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Abstract

Clifford, or geometric, algebras are introduced by presenting important particular cases.
The introduction to the geometric algebra of the three-dimensional Euclidean space and
the geometric algebra of spacetime shows how these algebras provide a synthetic and
efficient way to describe geometric objects and rotations in three-dimensional Euclidean
space and Minkowski spacetime, respectively. It is shown how the former algebra is
included in the later, and how this algebra provides an elegant way to describe Lorentz
transformations, the electromagnetic field and Maxwell’s equations. The emergence of
these algebras in the quantum mechanics of spin-1/2 particles is outlined, and a systematic
study of Pauli and Dirac spinors is performed by transforming from the classical to the
algebraic description of the spinors, which leads naturally to the operator definition of such
spinors. These transformations are developed systematically for the first time in this work.
At this point, the transformations are applied to obtain the corresponding versions of the
Pauli and Dirac equations. The corresponding transformations for the adjoint spinors
are also obtained and applied to express inner products and observables. This study
concerning a single spin-1/2 particle is then extended to the context of systems of multiple
spin-1/2 particles. In this new study, the Clifford algebra appropriate for description
of non-relativistic multi-particle spinors is found to be identical to the so-called multi-
particle spacetime algebra, introduced less formally in previous studies. Multi-particle
algebraic and operator Pauli spinors are then defined for the first time, starting from the
classical ones, in an analogous manner to the single-particle case. In order to properly
define relativistic multi-particle spinors, the extension of the Dirac algebra from the usual
complex algebra of Minkowski spacetime to a six-dimensional conformal space algebra is
found to be necessary. In terms of this algebra, an extension of the algebra of operators
to a Clifford algebra is performed, and multi-particle algebraic and operator Dirac spinors
are defined for the first time, in terms of this extended algebra. Finally, the algebraic
and operator versions of the Bethe-Salpeter equation are obtained. The different versions
of spinors and their corresponding wave equations raise the possibility that the simpler

operator versions could be more fundamental than the classical ones.



Resumo

As algebras de Clifford, ou geométricas, sao introduzidas através da apresentagao de casos
particulares importantes. A introducao a algebra geométrica do espacgo euclidiano tridi-
mensional e a algebra geométrica do espago-tempo mostra como estas algebras fornecem
uma forma sintética e eficiente de descrever objetos geométricos e rotagoes no espaco
euclidiano tridimensional e no espaco-tempo de Minkowski, respectivamente. Mostra-se
como a primeira algebra estd inclusa na segunda, e como esta algebra fornece uma forma
elegante de descrever transformacoes de Lorentz, o campo eletromagnético e as equagoes
de Maxwell. O surgimento dessas algebras na mecanica quantica de particulas de spin
1/2 é esbogado, e um estudo sistematico dos espinores de Pauli e de Dirac é executado
através da transformacao da descricao classica do espinor para a sua descricao algébrica,
a qual conduz naturalmente a definicao operatoria desses espinores. Estas transformagoes
sao desenvolvidas sistematicamente pela primeira vez neste trabalho. Neste momento, as
transformacoes sao aplicadas para obter as versoes correspondentes das equacgoes de Pauli
e de Dirac. As transformagoes correspondentes para os espinores adjuntos sao também
obtidas e aplicadas para expressar produtos internos e observaveis. Este estudo rela-
cionado a uma tnica particula de spin 1/2 é entao estendido para o contexto de sistemas
de multiplas particulas de spin 1/2. Neste novo estudo, a algebra de Clifford considerada
adequada para a descricao de espinores nao-relativisticos de multiplas particulas é identifi-
cada com a chamada algebra do espago-tempo de multiplas particulas, introduzida menos
formalmente em estudos prévios. Espinores algébricos e operadores de Pauli de multiplas
particulas sao entao definidos pela primeira vez, a partir dos classicos, de forma analoga
ao caso de uma unica particula. A fim de definir adequadamente espinores relativisticos
de multiplas particulas, a extensao da algebra de Dirac, partindo da algebra complexa
do espago-tempo de Minkowski para uma algebra do espago conforme hexadimensional, é
determinada necessaria. Em termos desta dlgebra, uma extensao da algebra de operadores
para uma algebra de Clifford é executada, e espinores de Dirac de multiplas particulas sao
entao definidos pela primeira vez, em termos desta algebra estendida. Por fim, as versoes
algébrica e operatéria da equacao de Bethe-Salpeter sao obtidas. As diferentes versoes
dos espinores e suas equacoes de onda correspondentes levantam a possibilidade de que

as versoes operatorias, mais simples, possam ser mais fundamentais que as cléssicas.
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1 Introduction

Mathematics is fundamental for physics and vice versa. Geometry plays an important
role in this reciprocal relation. Most fundamental physical phenomena occur in an arena
modeled by some type of space. So an efficient approach to geometry and correlated areas

can be important for the treatment of physical problems.

There are essentially two main approaches to geometry, a coordinate-based one and
a coordinate-free one (DORAN; LASENBY, 2003). The first is chiefly based in descriptions
using coordinate systems. In this approach geometric objects are treated by manipulat-
ing their components, and in some applications considerable emphasis is given in how
components are transformed under a change of reference frame. The second tradition
is primarily based on more direct descriptions of the geometric objects. The need for
coordinates is very common in the ultimate stage of many realistic applications, but an
adequate coordinate-free approach includes naturally a coordinate description. This work
aims to apply Clifford algebras, also known as geometric algebras, in physics, given that
such algebraic structures provide a modern and promising coordinate-free approach to

geometry and physics.

As exposed by Vaz and da Rocha (2019) Clifford algebras appeared independently in
mathematics and physics. The first appearance occurred in 1878 as a species of unification
of the algebra of Grassmann and the algebra of quaternions of Hamilton by the English
mathematician W. K. Clifford, who called it “geometric algebra”. In physics, a Clifford
algebra emerged naturally in 1927 in the context of the electron theory of Pauli, as the
algebra of sigma matrices. In the following year, a Clifford algebra appeared again as the
algebra of gamma matrices in the relativistic description of the electron by Dirac. Since

then, many important results were achieved, in particular, new ways to describe spinors.

This history is much longer and richer than the previous brief paragraph can describe,
but it recognizes that Clifford algebras appeared in physics as an intrinsic part of the
description of spin—% particles in quantum mechanics and that this can be an interesting
subject to explore employing Clifford algebras. In fact, this is the subject most addressed
by researchers. However, it is worth noting that almost all the studies concern single-

particle states. This suggests that studying multi-particle states could yield new results.
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This essentially defines the objective of this work. More specifically, this work aims to
answer some basic questions about the description of multi-particle states that still seem

to be unanswered.

In the next chapter, Clifford algebras are introduced in the form of important particular
cases, which are referred to as geometric algebras. Other Clifford algebras are designated
as such in the text, although the names “Clifford algebras” and “geometric algebras” could
be considered as synonyms. In this chapter, the geometric algebra of the Euclidean
plane is presented first, to pave the way to an introduction to the geometric algebra
of the three-dimensional Euclidean space, which is presented immediately after. Then,
after a brief introduction to the pseudo-Euclidean plane and its corresponding geometric
algebra, Minkowski spacetime and its corresponding geometric algebra are introduced. At
the end of each presentation, the manner in which the concepts introduced can be used
to represent reflections and rotations is shown. Chapter 3 focuses on how the Clifford
algebras introduced in the previous chapter can be used to describe relativistic physics.
In this chapter, the geometric algebra of the three-dimensional Euclidean space is included
in the geometric algebra of spacetime. Then, a brief description of relativistic observables
is presented, and the representation of Lorentz transformations in terms of the geometric
algebra of spacetime is given. Finally, the description of the electromagnetic field and
Maxwell’s equations in this context is presented. In chapter 4, the emergence of the
Clifford algebras in quantum mechanics is outlined, and a systematic presentation, both
in the non-relativistic and in the relativistic context, of the classical and of more modern
ways of representing the wave functions through spinors is presented. This is essentially
a study of the different ways to define Pauli and Dirac spinors. In each case, the relation
between the different definitions are presented, and the corresponding wave equations (the
Pauli and Dirac equations) are also presented and compared. In chapter 5, the study in
the previous chapter, concerning a single spin—% particle, is extended to the context of
systems of multiple spin—% particles. In this new study, the Clifford algebras suitable for
description of non-relativistic and relativistic multi-particle spinors are identified. Multi-
particle algebraic and operator spinors are then defined from the classical ones, both in
the non-relativistic and in the relativistic context, and the definitions are compared in
each context. Finally, the algebraic and operator versions of the Bethe-Salpeter equation

are obtained. Chapter 6 contains the conclusions and final considerations.



2 Introduction to Clifford Algebras

Geometric, or Clifford, algebras are introduced in this chapter by presenting important
particular cases. The basic references are two instructional articles by Vaz (1997, 2000)
and the first five chapters from the textbook by Doran and Lasenby (2003). Additional
information on quaternions was collected from an article by Lambek (1995). The Cartan-
Dieudonné theorem, which is evoked in this chapter, is treated under a weak form in the
textbook by Vaz and da Rocha (2019). Additional information about the Spin groups
was also collected from the textbook by Vaz and da Rocha (2019).

2.1 The Geometric Algebra of the Euclidean Plane

2.1.1 Construction of the Structure

Consider the vector space R?, and let its vectors be denoted by Latin letters in boldface:
u, v, etc. Let the canonical basis be denoted {e,ex} = {(1,0), (0,1)} (where the ordering
of the basis is implied), in such a way that a vector is written, generally, u = uje; + uqes,
v = vie;+uges, etc. The interpretation for this space is the usual geometric interpretation:
R? corresponds to the plane, and its vectors represent oriented line segments in the plane.
Consider the bilinear form ¢ : R? x R? — R such that

g(e;,ej) =6;;, where i,j € {1,2}. (2.1)

Taking g(u,v), where u and v are generic vectors, and then applying the bilinearity
property, one verifies that g(u,v) = g(v,u), and that g(u,u) > 0, where g(u,u) = 0
if and only if u = o (o is the null vector), that is, the bilinear form g above defined is

symmetric and positive-definite, hence it corresponds to an inner product. Indeed, one
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has

g(u,v) = g(ure; + uses, vie; + voes)
= uv1g(er, e) + uivag(er, ex) + ugvig(es, e1) + ugvag(ey, es)

= uyv; + ugvy = g(v,u). (2.2)

In particular,
g(u,u) = u? +up? > 0. (2.3)

Note that this is the usual inner product associated to R?. Endowing R? with such an

inner product makes it a Euclidean space, called the Euclidean plane.

The geometric algebra of the Euclidean plane is determined by a space constructed
from the Euclidean plane, endowed with another product, called the geometric product,
which will be constructed in the following, as restrictions on its form are imposed. Such
a product is denoted by juxtaposition, that is, uv denotes the geometric product of the

vector u with the vector v.

The first property imposed to the geometric product is
uu = g(u,u), (2.4)
for any vector u from R?, which can be written
u’? = |ul? (2.5)

where the notation uu = u? is introduced, and | - | corresponds to the norm induced by
the inner product ¢, that is, the usual modulus. Writing u = u,e; + uges, the above

equation can be written in terms of components as
(u1e1 + u2e2)(u1e1 + u2e2) = u12 + U22. (26)

Since bilinearity is a fundamental property for the product of an algebra, this property
need be considered for the geometric product. In this way, by applying the bilinearity

property for the geometric product in the above expression, one obtains
u1? e + ugug(erer + eger) + ug? ey = ug? + up’. (2.7)
For this equation to be satisfied, one must have
e’=1, e’=1 and ee; = —ese;. (2.8)

These relations determine the geometric product of the geometric algebra of the Euclidean
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plane in terms of the canonical basic vectors. Applying it to the computation of the

geometric product of two arbitrary vectors u = uje; + uses and v = vye; + v9€,, furnishes

uv = (uje; + ugeq)(vie; + vaeq)
2 2
= Uv1€1" + UV2€e 1€ + UV €€ + UgVUaes

= (ulvl + UQUQ) + (Uﬂ)g — u2v1)e1e2. (29)

Note that the first term on the right-hand side of the resulting equation is a scalar that
corresponds to the inner product introduced earlier, better known as the scalar product.
The second term, on the other hand, is neither a scalar nor a vector. For a scalar a and a
vector w if follows that aw = wa, but in particular, allowing now the geometric product

to be associative, one has
(e1e2)91 = —(egel)el = —eg(elel) = —€9 (210)

and

el(eleg) = (elel)eg = €9, (211)

so that ejey is not a scalar. Since for any vector w, one has ww = w? = |w|> > 0, but

(e1e2)(e1€2) = —(ezeq)(e1€2) = —e (el(eleg)) = —eg((elel)eg) = —egey = —1, (2.12)

eiey cannot be a vector from R? either. The coefficient of eje, in the expression (2.9)
suggests a geometrical interpretation for such an object. |u3ve — ugvy| corresponds to the
area of the parallelogram determined by the vectors u and v. While \/|ww| corresponds

to the length of an oriented line segment representing the vector w, the quantity

\/’ ((U1U2 - mm)elez) ((U1U2 - uQvl)ele2> ‘ (2_13)

corresponds to the area of the parallelogram determined by the vectors u and v. This
fact suggests that ejes is associated with an area in the plane, more specifically, with an
area of unit magnitude. The multiplication of the object ejes by (ujvy — ugvy) associates
it with an area of magnitude |ujvy — ugvq|. According to the sign of the coefficient of
(u1v9 — ugvy)ejeq, such an object has a kind of “orientation”; analogous, in some sense,
to the orientation of a vector (as an oriented line segment), lacking, for the moment, a

pertinent meaning.

Based on the suggestion made in the previous paragraph, consider the association of
the object e;e, with the parallelogram/square determined by the vectors e; and e;. One
can think of the orientation of this square as being determined by the direction of the

square, which is unique and corresponds to the direction of the plane, and by the sense
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of travel about the square boundary, which is uniquely associated with the order of the
vectors e; and ey (and their opposites) for taking the displacements needed to travel the
square boundary (starting from the origin) in some sense, clockwise or counterclockwise.
For example, the order of the geometric product e;e, suggests associating to this object a
square with the sense of travel about its boundary being counterclockwise, since, starting
from the origin and taking the displacement given by e; and then the displacement given
by ey, and then taking the displacements —e; and —es,, the square border is traversed
in the counterclockwise sense (cf. figure 2.1). In the same way, ese; is associated with a
sense of travel about its boundary being clockwise, the opposite sense of travel associated
with ejey, which is compatible with the fact that e;e; = —eseq. This interpretation leads
to the idea that the object (ujvy — ugvy)ejes present in the expression for the geometric

product uv corresponds to the oriented parallelogram determined by u and v.

€2

€25

> >

O €1 O €1

FIGURE 2.1 — The two oriented squares associated with the basic vectors e; and es.

The fact that one can write the geometric product uv as a sum of a symmetric part

and an antisymmetric part relative to exchange between u and v as
1 1
uv = §(uv +vu) + §(uv —vu) (2.14)

allows one to identify the symmetric part with the inner product g(u,v) = ujv; + ugvs

and to express such a product in terms of the geometric product as
1
u-v= §(uv+vu). (2.15)

The antisymmetric part of the product uv is defined as the exterior product or wedge

product of the vectors u and v:

1
uAv:E(uv—vu):—V/\u. (2.16)
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Given these definitions, the geometric product can be written as

uv=u-v+uAv. (2.17)
Noting that
eey=e;-e+e Ney=e; Ney (218)
and that
(Ul’UQ — u2v1)e162 =uA Vv, (219)

one verifies that in general the exterior product uAv represents the oriented parallelogram

determined by the vectors u and v, in this order.

Let u,v,w,x,y,z € R2 Defining the sum of objects resulting from the exterior
product as

UAV+WAX = (ujvs + w1Ty — UV — Waly )€€, (2.20)

one notes that such a sum furnishes an object of the same nature of the summed objects,

and one can easily verify that

(i) UAVFWAX=WAX+UAV
and

(i) uAV+(WAX+YAZ)=(UAVH+WAX)+ YAz
Additionally, one verifies that

(iii) u/\v—l—w/\w:u/\v+§(ww—ww):u/\v,

that is, uAu=vAv=wAw=--- play the role of neutral element relative to the sum
operation. Such an element is unique, and at the moment, it should be denoted O. Its

uniqueness it is verified by observing that, if there is O’ which also satisfies
uAv+ 0O =uAv, (2.21)

it follows that
uAv+0O=uAv+0, (2.22)

which implies O = O’. A fourth basic property of the sum of elements of the form
u A v, relative to the existence of O, is that (iv) for any u A v an “opposite element”
is associated, in the sense that u A v summed to its opposite furnishes O. Indeed, the

property u A v = —v A u automatically identifies the opposite of u A v with v A u:

uAv+vAu=0. (2.23)
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One can also define naturally the multiplication of an object of the form u A v by a real
scalar o through
a(u A\ V) = (Oé(UﬂJQ — U2U1>)6182, (224)

and verify without difficulty that such an operation, which furnishes an object of the
same nature of the multiplied object, obeys the following properties (where f is also a

real scalar):

(1) a(ﬁ(u/\v)) = (af)(uAV);
(II) a(uAv+wAX)=a(uAV)+ a(wAx);
(III) (a+pB)(uAV)=a(uAV)+BuAV);

(IV) Il(uAv)=uAv.

The properties i, ii, iii, iv, I, II, III and IV show that the set of objects of the form
u A v endowed with the operations of summation and multiplication by a real scalar as
defined above determine the structure of a vector space over the field of real numbers. The
vectors from this vector space are called 2-vectors or bivectors, since they are determined

by the exterior product of two “usual” vectors. The vector space of bivectors is denoted
2
by A”(R?).
For the sake of future construction, the space of vectors from the Euclidean plane is

denoted by /\1 (R?), and the vectors themselves are called 1-vectors. In the same way, the

vector space of real scalars is denoted by A (R?), and its vectors can be called 0-vectors.

Since the geometric product of two vectors in the plane results in the “sum” of two
quantities of a different nature, a scalar and a bivector, this “sum” must not be a sum
in the usual sense. In fact, the sum of two objects, each belonging to a different vector
space, is a direct sum, which corresponds to a vector of the vector space resulting from

the direct sum of the spaces to which the two distinct objects belong.

In order to construct a closed algebraic structure with respect to the geometric product,
the vector space A (R?) is defined as the direct sum of the spaces of the form A" (R2):

INGS :jé AFR) = N (R2) & \'(R?) & A\?(R?). (2.25)

The elements of this vector space are called multivectors. The null vector of this space,
0 + o + O, can be simply denoted 0, which usually does not cause any problems. An

arbitrary multivector from /\ (R?) is then of the form

A =a+ (a1e1 + azes) + ajze;eq, (2.26)
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where a, ay, as, a15 € R.

Defining then the exterior product of a scalar o with a vector u of the Euclidean plane
by a A u = au, and completing the extension of the exterior product for multivectors
by considering it bilinear and associative, (A (R?),A) is established as an associative
algebra over the field of real numbers. Such an algebra is known as an exterior algebra or

Grassmann algebra associated with R2.

Defining the geometric product of a scalar with a multivector as the multiplication of
the multivector by the scalar, and extending the geometric product to any multivectors
by considering the properties of bilinearity and associativity, it follows that the vector
space A\ (R?) endowed with the geometric product generalized in this way determines an
associative algebra over the field of real numbers. Such an algebra is called the geometric
algebra of the Fuclidean plane or Clifford algebra of the Fuclidean plane, and is usually
denoted by C/(R?, g), or Cly(R), or simply Cly .

2.1.2 Projection, Graded Involution, Reversion, the Norm and

the Inverse

Let Ay be an arbitrary k-vetor and A = Zi:o Ay an arbitrary multivector. The projection
of A over the vector subspace /\k(]Rz), also called the k-vector part of A, is defined by

(A = Ay (2.27)

As an example, consider the multivector f = %(1 + e;), for which

(flo= %, (f)1= %ela and (f), =0. (2.28)

In terms of the projection operation one can define the graded involution operation by

A= "(=1)MA. (2.29)

k=0

For any k-vector Ay, the number k is called the grade of Ag. If a multivector A satisfies
A= A, it is said to be an even grade multivector, and if it satisfies A= —Aitis said to
be an odd grade multivector. Also in terms of the projection operation one can define the

reversion operation, which is given by

A= 22:(—1)ék<k—1><A>k. (2.30)

k=0
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The multivector A is said to be the reverse of A. The reversion operation has this name

because it reverses the order of the geometric product of two vectors, that is,

—_—~—

(uv) = vu, (2.31)

for any vectors u and v. In summary, for A given by (2.26), in terms of the basic vectors,

one has

A\ =a— ((1181 —+ ageg) + a1z€ei€es and A=a + (a1e1 + azeg) — a12€1€9. (232)

A major operational advantage of the geometric algebra framework is the possibility
of defining the inverse for a vector with respect to the geometric product, and even for a
generic multivector, under certain conditions. The geometric product of a non-null vector
u with u/|u|? furnishes the number 1, the unity of the algebra. Thus, the inverse of a

non-null vector u is defined by
4, u

(2.33)

For the bivector e ey, for example, one can define the inverse as (e1e2)_1 = ege;. Indeed,

(e1e2)(eze) = €1 (ez(egel)) = el((egeg)el) =ee; = 1. (2.34)

However, it is not possible to define the inverse for an arbitrary multivector. For example,

the multivector f = %(1 + e1) has no inverse.

Because of the associativity of the geometric product, the products u(vw) and (uv)w
can both be simply written as uvw. In this way, one can leave the associativity implicit
in calculations and express the above calculation (equation (2.34)) more succinctly as
follows:

(eleg>(82€1) = €1€2€e9€e] — e1e; = 1. (235)

For an arbitrary multivector A, one can define the norm of A as the real scalar || Al
such that

IA|I2 = <ZA>O - <AE>O. (2.36)

Note that, for A given by (2.26), one has
A = a® + a1® + as® + a15* > 0. (2.37)

In this way, it follows that |u| = ||u]|, for any vector u.

From the definition of norm of a multivector, it follows that, if

<2L4>0 = AA >0, (2.38)
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then
1A]? = AA, (2.39)

1 ~ A
AA = A=1, 2.40
[AT" (HA\P) 240)

which in turn induces the identification of A/||A||?> with the inverse of A:

which implies that

A

A7 = .
1A

(2.41)

But, it should be noted that the inverse of A is only defined if the condition given by
(2.38) is satisfied.

2.1.3 Inequalities, Parallelism and Orthogonality

Given two non-null vectors u and v, it follows that

[uAv]?=uAV)(uAV)= (VAU (uAv). (2.42)

Since uv = u-v +uAv, if follows that u A v = uv — u- v, which, considering the above

equation, implies

[uAV]?=(vu—v-u)(uv—u-v)
=vuuv —vu(u-v) — (v-u)uv+ (v-u)(u-v)
=v|ul*v—-vu(u-v) —uv(u-v)+ (u-v)?
= [ul?[v]]* = (av + vu)(u-v) + (u-v)®
= JulP[v]* = 2(a-v)(u-v) + (u-v)?

= [ul[lv]* = (u-v)* (2.43)
Then, since ||[u A v||> > 0, it follows that
(u-v)* < [ul*[Iv]]*, (2.44)
which is known as the Cauchy-Schwarz inequality. This result implies

u-v

(2.45)

= alllivll
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This expression allows one to define the angle between the vectors u and v as the number
@ such that 0 < 0 <7 and
(2.46)

From equation (2.43) one also has

(\’fiﬁyih’f — (HEH.HVVH)Z’ 240

which, given the above expression for cos(f), implies

(”“””)2 — 1 cos2(0) = sin(). (2.48)

[[ul[{vl
Since 0 < 6 < 7, one has sin(f) > 0, so from the above equation it follows that

_ Jluav]

sin(6) (2.49)

halllivil
The inequality (2.44) can also be used to obtain the triangular inequality. Indeed,
la+v[* = [lul* + [|v]* + 2(u- v) < [[ull® + [[v]* + 2[[ullv] = ([al| + [[v]D? (2:50)

that is,
la+ v < flulf +[[v]. (2.51)

If the non-null vectors u and v are parallel, that is, the angle € between them is null,
one has equivalently sin(#) = 0, and, from relation (2.49), this is equivalent to [[uAv| = 0,
which in turn is equivalent to u A v = 0, that is, %(uv —vu) = 0. Then uv = vu is also

a condition for parallelism of the vectors u and v:
ul|v & uAv=0 & uv=vu (2.52)

The same is true when 6 = 7, when it is also said that the vectors u and v are anti-
parallel. Whereas when 6 = 7/2, that is, u and v are orthogonal, one has equivalently
cos(f) = 0, which, according to (2.46), is equivalent to u-v = 0, that is, (uv +vu) = 0.
Then uv = —vu is also a condition for orthogonality of the vectors u and v:

ulv & uv=0 & uv=-vu (2.53)
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2.1.4 Reflections and Rotations

Consider again two non-null vectors u and v from the Euclidean plane. The component

of v parallel to u, or the projection of the vector v on the vector u, is given by

V||:proju(v):(v “) 4 L (v uu (2.54)

[all/ Tall 2
The component of v orthogonal to u is then

V=V -V (2.55)

Note from the relations of parallelism (2.52) and orthogonality (2.53) that uv; = vju and

uv, = —v u. Note then that the geometric product of v by u furnishes
(v ww? (256)
uvy = ——(v-u)u®, .
TR
that is,
1
uv|=v-u= §(VU. +uv). (2.57)

But, the geometric product of this expression by u gives

1
Jal*v = §(uvu + [Jul*v), (2.58)
that is,
1( L avu+ ) (2.59)
Vi==| —zuvua+v ], .
2 Jju?

which, considering the definition of the inverse, can be written as

(v+uvu™). (2.60)

N | —

vi=
This expression for v||, considering the expression (2.55) for v, , allows one to write also

vi=-(v—uvul). (2.61)

N | —

Now, consider the linear transformation given by
V= V=v—v, (2.62)

or, equivalently, by
vV Vi=v =2y (2.63)

Such a linear transformation is knwon as the reflection of the vector v through the line
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V/

FIGURE 2.2 — Reflection of the vector v through the line with orthogonal vector u.

with orthogonal vector u. This transformation is illustrated in the figure 2.2.

