯
φ1†

¯
φ′1)(

¯
χ2†

¯
χ′2) =

(
〈φ1†φ′〉 − 〈φ1†φ′Iσ3

1〉Iσ3
1
)(
〈χ1†χ′〉 − 〈χ1†χ′Iσ3

2〉Iσ3
2
)
f1f2

〈φ1†φ1′〉q〈χ2†χ2′〉q =
(
〈φ1†φ′〉 − 〈φ1†φ′Iσ3

1〉Iσ3
1
)(
〈χ1†χ′〉 − 〈χ1†χ′Iσ3

2〉Iσ3
2
)
.

α

β◦α
β

(5.56)

5.3 Relativistic Multi-Particle Spinors

As in the non-relativistic case, a possible state for a system of two relativistic spin-1
2

particles can be expressed by the tensor product Φ ⊗ X, where Φ and X are classical

Dirac spinors describing states for the particles 1 and 2, respectively. In this case, an

operator defined on the tensor product space is represented by a linear combination of

tensor products of the form A⊗B, where A and B are complex 4×4 matrices representing

operators acting on the spaces of the particles 1 and 2, respectively. As shown in the

previous chapter, the algebra of operators for each of the two particles is the Dirac algebra,

which corresponds to the complexified geometric algebra of spacetime, C⊗ C`1,3. In this

way, the algebra of operators acting on the tensor product space of two relativistic spin-1
2

particles corresponds to (C ⊗ C`1,3) ⊗ (C ⊗ C`1,3). Analogously to the case of a single

particle, this algebra can be used to represent states as well as operators for the system

of two particles. However, as in the non-relativistic case, this does not correspond to

a Clifford algebra, and an inclusion of it into a Clifford algebra is necessary to properly

define multi-particle spinors. An adequate extension of the algebra (C⊗C`1,3)⊗(C⊗C`1,3)

to a Clifford algebra can be realized only if a compatible extension of the Dirac algebra,

C⊗ C`1,3, could be performed.
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5.3.1 The Dirac Algebra and its Inclusion in a Higher-Dimensional

Algebra

As emphasized by Figueiredo et al. (1990), the usual Dirac algebra considered in physics,

C ⊗ C`1,3, is isomorphic to the real Clifford algebra C`4,1 (cf. also, da Rocha and Vaz

(2007)). If {ε0, ε1, ε2, ε3, ε4} is an orthogonal basis of unit vectors for the vector space R4,1,

the product of the Clifford algebra C`4,1 is defined by

ε0
2 = −1, εj

2 = ε4
2 = 1, and εAεB = −εBεA, (5.57)

where j ∈ {1, 2, 3} and A,B ∈ {0, 1, 2, 3, 4}, with A 6= B. It follows that, the unit

pseudoscalar of C`4,1, given by ε5 = ε0ε1ε2ε3ε4, satisfies

ε5εA = εAε5 and ε5
2 = −1, (5.58)

for A ∈ {0, 1, 2, 3, 4}. In this way, the isomorphism C ⊗ C`1,3 ' C`4,1 can be defined

through the identifications

γµ = εµε4 and i = ε5, (5.59)

where µ ∈ {0, 1, 2, 3}. Indeed, these identifications imply

γ0
2 = (ε0ε4)(ε0ε4) = −ε02ε4

2 = 1 and γj
2 = (εjε4)(εjε4) = −εj2ε4

2 = −1, (5.60)

for j ∈ {1, 2, 3}, and

γµγν = (εµε4)(ενε4) = −(ενε4)(εµε4) = −γνγµ, (5.61)

for µ, ν ∈ {0, 1, 2, 3} and µ 6= ν. In addition, i = ε5 commutes with arbitrary elements of

the algebra and its square is −1.

Note that the correspondences γµ = εµε4 identify the vectors of the algebra C`1,3 with

bivectors of the algebra C`4,1. In this way, products of vectors of C`1,3, which generate

general elements of this Clifford algebra, correspond to products of bivectors of C`4,1,

which generate even grade elements of this larger Clifford algebra. This shows that the

real Clifford algebra C`1,3 is isomorphic to the even subalgebra C`4,1
+ of the Clifford

algebra C`4,1: C`1,3 ' C`4,1
+.

One might consider the even subalgebra C`4,1
+ ' C`1,3 as the subalgebra relevant to de-

fine multi-particle Dirac spinors. However, the imaginary unit, given by the pseudoscalar

ε5, is the product of the five generators of the algebra and is thus an element of C`4,1 but

not of C`4,1
+. One can not construct the appropriate idempotents in an alternating tensor

product of copies of C`4,1, since in this case the spin factors of the idempotents do not
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commute, that is,

1

2
(1 + i1γ12

1)
1

2
(1 + i2γ12

2) 6= 1

2
(1 + i2γ12

2)
1

2
(1 + i1γ12

1), (5.62)

where 1
2
(1 + iaγ12

a) = 1
2
(1 + ε5

aε21
a).

Now, the pattern in the sequence of inclusions

C`3,0 → C`1,3 → C`4,1, (5.63)

wherein each Clifford algebra is included in the next as its even subalgebra, allows one to

conclude that the Clifford algebra that will permit the construction of the correct idem-

potents is the next in the sequence, C`2,4. This is indeed the case. If {ζ0, ζ1, ζ2, ζ3, ζ4, ζ5}
is an orthogonal basis of unit vectors for R2,4, the Clifford algebra C`2,4 can be defined

such that its product is given by

ζ0
2 = ζ5

2 = 1, ζj
2 = ζ4

2 = −1, and ζUζV = −ζV ζU , (5.64)

where j ∈ {1, 2, 3} and U, V ∈ {0, 1, 2, 3, 4, 5}, with U 6= V . In this case, the isomorphism

C`4,1 ' C`2,4
+ can be defined through the identifications

εA = ζAζ5, (5.65)

where A ∈ {0, 1, 2, 3, 4}. Note from these relations that

ε0
2 = −ζ0

2ζ5
2 = −1, εj

2 = −ζj2ζ5
2 = 1, and ε4

2 = −ζ4
2ζ5

2 = 1, (5.66)

for j ∈ {1, 2, 3}, and

εAεB = (ζAζ5)(ζBζ5) = −(ζBζ5)(ζAζ5) = −εBεA, (5.67)

for A,B ∈ {0, 1, 2, 3, 4} and A 6= B.

The Clifford algebra C`2,4 is not the only one whose even subalgebra corresponds to

the Dirac algebra C`4,1. A construction similar to the one above allows one to verify that

another possibility is furnished by the Clifford algebra C`4,2. This is a simple consequence

of the isomorphism C`2,4
+ ' C`4,2

+.

5.3.2 The Tensor Product Algebra Acting on Two-Particle States

As shown above, the Dirac algebra C ⊗ C`1,3 is isomorphic to the Clifford algebra C`4,1

through the identifications γµ = εµε4 and i = ε5. This fact implies that the algebra of
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operators acting on relativistic two-particle spin-1
2

states, (C ⊗ C`1,3) ⊗ (C ⊗ C`1,3), can

be identified with the algebra C`4,1 ⊗ C`4,1 through the relations

γµ
a = εµ

aε4
a and ia = ε5

a, (5.68)

where γµ
1 = γµ ⊗ 1, γµ

2 = 1 ⊗ γµ, i1 = i ⊗ 1, i2 = 1 ⊗ i, εA1 = εA ⊗ 1, εA
2 = 1 ⊗ εA,

ε5
2 = 1⊗ε5. According to the usual definition of the tensor product of algebras, it satisfies

1

2
(γµ

aγν
b + γν

bγµ
a) = ηµν , for a = b, (5.69)

γµ
aγν

b = γν
bγµ

a, for a 6= b, (5.70)

and

iaγµ
b = γµ

bia, for a, b ∈ {1, 2}. (5.71)

These properties do not define a Clifford algebra. In addition, despite the fact that

the alternating tensor product C`4,1⊗̂C`4,1 is a Clifford algebra, it does not allow one to

construct the appropriate idempotent and corresponding ideal, as seen in the previous

subsection. A way to circumvent the problem is to embed the algebra C`4,1 ⊗ C`4,1 in a

Clifford algebra, and refer the desired constructions to this larger algebra.

Since, as seen above, the Clifford algebra C`4,1 is isomorphic to the even subalgebra

C`2,4
+ of the Clifford algebra C`2,4, through εA = ζAζ5, where A ∈ {0, 1, 2, 3, 4}, the algebra

C`4,1 ⊗ C`4,1 can be identified with the algebra C`2,4
+⊗̂C`2,4

+ through the relations

εA
a = ζA

aζ5
a, (5.72)

where ζU
1 = ζU⊗̂1 and ζU

2 = 1⊗̂ζU , for U ∈ {0, 1, 2, 3, 4, 5}. In this case, the algebra

C`2,4
+⊗̂C`2,4

+ is understood as the even sublagebra of the Clifford algebra C`2,4⊗̂C`2,4,

given by an alternating tensor product. The product of this larger algebra is then given

by

(ζ0
a)2 = (ζ5

a)2 = 1, (ζj
a)2 = (ζ4

a)2 = −1, and ζU
aζV

b = −ζV bζUa, (5.73)

where U, V ∈ {0, 1, 2, 3, 4, 5}, with U 6= V , and a, b ∈ {1, 2}, with a 6= b. This properties

can be summarized by
1

2
(ζU

aζV
b + ζV

bζU
a) = δabτUV , (5.74)

where τUV are the components of the metric tensor for the space R2,4. This expression

makes it clear that C`2,4⊗̂C`2,4 is in fact a Clifford algebra.
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5.3.3 Two-Particle Dirac Spinors

A tensor product of the form Φ ⊗X, where Φ and X are classical Dirac spinors, can be

understood as a classical two-particle Dirac spinor. The corresponding tensor product

in terms of square matrices, Φ⊗ X, can be understood as a matrix representation for an

element of the algebra of operators (C⊗C`1,3)⊗(C⊗C`1,3) ' C`4,1⊗C`4,1 ' C`2,4
+⊗̂C`2,4

+.

Such an element can be written as

¯
φ⊗̂

¯
χ =

¯
φ1

¯
χ2 =

¯
χ2

¯
φ1, (5.75)

where
¯
φ1 =

¯
φ⊗̂1 and

¯
χ2 = 1⊗̂

¯
χ, and

¯
φ and

¯
χ are the respective elements of the algebra

C ⊗ C`1,3 ' C`4,1 ' C`+
2,4 defining the algebraic Dirac spinors corresponding to Φ and

X. Given that the elements
¯
φ and

¯
χ correspond to elements of the minimal left ideal

I = {Af | A ∈ C ⊗ C`1,3 and f = 1
2
(1 + γ0)(1 + iγ12)}, they can be written respectively

as φf and χf , where φ and χ are the even grade elements defining the corresponding

operator Dirac spinors. This, in addition to the fact that the product of elements of the

algebra (C ⊗ C`1,3) ⊗ (C ⊗ C`1,3) ' C`4,1 ⊗ C`4,1 ' C`2,4
+⊗̂C`2,4

+ belonging to different

copies of C`1,3) ' C`4,1 ' C`2,4
+ is commutative, allows one to write

¯
φ⊗̂

¯
χ =

¯
φ1

¯
χ2 = φ1χ2f 1f 2, (5.76)

where φ1 = φ⊗̂1 and χ2 = 1⊗̂χ, and,

f 1 =
1

2
(1 + γ0

1)
1

2
(1 + i1γ12

1) and f 2 =
1

2
(1 + γ0

2)
1

2
(1 + i2γ12

2). (5.77)

The expression (5.76) defines the algebraic two-particle Dirac spinor corresponding to

Φ⊗X as an element of the minimal left ideal I2 = {Af | A ∈ C`2,4
+⊗̂C`2,4

+ and f=f 1f 2}.
The reduction of an algebraic two-particle Dirac spinor A1B2f 1f 2 to an element of the

form (5.76), where A1 and B2 are replaced by elements from their respective copies of

C`1,3
+ ' C`4,1

++ ' C`2,4
+++ (see Table 5.1), is straightforward from the commutativity of

elements of different copies and from the known way in which the reduction is performed

in the case of a single-particle (cf. subsection 4.2.2), which follows in this case from the

property iaγ12
afa = fa.

algebra multiplier generators

C`2,4 - ζ0
2 = ζ5

2 = 1, ζ1
2 = ζ2

2 = ζ3
2 = ζ4

2 = −1

C`4,1 ' C`2,4+ ζ5 (ζ1ζ5)
2

= (ζ2ζ5)
2

= (ζ3ζ5)
2

= (ζ4ζ5)
2

= 1, (ζ0ζ5)
2

= −1

C`1,3 ' C`4,1+ ' C`2,4++ ζ4ζ5 (ζ0ζ4)
2

= 1, (ζ1ζ4)
2

= (ζ2ζ4)
2

= (ζ3ζ4)
2

= −1

C`3,0 ' C`1,3+ ' C`4,1++ ' C`2,4+++ ζ4ζ0 (ζ1ζ0)
2

= (ζ2ζ0)
2

= (ζ3ζ0)
2

= 1

TABLE 5.1 – Generators of even subalgebras of C`2,4.
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This reduction and the fact that the idempotent f 1f 2 is a fixed factor in the expression

for an algebraic two-particle Dirac spinor imply that the even grade multivectors belonging

to the subalgebra C`1,3
+ ⊗ C`1,3

+ ' C`4,1
++ ⊗ C`4,1

++ ' C`2,4
+++⊗̂C`2,4

+++ can suffice to

describe the considered states. This allows one to define an operator two-particle Dirac

spinor as an element of the subalgebra C`2,4
+++⊗̂C`2,4

+++. Given that the single-particle

operator Dirac spinor φ in equation (5.76) can be expressed in terms of its algebraic

counterpart by φ = 4〈Re(
¯
φ)〉+ = 4〈Re(

¯
φ)〉−γ0 = 4〈Im(

¯
φ)〉+γ21 = 4〈Im(

¯
φ)〉−γ0γ21, and

similar expressions hold for χ (cf. subsection 4.2.3), there are 16 ways to obtain the

operator two-particle Dirac spinor φ1χ2 from its algebraic counterpart,
¯
φ1

¯
χ2. The simplest

is given by φ1χ2 = 16〈Re(
¯
φ1)Re(

¯
χ2)〉++. This is an expression of the fact that an operator

two-particle Dirac spinor is encoded 16 times in its algebraic counterpart.

It is worth mentioning that the above developments, specifically the identification and

extension of the algebra of operators to the alternating tensor product of copies of the

conformal spacetime Clifford algebra C`2,4, as well as the definitions of multi-particle Dirac

spinors, have not been presented before this work.

The relation between the above definitions for two-particle spinors can be expressed

through the following extensions of the maps α and β for Dirac spinors, introduced in the

previous chapter (cf. subsection 4.2.3, equation (4.123)):

Ψ ⊗X =


a0 + ia3

−a2 + ia1

b0 + ib3

−b2 + ib1

⊗


c0 + ic3

−c2 + ic1

d0 + id3

−d2 + id1



¯
φ1

¯
χ2 =

(
(a0 + ajIσj

1) + (b0 + bjIσj
j)σ3

1
)(

(c0 + cjIσj
2) + (d0 + djIσj

2)σ3
2
)
f1f2 = φ1χ2f1f2

φ1χ2 =
(

(a0 + ajIσj
1) + (b0 + bjIσj

j)σ3
1
)(

(c0 + cjIσj
2) + (d0 + djIσj

2)σ3
2
)

= 16〈Re(
¯
φ1)Re(

¯
χ2)〉++.

α

β

(5.78)

In this case, by writing Ψ = Φ ⊗X,
¯
ψ =

¯
φ1

¯
χ2 and ψ = φ1χ2, and using the notations

A1Ψ = (AΦ)⊗X and A2Ψ = Φ ⊗ (AX), (5.79)

the action of operators is translated through

Γµ
aΨ γµ

a

¯
ψ = γµ

aψγ0
af 1f 2

γµ
aψγ0

a,

α

β◦α β (5.80)
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Γ5
aΨ γa5

¯
ψ = γ5

aψf 1f 2 = ψσ3
af 1f 2

ψσ3
a

α

β◦α β (5.81)

and
iaΨ ia

¯
ψ = iaψf 1f 2 = ψIσ3

af 1f 2

ψIσ3
a.