Considering the expression (2.60) for v one can express a reflection transformation of

the vector v through the line with orthogonal vector u by

v = v = —uvu (2.64)

In particular, if the vector u is unitary, one has uu = 1, which implies u=! = u, in such
a way that, the reflection transformation can be expressed by

v — v/ = —uvu, where u’®=1. (2.65)

A particular case of a statement known as Cartan-Dieudonné theorem concerns the
possibility of expressing a rotation in terms of reflections. Specifically: “the composition
of two reflections in the plane corresponds to a rotation”. In this way, a rotation of the

vector v can be expressed as
v = v = —u(—uwvuy)u; = ujugvusuy, (2.66)
where u; and us are unit vectors. Then, one can express this rotation by
v = v = RvR ™, (2.67)

where R = uju,. The object R is called a rotor, because of the role it plays in describing

a rotation. If € is the angle between the unit vectors u; and uy, then

R =u; -uy+u; Auy = cos(f) +sin(0) B, (2.68)



CHAPTER 2. INTRODUCTION TO CLIFFORD ALGEBRAS 26

where B is a unit bivector. From this expression it follows that

RR = <cos(9)+sin(8)B> (cos(@)—sin(@)B) = cos?(0) —sin*(0) B* = cos*(f)+sin?(0) = 1,

(2.69)
then
R=R", (2.70)
and so a rotation can be written
v — v/ = RVR. (2.71)

There are two possibilities for the unit bivector B present in the expression for R:
B = eje; or B = ese;. These two possibilities can be simulated considering the angle
f such that 0 < 6 < 27, in such way that, taking B = ejey, one has, for 0 < 6 < 7,
sin(f)B = aejey, where a > 0, and for 7 < 0 < 27, sin(f)B = —aejes = aege;.
However, it turns out that the proper choice of the unit bivector for description of a
counterclockwise rotation is B = ese;. Indeed, for v = v;e; + vpey and v/ = vi'e; + vo'e,

such that v/ = RvR, one has:
v/ = ((cos(0) + sin(B)ese, ) (vie; + vre2)  cos(0) — sin(6)ese; )

— ((cos(6) + sin(0)eser) <(v1 cos(8) — vysin(8) )1 + (vz cos(6) + vy Sin(9)>e2>

- (Ul(COSQ(H) —sin2(9)) - U2(2 sm(e)cos(e)) ) e+ (UQ(cos%e) _sm2<e)) + 01(2 sm(e)cos(e)) ) e

— (v1c0s(20) — vy sin(26) ey + (v2 cos(26) + vy sin(20) ) es. (2.72)
The resultant equation can be expressed in matrix form as

(ul’) _ <c9s(29) - sin(29)) <v1> | (273
vf sin(20)  cos(20) ) \ vy

which serves as a confirmation that v/ = RvR express a rotation of the vector v in the
counterclockwise sense. But, note that it is a rotation by an angle 20. Therefore, to

describe a rotation by an angle 6 one must set

R = cos (g) + sin (g) ese;. (2.74)

The rotor R can be expressed in another way by defining the exponential of a generic
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multivector A by

(A) iAn 1+A+A2+ (2.75)
exX = —_— = N e .

P — nl 2 ’

where A% =1, A' = A, A2 = AA, etc. In this way, using the expressions as power series
for the sine and cosine functions in the above expression for R, and taking into account

that (ese;)? = —1, one has:

= 9 2)n & n(0/2)%+1
R = cos(6/2) +sin(6/2)eqe; = ; / —i— nz (on _K 1) exe;

o0 2n 0 2 o0 2n+1 0 2) 2n+1

_ Z (e2e1 / + Z (ege1) (0/2)

(2n +1)!

n=0 n=
= 2

_ Z—(%Gﬁ/ )" (2.76)
— n!

Thus, one can write
1
R = exp (§0e2e1> . (2.77)

Note that, to describe rotations in the clockwise sense one can simply allow the angle 6

to be negative. Note also that R and —R describe the same rotation:

—_~—

(=R)v(—R) = RVR. (2.78)

This fact can be understood by observing that the rotation of a vector by an angle ¢ in
the counterclockwise sense has the same result as the rotation of this vector by the angle
27— ¢ in the clockwise sense. Indeed, if R = exp(ese;¢/2) and R* = exp (e1e2(27r—¢)/2),
then

R*=exp(e1e:(2r—¢)/2) =exp(eies7) exp(—e1e20/2) = (—1) exp(ese1¢/2) =—R. (2.79)

2.1.5 The Even Subalgebra and the Complex Numbers

Let Clyo™ be the set formed by even grade multivectors from Cls, that is, the set of
multivectors A satisfying A=A IfAe Clyo™, then A is the sum of a scalar and a

bivector:
A=a + a12€1€s9. (280)

Given A =a + az€e1€e9 and B=1b + b12e1e2 from C€270+, if follows that

AB = (a + &128162)(6 + blgeleg) = (ab — Glgblg) + (ablg + algb)eleQ, (281)
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so that AB € Clyo". Thus, the vector subspace formed by multivectors from Cly "
endowed with the geometric product has the properties of an algebra (closure relative to
the product and bilinearity of the product), hence it corresponds to a subalgebra of Cls .
This is called the even subalgebra of Cly, and it is denoted by Cly ™.

Note that the rotors introduced earlier are elements of the even subalgebra Cly o™,
although not all elements of this algebra are rotors. But note that the elements of Cl5 o

can be written in the form
1 = pcos(¢) + psin(¢p)e; e, (2.82)

or, in terms of the exponential map,

¥ = pexp(ge;es), (2.83)

where p and ¢ are real scalars. Therefore, an element of the even subalgebra can be
written as a rotor multiplied by a scalar, and a rotor can be understood as an element of
Cly ot with unit norm. An even grade multivector ¢ acting on a vector u through ¢u1z
produces not only a rotation of the vector u, but also a dilation (if p > 1) or a contraction
(if0<p<).

The proper expression for the even grade multivector ¢ introduced above to produce
a rotation by an angle ¢ in the counterclockwise sense and a dilation/contraction by a

factor p through the transformation u — wu{/; is
1
Y =./pR, where R =exp (§¢e2e1> ) (2.84)
This is easily verified by evaluating the action of 1 = ,/pR on a vector u:
Yy = (/pR) u(y/pR) = pRuR. (2.85)

The expressions (2.82) and (2.83) for elements of Cly ™, together with the fact that
(e2e1)* = (e1e2)? = —1, suggest a relation between the even subalgebra Clyo" and the
algebra of the complex numbers. Similarly to the complex numbers, the elements of Cly "

can be written in the form
X = T+ SCQI, (286)

where x1, 75 € R and I = eje,, with 1?2 = —1, and as can be observed from (2.81), the

geometric product of elements of Cly™ has the same form as the product of complex
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numbers: given X = x; + 29/ and Y = y; + y»/, one has
XY = (ZEl + l’g])(Ql —+ yQI) = (l’lyl — [L’2y2> + (ZL’lyg + ZL'le)[. (287)

Thus, the even subalgebra Cly % is isomorphic to the algebra of the complex numbers,
by means of the identification of I = eje; with the imaginary unit ¢ = /—1 and the

identification of the geometric product with the product of complex numbers.

2.2 The Geometric Algebra of the Three-Dimensional

Euclidean Space

2.2.1 Construction of the Structure

Consider the vector space R?, and let its vectors be denoted by Latin letters in boldface:
u, v, etc. Let the canonical basis be denoted {e;,es,es} = {(1,0,0),(0,1,0),(0,0,1)}
(where the ordering of the basis is implied), in such a way that a vector is written,
generally, u = uje; + usey + uses, v = vie; + vyey + vszes, etc. The interpretation for
this space is the usual geometric interpretation: R? corresponds to the three-dimensional

physical space, and its vectors represent oriented line segments in that space.

Consider the symmetric bilinear form ¢ : R?* x R* — R given by
g(e;,ej) = d;j, where 1,5 € {1,2, 3}, (2.88)

which corresponds to the usual inner product defined for R?, also known as the scalar
product. The vector space R?® endowed with such an inner product has the status of

three-dimensional Euclidean space.

As in the case of the geometric algebra of the Euclidean plane, the geometric algebra
of the three-dimensional Euclidean space is determined by a space constructed from the
three-dimensional Euclidean space, endowed with the geometric product. As before, the
construction of the structure is made gradually. Also as before, the geometric product is

denoted by juxtaposition, which is usual in the study of geometric/Clifford algebras.

The fundamental property of the geometric product is given by
uu = g(u,u), (2.89)
for any vector u from R?, which can be written

W’ = [uf?, (2.90)
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where u? = uu and | - | is the norm induced by the inner product g, that is, the usual
modulus of a vector from the Euclidean space. Writing u = u;e; 4+ uses 4+ uges, the above

equation can be written in terms of components as
(ulel + uses + U3e3)(u1e1 + ugses + u3e3) = U12 + u22 + U,33. (291)
Imposing bilinearity to the geometric product in the above expression, one obtains

2,2 2,2 2,2 2 2 2
U e +us e +us es +ujus (ele2+e2e1)+u1u3 (9183+6381)—|—U2U3 (8263—|—9362) = Ui +us +usg.
(2.92)

For this equation to be satisfied, one must have
e’=1 and ee; =—eje;, where i,j€{1,2,3} and i3 (2.93)

These relations determine the geometric product of the geometric algebra of the three-
dimensional Euclidean space in terms of the canonical basic vectors. Applying it to the
computation of the geometric product of two arbitrary vectors u = uie; + uges + uses

and v = vie; + v9€9 + v3es, one has

uv = (ure; + ugses + uges)(vie; + ve€y + vze3)
= (ugv1 + uguy + uzvz)+

+ (U1U2 — u2711)e1e2 + (Ul'l}g — u3vl)e1e3 + (’UQ'Ug — U3’U2)€2€3. (294)

As in the two-dimensional case, the first term on the left-hand side from the resulting
equation is a scalar, which corresponds to the scalar product of the vectors u and v.
The other terms are neither scalars nor vectors, if one considers the associability of the
geometric product, as in the first construction (the same counterexamples can be taken
to demonstrate this). Such sum of terms are combinations of objects that in the two-
dimensional case were interpreted as representing oriented parallelograms. In this case,
the same interpretation can be used for each term in that combination. For example, the
term (ujv3 — ugvy)ejes represents the oriented parallelogram determined by the vectors
(ure; + uses) and (vie; + vses), which belong to the plane determined by the vectors
e; and e3. The sum of the terms in the form (u;v; — u;v;)e;e;, with @ # j, must then
represent a combination of the oriented parallelograms represented by them. Considering
then each component of this combination in terms of the exterior product, by writing

(wiv; — ujv;)ee; as (wv; — ujv;)e; A e;, and then considering a natural extension of the
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exterior product for the three-dimensional case, one obtains

(U1U2 — U21)1>el VAN ey + (U1U3 — u3v1)e1 A €3 + <U2U3 — U3U2)eg A\ €3 —

= (u1e1 + uses + ’LL3€3) AN (v161 + vo€es + 1)363). (295)

Thus, the combination of terms in question is identified with the exterior product u A v,
which must represent the oriented parallelogram determined by the three-dimensional
vectors u and v. As in the two-dimensional case, one can verify that the set of objects
in this form endowed with the operations of summation and multiplication by a real
scalar has the structure of a vector space. This is the vector space of the bivectors of the

three-dimensional Euclidean space, which is denoted by /\2(R3).

As before, the fact that one can write the geometric product uv as a sum of a symmetric

part and an antisymmetric part relative to the exchange between u and v,
1 1
uv = é(uv +vu) + §(uv —vu), (2.96)

allows one to identify the symmetric part with the inner/scalar product g(u,v) = ujvy +

Uy + uzv3 and to express such a product in terms of the geometric product as
1
u-v= §(uv + vu). (2.97)
Again, the exterior product of the vectors u and v,
uANv = (Uﬂ)g — U2U1)6162 + (Uﬂ)g — U3U1)€1€3 + (UQUg — U3U2)€2€3, (298)
is identified with the antisymmetric part of the product uv:
1
UAV = E(uv—vu) =—-vAu (2.99)
These definitions allow one to write

uv=u-v+uAv. (2.100)

In the two-dimensional case, by taking the geometric product of a vector of the plane
with a bivector one obtains another vector of the plane, but in the three-dimensional case
this does not always occur. For example, by taking the geometric product of the vector e;
with the bivector eses, one obtains e;(ezes3), which, by the associativity of the geometric
product, is equivalent to (ejeq)es, or simply ejeses = e; A ez A e3. Analogously to the
case of the oriented parallelograms in the plane, one can identify the object e;ese; with

an oriented volume element of the three-dimensional Euclidean space. Its orientation can
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be defined by the order of the geometric product. Since there is no longer any different
combination of geometric products involving the unit vectors ey, e; and es, except for the
order of the product, which determines the orientation of the volume element, any other
volume must be represented by ae;eses, where « is a real scalar. Real linear combinations
of objects of the form ae;eses always result in objects of the same form, and it is easy
to verify that the set of such objects endowed with the operations of summation and
multiplication by a real scalar has the structure of a real vector space. Such a vector
space is denoted by A*(R3), and its vectors are called 3-vectors, or trivectores, or even
pseudoscalars, since /\S(RS) is a one-dimensional vector space. The unit pseudoscalar
eieses is usually denoted by 1. In general, given three non-null and linearly independent
vectors a, b and c, it is found that a A b A ¢ is a trivector, which represent the oriented
paralleliped determined by the vectors a, b and c. The figure 2.3 illustrates the oriented

volume determined by I = ejese;s.

€3

Ot .

e k&

FIGURE 2.3 — The oriented volume associated with the unit pseudoscalar I = e eqes.

As in the two-dimensional case, in order to construct a closed algebraic structure with
respect to the geometric product, the vector space A (R?) is defined as the direct sum of
the spaces of the form A" (R?):

A (®?) —é AF (R = A (R) & A'(RY) & A2(R%) & A*(R%). (2.101)

Its elements are called multivectors. The null vector of this vector space is simply denoted

by 0. An arbitrary multivector from A (R?) is of the form
A=a + ((1161 + ageq + CL3€3) + ((1126162 + ai3eies + CL23€2€3) + a193€1€2€3, (2102)

where a, a;, a;j, a;jr € R, with i, 7,k € {1,2,3}.

Note that the geometric product of the unit pseudoscalar I = e;ese3 with any vector is

commutative, so that I commutes also with bivectors, and since it commutes with scalars
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and other pseudoscalars, it commutes with any multivector of the algebra.

Defining the exterior product of a scalar a with a vector u by @ A u = au, and
extending the exterior product for arbitrary multivectors by considering it, in addition to
bilinear, associative, ( N (R3) /\) determines an associative algebra over the field of real

scalars, the exterior algebra or Grassmann algebra associated with R3.

Establishing then the geometric product of a scalar with a multivector from A (R3) as
the multiplication of the multivector by the scalar, and extending the geometric product
for arbitrary multivectors by bilinearity and associativity, the vector space A (R?) endowed
with the geometric product becomes an associative algebra over the field of real scalars,
the geometric algebra of the three-dimensional Euclidean space or the Clifford algebra of
the three-dimensional Euclidean space, which can be denoted by C¢(R?, g), or Cl3o(R), or
Clsp.

2.2.2 Projection, Graded Involution, Reversion, the Norm and

the Inverse

Given an arbitrary k-vector Ay, such that A = 22:0 Ay is an arbitrary multivector from
Clsp, the operations of projection, graded involution and reversion are defined in a similar

way to the two-dimensional case:
N 3 _ 3 )
(A =Ap, A=) (-1¥A), and A= (-1)2*¢1(4),. (2.103)
k=0

In this way, for the arbitrary multivector A = Zi:o Apg, one has
A\:AO—A1+A2—A3 and g:Ao—f—Al—AQ—A:; (2104)

The operation of projection on the subspace of scalars is important, and is generally

denoted in a more simplified way by omitting the subscript number zero:

(A)o = (A). (2.105)

By inspecting particular cases, one can conclude that the reversion of the geometric
product of two multivectors corresponds to the geometric product in the opposite order

of the reverses of the multivectors. That is, if A and B are two multivectors, then

—_~—

(AB) = BA. (2.106)

From the associativity of the geometric product, this property extends to the geometric
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product of an arbitrary list of multivectors A, B, ..., C as follows:
(AB---C)=C---BA. (2.107)

Note also that, the reversion operation does not alter scalars, so that the reversion of
the scalar part of any multivector is equivalent to the scalar part of the reverse of the

multivector: -
(A) = (A) = <Z> . (2.108)

The above two relations imply an important property of the operation of projection on

the subspace of scalars:
(AB) = (BA). (2.109)

In general, for the geometric product of any number of multivectors, the scalar part
is invariant under cyclic permutations of the multivectors present in the product. For

example, given the multivectors A, B and C, one has

(ABC) = (BCA) = (CAB). (2.110)

The norm of a multivector A is defined in the same way as in the two-dimensional

case:
IA[2 = <ZA> - <AZ> . (2.111)
0 0
The inverse of a multivector is also defined in the same way as before,

A

Al = 2
1|2

(2.112)

provided that
s /N
|A|? = <AA>O — AA>0. (2.113)
2.2.3 Interior, Exterior and Commutator Products

Considering the expression for the scalar product as the symmetric part of the geometric

product, equation (2.97), one can rewrite the geometric product of a vector u with the
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geometric product vivy of two arbitrary vectors as follows:

= (2u-v; —viu)vy

2(u-vy)ve — vi(uvsy)

=2(u-vy)vy — vi(2u- vy — vou)
2

u-vy)vy —2vi(u - vy) + (vivo)u. (2.114)

The resulting expression can be written

%(u(Vlw) - (V1V2)u> = (u-vi)va —vi(u-vy). (2.115)

The fact that the right-hand side of the above equation is a vector, implies that the left-
hand side is also a vector. This motivates the definition of the contraction from the left

of vivy by the vector u, or the interior product of u with vivy, as

u-(vive) = %(u(vlvz) - (V1V2>U.) = (u-vy)vy —vi(u-vy). (2.116)

Since vivy is a scalar plus a bivector, and consequently an even grade multivector, one
can generally define the contraction from the left of an even grade multivector A, by the

vector u, or the interior product of u with A, as

1
uAd; — A u). (2.117)

U'A+:§(

In the same way as above, one can rewrite the geometric product of a vector u with the

geometric product vivovs of three arbitrary vectors as follows:

u(vivavy) = (uvy)vavs

= (2u- vy —viu)vyvy
u-vy)vavs — vi(uvg)vs
u-vy)vevs — vi(2u - vo — vau)vy

2 v1)
2u-v)

= 2(u-vq1)vavy — 2vi(u - vo)vs + vivae(uvsy)
2(u-vy)vavs — 2vi(u - vo)vs + viva(2u - v — viu)
2 v1)

u-Vvy)vgvy — 2V1 (11 . VQ)V3 + 2V1V2(ll : V3) — (V1V2V3)11. (2118)

The resulting expression can be written

1
5 <U(V1V2V3) + (V1V2V3)u> = (u . V1)V2V3 — Vi (u . V2)V3 + V1V2<u : Vg). (2119)
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The fact that the right-hand side of the above equation is an even grade multivector,
implies that the left-hand side is also an even grade multivector. This fact, in addition
to the fact that the product vivovs is necessarily an odd grade multivector, motivates
the definition of the contraction from the left of vivovs by the vector u, or the interior

product of u with vivyvs, as

1
u-(vivavsy) = 5 <U(V1V2V3) + <V1V2V3)u> = (u-vy)vavy — vi(u- vy)vy + vivo(u - vy).

(2.120)
In general, the contraction from the left of an odd grade multivector A_ by the vector u,

or the interior product of u with A_, can be defined by
1
u-A_ = §(uA, + A_u). (2.121)

The definitions (2.117) and (2.121) can be generalized by defining the contraction from
the left of the multivector A by the vector u, or the interior product of u with A, through
the expression

u-A= % (uA - Xu> . (2.122)

The analysis made so far to motivate the definition of contraction from the left can be

repeated, with appropriate modifications, to define the contraction from the right of the
multivector A by the vector u, or the interior product of A with u, as

1 R

A= (Au - uA> . (2.123)

Note that the contraction of a k-vector by a vector (from the left or right), or the interior

product of a vector with a k-vector (or the opposite), always produces a (k — 1)-vector,

which justifies the terminology.

From the expression for the exterior product, equation (2.99), note that uAu = 0, for
any vector u. From this fact, and from the associativity and bilinearity of the exterior
product, it follows that the exterior product of any set of linearly dependent vectors is null.
(In particular, a set with more than three vectors is linearly dependent, and consequently
the exterior product of these vectors is null.) Note also that any non-null exterior product

u; A uy can be written as the geometric product of two orthogonal vectors vi and vs:
u; AUy = V{Vs. (2124)
In this way, given a vector u orthogonal to both v and vy, it follows that

u/Au; Auy =uvyvs. (2125)
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As in the two-dimensional case, the geometric product of two orthogonal vectors is anti-

commutative, so that uvy;vy = vyvou, and the above equation allows one to write

uA(up Aug) = %(u(vlvg) + <V1V2)U). (2.126)

Since, by hypothesis, u; A us = vyvy, the above equation implies that
1
u/NB= §(uB + Bu), (2.127)

for any bivector B. In general, the exterior product of a vector u with any even grade
multivector A, (a scalar or a bivector, or a sum of both) is always commutative, such

that one can write )

On the other hand, the exterior product of a vector u with any odd grade multivector A_
(a vector or a trivector, or a sum of both) is always anticommutative, in such way that,

one can write

1
uNA_ = §(uA_ —A_u). (2.129)

The above two equations can be generalized for the exterior product of a vector u with

any multivector A as follows:
1 ~
unA = <uA+Au). (2.130)

Similar observations, but in relation to the exterior product in opposite order, can be

made to furnish:

AAu= % (Au+uﬁ). (2.131)

The summation of the equations (2.122) and (2.130) furnishes
uAd=u-A+uAA, (2.132)

and the summation of the equations (2.123) and (2.131) furnishes
Au=A-u+AAu (2.133)

These relations for the geometric product of a vector and a multivector in terms of the

interior and exterior products are natural generalizations of the relation (2.100).

Note that, in general, neither the interior product nor the exterior product commute
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or anticommute. In general, one has

u-A=-A-u and uAA=AAu, (2.134)

which can be obtained by observing that Au= % <21\u — uA) and AAu = % (A\u + uA),
which combined with (2.122) and (2.130), respectively, furnish u- A + A -u = 0 and
uAA—Aru=0.

It should be noted that, in general, the geometric product of two generic multivectors
can not be written as the sum of a interior and a exterior product. This fact can be
illustrated by considering the geometric product of bivectors. Let A and B be arbitrary
bivectors. Consider the expression of A as the geometric product of two orthogonal vectors
u and v:

A=uAv=uv. (2.135)

It follows that,

AB =uvB
=u(v-B+vAB)
=u-(v-B)+u-(VAB)+uA(v-B)+uAvAB
=u-(v-B)+u-(vAB)+uA(v-B), (2.136)

where was considered the fact that u A v A B = 0, which follows from the fact that
u A v A B corresponds to the exterior product of four vectors, which are necessarily
linearly dependent. The term u- (v - B) in the resulting above equation is a scalar, since
it is the result of two followed interior products with a vector applied on a bivector. The
remain terms are bivectors, since both are the result of the combination of a interior and
an exterior product with a vector applied on a bivector. The geometric product AB can

then be written
AB = (AB)o + (AB)s. (2.137)

Now, note that such a product can be written as the sum of a symmetric part and an

antisymmetric part in relation to the exchange of the bivectors:
1 1
AB = 5(AB + BA) + §<AB — BA). (2.138)
Since the symmetric part is invariant and the antisymmetric part changes the sign under

the reversion operation, one identifies the symmetric part as the scalar part of the product

and the antisymmetric part as the bivector part of the product:

(AB)y = %(AB + BA) and (AB), = %(AB — BA). (2.139)
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The antisymmetric part of the geometric product AB of two bivectors, which corresponds
to another bivector, is defined as the commutator product of the bivectors A and B, and
is denoted by

Ax B= %(AB — BA). (2.140)

The commutator product satisfies the Jacobi identity, that is,
Ax(BxC)+Cx(AxB)+Bx(CxA)=0, (2.141)

for arbitrary bivectors A, B and C, which can be verified directly by using the definition

of the commutator product.