α

β◦α β (5.82)

Note from the expressions for the algebraic and operator two-particle Dirac spinors

in relations (5.78) that such spinors are determined by 8 × 8 = 64 coefficients, while the

corresponding classical spinor is determined by 32 coefficients. As in the non-relativistic

case, this doubling is a consequence of the fact that both the algebraic and operator

representations has two representatives for the imaginary unit. This ambiguity can be

eliminated by requiring that

i1

¯
ψ = i2

¯
ψ and ψIσ3

1 = ψIσ3
2, (5.83)

which implies the following description for the considered state

Ψ = Φ ⊗X α7→
¯
ψ =

¯
φ1

¯
χ2E

β7→ ψ = φ1χ2E, (5.84)

where

E =
1

2

(
1− Iσ3

1Iσ3
2
)
. (5.85)

Again, the multivector E is an idempotent and its product on the right with a state

represents a projection operation, whose resulting effect is to halve the number of degrees

of freedom in the algebraic and operator spinors. The product on the right with the

multivector

J = EIσ3
1 = EIσ3

2 =
1

2

(
Iσ3

1 + Iσ3
2
)
, (5.86)

for which

J2 = −E, (5.87)

is the representative for multiplication by the imaginary unit, and the complex linear

combinations of states are performed by sums of products on the right with multivectors

of the form a+ bJ , where a and b are real scalars.

As a final remark on the definitions of multi-particle spinors, it should be noted that

although the descriptions are based on simple tensor products, the fact that a general state

is given by a sum of these simple ones does not imply that the definitions are incorrect.
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The algebraic definition of a multi-particle spinor describes it as an element of an ideal

of a Clifford algebra, which may be a sum of elements of the ideal. In the same way, the

operator definition of a multi-particle spinor describes it as an element of a subalgebra of

a Clifford algebra, which may be a sum of elements of the subalgebra.

5.3.4 The N-Particle Case

Similarly to the non-relativistic case, the generalization of the above results for the case

of a system of N spin-1
2

particles is simple. The algebra of operators in this case is given

by

TNC`4,1 = C`4,1 ⊗ · · · ⊗ C`4,1︸ ︷︷ ︸
N factors

, (5.88)

corresponding to

T̂NC`2,4
+ = C`2,4

+⊗̂ · · · ⊗̂C`2,4
+︸ ︷︷ ︸

N factors

, (5.89)

and included through the relations εA
a = ζA

aζ5
a in the N -particle algebra

T̂NC`2,4 = C`2,4⊗̂ · · · ⊗̂C`2,4︸ ︷︷ ︸
N factors

, (5.90)

whose fundamental property is given by

1

2
(ζU

aζV
b + ζV

bζU
a) = δabτUV , (5.91)

where ζU
1 = ζU⊗̂ · · · ⊗̂1, . . . , ζU

N = 1⊗̂ · · · ⊗̂ζU .

A classical N-particle Dirac spinor is defined in terms of tensor products of N single-

particle Dirac spinors. The expression of such a classical spinor in terms of square matrices

gives an element of the algebra of operators, leading naturally to the algebraic description,

guaranteed by the commutativity of elements of the algebra of operators belonging to

different factor algebras. An algebraic N-particle Dirac spinor can then be defined as an

element of the minimal left ideal

IN =

{
Af

∣∣∣∣ A ∈ T̂NC`2,4
+ and f =

1

2

(
1 + γ0

1
)1

2

(
1 + iγ12

1
)
· · · 1

2

(
1 + γ0

N
)1

2

(
1 + iγ12

N
)}
.

(5.92)

Again, the reduction of an algebraic N -particle Dirac spinor,

A1 · · ·BNf 1 · · · fN →
¯
φ1 · · ·

¯
χN = φ1 · · ·χNf 1 · · · fN (5.93)

where the elements A1, . . . , BN , each belonging to a copy of C`4,1 ' C`2,4
+, are replaced

by the elements φ1, . . . , χN , each belonging to a copy of C`1,3
+ ' C`4,1

++ ' C`2,4
+++, is
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straightforward from the commutativity of elements of different copies of C`4,1 ' C`2,4
+

and from the property iγa12f
a = fa.

This reduction and the fact that the idempotent f 1 · · · fN is a fixed factor in an

algebraic N -particle Dirac spinor leads to the definition of an operator N-particle Dirac

spinor as an element of the subalgebra TNC`1,3
+ ' TNC`4,1

++ ' T̂NC`2,4
+++. Since a

single-particle operator spinor φ is given in terms of its algebraic counterpart by φ =

4〈Re(
¯
φ)〉+ = 4〈Re(

¯
φ)〉−γ0 = 4〈Im(

¯
φ)〉+γ21 = 4〈Im(

¯
φ)〉−γ0γ21, the operator N -particle

Dirac spinor φ1 · · ·χN can be obtained from its algebraic version,
¯
φ1 · · ·

¯
χN , in 22N ways.

The simplest is given by φ1 · · ·χN = 22N〈Re(
¯
φ1) · · ·Re(

¯
χN)〉+···+. This is an expression

of the fact that an operator N -particle Dirac spinor is encoded 22N times in its algebraic

counterpart.

The representation (5.84) is extended to the case of N -particle Dirac spinors in a

similar manner to the extension of two-particle to N -particle Pauli spinors, since the

complex structure in the operator representation is similar in the non-relativistic and

relativistic cases.

5.3.5 Relativistic Two-Fermion Wave Equation

A relativistic wave equation for two Dirac particles is important for many reasons, one

of which is the case when dealing with bound states (GREINER; REINHARDT, 2008). The

principal equation in this context can be written as

(
i~Γa · ∂a −mac

)(
i~Γb · ∂b −mbc

)
Ψ
(
xa, xb

)
=

w
d4xa′d4xb′ V

(
xa, xb;xa′, xb′

)
Ψ
(
xa′, xb′

)
,

(5.94)

where all irreducible contributions to the interaction of the two particles are included

into the interaction V
(
xa, xb;xa′, xb′

)
. This is one of the versions of the Bethe-Salpeter

equation (SALPETER; BETHE, 1951; NAKANISHI, 1969). The point here is not to study this

equation, but simply to express it in Clifford algebraic and operator terms, by recognizing

the wave function as a classical two-particle Dirac spinor, recognizing the product of Dirac

operators on the left-hand side of the equation as a tensor product, and then mapping all

the elements of the equation to their algebraic and operator counterparts. The right-hand

side involves an interaction term which is not analyzed here. In this way, the algebraic

version of equation (5.94) can be written as

(
ia~γµa∂µa−mac

)(
ib~γµb∂µb−mbc

)
¯
ψ
(
xa, xb

)
=

w
d4xa′d4xb′ V

(
xa, xb;xa′, xb′

)
¯
ψ
(
xa′, xb′

)
,

(5.95)



CHAPTER 5. MULTI-PARTICLE SPINORS 159

or,

(
ia~∇a −mac

)(
ib~∇b −mbc

)
¯
ψ
(
xa, xb

)
=

w
d4xa′d4xb′ V

(
xa, xb;xa′, xb′

)
¯
ψ
(
xa′, xb′

)
,

(5.96)

where the wave function is now given by an algebraic two-particle Dirac spinor, that is,

an element of the minimal left ideal I2 = {Af | A ∈ C`2,4
+⊗̂C`2,4

+ and f = f 1f 2}. In

this form, the equation is expressed in terms of the algebra (C ⊗ C`1,3) ⊗ (C ⊗ C`1,3) '
C`4,1⊗C`4,1 ' C`2,4

+⊗̂C`2,4
+, and a search for solutions should target those elements that

belong to the ideal I2. If one requires the same action for multiplication by each of the

two imaginary units, the representation (5.84) should be used. In this case, the above

equation can be rewritten as

(
p̂a −mac

)(
p̂b −mbc

)
¯
ψ
(
xa, xb

)
=

w
d4xa′d4xb′ V

(
xa, xb;xa′, xb′

)
¯
ψ
(
xa′, xb′

)
, (5.97)

where now the wave function includes the projector E as a factor on the right, and the

operator p̂a, and in the same manner p̂b, are defined by

p̂a(
¯
ψ) = ~∇a

¯
ψIσ3

a = ~∇a

¯
ψJ (5.98)

(see the previous subsection for the definitions of E and J).

Finally, transforming
¯
ψ = ψfaf b into its operator counterpart, ψ, which corresponds

essentially to the removal of the idempotents fa and f b as factors, transforms the equation

(5.97) to

(
p̂a −mac

)(
p̂b −mbc

)
ψ
(
xa, xb

)
=

w
d4xa′d4xb′ V

(
xa, xb;xa′, xb′

)
ψ
(
xa′, xb′

)
, (5.99)

where the operators p̂a and p̂b are now given by

p̂a(ψ) = ~∇aψγ0
aJ, (5.100)

and the wave function is now given by an element of the subalgebra C`1,3
+ ⊗ C`1,3

+ '
C`4,1

++ ⊗ C`4,1
++ ' C`2,4

+++⊗̂C`2,4
+++. In this form, the equation is written in terms

of the algebra C`1,3 ⊗ C`1,3 ' C`4,1
+ ⊗ C`4,1

+ ' C`2,4
++⊗̂C`2,4

++, and the wave function

is restricted to involve only even grade elements. Remember that a similar reduction

is also present in the passage of the Pauli and Dirac equations to their operator forms

(cf. subsections 4.1.5 and 4.2.2). This fact raises the possibility that the operator forms of

the wave equations may be more fundamental. Even if this is not the case, they at least

appear to be more economical.



6 Conclusions

In this work, the states for systems of multiple spin-1
2

particles in the context of quantum

mechanics (both non-relativistic and relativistic) are described through the concept of

a multi-particle spinor — in particular, multi-particle Dirac spinors are introduced for

the first time in this work. This concept is introduced in chapter 5 as a generalization

of single-particle Pauli and Dirac spinors, in their classical and Clifford algebraic and

operator forms, which are presented in chapter 4. To prepare for these developments,

the basic concepts of the algebra of the three-dimensional Euclidean space C`3,0 and of

the algebra of Minkowski spacetime C`1,3 are introduced in chaper 2. In chapter 3, the

deep relationship between the two algebras is used to develop the basics of relativistic

kinematics and of the Lorentz group of transformations. To close the chapter, a brief

development of Maxwell’s equations and other aspects of electromagnetism in the context

of the algebra C`1,3 is given. In chapter 4, the forms of single-particle Pauli and Dirac

spinors are examined in detail. The transformations from classical to algebraic to operator

spinors are rigorously defined here and are used to systematically define the corresponding

single-particle spinors and observable expectation values. These explicit transformations

are presented for the first time here. The different but equivalent forms of the Pauli

equation and of the Dirac equation are also discussed. The rigorous definitions given here

of the transformations to algebraic and operator spinors are essential for their extension

to the transformations of multi-particle spinors studied in chapter 5.

The classical definition of a multi-particle Pauli spinor is straightforward, and is given

in terms of tensor products of single-particle classical Pauli spinors. The fact that the

algebra of operators acting on the multi-particle states, given by tensor products of copies

of the Clifford algebra C`3,0, does not correspond to a Clifford algebra, motivated the

search for an embedding of this algebra in a Clifford algebra, which would allow spinors to

be defined in this context in a similar way to the case of a single particle. In view of the fact

that C`3,0 is isomorphic to the even subalgebra C`1,3
+, the algebra of operators could be

considered as the corresponding tensor product of copies of C`1.3
+, which, when interpreted

as an alternating tensor product, was found to correspond to the even subalgebra of a

Clifford algebra. This larger algebra is identical to the multi-particle spacetime algebra,

first introduced by Doran et al. (1993). A multi-particle algebraic Pauli spinor could then
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be defined as an element of a minimal left ideal of the even subalgebra of the multi-particle

spacetime algebra. From this definition, as in the single-particle case, a multi-particle

Pauli spinor could be defined in operator form, as an element of the subalgebra given by

a tensor product of copies of the subalgebra C`1,3
++, isomorphic to the subalgebra given

by the corresponding tensor product of copies of C`3,0
+.

A formally consistent extension of the single-particle Dirac spinor to a multi-particle

one has not been proposed previous to this work. To perform such an extension, it is first

observed that the classical complex Clifford algebra C⊗C`1,3, used in chapter 4 to develop

the classical, algebraic and operator forms of the single-particle Dirac spinor, is isomorphic

to the real Clifford algebra C`4,1. The latter is taken to be the correct Clifford algebra for

the single-particle Dirac spinor. In analogy to the case of the Pauli spinor, the embedding

in a Clifford algebra of the commutative structure of the classical tensor product requires

that the Dirac algebra C`4,1 be interpreted as the even subalgebra of a larger Clifford

algebra, in this case, as either C`4,2
+ or C`2,4

+. The latter of the two, C`2,4
+, was adopted

here, since it is the even subalgebra of the conformal spacetime Clifford algebra C`2,4

that serves as the basis of the twistor program developed by Penrose and collaborators

(PENROSE; RINDLER, 1988). The “multi-particle Dirac algebra”, including the algebra

of operators as an even subalgebra, is then found to be given by an alternating tensor

product of copies of C`2,4. This construction is proposed for the first time in this work. A

multi-particle algebraic Dirac spinor could then be defined as an element of a minimal left

ideal of the even subalgebra of such a multi-particle Dirac algebra. From this definition,

an operator multi-particle Dirac spinor can be defined as an element of the subalgebra

given by a tensor product of copies of the subalgebra C`2,4
+++. Finally, the Bethe-Salpeter

two-fermion equation was briefly discussed.

Several avenues of research could be of interest in the future. The most obvious of

these would be to look for deeper relations between the multi-particle Dirac algebra and

the conformal spacetime algebra. At the moment, we have no interpretation for the

additional degrees of freedom necessary to describe the multi-particle spinors. A better

understanding of their relation to conformal spacetime could provide physical content to

the embedding of the usual spacetime Clifford algebra C`1,3 in C`4,1 and its extension to

C`2,4.

Other attempts to interpret the additional degrees of freedom could also be explored.

Among these are theories of the Kaluza-Klein type, although such theories normally only

introduce additional space coordinates, consistent with the extension to C`4,1. Inclusion

of what could be interpreted as an additional time coordinate as well is more difficult,

although there is some precedent in a proposal to include a proper time as well as local

time in a relativistic formalism (SAAD et al., 1989). The square of the proper time is in

fact one of the coordinates of the usual null vector representation in the conformal algebra
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C`2,4 of a coordinate vector in C`1,3.

A simple and, at the same time, more radical line of research would be based on the

observation that, for both the Pauli and Dirac spinors, the embedding of the algebra in a

larger one in order to reproduce the tensor product, would appear to be necessary only to

perform the transformation from the classical to the algebraic and operator forms of the

spinors. Once the spinors and wave equations have been expressed in operator form, the

commutativity of their tensor products is a natural property, even within the initial multi-

particle algebra, since the operator forms of the Pauli and Dirac spinors and equations

involve only even elements of this algebra. The extent to which this alternative formalism

can provide new or interesting insights and solutions is still to be determined.
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2001. p. 281–308.

HAVEL, T. F.; DORAN, C. J. L. Geometric algebra in quantum information processing.
In: Quantum computation and information (Washington, DC, 2000). [S.l.]:
American Mathematical Society, Providence, RI, 2002a, (Contemporary Mathematics,
v. 305). p. 81–100.

HAVEL, T. F.; DORAN, C. J. L. Interaction and entanglement in the multiparticle
spacetime algebra. In: . Applications of Geometric Algebra in Computer
Science and Engineering. Boston: Birkhäuser, 2002b. p. 227–247.
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Appendix A - Published Work

At a certain stage of this work, a possible objective was to provide an extension of the

Bohmian mechanics (BOHM, 1952) to spin-1
2

particles, and possibly to the relativistic

domain, through a Clifford algebraic formulation, which appeared to be convenient for the

purpose of this extension. In a preliminary study, the bipolar reduction of the Schödinger

equation was used, in the context of nuclear scattering, to examine the effects of absorption

on incoming and outgoing scattering waves. Through the Wigner transform, the bipolar

incoming and outgoing waves could be interpreted in terms of incoming and outgoing

trajectories (DA CONCEIÇÃO et al., 2023). The resulting article is attached in the following

pages.
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Abstract
In the context of nuclear scattering, we use the bipolar reduction of the Schrödinger equation to
examine the effects of opticalmodel absorption on incoming and outgoing scatteringwaves.We
compare the exact solutions for these waves, obtained using a bipolar quantum trajectory-based
formalism,with their approximateWKB counterparts. Aside from reducing themagnitudes of the
incoming and outgoingwaves, absorption smooths the variation of the potential at the turning point,
reducing reflection in this region. This brings the incoming exact solution andWKB approximation
into closer agreement, but tends toworsen the agreement between the outgoing solutions. Inside the
turning point, theWKB approximation overestimates the inward decaying solution. The exact
solution also possesses an outward going component, solely due to reflection, with noWKB
counterpart.