2.2.4 Inequalities, Parallelism and Orthogonality

The Cauchy-Schwarz inequality in the form (2.44) is a general result concerning Euclidean
spaces, so it holds in the case of the three-dimensional Euclidean space. Consequently, the
angle between two vectors can be defined in the same way as in the case of the Euclidean
plane, in terms of its cosine through (2.46), and the sine of such an angle can also be
expressed by relation (2.49). Then, the conditions for parallelism and orthogonality of
vectors, given by (2.52) and (2.53), are also the same as in the two-dimensional case.
Another consequence of the preservation of the form of the Cauchy-Schwarz inequality is

that the triangular inequality, given by (2.51), also has the same form.

Since a bivector represents an oriented area, one can also consider the conditions of
parallelism and orthogonality between a vector and a bivector, and between bivectors.
As seen in the above subsection, if a set of vectors {u, vy, vy} is linearly dependent, then

u A vy A vy =0, which can be written
u/AB =0, (2.142)

where B = v; A vy. Since linearly dependent vectors in the three-dimensional Euclidean
space belong to the same plane, the above equation is a condition for parallelism of the
vector u with the bivector B. On the other hand, if {u,vy,ve} is a set of mutually

orthogonal vectors, then (cf. equation (2.116))
u- (V1V2) = (u . V1)V2 — vl(u . VQ) = 0, (2143)

which implies that
u-B=0 (2.144)

is a condition for orthogonality of a vector u and a bivector B. As seen in the above
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subsection, given a bivector A = u A v = uv and another bivector B, one has
AB=(AB)+ AxB=u-(v-B)+u-(vAB)+uA(v-B). (2.145)
If the bivector B is given by B = w A x = wx, the above expression furnishes

AB=nu- (V-(Wx)>+u- (VA(WX))+U/\(V-(WX)>
=u- ((V-W)X—W(V-X))—|—u-(V/\W/\X)—|—u/\((V-W)X—W(V-X))
=(u-x)(v-w)— (u-w)(v-x)+

+u- (VAWAX)+ (uAX)(Vv-w)— (uAW)(v-x), (2.146)

where one identifies

(AB) = (u-x)(v-w) — (u-w)(v-x) (2.147)

and

AxB=u-(VAWAX)+ (uAX)(V-W)— (uAwW)(V-x). (2.148)

If the bivectors A and B are associated to parallelograms/planes which are parallel, then
one can always choose the vectors w and x in such way that one is parallel to u and
orthogonal to v, and the other is parallel to v and orthogonal to u. In this case, the
commutator product above is null, and the condition for parallelism of the bivectors A
and B is

Ax B=0. (2.149)

On the other hand, if the bivectors A and B represent orthogonal parallelograms/planes,
then either u or v is mutually orthogonal to w and x. In this case, the scalar part of the
product AB above is null, that is,

(AB) =0 (2.150)

is the condition for orthogonality of the bivectors A and B.

2.2.5 Duality

The usual vector algebra, founded mainly on the cross product, emerged at the end of the
19th century as an attempt by J. W. Gibbs, and independently by O. Heaviside, to unify
the structure of the Grassmann algebra with that of the quaternion algebra, as done by
the then almost unknown Clifford algebras. The cross product is an anticommutative and
non-associative product of vectors from the three-dimensional Euclidean space resulting
in another vector of this space. This product is defined as follows. Given the vectors

u = uje; + uses + uzes and v = vie; + vq9€y + vses, the cross product of u with v is the
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vector given by
uxv= (UQ’U3 — U3U2>el + <U3U1 — U1U3)eg + (Ulvg — U2U1)63. (2151)

whose notation should not be confused with that of the commutator product. In this
context, it is common to use the notations e; =i, e; = j and e3 = k, similar to that used
in the context of the algebra of quaternions, and define the cross product as being such
that

ixj = —=jxi =k
jxk = —-kxj =1 ;, (2.152)
kxi = —-ixk = j

where one can observe a complete analogy with the basic relations defining the product of
quaternions (cf. relations (2.166) in the next subsection). Using the above relations, and
bilinearity, one can easily obtain the relation (2.151) for the cross product of two arbitrary
vectors. These definitions are shown to be inconsistent when it is noted that any vector
transforms into its opposite under a spatial inversion transformation, but not the cross
product as defined above. Indeed, an arbitrary vector u transforms in the way u — —u
under a spatial inversion transformation, whereas the cross product u x v transforms in
the way u X v — (—u) X (=v) = u X v under a spatial inversion transformation. Thus,
the cross product of two vectors does not exhibit a property satisfied by any usual vector.
Historically, this fact has led the result of a cross product to be called a pseudovector.
(In addition, the result of the scalar triple product (u x v) - w changes sign under a
spatial inversion, which is not satisfied by scalars — the result of such a product is then
usually called a pseudoscalar). An inconsistency in the usual definition of cross product
is then observed: the cross product does not result in a usual vector from R?, although
the expression on the right-hand side of the equation (2.151) is clearly a vector. However,

given the vectors u = uje; + usey + uges and v = vie; + vy€es + v3ez, one has

ulAv= (Ul’UQ — ugvl)eleg + (U3Ul — ulvg)e3e1 + (u21)3 — u3v2)e2e3, (2153)

which can be rewritten as
uAv = (ugus — uzvg)le; + (uzvy — ujvs)les + (ugvy — ugvy)les, (2.154)
where I = ejeses is the unit pseudoscalar. This allows one to write

—(uA V)] = (ugug — uzvy)ey + (ugvy — uvz)es + (ugvy — ugvy)es, (2.155)
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that is, one can rewrite the cross product as
uxv=—(uAv)l. (2.156)

Note that the right-hand side of the above equation behaves like a vector under a spatial
inversion. Indeed, since I = ejesez transforms in the way I — —I under a spatial

inversion, —(u A v)I transforms in the way
AV —((—u) A (—v))(—f) = (uAv)] (2.157)

under a spatial inversion. The operation (uAv) — —(u A v)I then transforms a bivector
into a vector. This operation is found to be an isomorphism between the space of vectors
and the space of bivectors, which is a special case of the Hodge isomorphism or the Hodge

duality, given by the Hodge star operator:
*(uAv)=—(uAv)l. (2.158)

For vectors, the Hodge duality is given by
*u=ul, (2.159)

which in fact is found to be a bivector. It should be noted that x(u A v) corresponds to a
vector orthogonal to the plane described by u A v, and that xu corresponds to a bivector

describing the plane orthogonal to the vector u.

Since u x v transforms like u A v under a spatial inversion transformation, it is more
natural to associate physical quantities usually defined in terms of the cross product by a
bivector. For example, the angular momentum vector, which does not change sign under
a spatial inversion and is usually called a pseudovector, can be defined more naturally as
the bivector L = r A p, also because it is a quantity that is naturally related to areas, and
not to lengths. This definition is in agreement with the description of angular momentum
as an antisymmetric tensor L;; = —Lj;, since the corresponding bivector quantity can be
written

L = Lisejey + Lijese; + Losese; = Z Lijee;. (2.160)
i<j and i,5€{1,2,3}
In this way, the angular momentum vector £ is described as the Hodge dual of the angular

momentum bivector: £ = xL = x(r A p).

In the context of the geometric algebra of the three-dimensional Euclidean space, the
Hodge isomorphim, or Hodge duality, between A*(R?) and A®™(R3), for k € {0, 1,2, 3},
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establishes the correspondence between a k-vector Ay and a (3 — k)-vector A, through

* Ay = Ayl (2.161)

where I = ejeses is the unit pseudoscalar. The (3 —k)-vector xAy, is called the Hodge dual
of the k-vector Ag. Thus, the Hodge dual of a scalar is a pseudoscalar, and vice versa,
and the Hodge dual of a vector is a bivector (which is alternatively called a pseudovector),

and vice versa. In particular, one has the relations in the following table.

*x1=1= €ejeqses

*€1 = €9€3
*€9 = €3€
*€3 = €1€9

*(ere2) = e3
*(eze;) = eq

x(ese3) = €1

*[ = *(elezeg) =1

TABLE 2.1 — Hodge duals of the basic multivectors from Cls .

2.2.6 The Even Subalgebra and the Algebra of Quaternions

After the demonstration of the fundamental theorem of algebra, which guarantees that a
polynomial equation of degree n has n not necessarily distinct complex solutions, there
seemed to be no further need to introduce new types of numbers. It was with a different
motivation that W. R. Hamilton conceived of the quaternions. Hamilton was looking for
numbers of the form a + bi + c¢j, where a,b,c € R and > = j2> = —1, which should play
the same role in three-dimensional space as complex numbers did in the plane. Influenced
by the complex identity

(a+ bi)(a — bi) = a® + %, (2.162)

Hamilton observed that
(a+bi+cj)la—bi—cj) =a*+b*+ & — (ij + ji)be. (2.163)

Then, in 1843, after years of study, he had the sudden idea of giving up the commutative
law of multiplication, and considered 75 as a third square root of —1, ¢ = k, in such way
that

it =% =k? =ijk=—1, (2.164)
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according to which, ij = —j7 and
(a+bi+cj)a—bi —cj) =a*+ b+ . (2.165)

In general, as a consequence of equations (2.164), it follows that

iy = —ji = k
jk = —kj = i p, (2.166)
ki = —ik = j
according to which,
(a+bi+cj+dk)(a—bi—cj —dk) = a® + b* + & + &2, (2.167)

where a,b,c,d € R. Numbers of the form a + bi + ¢j + dk, where a,b,c,d € R and i, j
and k are such that the equations (2.164) hold, are called quaternions. The set formed
by the quaternions is denoted by H, as a tribute to Hamilton. Quaternions are combined
through the operations of sum and product according to the usual laws of arithmetic
(commutativity, associativity, existence of the neutral element, existence of symmetric
elements, and distributivity of the product with respect to the sum), just like real and
complex numbers, except for the commutativity law of the product. Moreover, it is
possible to multiply a quaternion by a real number. Such operations always generate
other quaternions, which characterizes the closure property of H with respect to these
operations. Thus, the set of quaternions endowed with the operations of summation and
product of quaternions with the aforementioned properties forms a non-commutative field,
or a division ring. It is also verified that H endowed with the operations of summation of
quaternions and multiplication of a quaternion by a real scalar determines a vector space
over the field of real scalars. This vector space, in turn, endowed with the quaternion
product determines an algebra over the field of real scalars. It turns out that this algebra
is equivalent to the even subalgebra of the geometric algebra Cl;3(, as can be seen in the

following.

Let Cl3 o™ be the set formed by even grade multivectors from Cl3 g, that is, the set of

multivectors A satisfying A=A
Clyot = {A ‘ A€Clyy and A= A} . (2.168)
If A€ Clsp™, then A is the sum of a scalar and a bivector, and it can be written

A=ua + ai9€1€es + az1€ese; + aszeses. (2169)
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An even grade multivector can be expressed without reference to any basis as
M = a+ B, (2.170)

where « is a scalar and B is a bivector. So, given the even grade multivectors M; = a;+ B;
and My = ay + B», it follows that

M1M2 = (O{l + Bl)(OéQ + Bg)
= 109 + OélBQ + OégBl + B1B2
= <oz1a2 + <BlB2>> + (O[lBQ + OzQBl + Bl X B2> . (2171)

Thus, the geometric product of two even grade multivectos is an even grade multivector,
in such way that vector subspace formed by multivectors from Cl3" endowed with the
geometric product is a subalgebra of Cl3 5. This subalgebra is known as the even subalgebra
of Cl3, which can also be denoted by Clz ™.

Consider now the following notation: I = ese;, J = eje3 and K = eseq. In this way,

an element of Cl3 " can be written in the form
A=a+0+cJ+dK, (2.172)
and one can note without difficulty that the bivectors I, J and K satisfy:
P=J=K=1JK=-1. (2.173)

Direct comparison of these expressions with the relations (2.164) allows one to conclude
that the even subalgebra Cl3 " is isomorphic to the algebra of quaternions through the
identification of the bivectors I, J and K with the unit quaternions i, j and k, respectively,
and through the identification of the geometric product with the product of quaternions.

Since

I=e3e0=—%xe;, J=ee3=—%e; and K =eye; = — xes, (2.174)

it follows that (i, 7, k) identifies with the Hodge duals —%(eq, e, €3), not with (eq, es, e3) as
the usual vector algebra suggests. Thus, it is observed that the synthesis of the Grassmann
algebra (for R?) with the Hamilton’s quaternion algebra is adequately realized by Clifford’s

geometric algebra of three-dimensional Euclidean space.
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2.2.7 Reflections and Rotations

Similarly to the two-dimensional case, reflection transformations are introduced in order
to study rotations in the three-dimensional Euclidean space. Some steps are identical
to those already presented, but are repeated for completeness. A particular case of the

Cartan-Dieudonné theorem is evoked again, without any demonstration.

Let u and v be two non-null vectors from R3. The component of v parallel to u, or

the projection of the vector v on the vector u, is given by

] =(wv- 4 b 1 v-u)u
V“‘p“”“(V)‘( nun)uuu TR (2.175)

The component of v orthogonal to u is then

V=V -V (2.176)

From the known relations for parallelism and orthogonality of vectors, it follows that

uv| = vju and uv; = —v, u. Note then that the geometric product of v|| by u furnishes
v (2.177)
uv) = ——(v-u)u, )
S
that is,
1
uv =v-u= §(V11 +uv). (2.178)

But, the geometric product of this expression by u gives

1
[all?v = 5 (ava+ Jul*v), (2.179)
that is,
1( ! + ) (2.180)
vi==z|7—pmuvu+v |, )
SEPANTTE
or,
1
vi=5 (v+uvu™). (2.181)

This expression allows one to write also

(v—uvu). (2.182)

V| =

(NSRS

Consider then the linear transformation given by

Vi VvVi=v—v, (2.183)
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or by
vV = vV =v =2y (2.184)

Such a linear transformation corresponds to the reflection of the vector v through the plane
with orthogonal vector u. Considering the expression above for v, such a transformation
can be written

v = vV = —uvu (2.185)

or, for the case in which the vector u is unitary,

v — v = —uvu. (2.186)

As a particular case of the Cartan-Dieudonné theorem, it is found that two reflections
describe a rotation in the three-dimensional Euclidean space. In this way, a rotation of

the vector v can be expressed as
v = Vv = —u(—wvuy)u; = ujusvusuy, (2.187)
where u; and u, are unit vectors. Then, one can express a rotation by
v = v = RVvR ™, (2.188)

where the object R = ujus, corresponding to an even grade multivector, is called a rotor.
If 6 is the angle between the unit vectors u; and us, then the rotor R = uj;u, can be
written

R =1u; - uy +uy Aug = cos(f) + sin(h) B, (2.189)

where B is a unit bivector. From this expression it follows that

RR = <cos(0)+sin(9)B> (COS(Q)—SiH(@)B) = cos?(#) —sin*(0) B? = cos®(0)+sin?(0) = 1,

(2.190)
so that
R=R", (2.191)
and thus a rotation can be written
v — v/ = RvR. (2.192)

If n is a unit vector orthogonal to the bivector B in the expression for R, there are two
possibilities to consider R: by taking B = xn = In or by taking B = —*n = —In. These
two possibilities can be simulated considering the angle 6 between the unit vectors u; and

uy such that 0 < 6 < 27, in such way that, choosing B = xn = In, one has, for 0 < 0 < 7,
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sin(f) B = aln, where a > 0, and for 7 < 6 < 27, sin(d) B = —aIn. However, it turns out
that the proper choice of the unit bivector for description of a counterclockwise rotation,
that is, following the right-hand convention, is B = —In. Indeed, writing v = v + v,
where v is the component of v parallel to n and v is the component of v orthogonal to

n, and v/ = Rvﬁ, one has:
v = (cos(ﬁ) - sin(@)[n) (v +v1) ( cos(f) + sin(@)]n)

= (cos(@) — sin(8)1n> ((cos(&) + sin(@)]n)vH + (cos(@) — sin(@)ln) Vi)

( 0s?(0) + sin?(0 ))V” + (COSQ(9> — sin®(0) — 2sin(#) COS(@)]H) v,
(
(

— v+ (cos(ze)vL +sin(26) x (n A vl)> . (2.193)

= v| + | cos(26) — sin 29)In> \al

= v| + | cos(20)v, —sin(20)I(n A VJ_))

This in fact describes a rotation of the vector v through the plane orthogonal to the
vector n in the counterclockwise sense, since the component v is unchanged and the
component v, transforms into cos(20)v, + sin(20) x (n A v, ), which is v rotated by
the angle 260 in the counterclockwise sense of the plane determined by n (following the
right-hand convention). Since the rotation described is by an angle 20, the corresponding

rotation by an angle 6 is given by

v — v/ = RVR, (2.194)

R = cos (g) — sin (g) In. (2.195)

This rotor can be written in terms of the exponential map (in the same way as made to

where

reach to the expression (2.76), since B = —In is a unit bivector, like ese;) as follows:
1
R =exp (—éeln) . (2.196)

The rotation transformation considered above can be extended for any multivector A

as follows:
A — A = RAR = RAR™". (2.197)

A bivector A = u; A up = ujuy, for example, transforms under a rotation in the way

A— A= RAE = Rulugﬁ = RulﬁRUQé = 111/112,, (2198)
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in such way that A’ describes the plane given by A rotated in the direction of the plane
given by In in the counterclockwise sense (i.e. following the right-hand convention relative

the normal vector n).

Note that the set of the rotors of Cl3 can be characterized as
{r ‘ R€Clyo" and RR=RE=1} (2.199)

that is, the set of even grade multivectors of C/3 with unit norm. Note then that, the set
of rotors endowed with the geometric product has the structure of a group. Indeed, given
the rotors Ry e Ry, it follows that (E;R-/Q)(RlRQ) = EERle = EQRQ =1, that is, R R»
is also a rotor, hence (i) the set of rotors is closed with relation to the geometric product;
in addition, (i) the geometric product is known to be associative, (iii) there exists an
neutral element with relation to the geometric product (the number 1), and, (iv) for any
rotor R there exists the inverse, given by R™! = R. This group is denoted by Spin(3),

and a rotor of Cl3 can be characterized as an element of this group.

It should be noted that, as in the two-dimensional case, both R and —R describe the

same rotation:

(—~R)V(—R) = RvR. (2.200)
This can be understood by observing that the rotation by an angle ¢ in a given plane, in
the counterclockwise sense, has the same result as the rotation by the angle 27w — ¢ in the
same plane, but in the clockwise sense. Indeed, given the rotors R = exp(—In¢/2) and
R* =exp (In(27m — ¢)/2), it follows that

R* =exp (In(2m — ¢)/2) = exp(In7) exp(—In¢/2) = (~1)R = —R. (2.201)

The fact that R and — R describe the same rotation implies in a two-to-one correspondence
between the group Spin(3) and the group SO(3) (i.e. there are two rotors equivalent to a
same special orthogonal transformation in the three-dimensional Euclidean space), in the
same way that there is a two-to-one correspondence between SU(2) and SO(3), when it
is said that SU(2) is a double covering of SO(3). In the same way, it is said that Spin(3)
is a double covering of SO(3), and it is found that Spin(3) is isomorphic to SU(2).

Similarly to the two-dimensional case, an arbitrary element of the even subalgebra

Cl3¢* can be written in the form

¥ =R, (2.202)

where p is a real scalar and R is a rotor. In this way, the transformation

v & vV =9¢vi = pRVR (2.203)
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corresponds to a rotation given by the rotor R and a dilation/contraction (if 0 < p < 1

or p > 1, respectively) of the vector v.

2.3 The Geometric Algebra of Minkowski Spacetime

The concept of a pseudo-Euclidean space is introduced in this section by presenting the
two-dimensional case, accompanied by comparisons with the Euclidean plane. Next, the
geometric algebra for the pseudo-Euclidean plane is presented. Then, after an introduction
to Minkowski spacetime, the corresponding geometric algebra is introduced and some of

its basic properties studied.

2.3.1 Pseudo-Euclidean Spaces

Consider the vector space R?, and let its vectors be denoted by Latin letters in boldface:
u, v, etc. Let the canonical basis be denoted {e1,e3} = {(1,0),(0,1)} (where the ordering
of the basis is implied), in such way that a vector is written, generally, u = uje; + uses,
v = v1e1+1qeq, ete. The interpretation for this space is the usual geometric interpretation:

R? corresponds to the plane, and its vectors represent oriented line segments in the plane.

Consider the symmetric bilinear form A : R? x R? — R given by
h(ei,e1) = —h(es,e0) =1 and h(e,e) = h(eg,e1) =0. (2.204)
The calculation of h(u, v), for two arbitrary vectors u and v, furnishes

h(u,v) = h(uie; + usey, vie; + vres)
= ulvlh(el, el) + ulvgh(el, 62) + Ugvlh(eg, el) + Ugvgh(eg, eg)

= U1V1 — UQV3. (2205)

In particular,

h(u, 1) = ui® — uy”. (2.206)

Although A is symmetric, the above equation allows one to observe that it is not positive-
definite, that is, h(u, u) can assume any real value, including zero, without u necessarily
being the null vector. Nevertheless, R? endowed with the symmetric bilinear form h
it is important in mathematics and physics, determining a particular case of a pseudo-
Fuclidean space, the pseudo-FEuclidean plane. For this space, one can define the “norm”

induced by the symmetric bilinear form h by

[ulln® = h(u,w) = w® — up®. (2.207)
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which will be called pseudo-norm (because it is not in fact a norm). In order to present
some aspects of the pseudo-Euclidean plane, its analogues in the Euclidean plane will be
recalled first.

Let g be the symmetric bilinear form given by (2.1), and let its induced norm be

denoted by || - ||;. Given the vector x = z1e1 + x2€5 of the Euclidean plane, the equation
1]l = g(x,%x) =%, (2.208)
which can be written in terms of components as

2 2
2 4ot =12 or (ﬂ) +<ﬁ) —1, (2.209)

T r

describes a circle of radius |r| centered at the origin. Such a circle can be parameterized
by the angle # that the position vector x on the circle makes with the axis of abscissas,
as follows:

xry =rcos(f) and x5 = rsin(f). (2.210)

Then, from the equation of the circle one obtains the fundamental identity
cos?(0) + sin?(0) = 1. (2.211)
The above mentioned parameterization allows one to express the vector x by
x = 7r( cos(f)e; + sin(h)es). (2.212)

With respect to the sine and cosine functions, it is appropriate to mention Euler’s formula,

" = cos(f) + isin(f), (2.213)
which allows the cosine and sine functions to be written in terms of complex exponentials
as follows: . .

cos() = 3 (e”+e ) and sin(f) = % (e —e™™). (2.214)
i

As a final remark, recall that another vector x' = z'e; + x5'e; on the circle, obtained

from the vector x through a rotation by an angle A6, is such that

(:cl/) ) (cf)s(AQ) —sin(A9)> <x1> (2215)
xo sin(Af)  cos(Af) ] \ xo

Now, analogous aspects in the case of the pseudo-Euclidean plane will be considered.
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Given the vector x = z1e; 4+ x2e5 of the pseudo-Euclidean plane, the equation
|x||n* = h(x,x) = constant (2.216)

can describe different geometric shapes depending on whether the constant that appears
in it is (I) positive, (II) negative or (III) null. Consider first the case I, where the equation

can be written in the form
Ix[ln* = h(x,x) = %, (2.217)

for some non-null real number r, or more explicitly, in terms of the components of x:

A Z2

v — 22 =71 or (—)2 - (—)2 = 1. (2.218)

T r

This is the equation of the equilateral hyperbola with vertices at (—r,0) and (r,0). In the

case II, the equation takes the form
x[ln* = h(x,x) = —1%, (2.219)

which in terms of the components of the vector x, can be written as

X2 T

12 — x> = —r? or <—>2 — (—)2 =1 (2.220)

r r

This is the equation of the equilateral hyperbola with vertices at (0,—r) e (0,r). About

case III, one has the equation
Ix[ln* = h(x,x) = 0, (2.221)
which in terms of the components of the vector x is written as
12— 12 =0 or x; =+, (2.222)

These equations describe the asymptotes of the hyperbolas considered above. Figure 2.4

shows the graphs of the geometric figures considered in each case.
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FIGURE 2.4 — Curves considered in cases I, IT and III in the text (the axis of abscissas
is taken vertically and the axis of ordinates horizontally, placing the “other side” of the
plane in perspective).

Just as a circle can be parameterized by an angle, a hyperbola branch can be parameterized
by a quantity called a hyperbolic angle, which does not consist of an angle in the usual
sense. The hyperbolic angle e can be understood as the argument of the hyperbolic cosine

and sine functions, which can be defined respectively by

cosh(a) = % (e*+e®) and sinh(a) = % (e* —e ™). (2.223)
Note that such functions satisfy
e® = cosh(a) + sinh(«) (2.224)
and
cosh?(a) — sinh?(ar) = 1. (2.225)

The above three relations has as its analogues in the case of “circular geometry” the
relations (2.214), (2.213) and (2.211), respectively. The parameterization of the upper

branch of the hyperbola I is given by means of the relations

cosh(a) = % and sinh(a) = %, (2.226)
r r
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which allow one to write a generic position vector v .= wvi;e; 4+ vpes on the branch of

hyperbola as
v = r( cosh(a)e; + sinh(a)e,). (2.227)

Another position vector v/ = v;’e; + vo’e; on the considered branch of hyperbola can be

obtained from v through a hyperbolic rotation through a certain hyperbolic angle Aq,

vy’ _ cosh(Aa) sinh(Aa)\ (v (2.228)
vy sinh(Aa) cosh(Aa) /) \ve '

Such a hyperbolic rotation, for a positive hyperbolic angle, is illustrated in the figure 2.5.

according to

€1

€9

FIGURE 2.5 — A hyperbolic rotation of the vector v on the upper branch of a hyperbola
of type I, by a positive hyperbolic angle, resulting in the vector v'.