Introduction

Due to the complexity of the nucleus,flux is often lost to reaction channels different from those of immediate
interest in nuclear scattering. In early experimental and theoretical efforts, this effect was explicitly attributed to
the formation and decay of neutron resonances at low energy [1] and to nucleon-nucleon collisions at higher
energy [2]. It wasfirst characterized as an average imaginary contribution to the nucleon-nucleus effective
(optical) potential by Bethe, in an analysis of compoundnucleus formation [3]. Such a complex potential was
later used effectively to describe nucleon-nucleus scattering, first using semiclassicalmethods [4] and, then, in
exact solutions of the Schrödinger equation [5, 6]. The formal definition of the potential provided by Feshbach
[7] has served as a basis for further developments that continue to the present, as can be attested by reviews of the
subject, both old [8] and new [9, 10]. At present, with few exceptions, an imaginary term


iW r W, 0( ) < , is

automatically included in the nuclear optical potential in any analysis of nucleon-nucleus or nucleus-nucleus
scattering. Although the absorptive potential is ubiquitous in nuclear scattering studies, investigations of the
effect of this potential on the travelingwave components or associated quantum trajectories have only been
performed in the context of theWKBapproximation [11–15].

In chemical physics, absorptive potentials are often used to absorb outgoing flux in quantum scattering
calculations of collidingmolecular partners, encompassing elastic and inelastic as well as chemically reactive
scattering [16–25]. In this context, the absorbing potentials [called ‘absorbing boundary conditions’ (ABC’s)] are
only applied in the asymptotic regions, to avoid artificial reflections off of the hardwall edges of the numerical
grids that would otherwise occur. Of course, there is still some reflection, due to the flux that is not absorbed by
time the edge of the grid is reached;moreover, theABC itself influences the asymptotic dynamics unphysically.
One can always ‘turn on’ the ABCsmore slowly, or otherwise extend them further into the asymptotic regime, in
order tomitigate these sources of error, but this can add considerably to the computational cost, especially in the
limit of deep tunneling. Accordingly, significant effort has been spent attempting to optimize the formof the
ABCs, so as tominimize the extent of the asymptotic absorbing regions [22–25], but this remains a considerable
challenge.
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More recently, the quantum trajectory approach [26–55] offers an avenue that is particularly appealing for
scattering applications. In this approach, in addition to (or in some formulations, instead of [48–55]) the usual
quantumwave function, oneworks with a quantum trajectory or ensemble of trajectories. The quantum
trajectories satisfy their ownNewton-like time evolution equation that includes a ‘quantum force’, in additional
to the usual classical forces. The quantum trajectory approach has the great advantage that ABCs are not needed;
instead, all scattering quantitiesmay be extracted directly from the quantum trajectories themselves, once they
first reach the asymptotic region. This approach has proven particularly effective for extremely deep tunneling,
for which the requisite ABC regionswould bemany orders ofmagnitude larger than the scattering region itself,
and thus numerically unfeasible [51, 53, 55].

One of the defining features of scattering is reflection, which necessarily leads to interference with the
incident wave. Inmost quantum trajectory formulations, interferencemanifests as oscillations in the
corresponding quantum trajectories (corresponding to probability density oscillations), which can be quite
severe and difficult tomodel. However, in the so-called ‘bipolar’ formalism [42–47, 54], the exact scattering
wave function solution is decomposed into incoming and outgoingwaves, in analogywith theWKB
approximation. In this fashion, the bipolar waves—as well as the bipolar quantum trajectories that come from
them—becomemuch less oscillatory and better behaved.Moreover, the bipolar formalismnaturally
encompasses the idea of flux transfer during the scattering process, between incoming and outgoing components
[43, 44, 47].

For these reasons, in this paper, wemake afirst effort to extend the previous studies of the exact bipolar
decomposition in the chemical physics context, to include the effects of dynamical absorption (i.e. as opposed to
ABCs) so as to allow themethod to be applied in the nuclear scattering context. In addition, wemake a
comparisonwith theWKB approximation, which is often used in this context, and is in effect, an approximation
of the exact bipolar formulation presented here [40–44, 47, 56–58]. In any event, the literature on theWKB
approximation is immense [40, 56–68].

In the following, wewillfirst discuss the unipolar and bipolar quantum trajectory formalisms, of which the
lattermost easily permits a classical-like trajectory interpretation of solutions of the Schrödinger equation.We
will then comment on the relation between the exact bipolar quantum trajectorymethod and thewell known
but approximateWKBmethod.Wewill then develop and discuss numerical solutions to the equations, which
furnish exact solutions to the Schrödinger equations, and compare these to semiclassicalWKB solutions. Finally,
wewill discuss our results and possible future directions before concluding.

Formalities

Unipolar treatment
When an imaginary potential is included explicitly, the single-channel time-dependent Schrödinger equation
takes the form

 
m

V r iW r i
t2

. 1
2

2 ( ) ( ) ( )y y y
y

-  + + =
¶
¶

 

Using the standard ‘unipolar’ (Madelung-Bohm) [26–30] decomposition of thewave function,
  
r t R r t iS r t, , exp , , 2( ) ( ) [ ( ) ] ( )y = 

the Schrödinger equation can be separated into two equations, which suggest a natural trajectory
implementation.

Thefirst of these two equations is the quantumHamilton-Jacobi equation,


 S

m
V r Q r t

S

t2
, 0, 3

2( ) ( ) ( ) ( )
+ + +

¶
¶

=

whichwill be seen to govern the dynamics of the quantum trajectories. Here,


Q r t

m R
R,

2

1
4

2
2( ) ( )= - 



is the quantumpotential [26, 27, 29], whose negative gradient is the aforementioned quantum force.
The second equation is the continuity equation,

  
t m

S W r
1 2

, 5· ( ) ( ) ( )r
r r

¶
¶

+   =


2
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with the density defined as
 
r t R r t, , . 62( ) ( ( )) ( )†r y y= =

The reduction of thewave equation defines trajectories whenwe associate the gradient of the actionwith the
linearmomentum,

  
p mv S. 7( )= = 

The continuity equation can then bewritten as

   d

dt t
j W r t r t

2
, 8· ( ( )) ( ( )) ( )r r

r=
¶
¶

+  =


with the current density given by
    
j r t r t v r t . 9( ( )) ( ( )) ( ( )) ( )r=

The continuity equation normally associates the time rate of change of the density ρwith theflux

j into or

out of the region. In trajectory terms, equation (8)would normally (i.e. if the right-hand sidewere zero) imply
that probability is conserved along individual quantum trajectories. However, in the present absorbing context,
the continuity equation ismodified by the inclusion of an additional loss termon the right hand side, i.e. 2Wρ/ÿ,
which accounts for the loss offlux to reaction channels that are not being considered in the calculation. Such a
continuity equation, including the absorptive potential, was proposed byBethe in a study of compound nucleus
formation [3].

In the time-independent case, theHamilton-Jacobi equation becomes
 

 p p

m
V r Q r E

2
, 10

· ( ) ( ) ( )+ + =

while the continuity equation reduces to

   
j W r r

2
11· ( ) ( ) ( )r =


The case inwhichW= 0 has been treated inmany studies by using a family of quantum trajectories that adhere
to both equations above [27, 31–39, 42–47, 49–51, 53–55]. It is not clear how themethodmight be extended to
include the absorptive potential, as it is based on the invariance of the density under coordinate transformations.
This will not be the case when absorption is included, as the density will no longer vary in accordwith the flux as
it would if thefluxwere conserved.

Bipolar treatment
An alternative that can be applied in the one-dimensional case, in particular, to the radial time-independent
Schrödinger equation,

m r
V r iW r i E

2
, 12

2 2

2
( ) ( ) ( )y

y-
¶
¶

+ + =
 

is the bipolarmethod, which expresses thewave function in terms of incoming and outgoing components,

r r r . 13( ) ( ) ( ) ( )y y y= ++ -

Using the continuous limit of transmission and reflection equations, these can be shown to satisfy the coupled
equations [43, 44, 47],

d

dt

p

m

i
E V iW

2
1 1
1 1

2 1 0
0 1

, 14⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )( ) ( [ ]) ( )y
y

y
y

y
y

=
¢ -

-
+ - ++

-

+

-

+

-

wherewe take the localmomentum p r( ) to be,
p r m E V r iW r p

dp

dr
2 with . 15( ) ( ( ) ( )) ( )= - - ¢ =

A few comments are in order. First, note that the bipolar trajectories implied by the equations above are
actually classical trajectories, unlike in the unipolar case. Classical trajectories are, of course,muchmore in line
with theWKB approximation, even though the bipolarmethodology above is exact. Second, note that the
evolution equations above are couched in a time-dependent form, even though they are in fact designed to
compute stationary or time-independent solutions of the Schrödinger equation. This was by design, in order
that a trajectory-based or time-evolving theory could be developed (consult [44]).

On the other hand, for the present work, wefind it useful to extract a fully equivalent time-independent
equation, effectively replacing the coordinate twith r, through the following substitution:

3
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d

dt t

p

m r

i
E

p

m r
16( )y y y

y
y

=
¶
¶


¶
¶

 - 
¶
¶

  





The evolution equations then become

d

dr

p

p

ip

2
1 1

1 1
1 0
0 1

, 17⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )( ) ( )y
y

y
y

y
y

=
¢ -

-
+

-
+

-

+

-

+

-

which in terms of Paulimatrices reduces to

p

p

ip

2
1 , with . 18x z ⎜ ⎟

⎛
⎝

⎞
⎠

( ) ( )s s
y
y

Y¢ = -
¢

- Y + Y Y = +

-

For radial applications as considered here, the above equations determine an incoming solutionψ− and an
outgoing oneψ+, whose local phase variations (whichwould be equal and opposite ifWwere zero) are
determined by themomentum p r( ) . Although neither theψ+nor theψ− solution satisfies the Schrödinger
equation in general, their sum always does, as we demonstrate below.Note that these bipolar equationswere also
derived byHBremmer [57], as the continuous limit to scattering from a sequence of discrete steps, and used by
Berry andMount [58] in their extensive review ofWKB-type approximations. Related, butmore general,
expressions were also derived by Fröman and Fröman [56].

An alternative but informative formof these equations can be obtained by projecting themonto equations
for the sumψ= ψ++ ψ− and differenceψa= ψ+− ψ− of the bipolar solutions. The scalar product with the
row vector (1, 1) furnishes the equation for the sum,

r r r

r p r r

1, 1 1, 1 1

1, 1 19

p

p x

ip
z

i
a

2
( ) ( ) · ( ) ( ) · ( ) ( )

( ) · ( ) ( ) ( ) ( )
y s

s y

¢ = Y ¢ = - - Y

+ Y =

¢

 

while the scalar product with the row vector (1,− 1) gives the equation for the difference,

r r r

r r p r r

1, 1 1, 1 1

1, 1 . 20

a
p

p x

ip
z

p

p a
i

2
( ) ( ) · ( ) ( ) · ( ) ( )

( ) · ( ) ( ) ( ) ( ) ( )
y s

s y y

¢ = - Y ¢ = - - - Y

+ Y = - +

¢

¢
 

We rewrite these as

r p r r

p r r p r r . 21

i
a

a
i 2

( ) ( ) ( )
( ( ) ( )) ( ( )) ( ) ( )

y y

y y

¢ =

¢ =




The Schrödinger equation follows trivially from the two equations, as

r
i

p r r p r r
1

. 22a 2
2( ) ( ( ) ( )) ( ( )) ( ) ( )y y y¢ = ¢ = -¢

 
Wenote that the the coupled equations forψ andψa, whenwritten as

r

p r r p r

r

p r r

0 1

0
, 23i

a
i

a
1 2
2

⎜ ⎟
⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝

⎞
⎠

⎛

⎝
⎜

⎞

⎠
⎟

( )
( ) ( ) ( ( ))

( )
( ) ( ) ( )y

y

y

y

¢
= -

  

are identical to the standard reduction of the second-order Schrödinger equation to afirst-order one,

r

r p r
r

r

0 1

0
. 241 2

2
⎜ ⎟⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )
( ) ( ( ))

( )
( ) ( )y

y
y
y¢

¢
=

¢
-


with the advantage thatwe can now identify the incoming and outgoing components as

r r
p r i

r
1

2

1
. 25⎜ ⎟

⎛
⎝

⎞
⎠

( ) ( ) ( ) ( ) ( )y y y=  ¢


This association is general and can be applied to any solution of the radial Schrödinger equation. The bipolar
components obtained in thismanner will satisfy the coupled bipolar equations forψ±, but, in general, will not
satisfy the Schrödinger equation. Note that a similar equation has been derived previously [47].

The analysis above confirms the choice of including the absorptive contribution to the optical potential
directly in the localmomentum, taking

p r m E V r iW r2 . 26( ) ( ( ) ( )) ( )= - -

With this definition of the localmomentum, the solutions of the bipolar equation,ψ±, furnish the exact solution
ψ= ψ++ ψ− to the Schrödinger equation. Butwemust than ask howone can associate p r( )with a real

4
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momentum: in terms of themagnitude of the complex quantity, p r∣ ( )∣, as its real part, p rRe[ ( )], or in terms of
the truncated quantity,

p r m E V r2 ? 270( ) ( ( )) ( )= -

Considering the fact that it is the real part that furnishes the oscillatory contribution to the actionwhen the
kinetic energy is positive, themost logical choicewould seem to be p rRe[ ( )].Wewill return to this question
shortly.

Relation to theWKBapproximation
Neglecting the terms couplingψ± in the bipolar equations, the latter reduce to the standardWKB equations,

r
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whenwemake the Langermodification to the centrifugal potential in theHamiltonian [58], taking
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The solutions to these equations solutions can bewritten as
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Since the terms neglected in theWKB equations are those that produce reflection of one component to the other,
theWKB solutions are the reflectionless counterpart to the exact bipolar solutions.

The principal difficulty with theWKB solutions is determination of the constant coefficientsA± , which,
strictly, should not be constants. This is often done by analyzing the values expected near a turning point, where
the real part of p r 2( ) changes sign and p p¢ has a peak.However, the imaginary contribution to themomentum
p r( ) smooths this transition,making it less important when compared to neighboring points, evenwhen the
energy is high. Other regions of space can also introduce large variations inA±, depending on the local variations
in the potentials. In any event, a fairly rigorous, ‘refinedWKB’ theory has been developed, which computes the
first-order contribution to the reflection (and thereby changes toA± ) through the use of ‘Stokes’ and ‘anti-
Stokes’ lines in the complex plane, emanating from real- and complex-valued turning points [23, 24, 56, 58–60].
The refinedWKB approach is still an approximation, however.

TheWigner transform [69] of the bipolar solutions furnishes additional information about their physical
content. For simplicity, we analyze theirWKB approximations in a ‘semiclassicalWigner’-type context [61, 65],
calculating
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Expanding thewave functions tofirst order in s before integrating, wefind
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Consistent with our discussion above, we find that themomentum is determined principally by the real part of p
(R), with the incoming/outgoing solutions corresponding to incoming and outgoing trajectories in theWigner
transform.However, here themomentum ismodified by the imaginary part of the logarithmic variation in the
momentum,which is nonzero onlywhen an absorptive potential is included. Numerically, we have found the
contribution of this additional factor to be quite small, except in the region of a turning point,
where p rRe 0t

2[ ( ) ] = .