The fact that the symmetric bilinear form h is not positive-definite implies that there
exists not just one, but an infinity of vectors u such that h(u,u) = 0, all of which are
null vectors, but not in the sense that g(u,u) = 0, but rather with respect to the form h.
According to the value of h(u,u), it is also possible to classify a vector u into two other
types: (1) u such that hA(u,u) > 0, and (2) u such that A(u,u) < 0. According to the
definition of the form A (cf. equation (2.204)) the basic vector e; is of type 1, and the
basic vector e, is of type 2. This feature implies that the two components of a vector in
the pseudo-Euclidean plane have a distinct nature, such that each of the two subspaces

resulting from an orthogonal decomposition have a distinct nature with respect to the
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form h. In view of this fact, the pseudo-Euclidean plane is denoted by R!. It should be
noted that a generic pseudo-Euclidean space is construct in a similar way to the pseudo-
Euclidean plane, being denoted by R™", in such way that its canonical basis contains m
vectors of type 1 and n vectors of type 2. In agreement with the physical context, vectors
of type 1 are called time-like vectors, vectors of type 2 are called space-like vectors, and

null vectors are also called light-like vectors.

2.3.2 The Geometric Algebra of the Pseudo-Euclidean Plane

As in the constructions made earlier, the geometric algebra of the pseudo-FEuclidean plane
is determined by the multivector space constructed from R endowed with the geometric

product. In this case, the fundamental property of the geometric product is given by
uu = h(u,u), (2.229)

for any vector u from R, or, in terms of the pseudo-norm and using the notation

u’? = uu,

u? = ||ul|,%. (2.230)
This expression can be written in terms of components as follows:
(ure; + uges)(ure; + uses) = ur® — uy”. (2.231)
Imposing bilinearity to the geometric product, one can write
u’e? + ujug(eres + ese;) + user? = uy? — uy?, (2.232)
which implies

el=1 e’ =—-1, and eje; = —ese;. (2.233)

These are the basic relations for calculation of the geometric product in the geometric
algebra of the pseudo-Euclidean plane in terms of the canonical basic vectors. Applying
it to the calculation of the geometric product of two arbitrary vectors u = uje; + uqes

and v = vie; + v9€5, one obtains

uv = (uje; + ugeq)(vi€e; + vaeq)
2 2
= UV1€1" + UV2€1€2 + UV €€ + UgVaes

= (ulvl - U2U2> + (Ulvg — u201)e1e2, (2234)
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which corresponds to the sum of a symmetric part, (u;v; — usvs), and an antisymmetric
part, (u3ve — ugvy)ejes, with relation to the exchange of u and v. Since the geometric

product of two vectors can be uniquely written in the form
1 1
uv = §(uv +vu) + §(uv —vu), (2.235)

where the first term is symmetric and the second antisymmetric under the exchange of u
and v, one can write
uv=u-v+uAv, (2.236)

where are defined the scalar product and the exterior product, respectively, by
1
u-v= §(uv + vu) = uyv; — ugvy = h(u,v) (2.237)

and

uANAv = §(uv — Vll) = (uva — u2v1)e1e2. (2238)

As in the case of the Euclidean plane, the objects of the form uAv, such as e; Ae; = eqe,,
are defined as bivectors and interpreted as oriented parallelograms. This is independent of
the metric properties of the space, determined in this case by the form h. Although in the
pseudo-Euclidean case (eje;)> = 1, whereas in the Euclidean case (eje3)? = —1, which
leads to different metric relations for the pseudo-Euclidean case, there is no change in the
underlying multivector structure of the algebra under consideration, and consequently
the underlying exterior algebra is the same as for the geometric algebra of the Euclidean
plane. In agreement to the notation R%! for the pseudo-Euclidean plane, the vector space
of real scalars can now be denoted by /\O(Rlvl), the vector space of vectors of the pseudo-
Fuclidean plane can also be denoted by /\I(Rl’l), and the vector space of bivectors can

now be denoted by A*(R™). Thus, one can define the vector space

/\ (Rl’l) — é/\k (Rl’l) — /\0 (Rl,l) D /\1 (Rl’l) D /\2 (Rl’l), <2239)

whose elements, also called multivectors, can be written in terms of the basic vectors e;
and ey under the form
A=a -+ (a1e1 —+ GQEQ) + aj0€e;es. (2240)

Defining then the geometric product of a scalar with a multivector as the multiplication
of the multivector by the scalar, and extending the geometric product to any multivectors
by bilinearity and associativity, it follows that the vector space A (R™!) endowed with
the geometric product determines an associative algebra over the field of real scalars, the
geometric algebra of the pseudo-Euclidean plane, or the Clifford algebra of the pseudo-
Euclidean plane, which can be denoted by C£(R™, k), or Cl; 1(R), or simply C/ ;.
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Projection, Graded Involution, Reversion, the Norm and the Inverse

The operations of projection, graded involution and reversion are defined in the same
way as for Cly (cf. subsection 2.1.2). The pseudo-norm of a multivector A from C/y; is

appropriately defined by
A2 = <AA> - <AA> , (2.241)

and the inverse can be defined by

(2.242)
provided that
1A]R2 = <21A> — AA#£0. (2.243)

Note the difference in the conditions for the existence of the inverse (cf. relations (2.38)).

Inequalities, Parallelism and Orthogonality

For a bivector B = ajze;e; from C/; 1, one has
||B||h2 = <B§> = <(a126162)(a1282€1)> = <a122 e1e2e2e1> = —a122 S 0. (2244)

But note that the same calculation to obtain the equation (2.43), in the case of the

Euclidean plane, can be made to find
aAvlla® = l[ulla®[[v]a® = (w-v)?, (2.245)

for two arbitrary vectors u and v of the pseudo-Euclidean plane, so that [[u A v||;? < 0
implies
(w-v)? > Jully®[[v]n? (2.246)

which is the analog of the Cauchy-Schwarz inequality for vectors of the pseudo-Euclidean
plane (note the difference in relation to the original inequality, given by (2.44)). In this
way, if u and v are time-like vectors with time-like coordinate of the same sign (which is
expressed in special relativity by saying that both vectors are directed either to the future
or to the past), one has

wev > fuflfvil (2.247)

so that

lu+vlln® = all? + [[v]a® +2(a-v) > ufla® + (vl + 2alla v = (al+ (vl
(2.248)
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which implies

u+vln = [laflx + [[v]s (2.249)

This is the triangular inequality for time-like vectors of the pseudo-Euclidean plane whose
time-like coordinate has the same sign (note the difference in relation to (2.51)). The

hyperbolic angle o between these two vectors is such that

u-v

cosh(ao) = ——
(@) = eIV

(2.250)

and
_ A 2
sinh(q) = Y18 AV (2.251)
[allx |V

This can be justified by writing
u = u(cosh(p)e; + sinh(S)es) and v = v(cosh(y)e; + sinh(y)es), (2.252)
so that
u - v = uwv cosh(f) cosh(y) — uv sinh(5) sinh(y) = uwv cosh(y — ) (2.253)
and
u A v = uw cosh(f) sinh(y)e;es — uv sinh(f5) cosh(y)ejex = uvsinh(y — 5)ejes. (2.254)

Note then that the conditions for parallelism and orthogonality for such vectors are the
same as for vectors of the Euclidean plane, (2.52) and (2.53), where the products must be

reconsidered according to the pseudo-Euclidean case.

Reflections and Rotations

The fact that the form of the conditions for parallelism and orthogonality are preserved in
the pseudo-Euclidean case, although the scalar product (hence the geometric product) is
different, implies that the expression for the reflection transformation has the same form.

Thus, the reflection of a vector v through a line with orthogonal vector u is also given by

v = v = —uvu . (2.255)

However, there are two cases to consider: u? = 1, which implies v/ = —uvu, and u? = —1,
which implies v/ = uvu. In the first case the vector u is time-like and the reflection is

through a space-like line, that is, a line with space-like parallel vector. In this case, since
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u? = ||ul|x? = 1, one can write
u = cosh(f)e; + sinh(S)e,, (2.256)
and, with v = v1e; + 1€y, the reflected vector v/ = —uvu is given by
v/ = —uvu

- —(cosh(ﬁ)e1 n sinh(ﬁ)e2> (vier + v2e2)<cosh(ﬁ)e1 + sinh(ﬂ)e2>
— —((c;os}P(mU1 + sinh?(8)v1 — 2sinh(f) cosh(ﬁ)w)eﬁ—
+ (2 sinh(3) cosh(B)v; — cosh?(3)vs — SinhQ(ﬁ)vg)eg)
— <sinh(25)v2 - cosh(QB)vl)el + (Cosh(Qﬁ)vg - sinh(26)v1>e2. (2.257)

Note that, in particular, if u = ey, then 8 = 0, hence
v = —vie; + ey, (2.258)

which corresponds to the vector v with the time-like component inverted. In the case that
u is space-like, the reflection of v is through a time-like line, that is, a line with time-like

parallel vector. In this case, where u? = ||ul|,> = —1, one can write
u = sinh(f3)e; + cosh()es,. (2.259)
The reflected vector v/ = uvu is then given by

v/ = uvu
- (sinh(ﬁ)el + cosh(ﬁ)e2> (vier + UgGg)(Sinh(ﬁ)el + Cosh(ﬁ)e2>
— ((sinhQ(ﬂ)vl + cosh®(B)v1 — 2sinh(B) cosh(ﬁ)v2>e1—l—
+ (2sinh(B) cosh(B)v; — cosh?(3)vs — SinhQ(ﬁ)vg)eg)

= (Cosh(Zﬁ)vl - sinh(25)w)el + (smh(Zﬁ)vl - cosh(25)v2>e2, (2.260)
In particular, if u = e,, then g = 0, hence
V/ = vV1€1 — VUgeq, (2261)

which corresponds to the vector v with the space-like component inverted.

Similarly to rotations in the Euclidean plane, a hyperbolic rotation of a vector from

the pseudo-Euclidean plane can be described as a composition of two reflections. It is
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found that a hyperbolic rotation is given by
v — v =LvL ' = LvL, (2.262)

where L = u;u,, being u; and u, vectors such that u;?2 = uy? = 1. The object L is called

a rotor and can be written as
L= Ui = U - U +ug A U9, (2263)

so that, if « is the hyperbolic angle between u; and us, a direct calculation furnishes
(cf. equations (2.253) and (2.254))

L = cosh(a) + sinh(«o)e;es. (2.264)

Analogously to the case of rotations in the Euclidean plane, it is observed that this rotor
describes a hyperbolic rotation in the sense of decreasing hyperbolic angle, in such way
that the choice of the bivector ese; in place of e e, is the appropriated one for the rotor
L to describe a hyperbolic rotation in the sense of increasing hyperbolic angle. Indeed,
given the rotor

L = cosh(a) + sinh(a)eqe; (2.265)

and the vector v = vie; + v9€s, the rotated vector v/ = vl is given by

v = (Cosh(a) + sinh(a)e2e1> (vie] + voes) (cosh(a) — sinh(oz)ege1>
= <<cosh2(oz) + sinh2(04)>vl + (2 sinh () COSh(O‘)>U2>el+
+ ((2 sinh(«) cosh(a) vy + (coshQ(a) + SiHhQ(Oé)>U2>e2

- (cosh(Zoz)vl + Sinh(2a)vg>el + (sinh(Qa)vl + cosh(2a)v2>eg. (2.266)

This result can be expressed in matrix form as

vy _ c.osh(2a) sinh(2a) \ vy 7 (2.267)
vy’ sinh(2a) cosh(2a) J \ vy
which in fact represents a hyperbolic rotation of the vector v by 2a, in the sense of

increasing hyperbolic angle. In this way, a hyperbolic rotation by a hyperbolic angle « in

the sense of increasing hyperbolic angle is described by the rotor

L = cosh (%) + sinh (%) eser. (2.268)

Using the expressions as power series for the hyperbolic cosine and sine functions in the

above expression, and taking into account that (e;e;)?" = 1 and (ese;)*" ! = eye; for
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any non-negative integer n, one obtains

2n

L

I
Mg

e a/2 2n+1
+; (2n + 1) 2

3
Il
=)

WE

(eQela/Q) N Z (eye1ar/2)%n

—~  (2n)! (2n +1)!
[o.¢] 2 n

-y (e2010/2)" (2.269)

n!
n=0
which can be written in terms of the exponential map as
1
L = exp (5056281) : (2.270)

In order to better illustrate a hyperbolic rotation, consider the rotated basis {e1’, es’},
given by e;/ = Le;L, for i € {1,2}, where L is the rotor given by the above expression. It
follows that

e/ = Le,L = cosh(a)e; + sinh(a)e; (2.271)

and
ey’ = LeyL = sinh(a)e; + cosh(a)es. (2.272)

For a given «, an analysis of the orientation of the rotated basic vectors above, consisting
in the analysis of the functional behavior of their components, falls into the analysis of
the behavior of the hyperbolic sine and cosine functions, which allows one to observe that
a hyperbolic rotation by « of the basic vectors is performed as illustrated in figure 2.6,
if a > 0, and is performed as illustrated in figure 2.7, if @ < 0. Indeed: a > 0 implies
cosh(a) > 1 and sinh(a) > 0; o < 0 implies cosh(a) > 1 and sinh(a) < 0; furthermore,
cosh(a)) > sinh(a) for any «, and lim,_,« | cosh(a) — sinh(«)| = 0.

N
N
N
N
N
N
N

\\\ e

\
s N s
s N s
N \\ 7
, , <
2N Y
s N s N
s s
’ ’
’ ’
s s
’ ’
s s
s s
’ ’
v v
’ ’
s s

FIGURE 2.6 — Hyperbolic rotation FIGURE 2.7 — Hyperbolic rotation
of the basic vectors e; and e, by the of the basic vectors e; and e, by the
same positive hyperbolic angle. same negative hyperbolic angle.
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2.3.3 The Minkowski Spacetime

A set S, whose elements are called points, is said to be an affine space if there exists a

map ¢ : S x S — V, for some finite-dimensional real vector space V', such that:

(1) For any point P from S and vector v from V', there is a unique point ) from S such
that p(P, Q) = v;

(2) (P, Q)+ ¢(Q, R) = ¢(P, R), for any points P, @ and R from S.

In this context, a useful notation for the map ¢ is given by ¢(P, Q) = 1@ Note, from the
above properties, that ﬁ = o (where o is the null vector from V') and that }ﬁ = —Q?,
for any points P and @) from S. The dimension of the affine space S is defined as the
dimension of the vector space V: dim(S) = dim(V'). An affine space of dimension 1
is called a line, an affine space of dimension 2 is called a plane, etc. Given a point P
from S, the set of vectors Tp = {]@ ‘ QReS } from V' can be combined to form a real
vector space, which is found to be isomorphic to V. Intuitively this means that there is
no preferred point in an affine space, so that any point can be taken as the origin of a

reference system.

Let V' be a real vector space of dimension n. This vector space can be studied in terms
of the vectors from R"”, since V ~ R"™. If S is an affine space of dimension n, a reference
frame of S is a pair (O, ), where O is a point from S and 8 = {uy,...,u,} is a basis
of R". If 5 = {ey,...,e,} is the canonical basis of R" then (O, () is called a canonical
reference frame of S. If a point P from S is such that the vector ﬁ is given in terms of
the basis § = {uy,...,u,} of R” by

O? =xu + - + Uy, (2.273)
then zq, ..., x,, that is, the coordinates of the vector O‘fj with relation to the basis 3, are

called the coordinates of P with relation to the reference frame (O, 3).

Consider the vector space R* and let its canonical basis be denoted by 3 = {eg, €1, es, €3},

in such way that a generic vector can be expressed by

3
X = Z €, = To€o + x1e1 + xoes + x3es3. (2274)
n=0

Consider then the symmetric bilinear form h : R* x R* — R given by

h(eo,e0) = —h(e;,e;) =1, where i€ {1,2,3}, (2.275)
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and
h(e,,e,) =0, where p,ve{0,1,2,3} and p#v. (2.276)

The vector space R* endowed with the symmetric bilinear form h is a pseudo-Euclidean
space, as discussed earlier, and it is denoted by R*3. This space is called Minkowski vector

space. The pseudo-norm induced by the form A is given by

1x[1n* = 20® = 1% — 5% — w3, (2.277)
or,
3
clln? = 2o® = . (2.278)
=1

As in the case of the pseudo-Euclidean plane, any vector x from R'? can be classified
according to its pseudo-norm: it is time-like if ||x||,? > 0, it is space-like if ||x]|,? < 0,

and it is a null vector or a light-like vector if ||x|[[;* = 0.

The affine space associated to R'?3 is called the Minkowski spacetime, and its points
are called events. The term spacetime is frequently used as synonym of Minkowski space-
time. Given a canonical reference frame (O, 3), the event of reference O is called origin,
and the coordinates of an arbitrary event P with relation to (O, ) are represented by

(x0, 21,9, x3) = (ct,x,y, 2), so that the vector
O—}% = Xp€o + Tri1€eq + To€9 + Izez = Cteo + req + yeo + zZes (2279)

is the representative of the event P in R'3 with relation to (O, ). The coordinates
r1 = x, x5 = y and x3 = z are the rectangular coordinates of the event P relative to
(O, ), which localize the event in the three-dimensional Euclidean space. The coordinate
xo = ct is the temporal coordinate of the event P relative to (O, ), being ¢ the speed
of light in vacuum and ¢ the time of occurrence of the event with relation to (O, f).
Given two events A and B, given respectively by (cta,xa,ya,z4) and (ctp, g, ys, 28),
the interval between A and B is a generalization of the concept of distance, which is given
by

|45

i = 1 (AB,AB) = A(tp —1a)* — (x5 — 24— (s — va)? — (25 — 2a)". (2:280)

Adopted a canonical reference frame and given an arbitrary event represented by the

vector x = 37

=0 Ty, the equation

x[ln* = 20> — 21® — 25> — 25" = 0 (2.281)
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determines a geometric object which is called the light cone. For such an object, there
is no graphic representation, since it is a four-dimensional object. However, if a spatial
coordinate is ignored, which corresponds to take the intersection of the light cone with
a hyperplane given by z; = 0 (i € {1,2,3}), the light cone can be represented by a
usual three-dimensional cone. If two spatial coordinates are disregarded, the resulting
space corresponds to the pseudo-Euclidean plane, and the light cone is reduced to the
assymptotes of the hyperbolas in the figure 2.4. The equations ||x||? = £r?, where r is

a real constant, determine “hyper-hyperboloids”. The light cone can be decomposed into

two parts, one given by the equation x¢g = /212 + 292 + 232, which is called future light

cone, and another given by the equation g = —v/x12 + 192 + 232, which is called past light

cone. The regions of the Minkowski space given by the inequalities g > v/x12 + 292 + 252

and Ty < —vx1% + 192 + 132 are respectively called future and past, and the region given

by 0% < 112 + 252 + 232 is called present.

Adopting a canonical reference frame, consider a curve \ in spacetime parameterized

by a real variable «, which is represented by
A a€R = x=x(a)c R, (2.282)

A vector tangent to the curve A in a generic point is given by

_dX

- —. 2.283
o (2.283)

v =v(a)

The curve A can be classified according to the classification of the vector v, as being time-
like or space-like or light-like. The trajectory of a particle in spacetime is called the world
line of the particle. A particle with non-null mass has a time-like world line, and light
has a light-like world line (this is why the null vectors of spacetime are called light-like).

Consider now a smooth time-like curve given by
A ac€lag,a)] = x=x(a)cRY, (2.284)

where [ag, ay] is a real interval. The length L of X is given by
aq
L= | Vh(v(a), v(a)da. (2.285)
agp

The time-like curve A can be parameterized by its length ¢, such that 0 < ¢ < L, by

writing ¢ as function of a as

0 =) = j Vh(v(a), v(a))de, (2.286)
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and then inverting this equation in order to write @ as function of /. According to the

fundamental theorem of calculus, the derivative of /(«) is given by

% - % f Vhv(a), v(a))do' = v/h(v(a),v(a)). (2.287)

According to this result, another vector tangent to the curve \ is given by

dx B dx da 1

d¢ — da dé :V\/h(v,v)’

which is a unit vector. In this way, a smooth time-like curve parameterized by its length

(2.288)

v =

has unit tangent vector. In practice, one writes £ = cr, where the parameter 7, which has

dimension of time, is called the proper time associated to the curve.

An observer is defined by a time-like curve parameterized by its proper time and
oriented towards the future, in the sense that its unit tangent vector has positive time
coordinate. In this way, an observer corresponds to the world line of a particle. If an
observer is given by a straight line, it is said to be an inertial observer; in the corresponding
case of a particle, it is said to be in uniform motion. Since a straight line is determined
by a point and a parallel vector, one can define an inertial observer by a future-oriented

unit time-like vector, with the origin implied as the reference point.

An observer naturally “splits” spacetime into two “parts”, “time” and “space”. If an

observer has unit tangent vector v, this fact is formally described by
RY¥ =TaE, (2.289)

where T is the vector subspace of R} generated by the unit tangent vector v, and F
is the orthogonal complement of 7', that is, the vector subspace generated by any set of
vectors mutually orthogonal to v. Another observer also “splits” the spacetime into “time”

and “space”, although in a distinct way, according to its unit tangent vector.

2.3.4 The Geometric Algebra of Minkowski Spacetime

In practice, events in Minkowski spacetime are considered with relation to a reference
frame, so that the study of phenomena in spacetime is generally made in terms of the
Minkowski vector space, RY3. In this respect, in order to study geometry and physics of

spacetime, the geometric algebra of Minkowski vector space can be constructed as follows.

The fundamental property of the geometric product is given by

u’ = h(u,u) = |Jul,? (2.290)
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for any vector u from R!3, or, in terms of components relative to the canonical basis,
(ero + ujeq + ugseq + u3e3)(u0e0 + ur€e1 + uses + u3e3) = UO2 — U12 — U22 — U32. (2291)
Considering the bilinearity of the geometric product, one can write

2.2 2.2 2.2 2.2
Up“€p” +ui"€er” +ux"ey” + us"es"+
+ upui(epe; + ejeg) + ugua(epes + exeg) + ugus(epes + eszep)+
+ uuz(eres + eser) + ujus(eres + ege;) + ugusz(eses + ezey) =

= up? — uy? — up? — us. (2.292)
For this equation to be satisfied, one must have
e’=1 and e?=—1, where ic {1,2 3}, (2.293)

and
e,e, = —ey,e,, where p,ve{0,1,2,3} and p#v. (2.294)

These are the basic relations for calculation of the geometric product of the geometric

algebra of the Minkowski vector space in terms of the canonical basic vectors. Applying

it to the calculation of the geometric product of two arbitrary vectors u = 22:0 u,e, and
v=>3"_w,e,, one obtains
pn=0 "B
uv = (upeg + ure; + uses + uges)(voey + viey + vaes + vses)
= (uguog — U1V — UgVe — UzV3)+
+ (UQUl — ulvo)egel + (UQ’UQ — UQUQ)eer + (UQ’U3 — U3UQ)eoe3+
+ (U1U2 — uwl)eleg + (U1U3 — u3vl)e1e3 + (U2U3 — u302)e2e3, (2295)

which corresponds to the sum of a symmetric part and an antisymmetric part under the
exchange of the vectors u and v. Since the geometric product of two vectors can be

uniquely written in the form
1 1
uv = §(uv +vu) + §(uv —vu), (2.296)

where the first term is symmetric and the second term antisymmetric under the exchange
of u and v, one can write

uv=u-v+uAv, (2.297)

where are defined the scalar product and the exterior product, respectively, by

1
u-v= E(uv + V) = ugvy — U — Uy — uzvz = h(u,v) (2.298)
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and

1
u/\v:ﬁ(uv—vu)

= (ugv1 — w1vp)eper + (ugu2 — usvg)epes + (Ugvs — usvy)epes+

-+ (u1v2 — Ug?}l)eleg -+ (Ulvg — u3v1)e163 + (Ugvg — Ugvg)egeg. (2299)

As in the cases considered before, the objects of the form u A v, such as ey A e; = epey,
e;Aey = ejey, ete., define bivectors, which form their own vector space and are interpreted
as oriented parallelograms in a four-dimensional space (this interpretation is independent
on the metric properties of R determined by the form h). The exterior product can
then be taken successively, by considering it to be associative, in order to produce higher
dimensional objects. In this manner, by considering the possible combinations of the basic
vectors e, (€ {0,1,2,3}) to form a higher dimensional exterior product with a certain
number of vectors, it is found that there is, up to a sign, in addition to 6 basic bivectors
(i.e. eger, epey, €p€3, €1€2, €1€3, €9€3), 4 basic trivectors (i.e. egeieq, €peies, epeqes, e1ese3),
and 1 quadrivector (i.e. epejeses). The vector space of real scalars can now be denoted
by A”(R"?) and the vector space of vectors can be denoted by A'(R'?). The bivectors
form a 6-dimensional vector space, which is denoted by A*(R'“%), the trivectors form
a 4-dimensional vector space denoted by /\S(RL?’), and the quadrivectors form an one-
dimensional vector space denoted by A*(RY3). The vector spaces of the form A"(RL3)

can then be combined through a direct sum to form the multivector space

N\ ®R"?) = é A (RY), (2.300)

whose elements are called multivectors. Defining then the geometric product of a scalar
with a multivector as the multiplication of the multivector by the scalar, and extending the
geometric product to arbitrary multivectors by bilinearity and associativity, it follows that
the vector space A (R'3) endowed with the geometric product determines an associative
algebra over the field of real scalars, the geometric algebra of Minkowski spacetime, or the
Clifford algebra of Minkowski spacetime, which is denoted by C{(R'?, h), or Cf; 3(R), or
Cly 3.

Projection, Graded Involution, Reversion, the Norm and the Inverse

The operations of projection, graded involution and reversion are defined for multivectors

of the geometric algebra of spacetime in the same way as for the algebras introduced
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earlier, but with the maximum grade of the multivectors taken as 4:
4 K
(A)p = Ap, A= (=DMA), and A= (=1)2FED(4), (2.301)
k=0

In this way, for an arbitrary multivector A = Zi:o Ay, one has
A=Ag— A +Ay— A3+ Ay and A=Ag+ A — Ay — Ay + Ay (2.302)

The properties of these operations already presented remain valid, since they are inherent

to the multivector structure. In particular, one has
(AB) = (BA), (2.303)

for arbitrary multivectors A and B, which implies in the invariance of the scalar part of a
geometric product under cyclic permutations of the multivectors in the product. The fact
that the reversion of a geometric product of multivectors corresponds to the geometric

product in the opposite order of the reverses of the multivectors also holds,

—_—

(AB---C)=C---BA. (2.304)

Differently from the geometric algebras already considered, there is no standard way

to define a pseudo-norm for an arbitrary multivector A from C/; 3, since AA is not a

scalar, in general. However, the pattern of the previous definitions of norm/pseudo-norm

fits naturally for most multivectors of C¢; 3, and does not represent any complication for

future constructions. Then, the pseudo-norm of a multivector A from C/; 3 can be defined
by

A2 = <ZA> - <AE>. (2.305)

Note that AA is an even grade multivector and that it is equal to its reverse, so that it
is a scalar plus a pseudoscalar. It follows that AA has a multiplicative inverse, provided
it is different from zero. Indeed, by writing AA = pelf . where p, 3 € R and p > 0, one

can identify <AA> = p~'e7!8 as the inverse of AA = pel®. In this way, the definition

of pseudo-norm is not necessary for defining the inverse, which can be defined by

~\ —1

A=A (AA) , (2.306)

provided that
AA #0. (2.307)
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Interior, Exterior and Commutator Products

A similar argumentation to that used in the case of the geometric algebra of the three-
dimensional Euclidean space (cf. subsection 2.2.3) leads to the definition of contraction
from the left of the multivector A by the vector u, or interior product of the vector u with
the multivector A,

u-A= % (uA - ﬁu> . (2.308)

As in that subsection, it is found that the exterior product of a vector u with a multivector
A can be expressed as

uAA= % (uA + Eu) . (2.309)

In terms of these two operations the geometric product of u with A can be written
uA=u-A+uANA (2.310)

In the same way, the contraction from the right of the multivector A by the vector u, or

the interior product of the vector u with the multivector A, is defined by

1 R

Au=3 (Au - uA) . (2.311)
The exterior product of A with u can also be written
1 R

ANu= s (Au+uA). (2.312)

In this way, the geometric product of the multivector A with the vector u can be expressed

as
Au=A-u+AANu (2.313)

As before, it is found that, in general, the interior and exterior products do not commute

or anticommute, but satisfy

u-A=—A-u and uAA=AAu (2.314)

If A and B are bivectors, writing A = uAv = uv, where u and v are vectors satisfying

u-v =0, it follows that

AB =uvB
=u(v-B+vVvAB)
=u-(v-B)+u-(vVAB)+uA(v-B)+uAvAB
=u-(v-B)+u-(vAB)+uA(v-B)+AAB. (2.315)
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The term u-(v-B) in the resulting expression is a scalar, since it is the result of two followed
interior products with a vector applied on a bivector. The term A A B is a quadrivector,
since it is the exterior product of two bivectors. The remain terms are bivectors, since
both are the result of the combination of an interior and an exterior product with a vector

applied on a bivector. The geometric product AB can then be written
AB = (AB)y+ (AB)s + (AB),. (2.316)

But, note that such a product can be written as the sum of a symmetric part and an

antisymmetric part in relation to the exchange of the bivectors:

1 1
AB = é(AB + BA) + §(AB — BA). (2.317)
Since the symmetric part is invariant and the antisymmetric part changes the sign under

the reversion operation, one identifies the symmetric part as the scalar part plus the

quadrivector part and the antisymmetric part as the bivector part:
1 1
(AB)o + (AB)4 = §(AB + BA) and (AB), = §(AB — BA). (2.318)

In general, the antisymmetric part of the geometric product of two arbitrary multivectors
A and B is defined as the commutator product of A and B, which is denoted by

1
AXx B= é(AB — BA). (2.319)
It is found that the commutator product satisfies the Jacobi identity, that is,
Ax(Bx(C)+Cx(AxB)+Bx(CxA)=0, (2.320)

for any multivectors A, B and C', which can be verified by applying directly the definition

of the commutator product.

Note that, given a bivector B and a vector u, one has
1
B xu= §(Bu —uB)=B-u, (2.321)

which results in a vector. In this way, for a bivector B and a k-vector A = u; --- uy,
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being the k vectors (2 < k < 4) uy, ..., u;, mutually orthogonal, one has

B(uln-uk) = (2B'U1+U1B)u2"~uk

=2(B-uj)ug---up +uBuy---uy
=2(B-uj)ug---ux +ui(2B - us + usB)us - - - uy,
=2(B-u)ug---up+---+2u; w1 (Bug) + (ug--oug) B, (2.322)
that is,
k
B><(u1~--uk):Zul---(B~ui)---uk. (2.323)

i=1
The right-hand side of the resulting expression is at principle a multivector with grades
k and k — 2. But, it follows that

1/~ ~  ~~
(BxA) =3 <AkB - BAk)
1 ~ ~
=3 <—AkB + BAk>
=B x Avk
= (=1)**DB x A, (2.324)

that is, B x A, transforms in the same way as A, under reversion. Since multivectors
of grade k and k — 2 transform in different ways under reversion, which follows from the
fact that (—1)2F¢—1D /(=1)2¢=2(¢=3) — 1 the multivector B x A;, must have grade k.
Therefore, the commutator product of a bivector with any multivector preserves the grade
of the multivector:

B x Ay = (B X Ap)g. (2.325)

This result is general and applies to multivectors of an arbitrary geometric algebra.

Inequalities, Parallelism and Orthogonality

The hyperbolic angle a between two time-like vectors u and v, both either directed to

the future or to the past, is given by

u-v

cosh(ag) = ———.
(@) = eV

(2.326)

From this expression, one can write also

sinh(a) = YA VIRE (2.327)

[[alln vl
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Furthermore, expression (2.326) implies also in the reversed Cauchy-Schwarz inequality:
(w-v)? > [[ull2|v]s*. (2.328)
From this inequality it follows, in turn, that

o+ viln® = [l + [vla® + 200 v) > alla® + [[vIe* + 2lfalulvia = (alls + Vi)

(2.329)
which implies the reversed triangular inequality:
[+ Vx> [ullp + V] (2.330)
The angle 6 between two space-like vectors u and v is given by
u-v
cos() = ————. (2.331)
[[alal[ V]
From this expression, one can write
: a A vl
sin(f) = ——. (2.332)
[[al[a][ V]
For space-like vectors, the Cauchy-Schwarz inequality in its usual form holds:
(u-v)* < [lulla[v]ln*. (2.333)

For two arbitrary vectors u and v, one can define the condition for orthogonality as
u - v, or, in terms of the geometric product, uv = —vu. The condition for parallelism
can be taken as u A v = 0, that is, uv = vu. As in the three-dimensional Euclidean
case, given a vector u and a bivector B, the condition for orthogonality can be taken as
u- B =0, and the condition for parallelism can be taken as u A B = 0. In the same way,
given two bivectors A and B, the condition for orthogonality is taken to be (AB) = 0,

and the condition for parallelism is taken to be A x B = 0.

Now, observe that a trivector, like ege;es, determine a hyperplane (a hyperplane in an
n-dimensional space is an (n — 1)-dimensional subspace), which can also be determined
by its orthogonal line. Observe then that, for example, the vector ez is orthogonal to the

vectors ey, e; and ey, and one has
€3 - (eoeleg) = 0. (2334)

In general, it follows that
e, (e,ee,) =0, (2.335)
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for distinct p, v, p and o, and one can say that the vector e, is orthogonal to the trivector
e,e,e,, and also to the hyperplane determined by this trivector. Thus the condition for
orthogonality of a vector u and a trivector 7' can be taken as u -7 = 0. On the other
hand, since the exterior product of four linearly dependent vectors from R? is zero, the
exterior product of a vector u with a trivector 7' = v Aw Ax is zero if and only if the set of
vectors {u, v, w,x} is linearly dependent, which means that u belongs to the hyperplane
determined by T'. The condition for parallelism of a vector u and a trivector T is then
uANT =0.

Pseudoscalars, Orientation and Duality

Quadrivectors are also called pseudoscalars, since any quadrivector is a scalar multiple
of the unit pseudoscalar I = egej;ese;. Note that the unit pseudoscalar is equal to its

reverse,

I=1, (2.336)

and that
]2 = 7] = (egegeleo)(eoelegeg) =—1. (2337)

Another important property of pseudoscalars is that they anticommute with vectors, from
which follows that they also anticommute with trivectors and commute with any even

grade multivector. Note also that
(Apl) = Ail, (2.338)

for any k-vector Ay from C/; 3. Therefore, given a vector u and a k-vector Ay, it follows
that

u- (Agl) = (uAkI — @u)

<uAk[ — E;Ju)

1
2
E
2
% <11_/4,1€ + zzl\kll> I

= (uA Al (2.339)

The unit pseudoscalar I defines an orientation for Minkowski spacetime, which is
conventionally considered as a positive orientation. Another unit pseudoscalar defines
either the same or the opposite orientation, depending on whether its sign is the same
or different from that of I. In the case of the three-dimensional Euclidean space, the
orientation conventionally considered to be positive is that determined by the pseudoscalar

ejeqes.
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The Hodge isomorphism or Hodge duality is defined for C¢; 3 in a way analogous to
that for Cl3 . The Hodge dual of a k-vector Ay is a (4 — k)-vector xAj, given by

* Ay, = Ail. (2.340)

Observe that, the Hodge dual of a scalar is a pseudoscalar, and vice versa, the Hodge dual
of a vector is a trivector (also called in this context a pseudovector), and vice versa, and
the Hodge dual of a bivector is another bivector. In particular, one has the relations in

the following table.

*x1=1= €pei1€ese3

*€) = €1€2€3
*€1 = €9€3€
*€9 = €3€1€

*€3 = €1€2€

*xI = x(epe1eze3) = —1

TABLE 2.2 — Hodge duals of the basic multivectors from C/; 3.

In general, A, furnishes a (4 — k)-vector determining the orthogonal complement of the

subspace determined by Ay.

The Even Subalgebra and the Algebra of Biquaternions

Let Cly 3% be the set formed by even grade multivectors from C¢; 3, that is, the set of

multivectors A satisfying A=A

cti st ={a \ A€ty and A=A}, (2.341)
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If Cly 37, then A is the sum of a scalar, a bivector and a pseudoscalar, and it can be

written
A = a+ ajperep + axerey + azpesey + a12e1€2 + aze3e1 + agzeses + agiazl.  (2.342)
An even grade multivector can be expressed without reference to any basis as
M=a+ B+ j1, (2.343)

where o and ( are scalars and B is a bivector. So, given the even grade multivectors
M, = a1 + By + i1 and My = g + By + 321, it follows that

MMy = (a1 + By + Bil) (a2 + By + B21)
= g + a1 By + a1 ol + By + B1 By + B2 Bl + Bral + 1 Bal — 152
= (041042 + (B1Ba) — 5152)+
+ (alBQ +aaBy + By X By + B2 Bil + 5132]>+

+ (alﬁgl + Brasl + By A B2>. (2.344)

Therefore, the geometric product of two even grade multivectos is also an even grade mul-
tivector, in such way that the vector subspace determined by elements of C/; 31 endowed
with the geometric product is a subalgebra of C/; 3, the even subalgebra of Cl; 5, which is
also denoted by Ct; 5%,

Consider the following notation: I = ese3, J = ese;, K = ejey, and i = I. Observe
then from (2.342), and from the relations on the table 2.2, that an element of C¢; 37 can

be written in the form

which resembles a quaternion, although with complex components. Quaternions with
complex components are called biquaternions and form an 8-dimensional real algebra (or
a 4-dimensional complex algebra), denoted by C ® H. Note then that the bivectors I, J
and K satisfy

IFP=J=K*=1JK = -1, (2.346)

which are identical to the basic relations defining the product of quaternions (cf. relations
(2.164)), which also hold for biquaternions. Therefore, one can conclude that the even
subalgebra C¢ 37 is isomorphic to the real algebra of biquaternions, C ® H, through the
identification of the bivectors I, J and K with the unit quaternions 7, j and k, and through
the identification of the unit pseudoscalar i = I with the imaginary unit v/—1, in addition
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to the identification of the geometric product with the product of biquaternions.

Reflections and Rotations

As seen before, the form of the conditions for parallelism and orthogonality for vectors are
preserved in the pseudo-Euclidean case, although the scalar product (hence the geometric
product) is different. This implies that the expression for a reflection transformation has
the same form: the reflection of a vector v through a hyperplane with orthogonal vector
u is given by

v = v =—uvu . (2.347)

As in the cases already considered, it is found that two reflections describe a rotation
in Minkowski spacetime. But, as in the case of the pseudo-Euclidean plane, there are
two types of reflections to consider, that performed through a hyperplane with time-like
orthogonal vector and that performed through a hyperplane with space-like orthogonal
vector. A generic reflection of a vector v through a hyperplane with orthogonal vector u
reverses the component of v parallel to u and preserves the component of v orthogonal to
u. In this way, a time-like reflection reverses the corresponding time-like component of a
vector, but preserves its space-like component, whereas a space-like reflection reverses the
corresponding space-like component of a vector, reversing also the orientation of a three-
dimensional volume element, but preserves time-like components. In this respect, the
“proper rotations”, understood as orthogonal transformations with determinant +1 which
preserve both the orientation of time-like components (future or past) and the orientation
of a three-dimensional volume element, consist in either (I) a pair of time-like reflections,
or (II) a pair space-like reflections, or, more generally, the composition of a type I and a

type II rotations. These types of rotations are considered in the following.

A rotation of type I can be expressed by
v — v = RvR™' = RVR, (2.348)

where R = uyu; and u;? = u,? = 1. If the unit time-like vectors u; and us are both

either future-oriented or past-oriented, the rotor R can be written
o) ) !
R=uy-u; +uy Au; = cosh <§> + sinh <§> B, (2.349)

where «/2 is the hyperbolic angle between u; and us, and

A
B=__—2° W (2.350)

Vv —lluz A w2

The bivector B satisfies B? = —||B||,2 = 1 and is called a time-like bivector. Expressing
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the cosine and sine hyperbolic functions in the expression for R as power series, one can

write

R =exp (%aB) . (2.351)

Analogously to the case of the pseudo-Euclidean plane, the rotation given by (2.348),
where the rotor R is given by (2.351), is a hyperbolic rotation by a hyperbolic angle «
through the plane given by the unit time-like bivector B, in this case, in the sense from
u; to uy. For the case where the unit time-like vectors u; and us are such that one is

future-oriented and the other is past-oriented, one can write the rotor R in (2.348) as
R = U -u; +us Auy = —<112 . (—ul) +us A <—U1)>, (2352)

where the resulting scalar and exterior products involve a pair of either future-oriented or

past-oriented vectors. In this case, the rotor R can be written as

«

R=— (cosh (§> + sinh (%) B) : (2.353)

where «//2 is the hyperbolic angle between —u; and uy (or, equivalently, the hyperbolic

angle between u; and —uy), and

Us N (—ul)

= (2.354)
V=loe A (—) 2
is a unit time-like bivector. The rotor R in this case can be expressed by
1
R = —exp (§QB> . (2.355)

The rotation in question is a hyperbolic rotation by a hyperbolic angle o through the
plane given by the unit time-like bivector B in the sense from —u; to us (or, equivalently,
in the sense from u; to —uy). Note that the negative sign in the expression for the rotor

R has no influence in the result of its application in a vector.

A rotation of type II can be expressed by
v = v/ = RvR™' = RVR, (2.356)

where R = uou; and u;? = uy,? = —1. In this case, the rotor R can be written

0 0
R=uy-u; +uy Au; = cos (5) + sin (5) B, (2.357)
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where 0/2 is the angle between u; and uy, and

A
= At (2.358)
[y Ay |
The bivector B satisfies B? = —||B||5? = —1 and is called a space-like bivector. Expressing

the cosine and sine functions in the expression for R as power series, one can write

R =exp (%93) : (2.359)

Analogously to the case of rotations in the three-dimensional Euclidean space, the rotation
given by (2.356), where the rotor R is given by (2.359), it is found to be a “circular” or
a “spatial” rotation (to differ from hyperbolic rotations) by an angle 6 through the plane

given by the unit space-like bivector B, in this case, in the sense from u; to us.

A general rotation in spacetime is given by
v — v = RvR™' = RVR, (2.360)

where

R=LU, (2.361)

with L being a rotor describing a hyperbolic rotation and U being a rotor describing a
spatial rotation. Such a general rotation in spacetime can be extended to be applied to a

generic multivector A through the expression

A — A'=RAR™' = RAR. (2.362)

Note that, as in the three-dimensional Euclidean case, the set of the rotors of Cf; 3™

can be characterized as
{R ‘ ReCl s and RR=RR = 1} . (2.363)

As in the three-dimensional Euclidean case, it is easy to verify that the set of rotors
endowed with the geometric product has the structure of a group. This group is denoted

by Spin, (1, 3), and a rotor of C¢; 3 can be characterized as an element of this group.

The fact that the rotors R and —R produce the same rotation is an expression of
the fact that Spin, (1,3) is a double covering of SO, (1,3) (i.e. there is a two-to-one
correspondence between rotors from Spin_ (1,3) and special orthogonal transformations
in spacetime). Since it is known that the group SL(2,C) is also a double covering of
SO4(1,3), one can conclude that Spin, (1,3) is isomorphic to SL(2, C).
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In the same way as an even grade multivector ¢ from Cls3," can be written in the
form ) = \/pR, where p € R and R € Spin(3), an even grade multivector from C/; 3"
admits also a factored form, as can be seen below. Given an even grade multivector
from Ct; 3%, it follows that Y is also an even grade multivector, and it is equal to its

reverse. Then, ¥ is a scalar plus a pseudoscalar, which can be written as

v = pe'?, (2.364)

where p, 5 € R and p > 0. In this way, from ¢ one can define an even grade multivector

of unit pseudo-norm, more precisely a rotor, given by

R=p(gg) 2 = pptedl? (2.365)

From this expression it follows that 1 can be written as
W= prea’PR, (2.366)

which is the desired factored form for ¢». Thus, any even grade multivector of the geometric
algebra of spacetime can be factored as a geometric product of a scalar, an exponential

of a pseudoscalar and a rotor.



3 Relativistic Physics in terms of
Clifford Algebras

Based essentially on chapters 5 and 7 of the textbook by Doran and Lasenby (2003),
this chapter is intended to serve as a concise introduction to the basics of the relativistic
formalism in terms of the geometric algebra of spacetime. The focus is on the Lorentz
transformations and the covariant formulation of Maxwell’s equations. Any standard
introduction to relativity can be considered as a background reference, e.g. the texts of
Rindler (2006) and d’Inverno (1992). For the part on Maxwell’s equations, the texts by
Jackson (1999) and Schwinger et al. (1998) are taken as background references.

3.1 Preliminaries

It is natural that the three-dimensional Euclidean space is included in the Minkowski
spacetime. In this way, it is very sensible to propose an inclusion of Cl3 into C¢; 3. In
order to introduce and apply this inclusion, appropriate notations and conventions must

be used.

3.1.1 Notation and Conventions

Regarding the notation to be used, vectors from R? are represented by letters in boldface
(usually lowercase, not necessarily Latin), e.g. a, b, a, 3, etc. In particular, the canonical
basis from R? is represented by {o, o9, a3}. Vectors from R are represented by letters
in normal font (usually lowercase letters, not necessarily Latin), e.g. a, b, a, (3, etc. In
particular, the canonical basis from R"3 is represented by {70, 71,72, 73}. As a convention,
unless specified, lowercase Greek letters (e.g. p, ) are used to represent indices assuming
integer values from 0 to 3, and lowercase Latin letters (e.g. 7, j, k) are used to represent
indices assuming integer values from 1 to 3. The Einstein summation convention is also
used: if an index appear twice in a term, once as subscript and once as superscript, then

a summation is implied with relation to this index (e.g. the vector a = 22:0 at'~y, can be
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expressed simply by a = av,).

3.1.2 The Isomorphism Cl3y ~ Cl; 3"

Note that the basic time-like bivectors from C¢; 3, Y170, V270 and 37, are all square roots

of the unit and satisfy

1 1
5@%%%%%%%%%%%@)=§P%%—7ﬁ0=—%~w=@m (3.1)
Note also that
1 1
50%%X%%%ﬂ%%ﬂ%@)=§kww+%%)
1
= 5( — €ijk K (vev0) + €ji0 * (W%))
= —€jjk * (7e0)

= el (M0) = V5 A Y (3.2)

where I = 9717273 is the unit pseudoscalar of C¢; 5. The sum of (3.1) and (3.2) then

furnishes

(7i70) (7570) = i + €L (Ve0), (3.3)

which is either a scalar or a space-like bivector. The basic space-like bivectors can be

expressed as I(7;70), and from relations (3.1) and (3.2) one can write also

= (3030 + (T30)(T30)) = —5 () 70) + () (20) ) = 65 (39)

and
1 1
5 ((I%%) (Iv570)—(I7570) (Mﬂo)) =3 ((%’Yo) (v570)—(j70) (%70)) =—€ikl (Vev0), (3.5)
the sum of which gives
(Iviv0) (Iy57%0) = =05 — €ijid (W0), (3.6)

which in turn is either a scalar or a space-like bivector. Also from relations (3.1) and (3.2)

one can write

%((%70)(1%‘70) + (Mﬂo)(%%)) = ]% <(7ﬂo)(7ﬂo) + (%‘70)(%70)) = 01 (3.7)
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and

2 (630) (T30~ T30 (0630)) = I3 ((130) (70) — (20 (4630)) = —es(eo)- (3.8)

whose sum gives
(iv0) (Lv70) = 0i31 — €ijr.(0), (3.9)

which in turn is either a pseudoscalar or a time-like bivector. The relations (3.3), (3.6)
and (3.9), in conjunction with the relations for the products involving 1 and I, determine

the product of the even subalgebra C¢; 37 in terms of the basic even grade multivectors.

On the other hand, the basic vectors oy, o3 and o3 from Cl;; are also found to be

square roots of the unit and satisfy relations analogous to (3.1) and (3.2), that is,

1
and .
5(0'2‘0']'—0'3'0'2‘):O'Z'/\O'jzﬁijkla'k, (311)

where, in this case, I = 010303 is the unit pseudoscalar from Cl3o. The sum of the
relations (3.10) and (3.11) provides

which is either a scalar or a bivector. From relations (3.10) and (3.11) one can write

1
and |
5([0'1»10']- —lojlo;) = -0, No; = —¢€jloy, (3.14)
whose sum gives
(Io;)(Ioj) = —6i; — el o, (3.15)

which in turn is either a scalar or a bivector. Also from relations (3.10) and (3.11) one

can write .
and )
5(0'1[0]—[0']0@) :[<Uz/\0'j) = —€jkOk, (317)
whose sum gives
(O’l)(IO'j) = 51][ — €ijkOk, (318)

which in turn is either a pseudoscalar or a vector. The relations (3.12), (3.15) and (3.18),
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in conjunction with the relations for the products involving 1 and I, determine the product
of the algebra Cl3 . It is remarkable that these relations are identical to (3.3), (3.6) and
(3.9), respectively, if one replaces o; by ;7. In addition, note that this replacement
implies

010103 = (7170)(7270)(7370) = Y0Y17273, (3-19)

which is compatible with the correspondence between the pseudoscalars from both sets of
relations. The conclusion is that the geometric algebra of the three-dimensional Euclidean
space is isomorphic to the even subalgebra of the algebra of Minkowski spacetime through
the identification of o; with v;v9, and through the identification of the units and the
geometric products of both. This fact is denoted by Cl39 ~ C¢; 3. This isomorphism

determines the inclusion of Clsy into C/y 5.