TheWigner function also contains an attenuation factor  S Rexp Im2
⎡⎣ ⎤⎦[ ( )]


, when the potential is

absorptive.When themagnitude of the imaginary potential is small compared to the kinetic energy, we can
approximate it as
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wherewe have used the trajectory to convert the integral in r to one in t by taking±m dr/p0=± dr/v0= dt.
Note that in this expression, the association between dr and dt depends on the direction of propagation. Taking
this into account, we can associate the attenuation factor with the absorption term in the continuity equation,
equation (8).

Numerical results

Herewewill analyze solutions to the bipolar equations for protons incident on the nucleus 56Fe.We use a fairly
standard form for the real part of the potential, consisting of centrifugal term and aWoods-Saxon nuclear
potential, together with a Coulombpotentialmodified to take into account a constant charge density in the
nuclear interior. For the nuclear potential, we adopt the phenomenological optical potential of Becchetti and
Greenlees [70].We have

V r V r V r V r , 35l N C( ) ( ) ( ) ( ) ( )= + +

where the centrifugal potential is,
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m

l l

r2

1
, 36l

2

2
( ) ( ) ( )=

+

the real nuclear potential is given by
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and theCoulomb potential is
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with a charge density radius of

R r A , 40C C T
1 3 ( )=

whereZP andZT are the charge numbers of the projectile and target, respectively, andAT is to themass number
of the target.

The imaginary part of the potential is normally composed of aWoods-Saxon plus aWoods-Saxon derivative
term, commonly called volume and surface terms,

W r W r W r , 41v s( ) ( ) ( ) ( )= +

where the volume term is

W r
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, 42v

v

W W
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v v
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with a radius of

R r A 43W W T
1 3
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and the surface term is given by
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2
s s
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with

R r A . 45W W T
1 3

s s ( )=

The surface termof the imaginary potential is usually associatedwith absorption due to coupling to low-energy
collective excitations of the nucleus, while the volume term is associatedwith higher energy single-particle
excitations. The surface term is normally dominant at low incident energy, while the volumemode grows in
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importance as the energy increases. In a phenomenological potential such as the Becchetti-Greenlees one, the
reduced radii of each of the terms in the potential, r r r, ,V C Wv

and rWs
, as well as the diffuseness parameters,

a a,V Wv
and aWs

, and the potential strengths,V0,Wv0 andWs0, are obtained by fitting to experimental data.
To solve the bipolar equations, we integrate outward from r= 0 andmatch toCoulombwave functions (or

to spherical Bessel functions, when the product of the charges is zero) at a radiusRm at which the nuclear
potentialVN+ iW= 0. At thematching radius, taken to beRm= 14.6 fm for the system studied here, we define
the internal wave function normalizationAl and the S-matrix Sl by requiring, for each value of the angular
momentum l, that

A R H R S H R

A R H R S H R , 46

l m
i

l m l l m
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where

R R R 47m m m( ) ( ) ( ) ( )y y y= ++ -

is thewave function obtained by integrating the coupled equations from r= 0 to r= Rm and Hl
( ) are the

outgoing/incomingCoulomb/spherical Bessel wave functions.
To integrate the equations, we begin by requiring that the solution be regular at r= 0. For the case of l= 0,

we take
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and, at thefirst integration point r= h,
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For l> 0, when r→ 0, we have
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In this limit, the coupled equations become
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with eigenvalues
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For the solution to be regular, wemust haveB= 0.
To take into account the contributions of other terms in themomentum at afinite value of r= h, for l> 0,

we take themore general formof the eigenvector corresponding to the positive eigenvalue,
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Wehave also tested and compared solutions by solving the equations forψ andψa.More explicitly, we solved for
ψ and y¢ and then determinedψa andψ±. Thematching condition at the radiusRm is the same. At small r, we
use the fact that for angularmomentum l, we have r Arl 1( )y » + , to take
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Wehave solved both sets of equations using an adaptive stepsize Runge-Kutta algorithm and obtained
identical results from the two sets of equations for the incoming/outgoingwavesψ± and the total wave function
ψ.We have also compared our results to those of a standard optical scattering code using amodifiedNumerov
method to solve the standard Schrödinger scattering problem, theSCAT2 code [71].We havemade comparisons
for the scattering of neutrons, protons and alpha particles incident on 56Fe at energies between 10MeV and
100MeV, using the Becchetti-Greenless phenomenological optical potentials for neutrons and protons [70] and
theMcFadden-Satchler potential for alpha particles [72].We obtain agreement between our results and those of
SCAT2 for the S-matrix elements and the cross sections of better than one part in 105.

We have also solved theWKB equations in the samemanner, integrating from r= 0, but taking into account
the Langermodification of the centrifugal potential. In the limit r→ 0, wefind for all values of the angular
momentum l,

r

r
B r
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which requires thatB= 0 for the solution to be regular. The outgoingWKBwaveψWKB+ is thus identically zero
in the region inside the turning point at p rRe 0t

2[ ( ) ] = . To continue the integration into the oscillatory region,
just outside the turning point, at rt+, we set

r r 2 57WKB t WKB t( ) ( ) ( )y y=- + - -

and

r i r 2 , 58WKB t WKB t( ) ( ) ( )y y= -+ + - -

in order to reproduce the usualWKBmatching conditions at the turning point[58].We note thatwe have also
tested this expressionwithout the factor of 2 . Given the fact that we normalize the solutions at thematching
radius, the only effect of this changewould be to reduce theWKBwave function by a factor of 2 in the region
interior to the turning point.

We have found that, outside the range of the nuclear potential, the inward/outward bipolar solutions
oscillate in phase with theCoulomb/spherical Bessel solutions to the Schrödinger equation.However, the
bipolar solutions, which are not solutions to the Schrödinger equation,maintainmagnitudesmore consistent
with the semiclassicalWKB approximation than to those of the incoming/outgoing solutions to the
Schrödinger equation.

Infigure 1, we compare the behavior with andwithout absorption of the exact incoming and outgoingwaves
ψ+ andψ−, (solid green and red curves, respectively) as well as theirWKB approximations (dashed green and red
curves, respectively) for the values of the angularmomentum, l= 0, 3, 5 for a proton incident on 56Fe at an
energy of 10 MeV. Rescaled real and imaginary parts of the potential (solid and dashed black curves, respectively)
are also shown in order to correlate the variations in thewave functionswith those of the potentials.

Several general features of the results are clear at a glance. In the case of no absorption, outside the turning
point, themagnitudes of the exact incoming and outgoingwaves are identical, as are those of theWKB solutions.
In contrast, when absorption occurs outside the turning point, themagnitude of the incomingwave is always
larger than that of the outgoing one, both for the exact and for theWKB solutions. This is a direct result of the
absorption. Inside the turning point, the incomingWKB solution is identical to the totalWKBone, as the
outgoingWKB solution is zero in this region. In this region, the exact incomingwave dominates its outgoing
component, but is smaller than theWKB incomingwave, in part due to reflection to the outgoingwave. The
exact outgoing solution inside the turning point is nonzero only as a result of reflection from the rapidly
changing potential, although it can also suffer absorption.

For l= 0, both exact incoming and outgoingwaves suffer strong absorption as the pass through the
imaginary potential. The absorption effectively cancels the effects of the reflection from the surface of the real
potential seen in the nonabsorptive scattering, when compared to the nonabsorptiveWKB solution.With
absorption, the incomingWKBwave closely follows the exact one, while the outgoingWKBwave deviates
substantially from the exact one. The relatively constantmagnitude of the outgoingWKB component is due to
compensation of the attenuation by a decrease of the p r1 ( ) flux factor as the outgoing component leaves the
potential well. The summedwave functions differ both inmagnitude and phase as a result.

For l= 3, the real potential dominates the scattering, with orwithout absorption, with both the incoming
and outgoing components varying significantly in the region of theCoulombbarrier. The incoming exact and
WKBcomponents again lie fairly close to one another in the absorptive case, both decreasing strongly in the
absorptive region. The outgoing components again differ greatly in this case. The increase in the exact outgoing
componentψ+ is due to strong reflection from theCoulombbarrier, before the absorptive region is reached,

8

Phys. Scr. 98 (2023) 115303 NCdaConceição et al



while theWKBoutgoingwave displays a similar compensation of attenuation by variation in the flux factor as
seen at l= 0.Note that bothwith andwithout absorption, the exact and theWKB incoming/outgoingwaves
have a strong peak at the classical turning point, where p rRe 0t

2[ ( ) ] = . The contributions of the exactψ+ and
ψ− are equal and opposite at the peak and cancel in the total wave function.