In applications involving the geometric algebra of spacetime, it is common practice
to use the isomorphism Cl3o ~ Cl; 3% and set o; = 7, in addition to the use of the
same notation for the pseudoscalars from the equivalent algebras. In this context, the
time-like bivectors, which correspond to three-dimensional vectors, are denoted as such,
in boldface, and scalar and exterior products involving only vectors denoted in boldface
correspond to the three-dimensional Euclidean scalar and exterior products. Otherwise

the products are interpreted as those from the geometric algebra of spacetime.

According to the isomorphism Cl;5 ~ Cl; 37, scalars from Cl3 are mapped to scalars
from Cl 3T, vectors from Cl3( are mapped to time-like bivectors from C¢; 3T, bivectors
from Cl3 are mapped to space-like bivectors from C¢; 37, and pseudoscalars from Cls
are mapped to pseudoscalars from C¢; 37. In this respect, one notes that the reversion
operation for Cl3, is not coincident to that for C¢; 3. The three-dimensional Euclidean
reversion operation is then denoted by a superscript dagger symbol, e.g. Af, while the

spacetime reversion continues to be denoted by an overwritten tilde symbol, e.g. A.

3.2 Relativistic Observables

As outlined before (cf. subsection 2.3.3), adopted a canonical reference frame, determined
by the canonical basis of RY3, the trajectory of a particle with non-null mass in spacetime
is a time-like curve, that is, a curve with a time-like tangent vector. The trajectory of
light (or a massless particle, in general) is a light-like curve. Since two events with a
space-like separation do not have a causal connection, space-like curves cannot represent
trajectories of known particles. These facts are consequences of the two postulates of
the special theory of relativity, the principle of relativity and the invariance of the speed
of light c¢. Thus, all of the above applies only if the canonical reference frame adopted

complies with the principle of inertia of classical mechanics.
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A natural parameterization for a curve is made through its length ¢, since a curve
parameterized by its length has unit tangent vector. For a time-like curve, one writes
¢ = cr1, where the new parameter 7 corresponds to the elapsed time for an observer
following this curve, the proper time associated to the curve. For a massive particle

following a curve x = x(7), the spacetime velocity v = v(7) is defined by

dx

dr’

(3.20)
where the dot denotes the derivative relative to the proper time. It follows that the

spacetime velocity for such a particle is proportional to the unit tangent vector, with

proportionality constant ¢, so that
v? =’ (3.21)

Since different time-like curves can have different lengths, particles in relative motion

experience time elapsing differently.

An observer is defined by a time-like curve parameterized by its proper time and
oriented to the future. An inertial observer, in particular, is given by a time-like straight
line. Such an observer has constant spacetime velocity. In this way, an inertial observer
can construct a reference frame given by a basis {eg, €1, ea, €3}, where e = 0 = v /¢, with
v being the spacetime velocity for the observer, and {ej, s, e3} a set of orthogonal unit
space-like vectors mutually orthogonal to ey and whose implied orientation follows the

right-hand convention. The reciprocal basis {€°,el, e?, €3} is defined by
el e, =0",, (3.22)

in such way that

e’ =¢ and ¢ = —e;. (3.23)

Therefore, if an event is given by a vector x, its coordinates relative to the reference frame

constructed by the above inertial observer are
' =z-e' and z,=1x-¢, (3.24)

and the event can be expressed in terms of the basis constructed by the inertial observer

and its reciprocal basis as
r=ale, = (zr-e')e, and z=uz,e'=(z-¢,)e". (3.25)
Such an event can then be written

T = cteg + 1'ey, (3.26)
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where ct = 2° = x,. Its space-like component can be written as

vle; =1 — (1v-e)ey = 200 — (x-0)0 = (20 — - 9)0 = (z A D)D. (3.27)

The time-like bivector x A © corresponds to a vector in the three-dimensional Euclidean

rest space of the inertial observer of spacetime velocity v, defining the relative position of
the event x, which is denoted by

X =1z A0. (3.28)

This correspondence is explained by the fact that an inertial observer with spacetime
velocity v “splits” the Minkowski spacetime in two subspaces, “time” and “space”, the
first generated by its spacetime velocity, while the second is the orthogonal complement
of the first and corresponds to the hyperplane orthogonal to the vector v. A vector
z'e; = (x A 0)0 from the hyperplane orthogonal to v is identified with the time-like
bivector x A v, which according to the ismorphism Cl3o ~ Cl; 3", corresponds to the
three-dimensional vector x representing the three-dimensional position of the event x
according to the above mentioned inertial observer. For this observer, the time of the

event x is ¢t = x - 0. Note then that
=z-0+xAN0=ct+X, (3.29)

which allows one write the magnitude of x as

2 =x0tr = (x-0+aAD)(x-0+0AT) = (ct +x)(ct —x) = *t* — x°. (3.30)
This corresponds to the invariant interval between x and the origin in terms of the time and
distance as measured by the inertial observer with spacetime velocity v. Another inertial
observer, with a different spacetime velocity, performs a different “split” of spacetime, so
that it expresses the event x in a different, but equivalent way, in such a manner that the

measured interval is the same.

Given an inertial observer with spacetime velocity v and a massive particle following
a trajectory given by x = z(7), with a spacetime velocity u = u(r) = &, where 7 is the
proper time of the particle, one has
d d
ud = — (20) = —(ct +x 3.31
dT ( ) dT( )7 ( )
where x -0 = ¢t and x = x A0 correspond to the relative time and position for the particle

as measured by the observer. In this way, it follows that

dt dx

E:ﬁw} and — =uA0. (3.32)

dr
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The relative velocity u of the particle, as measured by the inertial observer of spacetime

velocity v, is therefore given by

dX_dXdT u AU UwAD

e - , 3.33
T T a0 Cao (8:33)
From this expression, it follows that
(E>2 C@ne)?  (@Ad)(0AD)
c (@-9)° (@-9)°
(b —a-0) (00— - 0)
(4 -9)°
_ad0a — (4 + 00) (@ - 0) + (4 9)”
(@-0)°
1 —2(a-9) (@ 0) + (a-9)°
(- 0)°
1
=1—- —
(i - 0)
<1, (3.34)

that is, the relative velocity of a massive particle as measured by an inertial observer has

magnitude less than the speed of light. The Lorentz factor v is given by

1 1
y? = — = = (G- 9)°. (3.35)
=" 1= (1-55)
(4-0)
The spacetime velocity of the particle can then be written
u=ut0=(u-0+uA0d)0=cyv+yuo, (3.36)

which is the sum of a component along the spacetime velocity v of the observer and a

component belonging to the hyperplane orthogonal to v.

If the above considered massive particle has mass m, its spacetime momentum or

energy-momentum is defined by
p = mu. (3.37)

The inertial observer with spacetime velocity v measures the energy and momentum for
the particle as
E . R
—=p-0 and p=pA0. (3.38)
c

The energy-momentum of the particle can then be written

E
p=piv=(p-0+pA0)0=—0+ po, (3.39)
c
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which is the sum of a component along the spacetime velocity v of the observer and a
component belonging to the hyperplane orthogonal to v. Note that the magnitude of the

energy-momentum of the particle is
p? = (mu)? = m*c?, (3.40)

which in terms of the energy and momentum as measured by the observer is given by
A . N S E E E?
pP=pitp=(p-0+pAd)(p-D+DAp) = <z—|—p> <€—p) === 2. (3.41)
Thus, it follows that
E? 2 2

g—pgzmc. (3.42)

The spacetime acceleration of the considered particle is defined by

du

U= e (3.43)
It follows that spacetime acceleration and velocity are orthogonal:
o= 2L (v?) =20 u. (3.44)
dr
A useful concept is that of the acceleration bivector, given by
B, =1 A u=uu, (3.45)

which corresponds to the three-dimensional acceleration of the particle relative to its own

instantaneous reference frame.

3.3 Lorentz Transformations

3.3.1 Lorentz Boosts

Consider two inertial observers, each with its reference frame (constructed as described
in the previous section), given by the bases {eg, €1, ea, €3} and {€y, €'y, €2, €'3}. A generic

event x has the respective coordinates
t=x-e and 2=z (3.46)

relative to these reference frames. If the inertial observers construct their reference frames

Uand 2% = 2’2 for any event, and so that for (z!,2% 23) =

in such way that ! = 2
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(2’1, 2%, 2"3) = (0,0,0), one has ¢t = 2° = ¢t' = 2% = 0, then the coordinates of a generic

event according to these inertial observers are related by the coordinate transformation
ct' = y(ct — B2*), 2t =2', 2?=2% 27 =~5(z* - Bet), (3.47)

where (3 is the speed of the second observer relative to the first, in units of the speed of
light, and v = eg - €'y = (1 — 3?)~/2 is the Lorentz factor. Such a transformation is called

a Lorentz boost, or simply boost. The inverse transformation is given by
ct =(ct' + B2, z'=2", =27 2% =~ + Bet). (3.48)
Since the generic event x can be expressed by
r = ate, = a'te,, (3.49)

the inverse coordinate transformation, taking into account that €’y = e; and €’y = ey,

imply:

ct'ey + 13’5 = cteg + xies
= y(ct' + Bz'*)eg + (2" + Bet)es
=ct <7(eo + 563)) + 2 ('y(,@eg + 63)>. (3.50)

This relation in turn implies

e'o =(eg + Bes) and €3 =v(Bey + e3), (3.51)

which express the considered Lorentz boost in terms of a reference frame transformation.

The relation
P(1-p)=1 (3.52)

suggests a parameterization of the Lorentz boost in terms of a parameter o such that
v =cosh(a) and S = sinh(«). (3.53)
In this way, one can write:

'y = cosh(a)eg + sinh(a)es
= (cosh(a) + sinh(a)6360> €o

= exp(aezep)en (3.54)



CHAPTER 3. RELATIVISTIC PHYSICS IN TERMS OF CLIFFORD ALGEBRAS 89

and

e's = sinh(a)eg + cosh(a)es
= (cosh(a) + sinh(a)ege()) es

= exp(aezep)es. (3.55)

But, both eg and e3 anticommutes with the bivector esey, which allows one write also:

1 1
€y = exp <§Oé€3€0> eo exp (—5066360) (3.56)

and
, | 1
¢'s = exp | jaeseq | ezexp ( —gaese | . (3.57)

Since both e; and ey commutes with the bivector ezey, one can express the considered

Lorentz boost in a general way by

¢', = Re,R, (3.58)

where

1
R =exp (5066360) : (3.59)

It is immediate that the considered Lorentz boost is precisely the hyperbolic rotation
of the basis {e,} through the time-like plane ezey by a hyperbolic angle o in the sense
of increasing hyperbolic angle. Since the relative speed = tanh(«) increases with the
increase of & and 8 — 1 as o — oo, the hyperbolic angle in this context is usually called

rapidity.

3.3.2 The Lorentz Group

A restricted Lorentz transformation is the composition of a Lorentz boost and a spa-
tial rotation. Since a Lorentz boost corresponds to a hyperbolic rotation, a restricted
Lorentz transformation corresponds to a general rotation in spacetime. In this way, the
group formed by restricted Lorentz transformations, called the restricted Lorentz group,
it is found correspond to the group SO, (1,3). Since Spin, (1, 3) is a double covering of
SO4 (1, 3), the restricted Lorentz group can be represented by Spin, (1, 3), and a restricted

Lorentz transformation can be expressed by

v = v = RvR, where R € Spin,(1,3). (3.60)
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A restricted Lorentz transformation is also known as a proper orthochronous Lorentz
transformation, because it is both a time-order-preserving transformation and a parity-
preserving transformation, that is, a transformation preserving both the orientation of
time-like components of vectors (future or past) and the orientation of a three-dimensional
volume element. A reflection through a hyperplane with time-like orthogonal vector, also
called a time reversal, is a time-reversing transformation and is also a parity-preserving
transformation, e.g. I — —~ylyy = I. Conversely, a reflection through a hyperplane
with space-like orthogonal vector is a time-order-preserving transformation, but a non-
parity-preserving transformation — the composition of three such reflections, in non-
coplanar directions, is called a parity inversion, and is also a time-order-preserving but
non-parity-preserving transformation, e.g. I +— y9lvy = —I. The composition of a proper
orthochronous Lorentz transformation with a time reversal is a time-reversing and parity-
preserving transformation. On the other hand, the composition of a proper orthochronous
Lorentz transformation with a parity inversion is a time-order-preserving and non-parity-
preserving transformation. In turn, the composition of a proper orthochronous Lorentz
transformation with a time reversal and a parity inversion is a time-reversing and non-
parity-preserving transformation. All transformations considered preserve distances and
angles in Minkowski spacetime and compose a group of transformations called the Lorentz
group. As described above, the Lorentz group has four sectors, which are summarized in
the table 3.1. The sector of proper orthocrhonous transformations, corresponding to the
subgroup of restricted Lorentz transformations containing the identity transformation, is

the most relevant in physics and is often called itself the Lorentz group.

parity-preserving non-parity-preserving

time-order-preserving || proper orthochronous (PO) | PO with a parity inversion

time-reversing PO with a time reversal PO with a — —a

TABLE 3.1 — The four sectors of the Lorentz group.

3.3.3 Invariant Decomposition of a Rotor

Any rotor from G(R"?) can be written in terms of a bivector B in the form
R = +e25, (3.61)
If the bivector B is non-null, that is B2 # 0, and since B? = EQ, one can write

B2 = <B2>0 + <BQ>4 = ,0614), (362)
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where p and ¢ are scalars and p # 0. Consider then the bivector

e 2B, (3.63)

D=

B= P
so that
B? = (p_%e_%M’B) <p_%e_%]¢B> =p e *B? =1. (3.64)
Therefore, the bivector B can be written in terms of the unit time-like bivector B as
B = pzex!?B, (3.65)
that is,
B =aB+pIB, (3.66)
where o = ,0% coS (%qb) and g = p% sin (%qb) Since
B (11}?) - (u%) B=1, (3.67)
the rotor R = +e2? can be decomposed as
R = e2%BeafIB — ¢2P1Be30B, (3.68)

This is an invariant decomposition of the rotor R into a boost, generated by B, and a

spatial rotation, generated by I B.

3.3.4 Observer-Dependent Decomposition of a Rotor

Given spacetime velocities v and v, the rotor L transforming u into v through a pure
boost,
v=LulL, (3.69)

is necessarily generated by the unit time-like bivector determined by u and v,

v AU
v Aul’

(3.70)

where |v A u| is an abbreviated manner to write y/—||v A ul[,2. The rotor L can then be

written as )
vAU
L= — 3.71
eXp (2&|UAU|)’ ( )

where « is the hyperbolic angle between u and v. It is also possible to determine the rotor
L transforming u into v through a pure boost, taking into account that such a boost can

be decomposed into two reflections, first the reflection through the hyperplane orthogonal
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to the vector w = (u + v)/|u + v|, then the reflection through the hyperplane orthogonal

to the vector v. The resulting transformation is given by
u = (—v(—wuw)v) = vwuwo, (3.72)

so that the rotor L can be written

1
L:vw:v(u+v>: it : (3.73)
lutol) (ut o) (utv)
that is,
1
[ (3.74)
V2(1+u-v)
This is not the unique rotor performing the required boost, the rotor
1
—vw = S (3.75)
2(1+u-v)

also performs the same boost.

It is natural to question the form for a general rotor transforming w into v. For

simplicity, set u = 7. The pure boost for this transformation can be taken as given by

1 1 A
+U% exp (ﬁau) . (3.76)

V20 +v-0) [v Aol

Then, one can define the rotor U given by

the rotor

U=LR, (3.77)
where R is the general rotor desired. Note that U satisfies
UU = LRRL =1, (3.78)
as required for a rotor. The rotor U also satisfies
U~oU = LRy RL = LvL = ~y, (3.79)

that is, U commutes with ~y and its action has no effect under . Thus, one must have

1
U = exp (5110) : (3.80)

where b is relative vector according to an inertial observer with spacetime velocity 7, so
that Ib is a space-like bivector generating pure spatial rotations in the reference frame

constructed by its observer. The rotor U is then a pure spatial rotation and the general
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rotor R can be written
R=LU. (3.81)

Differently from the invariant decomposition given by (3.68), the rotors L and U do not
commute in general. Since the rotor U is constructed in such way that its action does not

affect the velocity 7o of the observer, this decomposition is observer-dependent.

3.4 Maxwell’s Equations

Classical electrodynamics is founded in Mazwell’s equations, which in terms of SI units

are usually written as:

B
V.D=p, V><E+aa—t:0,
(3.82)
V. -B=0, vxa-2P_j
ot

In these equations, p and J are the free electric charge density and free electric current
density, EE and B are the electric field and magnetic induction field, D and H the electric
displacement field and the magnetic field. The latter two quantities are defined by

D=¢E+P and H= iB — M, (3.83)
Ho

where the constants ¢y and pg are the electric permittivity and magnetic permeability of
vacuum, P is the electric polarization field (the electric dipole moment density) and M
is the magnetization field (the magnetic dipole moment density). In general, Maxwell’s
equations must be complemented with constitutive relations which relate P and M to E
and B, or equivalently, relate D and H to E and B. In some applications, additional
constitutive relations may be needed. Also essential, especially for description of the

motion of electric charged particles, is the Lorentz force law,
F =¢(E+v xB), (3.84)

which gives the force acting on a particle of electric charge g and velocity v in the presence

of electromagnetic fields.

In the vacuum, the polarization fields are null, the free charge and current densities
correspond to the total charge and current densities, and the macroscopic fields are given

by D = ¢oE and H = B/p. In this case, defining ¢ = 1/(po€0), Maxwell’s equations can



CHAPTER 3. RELATIVISTIC PHYSICS IN TERMS OF CLIFFORD ALGEBRAS 94

be written as:

v.E="2, vxE=_ 2B
€0 ot
(3.85)
1 OE
V-B=0 VxB=—— J.
) X 2 Ot + Mo
Using the relation V x a = —I(V A a), the equations can be rewritten as:
p 0
. E= £ ANE=—-——(/B
V 60’ V at( )7
(3.86)
1 OE
V-B=0 VAB=1|=— J].
Summing the first and the second pair of the above equations gives:
1 0
E=—p——(IB
VE="p 5 UB);
(3.87)
1 OE
VB=1|—-— J].
(02 ot +Ho >
This pair of equations can be rewritten as:
1 1 10
-E)=—p—-——-—(IB
v (c ) ceo c (9t( )
(3.88)
10 (1
IB)=—ppgJ — —— | —E
V(B Ho cot <c )
This new pair of equations can be combined to form
1 10 (/1
V(-E+1IB -——(-E+IB ) = —J). 3.89
(C ¥ )%at(c ¥ ) polcp — 3) (3.89)

The equality between even grade terms and the equality between odd grade terms (vectors,
in this case) in this equation imply that the equations (3.88) are equivalent to equation
(3.89). This resulting equation is entirely written in terms of the geometric algebra of
three-dimensional Euclidean space, Cl3o. But there is the isomorphism between this
algebra and the even subalgebra of spacetime algebra: Cl3 ~ Cl; 3. This isomorphism
consists in the correspondence between vectors from C/l3, and time-like bivectors from
Cl1 3™, and between bivectors from Cl3 o and space-like bivectors from C¢; 37, in addition
to the correspondence between scalars from both algebras and the correspondence between

pseudoscalars from both algebras. In terms of the spacetime algebra, the multivector
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E/c + IB in the equation (3.89) is a bivector, which is denoted by F' and called the
Faraday bivector,

1
F="E+IB. (3.90)

The Faraday bivector represents the covariant form of the electromagnetic field strength.

The equation (3.89) can now be written

10
VFA+ ——F = puo(ecp—J 3.91
S = po(ep— ) (391)
and be understood in terms of the spacetime algebra. In order to write this equation
in manifestly Lorentz covariant form, consider that the quantities present in it reflect
measurements performed by an observer which, having normalized spacetime velocity o,
employs a spacetime reference frame represented by a basis {7, } of Minkowski spacetime,

satisfying
Y Y =1, Y v =0, and Y - Y = —0ij, for i,7 € {1,2,3}. (3.92)

Consider also that this basis has reciprocal basis {7*} (that is, the basic vectors y* are
related to those of the first considered basis by v* - v, = ). In terms of these basis, the

spacetime vector derivative can be written

0
— B — M
V=90 =" (3.93)
where z#* = x - " are the coordinates of the spacetime position vector x, as measured by
the above considered observer. The three-dimensional vector derivative V in the equation

(3.91) can then be written
0

V =00, = a,-%, (3.94)
where the spacetime time-like bivectors a; = 7,7 correspond algebraically to the three-
dimensional basic vectors defining the three-dimensional orthonormal basis employed by
the observer to measure the relative quantities represented in his/her three-dimensional
rest space. Now, observe that the geometric product of the spacetime derivative with 7y,

to the left, gives

10

10V =707"00 +707'0; = %7000 = 0% = O + 0i0; = — 5 + V. (3.95)
Therefore, the equation (3.91) can be written:
Y VE = po(cp —J). (3.96)

Finally, introduction of the spacetime electric current density J, which is a spacetime
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vector related to the charge density p and three-dimensional current density J by
J v =cp and J Ny =1, (3.97)

furnishes
Cp—J:J"YQ—J/\’}/():’YO'J—F’YQ/\J:’V()J. (398)

Thus, from this equation, using the fact that the geometric product with ~q is invertible,

the equation (3.96) can be written
VE = pol. (3.99)

This is the representation of Maxwell’s equations for fields in vacuum in the geometric

algebra approach, which is Lorentz covariant as desired. From (3.99) it follows that
V2F = uoVJ = 1oV - J + oV A L (3.100)
The scalar part of this equation is
V-J=0, (3.101)

or, equivalently,

0=V -J=(VJ)=(wVJy) = <(%% +V> (cp—l—J)> = % +V.J, (3.102)

which is the continuity equation expressing charge conservation, implicit in Maxwell’s

equations.

3.4.1 Relationship with the Component-Based Version
Equation VF = pgJ can be split into
V- F = poJ and VAF=0. (3.103)
These correspond to the tensor equations
O F" = poJ” and "0, F,, = 0. (3.104)

In these equations, d, = 7, -V and J* = 4# - J are respectively the components of the
spacetime vector derivative and spacetime current density relative to the reference frame

given by the basis {v,} and its reciprocal basis {y*}, €#? represents the totally anti-
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symmetric symbol of rank 4, and F),, and F'*” are the components of the electromagnetic
field strength in terms of the basis {,} and its reciprocal. These field components can

be obtained from the Faraday bivector through
Fow=% - F)=wA) - F and  F"=9"-(y"-F)=("A"")-F. (3.105)

In the usual matrix form, these components are represented by

0 E,/c E,/Jc E,/c
_E, 0 -B. B
(F) = /e v (3.106)
-E,/c B, 0 —B,
—E.,Je =B, B, 0
and
0 -E,/Jc —E,/c —FE./c
E, o -B. B
(Fm) = /e v (3.107)
E,Jc B, 0 -B,

E.Je =B, B, 0
where is used Fy; = —F% = E'/c and F;; = F7 = —¢;;;,B*, with i,j,k € {1,2,3}, and

with (E', E? E®) = (E,, E,, E,) and (B, B*, B®) = (B,, B, B.).
3.4.2 Vector Potential
As seen above, equation VF = pgJ can be split into
V-F=ypJ and VAF=0. (3.108)

From the fact that VAV A M = 0 for any multivector field M, the second equation above

is automatically satisfied if F' is written as
F=VAA, (3.109)

where A is a vector field. This vector field is known as the vector potential. An observer
with normalized spacetime velocity 7y measures the vector potential A split into a scalar

potential ¢ given by ¢/c = A -~y and a three-dimensional vector potential A = A N 7.

Note that, A is defined modulo the gradient of a scalar field A:
VAA+VAN)=VAA+VAN=VAA+VAVAIN=F. (3.110)

For historical reasons, this freedom in defining the vector potential is known as a gauge
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freedom. This residual freedom can be eliminated in order to obtain a wave equation for A.
This process is usually called a gauge firing, and it is also necessary for the quantization
of the field. From the first equation in (3.108),

V- (VAA) =V2A+V(V-A) = o, (3.111)
so, a natural way to fix the gauge of the vector potential is to impose that
V-A=0, (3.112)

in such way that
F=VA and VA=l (3.113)

Equations (3.113) provide a way to solve Maxwell’s equations: solve the associated wave
equation for A and then compute F' from F' = VA. Equation (3.112), which is known as
the Lorenz gauge condition, does not totally specify A, but the remaining freedom can be

eliminated by imposing appropriate boundary conditions to the problem.

3.4.3 Electromagnetic Field Transformation

As seen above, in the geometric algebra approach, the electromagnetic field strength is
represented by a Lorentz covariant bivector, the Faraday bivector, which has the standard
form

P %E + 1B, (3.114)
where E and B are time-like bivectors representing respectively the electric and magnetic
fields as measured by an observer. Consider this observer as having spacetime velocity
Y. Consider then that this observer employs a spacetime basis {v,} such that v* = 1,
Yoy =0, and 7; - v; = —d;;, for ¢ and j in {1,2,3}. In terms of this basis, the electric

and magnetic fields can be expressed
E = F'o; and IB = B'Io;, (3.115)

where o; = ;7. Thus, one finds that these fields can be obtained separately from the
Faraday bivector F' = E/c+ IB by

1 1 1
EE = Q(F — Y% F%) and IB = §(F + Y E"). (3.116)

These expressions show that the decomposition of F' into E/c and IB is dependent on the
observer (normalized) velocity o, which implies that observers in relative motion measure

different fields. This can be quantified by supposing a second observer of normalized
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spacetime velocity v = R’yoé, where R is a spacetime rotor. This observer is associated
to the basis

Y= RyR, (3.117)
and measures a electric field of components E such that

1_ .
EEIZ — F,Oi

=(YinYo) F

— (oiRFR)

— 0, (RFR) , (3.118)
and a magnetic field of components B" such that (with summation only relative to j and
k in all steps and using the relation o; A 0; A o), = €] in the ultimate step)

_B/i — eka/jk

= (" A7) - F

= €k <ch- (o Noj A 0'k>) : (RFR)
— (o) (RFR). (3.119)
These correspond to the components of the electromagnetic field strength REFR in the

{7} basis, as seen in the subsection 3.4.1. Thus, under a Lorentz transformation given

by the rotor R, the electromagnetic field strength transforms as F — RFR.

Remember that the rotor R can be written in terms of the normalized velocities © and

v and the hyperbolic angle o between them (the rapidity) as

-
R =exp (— CRAML: a) . (3.120)

Remember also that the three-dimensional velocity of the second observer relative to the
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first (conveniently taken in units of speed of light) is

>

A 0 A 0 A inh AWAN
v= A0 0h% _ DA% sinh(e) OG0 oy (3.121)
-  cosh(a) |0 A|cosh(a) [0 Ao

where cosh(a) corresponds to the Lorentz factor v and tanh(«) is the relative speed /3 (in

units of the speed of light). The rotor R can now be written

1
R =exp (5\7(1) : (3.122)

where v = v/ tanh(«). Consider then F' in terms of components parallel and orthogonal
to v,
F=F+F, (3.123)

such that
vF| = Fv and vF, =—-Fv. (3.124)

In this way, the field components parallel and orthogonal to v as measured by the second

observer are

- 1 1
F'y = RF|R = exp (—5\7@) Fjjexp <§<foz) = F| (3.125)

and

- 1 1
F'\ = RF|R = exp (—5\704) F| exp <§\704)
=exp (—va) F|.
= (cosh(a) -V sinh(oz))FL

=(y—v)FL

Therefore, the observers measure the same components of electric and magnetic fields in
the direction of the relative motion, however the components orthogonal to the relative

motion are such that

F/J_:E/J_‘i_IB/J_:’Y(l_V)(EJ_‘i_IBJ_)
=vE, +4IB, —ywWAE, —~4I(vAB))
:’yEL—f-’}/IBL—’yIVXEL—I—’yVXBL, (3127)

where is considered the fact that the orthogonality of v in relation to E; and B, implies

that the geometric product of v with either of these fields is an exterior product. Equation
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(3.127) express:
E/J_:’V(EJ_—FVXBJ_),
(3.128)
B/J_:’y(BJ__VXEJ_).

These are the known expressions for transformation of the field components orthogonal
to the relative velocity between the two observers. Observe that the transformed fields
has new components, but also relative to the {v,} basis, that is, the transformed fields

are formed as E' = F"0; and B’ = B'o;.

Since the square of a spacetime bivector is a scalar plus a pseudoscalar, it is noted

that the square of the electromagnetic field strength is Lorentz invariant. Indeed, if
F? = (FF) + (FF)y = ag + lay, (3.129)

then
(RFR) (RFR) = RF?R = F? = ay + Iay. (3.130)

Both the scalar and pseudoscalar parts are independent of the reference frame. According

to the first observer, these are

1 1 1
ag = < (—E + IB) (—E + IB) > - SE’ - B’ (3.131)
& c c

ay = (I"'F?) = <(—1) (%E + IB) (%E + IB)> = % E-B. (3.132)

The first Lorentz invariant above appears in the expression of the Lagrangian density for

and

the electromagnetic field. The second encodes the relative orientation of the electric and

magnetic fields.



4 Quantum Mechanics Revisited:
From the Classical, through the

Algebraic, to the Geometric Picture

This chapter is designed to serve as an outline of the emergence of Clifford algebras
in quantum mechanics, as well as to explain concisely how such algebras provide an
alternative language to express it. This is accomplished by transitioning from the “classical
picture”, based on the classical definition of a spinor, to the “algebraic picture”, based on
the algebraic definition of a spinor, which leads naturally to a “geometric picture”, based

on the operator definition of a spinor.

4.1 Non-Relativistic Theory

This section, on non-relativistic states, begins with a contextualization, based on chapter
6 of the textbook by Piza (2003). A better-known English text, such as chapter XIII
of Messiah (2014), for example, can also be taken as reference. These textbooks can be
taken as background references for the well-established quantum-mechanical concepts to

be introduced in the remaining subsections.

4.1.1 Introduction

The observation of the splitting of the spectral lines of the hydrogen atom evidences the
existence of a structure of four states associated with the fundamental energy level of
the simple model for the hydrogen atom, which is based on classical analogies. This
fact suggests that such a simple model needs improvement through the introduction of
additional degrees of freedom. Since this is a two-body system, one can conjecture that
both the proton and the electron possess, in addition to the degrees of freedom associated
with position, intrinsic properties associated to observables acting in a two-dimensional

state space. This hypothesis is supported by experiments, which suggest that the supposed
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additional degrees of freedom have a character similar to angular momentum. If such

an intrinsic angular momentum is represented by a vector observable § = (8§, 82, §3),
whose component operators satisfy commutation relations analogous to those for angular
momentum,

(85, 1] = ihejusi, (4.1)

then the eigenvalues of §% are of the form A%s(s+ 1), where s is an integer or semi-integer
number. The number of states associated to a specific s is 2s + 1, which is 2 for s = 1/2.
Thus, by associating to both proton and electron an intrinsic angular momentum, or spin,
as it is currently termed, associated with s = 1/2, the state space of the hydrogen atom
becomes the tensor product of the space corresponding to the simple model with the

four-dimensional space corresponding to the new degrees of freedom.

The vectors of the two-dimensional state space acted on by the spin observable § of
a particle with s = 1/2 (such as an electron or a proton) can be expressed in terms of
the basis formed by the concomitant eigenvectors of §2 and 83, which can be denoted
generically by |s mg), with the eigenvalue equations taking a form analogous to those for

angular momentum,

1my) = hQ% (% + 1) ’% ms) and 33 ‘% ms) = hm, !% ms), (4.2)

§2

where the eigenvectors, which are necessarily orthogonal, are taken to be normalized, that
is,
<% ms|% m’3> = O, for ms,m's € {—%,4—%} ) (4.3)

A generic vector |1) of the spin state space can then be expressed as the linear combination

[0) = ¢l5 +3) +l5 —3), (4.4)

where ¢ and n are complex numbers. Its representation in terms of components relative

to the adopted basis is given by the column matrix

1.1
v = <<§ +§W>> - <<> | (4.5)
3 ~3|Y) Y
This is a representative of a class of objects called spinors — this type of spinor, in

particular, is known as a Pauli spinor.

In the same way as spin states, a linear operator a defined on the spin state space can

also be represented in terms of components, relative to the basis of normalized eigenvectors
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of $2 and 83, by the matrix

(141
(0

a

2

[\

In particular, one has the following matrix representations:

10
2~ 82—2712 (o 1) (4.7)

1.(1 O

In order to determine the corresponding matrix representations for §; and $y, consider

and

the new operators
S5+ = 8§ E18s. (4.9)

Note that the addition or subtraction of 5, by §_ reproduces §; or §s:

1
(§++§_), §2 — 2—2(§+—§_) (410)

Observe now that, from the commutation relations (4.1), it follows that:

(83, 82] = [83, 81] £ i[85, &2] = ihdo + hE; = +hi,. (4.11)

These commutation relations, in addition to the eigenvalue equation for $3 (cf. the second

equation in (4.2)), furnish:

8354 |2 my) = [83, 54 |3 my) + 5155]3 my)
= £hd. |t m,) + hmgse|l my)

= h(m, +1)5¢|5 my). (4.12)
This resulting equation implies in the “proportionality” relation
$e|d my) = At met 1), (4.13)

where the scalars AL can be determined, disregarding a possible phase factor (that is,
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considering Ay as non-negative reals), as follows:

Asl? = (5 ms| 3085 ms) = (5 mol828e|3 ms)
= (5 m| (81° £148182 F i8251 + 82°) |3 ms)
:<% ms‘(sl + S izsl,32)|%m5>
= (3 ms| (317 + 8" F hy) |5 ms)
= (3 ms| (5 = 8583 £ 1)) |5 ms)

_ 2 G I — 1)> | (4.14)

The matrix representations of 34 relative to the basis of normalized eigenvectors of 52 and
§3 (or only of 83, since 52 is proportional to the identity operator) are then obtained just
applying the relation (4.13) in the standard expression (4.6), with the use of the values of
Ay given by the square root of (4.14):

01 0 0
¢ o~ S+:h<0 0) and S_ o~ S_:h(l 0). (4.15)

Thus, from the relations (4.10), one obtains the corresponding matrix representations for

51 and 3y:

0 1 1, (0 —i
G o~ S = 2h<1 o> and 5~ 82:§h<i OZ). (4.16)

The spin vector observable § = (81, $3, 83) is now determined in terms of the matrix

representations (4.16) and (4.8). It can be conveniently written as

1
ho = 577;(6'1,6’2,6’3), (417)

w>
N | —

where the operators 71, 65 and &3 have the following corresponding matrix representations:

0 1 0 —i 1 0
61 o~ D) = L Gy~ Yy = and 63 ~ Yy = . (418
B R O

The above matrices are known as the Pauli matrices. Note that the square of any Pauli

matrix equals to the identity matrix, which implies

6'12:(3'22: Y

—>

(4.19)
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where 1 is the identity operator. Note also that the commutation relations (4.1) imply

[(3'j, 5-k] = 2@'ejkl61. (420)
These commutation relations, in addition to the property (4.19), furnish

e -~ 2 - f— - . - . - JE— - - . - .
0=1[6;",0k = 0;0;0, — 61,0;0,
=000 — 00,0 + 00,0 — 00,0
= 0,105, 04] + 165, 50,

= 2i€1 (60, + 6,0;). (4.21)
Since €;i; is not identically null for j # [, it follows from the above equation that
(6,61} = 665 + 6165 =0, for j#k, (4.22)
where 0 is the null operator. The properties (4.19) and (4.22) can be summarized by
(6j0% + 010;) = 0 1. (4.23)

Finally, observe that any observable dependent on the spin § can be written as a (real)
linear combination of the “Pauli operators” &1, 65 and &3, and that the anticommutation

relations (4.23) are equivalent to the relations
1
oj- 0= §(O'j0'k + 010j) = 0k (4.24)

for the vectors of the orthonormal basis {o, 02, 03} of the three-dimensional Euclidean
space R3, in such a way that the linear space of spin dependent observables is isomorphic to

R3. Observe also the equivalence of the commutation relations (4.20) and the expressions

oj\oy = E(O'jdk — 040;) = €jploy. (4.25)

These equivalences imply that the algebra generated by the Pauli operators, or the algebra
of spin dependent observables (with the composition operation as product), is isomorphic
to the geometric algebra of the three-dimensional Euclidean space, Clsp, through the
identifications 1 ~ 1 and 6j ~ oj, and through the identification of the composition

operation of observables with the geometric product of multivectors.

Observe now that, in calculations involving a Pauli spinor, it can be replaced by the

¢ 0
() s

2 X 2 matrix
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since the product of such a matrix from the left by an arbitrary 2 x 2 complex matrix

produces another matrix of the form (4.26). This fact allows one to work with spin
dependent observables and Pauli spinors represented in the same matrix algebra. It is
natural then to imagine the possibility to work with spin dependent observables and
Pauli spinors both represented in the geometric algebra Cl3. A way to realize this idea
is presented in subsequent subsections. The following subsection, based on Vaz and da
Rocha (2019), is dedicated to the introduction of some mathematical concepts useful for

the understanding of future considerations.

4.1.2 Ideals and Idempotents of an Algebra

Given an algebra A, a subset of its elements which is closed with relation to the addition
operation and is invariant under the product from the left by elements of the algebra is
said to be a left ideal of the algebra A. That is, a left ideal of an algebra A is a subset
7 such that (x +y) € Z, for z,y € Z, and ax € Z, for a € A and = € Z. A right ideal
is defined in a similar way. A subset of elements of an algebra which is both a left and a
right ideal is called a two-sided ideal. Any algebra contains at least two trivial ideals, the
set formed by the zero element only and the set of all elements of the algebra — both are
two-sided ideals. A subset of an ideal Z which is also an ideal is called a subideal of Z.

An ideal is said to be minimal if it contains no non-trivial subideals.

An element f of an algebra A is said to be an idempotent if its square reproduces
itself, f2 = f. If the product of two idempotents is zero they are called orthogonal. An
idempotent is said to be primitive if it can not be written as a sum of two other orthogonal

idempotents.

Given an arbitrary element x of an algebra A, the set of elements of the form ax, for
any a in A, defines a left ideal Z. Consider the case where the element x is an idempotent.
In this case, the set of elements af, where a € A and f is a primitive idempotent of the
algebra A, defines a minimal left ideal. Otherwise, if f is a non-primitive idempotent, it
can be written as the sum of two orthogonal idempotents, f = f; + f2, and it is possible
to construct two non-trivial subideals whose elements are of the form a; fif and asfsf,
where ai,as € A. In summary, given a primitive idempotent f of an algebra A, the set
of elements of the form af, where a € A, is a minimal left ideal of A. In a similar way,
one can verify that, given a primitive idempotent f of an algebra A, the set of elements

of the form fa, where a € A, is a minimal right ideal of A.
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4.1.3 From Classical, through Algebraic, to Operator Pauli Spinors

As seen above, a column matrix with two complex entries defines a Pauli spinor. This
corresponds essentially to the classical definition of a Pauli spinor (FIGUEIREDO et al.,
1990; VAZ; DA ROCHA, 2019). In this way, a classical Pauli spinor is given by

(™
= (%) : (4.27)

where 11,19 € C. Note then that, in any calculation involving such a classical Pauli

spinor, it can be replaced by the 2 x 2 matrix

(i 0
e (2) s

since the product of such a matrix from the left by an arbitrary 2 x 2 complex matrix
produces another matrix with null entries in the second column. In this way, the following

equivalence relation is valid:

wz<¢1> ~ \1/:<¢1 0). (4.29)
(o Py 0

It is easy to note that the matrix ¥ can be put in the form

U — (@/)1 0) _ <¢1 1/}12) (1 0> ’ (4.30)
P2 0 Yo ) \O O

where the entries 115 and 199 are arbitrary complex numbers. Note now that the matrix

10
F = (0 0) (4.31)

is idempotent, that is, F2 = F, and it can be expressed in terms of the identity matrix
and the Pauli matrix Y3 by

P %(1 + %) (4.32)

(where was used the convention that in any equation involving 2 x 2 matrices, 1 denotes

the identity matrix). Consider then the matrix

1 0 0
Y F=Y—(14235) = 4.33
1 12( + ¥3) (1 O) (4.33)
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and note that ¥ can be written as the linear combination

U = F + o3 F = (1 + ¢ X0)F. (4.34)

By writing ¥4 = 74 + isa, where ry,s4 € R and A € {1,2}, and using the property
Y3F = F, in addition to the basic property %{Zi, ¥;} = 6;;1 and the fact that ¥, X,%5 = i1,

one can rewrite ¥ as follows:

U = (’f’] + iSl + 7"221 + SQiZl)F
= (7'1 + Slizg + 7"22123 + SQiEl)F
= (7’1 -+ Slizg — 7’2?222 + Sg’izl)F. (435)

Now, recall that the algebra of Pauli operators is isomorphic to the geometric algebra of
the three-dimensional Euclidean space, Cl3, via the identifications 1~ 1 and oj ~ 0y,
and via the identification of the composition of observables with the geometric product.
This isomorphism establishes also the correspondences 1 ~ 1 (i.e. the identity matrix is
equivalent to the number one) and £; ~ o7, in addition to the correspondence between the
matrix product and the geometric product. These correspondences imply, in particular,
the correspondences ¥;39¥3 = il ~ 010203 = [ and iX; ~ [o;. In this way, the square
matrix U given by equation (4.35) is in correspondence with the multivector

Y =(r1+siloy—rylos+ s:lo1)f, (4.36)

where f = %(1 +03). This representation defines a Pauli spinor as an element of a minimal
left ideal of the algebra Cl3. This is demonstrated below.

Assume that the idempotent f = %(1 + o3) is non-primitive, that is, that there exist
idempotents f; and fy such that fifo = foft = 0 and f; + fo = f. These imply that
fa = faf = ffa, for A € {1,2}. The commutativity of the product between f4 and
f=3(1+ o3) show that f4 must be of the form

fa=aa+byos+calos+dal. (4.37)
Since, by hypothesis, f; and f, are idempotents, i.e. fi = fi;2 and f, = f,?, it follows that

ap+baos+calos +dal = as® +ba* — ca® — da® +2(anbs — cada)os

+2(GACA+bAdA)[O'3+2(CLAdA+bACA)[. (438)

This equation imply a system of equations which clearly has no non-trivial solutions, so
there are no idempotents f; and f satisfying fifs = fofi = 0 and fi + fo = f. By
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contradiction, the idempotent f is primitive. Now, note that, given a multivector

A=a+bo;+clo;+dl, (4.39)

the multivector v = Af, where f = %(1 + 03), is an element of the left ideal Z =
{Af | A€ Clspand f = 1(1403)}, which is minimal since the idempotent f is primitive.
By considering the property o3f = f of the idempotent f, in addition to the bilinearity
of the geometric product, one can rewrite the generic element ¢ = Af of the ideal Z as

follows:

¥

(a +bloy + b2oy + bPos + oy + Plos + Alos + dI)f

(a— bloy+ b2loy + b+ c'loy + Ploy +c3]0'3—|—d10'3>f

(@ + 8+ (02 + oy + (—b + Aoy + (& + d)]¢73> f. (4.40)

This multivector represents a Pauli spinor, as seen in the last paragraph (cf. equation
(4.36)). This fact allows one to define a Pauli spinor as an element of the minimal left
ideal Z = {Af | A € Clsp and f = (1 +o3)} (HESTENES, 2015; FIGUEIREDO et al., 1990;
LOUNESTO, 2001; VAZ; DA ROCHA, 2019). This way of characterizing a spinor, introduced
by Riesz in the 1950s (RIESZ, 1993), is called the algebraic definition of a spinor, and a
Pauli spinor defined in this way is usually called an algebraic Pauli spinor (FIGUEIREDO et
al., 1990; LOUNESTO, 2001; VAZ; DA ROCHA, 2019). In fact, an algebraic Pauli spinor can
be defined as an element of a minimal left ideal generated by any idempotent obtained
from f through a rotation. As explained by Hiley and Callaghan (2010), the choice of
the idempotent reflects merely the choice of a quantization direction, and consequently
the adoption of a matrix representation. The conventional choice for f = %(1 + o3)
corresponds to the choice of the z-axis as the quantization direction, and corresponds to

the usual matrix representation adopted in this context.

The above developments allow one to conclude that an even grade multivector from
Cls is sufficient to describe a Pauli spinor, since an algebraic Pauli spinor as expressed by
equation (4.36), or equation (4.40), is the geometric product of an even grade multivector
with the idempotent f = 1(1+03), which is a fixed factor. This fact allows one to describe
a Pauli spinor by an element of the even subalgebra C¢3 . This way of describing a spinor
was implemented by Hestenes in the 1960s (HESTENES, 1967; HESTENES, 1971; HESTENES;
GURTLER, 1971; HESTENES, 1975), and today is known as the operator definition of
a spinor (FIGUEIREDO et al., 1990; LOUNESTO, 2001; VAZ; DA ROCHA, 2019). A Pauli
spinor defined in this way is usually known as an operator Pauli spinor (FIGUEIREDO et
al., 1990; LOUNESTO, 2001; VAZ; DA ROCHA, 2019). In these terms, note that the operator

Pauli spinor ¢ corresponding to the algebraic Pauli spinor 1 given by equation (4.36) can
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be expressed in terms of this latter as

¥ =2(Y)+, (4.41)

where (A), denotes the even grade part of the multivector A from Cl3;, (LOUNESTO,
2001). Another way to express ¢ in terms of 1) is given by

b =20) s, (1.42)

where (A)_ denotes the odd grade part of the multivector A from Cl3y. Thus, the
information of an operator Pauli spinor is encoded two times in the corresponding algebraic
Pauli spinor, in its even grade part and in its odd grade part. This fact becomes clear
when one observes that, from equation (4.36), by using the property o3f = f, one can
rewrite v as

¥ = (ros+ s1l + 1201 + 5202) , (4.43)

which shows the possibility of describe a Pauli spinor through an odd grade multivector.
However, it seems more attractive to describe spinors through even grade multivectors,

mainly because such elements compose a subalgebra.

By comparing the classical Pauli spinor given by equation (4.27) and the corresponding
algebraic Pauli spinor, given by equation (4.36), where ¥4 = ry +isa and A € {1,2},
and by considering the relation between an algebraic Pauli spinor and its corresponding
operator Pauli spinor introduced above, one is able to express the correspondence between

classical, algebraic and operator Pauli spinors through the following maps,

WZ((€+@3F—_L—+w:mﬁwwmvz¢f
—a® +1a -
o 1 (4.44)
B

Y =a’+a'lo; =2(¢); =2(¥)_os.

These explicit transformations are presented for the first time here. The composite map
Boa reproduces the known relation between a classical Pauli spinor and an operator Pauli

spinor, as presented by Doran and Lasenby (2003).

The maps «, 5 and [ o a can be used now to translate the action of observables on

Pauli spinors. This translation is given by

SV ———— o =00 f = opbosf

w} Iﬁ (4.45)

20 )+ = 2(0;¥) 03 = o103
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and

W [ = [ f = plosf

m Iﬁ (4.46)

2(I¢)y = 2(IY) o3 = Ylos,

where the property o3f = f was used. It should be noted that the composite map
[ o a reproduces the transformation for action of operators from the classical to the
operator representation (cf. Doran and Lasenby (2003)). The explicit expression of the

transformations above is presented for the first time here.

4.1.4 Hermitian Adjoint and Hermitian Inner Products

The Hermitian adjoint of the classical Pauli spinor in equation (4.27) is given by

so that its representation as a square matrix is given by

o= (0" = (v9)T = (% w;) . (4.48)

This can be written as
Ul =9 *F + ¢2*(21F)T7 (4.49)

that is,

Ul = ¢ "F 4+ ¢ ' FE; = F(¢1" + 12" 51). (4.50)
By considering that )4 = r4 + isa, where r4,s4 € R and A € {1,2}, and by using the
property Y3F = FY3 = F, in addition to the basic property %{Ei, ¥;} = 6;;1 and the fact

that ¥,¥9%3 = i1, one can rewrite UT as follows:

\IJT = F(’I“l — iSl + 7“221 — iSQZl)
= F(Tl — 812.23 + 7"22321 — 322'21)
= F(T’l — 81i23 + TQiEQ — Sgizl). (451)
Now, by using the correspondences >; ~ o, in addition to the correspondence between
the identity matrix and the number one, which imply, in particular, the correspondences

¥139¥3 =1l ~ 010203 = I and iX; ~ [o;, one can write the multivector corresponding

to the adjoint Pauli spinor in question as

Yl = f(r1 — silos + ooy — soloy). (4.52)
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This is just the reverse of the algebraic Pauli spinor given by equation (4.36), which

justifies the use of a superscript dagger to denote the reverse of an element of the algebra
Cl3. (Note that this adjoint algebraic Pauli spinor is an element of the minimal right
ideal T = {fA | A € Cl3p and f = (14 o3)}.) In this way, the map which maps the
adjoint classical Pauli spinor ¥' to the corresponding adjoint algebraic Pauli spinor Pl
is found to be & = rev o a o adj, where adj denotes the Hermitian adjoint operation, rev
denotes the reversion operation and the map « is that in the relations (4.44). The operator
adjoint Pauli spinor 9! corresponding to the algebraic adjoint Pauli spinor 1_/JT is obtained
in the same way as 1) is obtained from 1, through the map g : ¢ +— ¢ = (¢)4 = (V)_0o3.

In summary, the maps between adjoint Pauli spinors are the following:
Ut = <a0 1S S— - z'a1> — Yt = f(a® —a'le;) = fyl
Boa Iﬁ (4.53)

Yt =a’ —a'lo; = 2(¢1) L = 2(¢1) _os.