For l= 5, the turning point is outside the range of the absorptive potential and the scattering is dominated by
reflection from the barrier. Here the solutions with andwithout absorption are almost identical. The exact
incoming and outgoing solutions lie atop one another, as do theWKB solutions.

Infigure 2, we show similar results for the l= 0, 5, 10 partial wave in the case of a proton incident on 56Fe at
an energy of 30MeV.Here, the additional kinetic energy greatly reduces the effects of the variations in the real
potential. For l= 0, the exact andWKB incoming and outgoingwaves lie close to one another at all radii,
attesting to the limited importance of reflection in the scattering. The variation inmagnitude of the incoming/
outgoingwaves in the case of no absorption is due to the variation in the flux factor p r1 ( ) . In the case of an
absorptive potential, both the incoming and outgoingwaves suffer significant attenuation. The behavior of the
incoming and outgoingwaveswith l= 5 is similar to those for l= 0, although some reflection can be observed in
the slight bumps in the exact outgoingwavewith absorption, as well as the solutionswithout absorption, in the

Figure 1. Incoming/outgoingwaves and total wave functions for protons incident on 56Fe at 10 MeV for the partial waves l = 0, 3, and
5. The left column corresponds to scattering with no absorptionwhile absorption is included in the calculations shown in the right
column. Exact results are shown as solid lines andWKB approximations to these as dashed lines. The incomingwaves are given in red
and the outgoingwaves in green. The total exact andWKBwave functions are shown in blue. The real potential (solid black line) and
the imaginary potential (dashed black line) are included to show their variation and their range of action but are not to scale.
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region of theCoulomb barrier. Finally, at l= 10, the scattering is again dominated by the turning point, which
lies outside the absorptive region. The behavior of the incoming and outgoing solutions is similar to that
observed for l= 5 at 10MeV and is the samewith orwithout absorption. As also seen at 10MeV for the
analogous peripheral partial wave, the exact solutions approach the turning pointmore abruptly than the
WKBones.

Conclusions

Wehave studied the effects of absorption on the incoming and outgoing solutions to the bipolar equations, as
well as on theirWKB counterparts. Aswe have seen, through theWigner transform, the bipolar incoming/
outgoingwaves can be interpreted in terms of incoming and outgoing trajectories.

As discussed in theNumerical Results section above, several trivial observations can bemade immediately
concerning our results. In the case of no absorption, outside the turning point, the exact incoming and outgoing
waves are equal inmagnitude, as are theWKB solutions. In contrast, when absorption occurs outside the turning

Figure 2. Incoming/outgoingwaves and total wave functions for protons incident on 56Fe at 30 MeV for the partial waves l = 0, 5, and
10. The left column corresponds to scatteringwith no absorptionwhile absorption is included in the calculations shown in the right
column. Exact results are shown as solid lines andWKB approximations to these as dashed lines. The incomingwaves are given in red
and the outgoingwaves in green. The total exact andWKBwave functions are shown in blue. The real potential (solid black line) and
the imaginary potential (dashed black line) are included to show their variation and their range of action but are not to scale.
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point, themagnitude of the incomingwave is always larger than the outgoing one, both for the exact and for the
WKB solutions. This is simply a result of the absorption. Inside the turning point, the incomingWKB solution is
identical to the totalWKBone, as the outgoingWKB solution is zero in this region. In this region, the exact
incomingwave dominates its outgoing component, but is smaller than theWKB incomingwave, in part due to
reflection to the outgoingwave. The exact outgoing solution inside the turning point is nonzero only as a result
of reflection from the rapidly changing potential, although it can suffer absorption aswell.

A comparison of the incoming bipolar solution and itsWKB approximation, which neglects reflection, show
that absorption tends to diminish the importance of reflection on the incomingwave, as the exact incoming
wave and theWKB solution are, in general, quite similar in this case. This contrasts with the behavior of the
outgoingwave, where reflection can produce large differences between the exact solution and theWKBone at
low incident energy. As a result, at low energy, theWKBapproximation succeeds in providing a better
approximation to the solutionwithout absorption than to themore physical solutionwith absorption. The
discrepancies between the two decrease fairly quickly with energy, as can be seen in the comparison at 30 MeV.

Both the exact incoming/outgoing solutions and theirWKB counterparts have sharp peaks inmagnitude at
a turning point. The peak is smoothed somewhat when the turning point occurs in the absorptive region, but
does not disappear. The large contributions to the exact bipolarwaves are almost equal and opposite in sign, as
their sum furnishes the total wave function, which, as can be seen in the figures, is smooth in the region of the
turning point.

Singularities (or near-singularities) in the vicinity of turning points (andmore generally, caustics) are a
notorious feature of semiclassicalmethods, and certainly nothing new. Various ‘tricks’have been developed for
dealingwith them [56, 58–60], such as themethod of comparison equations, used to obtain connection
formulae. Expanding our scope a bitmore broadly, the Fröman approach [56] yields aWKB-like approximation
designed towork in conjunctionwith arbitrary trajectories, i.e. not necessarily classical trajectories. In this
formalism, trajectoriesmay easily be chosen that exhibit no turning points—and therefore no sharp features.
Moreover, an exact, bipolar version has also been developed, that can easily incorporate even deep
tunneling [44].

We have shownhow a trajectory interpretation of the incoming and outgoingwaves can bemade evident
through theWigner transform.However, we have based this interpretation on the phase of theWKB
approximation rather than on that of the exact bipolarwaves. A comparison of the oscillatory behavior of the
exact andWKBwave functions permits us to conclude that the localmomentumobtained from the derivative of
the phase factor of the exact solutionwill furnish amomentumvery similar to that of theWKB solution.We thus
consider the trajectory interpretation to be just as valid for the exact solution as for theWKBones.

Considering the numericalmethods used here, we conclude that themodifiedNumerovmethod is faster for
solving the Schrödinger equation than the adaptive stepsize Runge-Kuttamethod but is not as precise. Solving
for thewave function ismore precise and faster than solving for the bipolar waves because of the turning points.
Outside the turning points, the bipolar solutions aremore stable. The advantage of the bipolar waves is their
connection to classical physics and the deeper insight this furnishes into the dynamics. In any case, for the
equations discussed here, all solutionswere obtained at the stroke of a key.

Going forward, it is of course important to generalize the bipolar theory formultidimensional applications.
To this end, there are two primary challenges that have been previously identified [47, 51]. Thefirst is ensuring
that the number of separate wave function components remains at just two (or at least some small number) and
does not grow exponentially with d, the number of dimensions. In particular, bifurcating along each dimension
separately would lead to 2d separatemultipolar components to contentwith. The second challenge is ensuring
that both (or all) of the bipolar (ormultipolar) components are themselves fairly smooth and interference-free.
Satisfying both conditions at once is indeed nontrivial.

In the context of reactive scattering in chemical physics, substantial progress has beenmade by recognizing
thatwithin the space of internal coordinates, one dimension in particular—the ‘reaction coordinate’, describing
the overall progress from reactant to productmolecules—can be singled out as special [60]. Thus, previous
multidimensional bipolar approaches [47, 51] have exploited this situation by bifurcatingψ only along the
reaction coordinate—which can be done despite this coordinate being highly curvilinear, as is typical.

Of course,many scattering applications, including those in nuclear physics, require amore general
treatment, not limited to internal coordinates with a single primary reaction coordinate. Even for the simplest
cases where one or both colliding partners are treated as point particles (e.g., nucleons), unless central forces are
in play and exploited to reduce the problem to 1D as is the case in this paper, the above reaction coordinate
strategywill not be applicable. Thus, other ideas are needed.

One such idea for generalizing the bipolar equations to three Cartesian dimensions is naturally suggested by
the present work. In particular, the association of the bipolar components with awave function and its derivative
suggests the following:
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Note that equation (60)was derived previously [47], except with

p an arbitrary vectormomentumfield, chosen

to correspond to the aforementioned reaction coordinate. Here, we propose to investigate other choices for
p r( ), better suited tomore general scattering situations. Although these are four equations rather than two, our
results here suggest that they could beworth the time and effort necessary to understand thembetter.We plan to
work in this direction in the future.
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