T
The Hermitian inner product of the classical Pauli spinors ¥ = (1/11 1/;2> and ¢ =

(gbl ng)T is given by

vie = <¢1* %*) (Z;) = P17 ¢1 + Pa" o, (4.54)

In this way, if ¥ and ® are the square matrices corresponding to the classical Pauli spinors
VU and @, it follows that

io [t ") [or O [Uitdr e 0 .
U'd = ( 0 0 by 0 = 0 o] = (¢1 o1+ o ¢2)F7 (4.55)

so that the Hermitian inner product ¥'@ can be expressed as the trace of the product
Uidp:
Ui = tr(Vi). (4.56)

Now, taking

it follows that

V1o = (a0 +a'd' + @’ + a®*) + (D — a®’ — b + '), (4.58)
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so that

Re(¥'®) = Re(tr(¥'®)) = at” + a'b' + a’0* + a’b’ (4.59)
and

Im(¥'®) = —Re(i V')
= —Re(tr(iV'))
= a’h® — b’ — a®b' + a'b?. (4.60)
Given that ¢ = (a° + a'fo;)f = ¢ f and ¢ = (0" + b'Io;)f = ¢f are the algebraic Pauli

spinors corresponding to ¥ and ®, the geometric product corresponding to U® is given
by

o= fulof
= f(a’ —d'Ioy — d*loy — a*los) (° + b'[oy + b Ioy + bPlos) f
F((@° + '+ + a¥)+
+ (aoblfal + a’W? 1oy + °VPIos + a't’Ioy + a'b’Tos — a'b*Ioy
— 2oy — a®b los + a2 Iy — a0 Tos + b Ty — a3b210'1)> 7
(4.61)
Then, by noting that 1(1 + o3)lo), = Iop3(1 — o3) for k = 1 or k = 2, and that

s(1+ 0'3)%(1 — 03) = 0, which imply flo,f =0 for k =1 or k = 2, one can rewrite the

above expression as
@Tgﬁ = ((aobo + a'd' + a?b® + a3b3) + los (a0b3 —a®b’ — a?b' + albz)>f
= (@ + a0 + a2 4+ a%°) + 1(" — @ — a®! + a'0?) ) . (4.62)
This is the corresponding to the equation (4.55) in terms of algebraic Pauli spinors. By
comparing it with equations (4.59) and (4.60) one notes that the real and imaginary parts

of the Hermitian inner product ¥'@ can be written respectively as 2(y1¢) and —2(Iy1¢).

These in turn can be expressed in terms of operator Pauli spinors as

2(p10) = 2(fvlof) = 2(ief) = (Vo) (4.63)
and
—2(Iyfe) = —2(I fplof) = =20l f) = —(W ¢los), (4.64)

where was considered the invarance of the scalar part of a geometric product under cyclic

permutations of the factors, the fact that odd grade multivectors has null scalar part,
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and the fact that the geometric product of even grade multivectors is also an even grade

multivector. Then, one can write:
Re(¥1®) = Re(tr (V1)) = 2(¢¢) = (1) (4.65)
and
Im(¥'d) = —Re(i¥1®) = —Re(tr(i¥1®)) = —2(Iyl¢) = —(¢T¢los). (4.66)

Finally, note that the expression (4.62) can be understood as an element of the minimal
left ideal Z = {Af | A € Cl3p and f = 1(1 4 o3)}. In particular, it is the image of the

T
classical Pauli spinor (¥1 ) (1 O) by the map « given in relations (4.44). In this way,

the map 3 in relations (4.44) transforms the expression (4.62) into

W) — (VTplos)Ios, (4.67)

which represents the Hermitian inner product ¥'@ in terms of operator Pauli spinors,
in agreement with Doran and Lasenby (2003), who denote this expression by (/7¢),. In
summary, Hermitian inner products of classical, algebraic and operator Pauli spinors can

be translated through the mappings

(P O)F — 46 = ((ui6) — (Wiplaw) o) f
(4.68)
Boa Iﬁ

<¢T¢>q = WT@ - <1/1T¢[0'3>[0'3,

1
F = (0) . (4.69)

In general, given a third Pauli spinor = 19 N &, it follows the maps

where

(719)Z = 2(v19) 2 €(1'9) = €({010) — (W los)Ias) ]
Iﬁ (4.70)
§lwie), = €((Wie) — (Wiolos)lay),

Boa

where it is worth noting the ordering of the product in each case: although the Hermitian
inner product commutes with the third Pauli spinor in the classical case, it necessarily
appears as a factor on the right in the algebraic case, and this order for the product is

preserved in terms of operator spinors, which is in agreement with Doran and Lasenby
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(2003).

The probability density for a particle with spin % described by the classical Pauli spinor
¥ is given by the real and positive-definite quantity

p=UT0 = ]* + [ = (a°)* + (a)* + (a®)* + (a*). (4.71)

It can be written in terms of square matrices as tr(\IJT\If). In terms of algebraic Pauli

spinors, it is given by 2(x"¢). In terms of operator Pauli spniors, it reduces to (1), =
(7)) = 9Ty, In summary,

p= U =1tr(UN) = 2(pTyp) = ¢ly. (4.72)

For the considered particle, the Hermitian inner product

h
psi =75 vy, w (4.73)
defines the components of a vector, which can be understood as a spin density. In terms
of square matrices these components are given by %tr(\IJTEj \I/) The expression in terms of
algebraic Pauli spinors is given by h(@ﬂog@). These furnish the corresponding expressions

in terms of operator Pauli spinors as

Bl f) = hos ful) = oo o). (4.74)

Note then that ¥a31" is an odd grade multivector (since the product of an even grade
multivector with an odd grade multivector is an odd grade multivector) and it is equal
to its reverse. This shows that o3 is a vector, so that the above expression is a scalar

product, " 5
gloswast’) =55 (Vo). (4.75)

In this way, the components of the spin density can be expressed by

ngzj v = gtr(qﬁzj\y) = h{yly) = gaj - (Yosuh). (4.76)

The spin density vector is then identified as

h
ps = Svog)! (4.77)

(cf. Doran and Lasenby (2003)). Since # is an even grade multivector, it can be expressed
by
) =p*R, (4.78)
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where p is the probability density and R is a rotor, that is, an even grade multivector

satisfying RTR = RR' = 1. Application of this expression in the expression for the spin

density vector furnishes the spin vector as
h .

(cf. Doran and Lasenby (2003)). This expression shows as the spin vector can be obtained
through the rotation transformation u ~ RuR' applied on the reference vector gag,
which makes clear also that the spin density vector can be obtained through such a
rotation transformation followed by a dilation transformation, given by multiplication by

p, applied on the same reference vector gag (cf. Doran and Lasenby (2003)).

4.1.5 Pauli Equation

The Lagrangian function for a non-relativistic particle of mass m and charge ¢ moving
under the action of an electromagnetic field described by a scalar potential ¢ and a vector
potential A is given by

1
L= §m5<2 —qd+qx - A. (4.80)

Since the canonical momentum of the particle is given by
p=ViL =mx+qA, (4.81)

which is clearly different from the “kinematic” momentum mx, the Hamiltonian function

for the particle is

Hzx-p—L:lmx2+q¢=i(p—qA)2+q¢. (4.82)
2 2m

As explained by Fock (1978), the transition to the quantum treatment of a non-relativistic
particle with spin % is made by expressing the vector observables for the particle in terms of
the Pauli matrices, in the same way as the spin observable. In this way, the wave equation
for such a particle can be written by converting the functional value of the Hamiltonian
function H, i.e. the energy, into the operator ih% and the canonical momentum p into
the momentum operator —ih¥;07, as usual in the Schrédinger representation, but now
expressing the vector observables as linear combinations of the Pauli matrices (the scalar
potential is converted simply through a multiplication by the identity matrix), and then
applying the resulting expression for the Hamiltonian operator on a “¢two-component wave

function” ¥, i.e. a classical Pauli spinor. The resulting wave equation is then

1 TN 2~Aj2 w—'hﬁw 4.83
g (=550 = 5,0 ) v =i a5
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This equation, known as the Pauli equation, encodes the interaction of the non-relativistic

spin—% particle with the external electromagnetic field.

In terms of the algebraic Pauli spinor 1 corresponding to the classical Pauli spinor ¥,
and by converting the matrix operators into the corresponding elements of the geometric
algebra of the three-dimensional Euclidean space, C/3, one can write the algebraic version

of the Pauli equation as

Lo Tho ;& — qo; A7 i =1Ih 0 4.84
s (— 10,0 — a7, &) 446 v = Ihzu, 484
or better,
1 2 )
(%< _ IV — qA) v q¢)1_/1 = Ihz-), (4.85)

where V = ;0 is the vector derivative for Cl3 0, and A = ;A7 is the vector potential.
Now, this equation can be expressed in terms of the operator Pauli spinor ¢ corresponding

to the algebraic Pauli spinor ¢ = 1 f as follows,

1 2 1 0 1
—~(~1hv - A) (1 — Ihse=(1 . 4,
<2m< AV —q +q¢)1/12( + o3) hath( + o3) (4.86)
From the linear independence of the even grade and odd grade parts of a multivector, the
above equation must be equivalent to its even grade and odd grade parts, which can be

written respectively as

1. 2 0
(% (p — qA) + q¢) () = Ihe oy (4.87)
and 1 5 P
(% (15 - qA) + q¢) ()as = Tho. ), (4.88)

where it was necessary to introduce the multivector operator p, given by
p(v¥) = —IhVios = —hViplos, (4.89)

which is the corresponding to the momentum operator. The equations (4.87) and (4.88)
are exactly the same equation, since the product from the right by o3 is invertible, and

it can be written as

! ( A>2+ o)) =2l (4.90)
This is the Pauli equation for an operator Pauli spinor, in agreement with Hestenes (1971).
It follows that this operator version of the Pauli equation is encoded two times in the

algebraic version, equation (4.85), as its even grade and odd grade parts. It is worth to note
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that these translations of the Pauli equation can be understood in terms of applications

of the maps « and 3 in relations (4.44).

4.2 Relativistic Theory

4.2.1 Introduction

As can be seen in the vast literature on quantum mechanics (see, for example, the already
quoted texts by Piza (2003) and Messiah (2014), and the text on quantum field theory by
Ryder (1996)), the relativistic generalization of the Schodinger equation can be obtained

directly from the energy-momentum-mass relation,
Py = —5 —p° = (me)?, (4.91)

by performing the replacement of p, by the differential operator ¢hd, and applying the
resulting differential operator in a wave function ¢ (a complex scalar field) to obtain the
equation

(048, + K*)¢ =0, (4.92)

where k = mc/h. This equation of motion, known as the Klein-Gordon equation, describes

the wave function for a free spin-0 particle of mass m.

The relativistic quantum mechanics of a particle with spin % is founded on the Dirac
equation,
thI'"0, ¥ = mcV, (4.93)

obtained by Dirac through a heuristic procedure which can be intuitively understood as
an “extraction of the square root” of the differential operator in the Klein-Gordon equation
to obtain the differential operator iAI'**0, —mc, where I'*, with p € {0, 1,2, 3}, form a set
of operators which can be represented by matrices, m is the mass and ¥ represents the
wave function for the particle, which can be represented by a column matrix with complex
entries (DIRAC, 1982). Following this idea, the equation can be justified by requiring that
the energy-momentum-mass relation must be satisfied also in this case, so that ¥ must
satisfy also the Klein-Gordon equation. Along this line, by applying again the matrix

operator ¢hI'*d,, = mc in the Dirac equation, one obtains

—RTHT9,0,¥ = (mc)* ¥, (4.94)
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The requirement of symmetry of the second derivatives allows one to write

1
—h%(F”F” +T"T")9,0, ¥ = (mc)* ¥, (4.95)
which reduces to the Klein-Gordon equation for ¥ provided that

1
5 (T + T'T¥)0,0, = 90, (4.96)

that is, in the context of the Dirac theory, the symmetric part of the product of two of
the Dirac matrices I'* must act “raising spacetime indices” in the same way as the metric
tensor for Minkowski spacetime: the product of operators associated to the observables,

which are generated by the Dirac matrices ['*, must satisfy the basic property

(DHTY 4+ TVTH) = 1, (4.97)

DN | —

where 1 is the identity matrix and n*” is the metric tensor for Minkowski spacetime, given
by n =1, n¥ = —§Y for i,5 € {1,2,3} and n* = 0 for p,v € {0,1,2,3} and u # v.
In the same way, the symmetric part of the product of a pair of the covariant version
of the Dirac matrices, I',,, must act “lowering spacetime indices” in the same way as the
covariant version of the metric tensor for Minkowski spacetime 7),,,, which is such that
"\, = 6*,. The index of a Dirac matrix itself acts as a spacetime index, which can be
“raised” or “lowered” by the metric tensor. In this way, it follows the relations I' = I’y
and I = —T;, for i € {1,2,3}.

Dirac concluded that the matrices representing his operators must be 4 x 4 complex
matrices, and so he obtained such a representation (PIZA, 2003; MESSIAH, 2014; RYDER,
1996). However, there is not a unique matrix representation for the Dirac operators,
although it is always possible to represent them as 2 x 2 block matrices in terms of the

Pauli matrices and the 2 x 2 identity and null matrices. The most usual representation is

1 0 0 =X
F() = and Fz = s (498)
0 -1 2 0

where the entries 1 and 0 are respectively the 2 x 2 identity and null matrices, and ; are

given by

the Pauli matrices. The matrix
F5 = —Z'FOF1F2F3 (499)

is important and, according to the above representation is given by

01
Ts = (1 0). (4.100)
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In agreement with this representation the wave function is given by a column matrix with
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four complex entries,

(4.101)

Such a wave function corresponds to a Dirac spinor, more precisely, it defines a classical
Dirac spinor (FIGUEIREDO et al., 1990; VAZ; DA ROCHA, 2019).

4.2.2 From Dirac Equation to Dirac-Hestenes Equation

It is a known fact, whose possibility had already been outlined in the early 1930s by Sauter
(1930) and Juvet (1930, 1932), that the traditional Dirac equation can be rewritten in
an equivalent way by replacing the wave function by a suitable element from the Dirac
algebra, which is currently recognized to be Cf; 3(C) ~ C ® Cl; 3, that is, the geometric
algebra of spacetime with the field of real scalars replaced by the field of complex scalars,
usually called the complexified geometric algebra of spacetime (FIGUEIREDO et al., 1990;
LOUNESTO, 2001; DA ROCHA; VAZ, 2007). More precisely, thinking in terms of matrices,

the following equivalence relation holds,

?,01 ’(/)1 0 0O
000
vo |2 o w2 : (4.102)
(o Y3 00 0
(o e 00 0
so that the Dirac equation can be written in the form
ihI'"0, W — qI'" A, = mcV¥, (4.103)

where the term encoding the interaction of the Spin—% particle with an electromagnetic
field, expressible through the potential A, is included. Note then that the wave function

¥ can be put in the form

P 0 00 Y1 Y2 iz Y 1000

U — Py 00 0 _ Yo Pag Yoz Yo 0000 ’ (4.104)
Y3 0 0 0 g P3g sz s 0000
Py 00 0 Yy Yaz Va3 Yas 0000
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where the entries of the matrix to the left at the right-hand side, with exception of the

first column, are arbitrary. Note also that the matrix

(4.105)

o o o =
o O O O
o O O O
o O o O

is idempotent, that is F? = F, and it can be expressed in terms of Dirac matrices by

1 1
Consider then the matrices
0O 0 00 0O 0 00 00 00
1 0 0O 0O 0 00 0O 0 00
o' F = , I'sI'gF'= , I'"['\F= , 4.107
2 oooof *° 1oo0of "° 000 0 (4.107)
0O 000 0O 0 00 1 0 00

and note that the wave function ¥ can be expressed as
U = Y F + oil's'sF + 33T F + ¢ T F. (4.108)
Now the matrix representation can be abandoned and the Dirac equation can be written

iy 0 — gy A = me), (4.109)

where the Dirac matrices were replaced by the corresponding elements of the canonical
basis {7} of the Minkowski vector space, R}3, the matrix product was replaced by the
geometric product of the geometric algebra of spacetime, C/; 3, and the wave function is

now given by
Y = (Y1 + Yoivas + ¥3y30 + Yav10) f (4.110)

with f being an idempotent from C ® C¢; 3 given by

f= %(H%)%(Him) (4.111)

(note that the notation 7,, = 7,7, has been introduced). At this point, a connection has
been established with the algebraic definition of a spinor, as an element of a minimal left
ideal of a Clifford algebra (FIGUEIREDO et al., 1990; LOUNESTO, 2001; VAZ; DA ROCHA,
2019), since f is a primitive idempotent from the algebra C ® C¢; 3 and the multivector in

parentheses in the expression (4.110) is an element from C ® C¢; 5. Such an element need
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not to be a complex multivector. Indeed, by writing )4 = 74 +is4, where r4,s4 € R and

A €{1,2,3,4}, and by considering the property iyiof = f of the idempotent f, one can
rewrite ¢ in (4.110) as follows,

Y= <(7’1 +is1) + (12 + 052)iy23 + (73 + 153) 730 + (14 + i84)710>f

= ((7”1 + 51921) + (2731 + S2732) + (13730 + 831) + (14710 + 84’720)>f7 (4.112)

where I = v971727v3. In this way, it is noted that an algebraic Dirac spinor can be written

in the form

Y =1f, (4.113)

where ¢ € Cly 37, which allows one to define it as an element of the minimal left ideal
T={Af|AeC®Clzand f = 1(1+7)5(1+iv2)}. In fact, similarly to the case of the
algebraic Pauli spinors, an algebraic Dirac spinor can be defined as an element of a minimal
left ideal generated by any idempotent obtained from f through a Lorentz transformation
(HILEY; CALLAGHAN, 2010), and the choice of an idempotent reflects the choice of a
reference frame and a quantization direction, which consequently define the particular
choice for the matrix representation. The conventional choice for f = %(1 + 70)%(1 +o3)
corresponds to the choice of the reference frame determined by 7y and the choice of
the z-axis as the quantization direction. This choice determines the standard matrix

representation adopted in this context.

As observed from the expression (4.113), all the content of the wave function reduces
to an even grade element of the real algebra C¢; 3. Such an element defines an operator
Dirac spinor (FIGUEIREDO et al., 1990; LOUNESTO, 2001; VAZ; DA ROCHA, 2019). It is
natural to ask for an equation, or a set of equations, equivalent to the Dirac equation but

expressed entirely in terms of the real algebra C¢; 3. This can be accomplished as follows.

The algebraic version of Dirac equation, that is, equation (4.109), can be expressed as

: 1 ‘ 1 : 1 ,
1" 0,7 (L70) (Limz) =y Autp 7 (1+790) (LHimz) = mey 7 (140) (L+imz), (4.114)

where, as seen above, 1 is an even grade multivector from the real geometric algebra of
spacetime, C¢; 3. This equation is equivalent to its real and imaginary parts, respectively
given by

Ry 0,00 (1 + vo)v21 — @V A (1 4 0) = mep(1 + 7o) (4.115)

and
"0, (1 + 70) — a7 A (1 + 70) 12 = mep(1 + 7o) Y12 (4.116)

These equations, which are equivalent (since the product from the right by the bivector
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712 is invertible), are expressed in terms of the real algebra Cf; 5. In additon, each of

these equations should be equivalent to its even grade and odd grade parts. In particular,

equation (4.115) is equivalent to its even grade and odd grade parts, respectively given
by

Rt Oppyovar — gV Autpro = mey (4.117)
and
Pt Ouibyar — gy Ay = mepyo, (4.118)
and equation (4.116) it is also equivalent to its even grade and odd grade parts, respectively
given by
I 0uby0 — ey Aptbromiz = memz (4.119)
and
"0, — qy" Aybyie = medyoyie. (4.120)

Equations (4.117), (4.118), (4.119) and (4.120) are all equivalent and correspond to the
usual Dirac equation for an operator Dirac spinor (LOUNESTO, 2001; DORAN; LASENBY,
2003), which is usually known as the Dirac-Hestenes equation, since it was obtained by
Hestenes in the 1960s (HESTENES, 1967; HESTENES, 1975). The quadruplicate derivation

above is not known to the author prior to this work.

This result means that not only is the traditional Dirac equation equivalent to the
Dirac-Hestenes equation as the latter is encoded four times in the former, under the form
of (I) the even grade part of the real part, (II) the odd grade part of the real part, (III) the
even grade part of the imaginary part, and (IV) the odd grade part of the imaginary part
of the algebraic version of Dirac equation, that is, equation (4.109), or equation (4.114).
This fact suggests that both the classical version and the algebraic version of the Dirac
equation contain redundant information and that the Dirac-Hestenes equation eventually
contains the minimum information required to describe a spin—% particle. This idea seems
sensible, given that the traditional Dirac theory is described through a complex algebra of
operators, corresponding to C®C/; 3, acting on a Hilbert space, and the algebraic version,
although described through a single structure, employs also the complexified geometric
algebra of spacetime, C® C/; 3. The formulation in terms of the Dirac-Hestenes equation,
in turn, is based on the real geometric algebra of spacetime, C¢; 3, which has half of the

real dimension of the complexified algebra C @ C/; 3.
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4.2.3 The Relation between Classical, Algebraic and Operator

Dirac Spinors

Once a version of the Dirac equation expressed entirely of a real algebra has been obtained,
it is desirable to obtain a scheme of translation from the classical wave function to its
operator version. This has been done implicitly in the previous subsection. When relation
(4.112) was obtained, at the same time, the following correspondence between a classical
and an algebraic Dirac spinor was established (cf. equations (4.102), (4.108) and (4.112)),

a’ + ia?
a®t + ia®? )
V= a® +ia® ~ Y= lds Z " Y +a’1' ) §, (4.121)
>v
a'® +ia® g

where a';a*”,a® € R. Note that, by considering the isomorphism Cf; 3% ~ Cl3, via the
correspondences ; = ;7o (cf. section 3.1), where {0} is an orthonormal basis of R?, the

above equivalence relation can be put in the form

a® +ia?
2 - 1
v = ZO :[ Z‘Z?’ ~ = <(a0 + ko) + (00 + bklo'k)a';),) f, (4.122)
(3

—b? +ib!

where a*,b* € R, which is similar to the usual correspondence between a classical and
an operator Dirac spinor (cf. e.g. Doran and Lasenby (2003)) except for the idempotent
f as factor on the right. This fact shows that, given an algebraic Dirac spinor ¢ and its
corresponding operator spinor v, it follows that the latter is four times the even grade
part of the real part of the former (cf. e.g. Lounesto (2001)). This fact can be denoted
by ¢ = 4(Re(¢)), where (A); denotes the even grade part of the multivector A from
Cly 3. It can be noted that ¢ can also be obtained from the odd grade part of the real
part of v, more precisely, ¥ = 4(Re(¢))_7o, where (A)_ denotes the odd grade part
of the multivector A from C/¢; 3. But there are also two other ways of expressing v in
terms of ¢, namely, 4(Im(¢)) 1721 = 4(Im(¢))) _Y9¥21. Thus, the correspondence relations

between classical, algebraic and operator Dirac spinors, respectively, can be expressed by
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the following maps:

a® +ia®
2 1
v C;o i EZS s = (0 + b low) + (1 + Vlow)oy ) f = of
—b? + bt
Boa B
(4.123)
Y = (a"+d"Ioy) + (V° + b 1oy )os = 4(Re(¢)) 4
= 4(Re(¥)) -0
= 4(Im(¢))+721
= 4(Im(%))) - Yov21.

In this way, an operator Dirac spinor can be obtained in four equivalent ways from its
algebraic counterpart, and consequently from its classical counterpart, a fact already out-
lined by Hiley and Callaghan (2010). The transformations above are presented explicitly

for the first time here.

The action of operators is now translated in a straightforward manner, given by the

correspondences
Py ———— 3 =7 f =0 %f
P Iﬁ (4.124)
ARe(1u¥))+ = 70,
D50 —— 359 = 130 f = Yysivief = Yosf
P lﬁ (4.125)

4(Re(159))+ = Yo,

and

iv— ZZ_ZJ = Z’gbf = 2¢2712f = ’QDIO';J,‘]C
o 15 (4.126)
4(Re(iv))+ = V1o,

where v5 = —il = —ivyY1727y3 and the properties v f = f and iyof = f have been
used. As before, the map (o« reproduces the transformation for action of operators from
the classical to the operator representation (cf. Doran and Lasenby (2003)). The explicit

derivation of the above relations are presented for the first time here.
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4.2.4 Dirac Adjoint and Bilinear Covariant Expressions

The Dirac adjoint of the classical Dirac spinor ¥ in relation (4.102) is given by
W= wir, = (W byt —ihg* —W), (4.127)
so that its representation as a square matrix is given by

Vit et =yt =)

- 0o 0 0 0

U =UiT, = : (4.128)
0 0 0 0

0 0 0 0

This can be written as

1000 Uit et =gt =yt

T— 0000 12" P =gt~y ’ (4.129)
0000 Yn3" ozt =3zt —1hys”
0000 Yia" Yot —Pst —tyy”

where the entries of the matrix to the right at the right-hand side, with exception of the

first row, are arbitrary. In terms of Dirac matrices, this expression reads
U = 1 *F + o (ilolsF) T — h5* (T F) T — 04" (01 0o F)T, (4.130)
that is,
U = 9 *F — " iFT3y + 3" FTs + 1, *FTol;. (4.131)

As before, the matrix representation can be abandoned, and the algebraic version of the

above adjoint classical Dirac spinor can be written as

¥ = f(¢1" + P2 1ye3 — 3™ 30 — Ya"710)- (4.132)

Again as before, by writing ¢4 = r4 + isa, where 74,54 € R and A € {1,2, 3,4}, and by

considering the property iv12f = f of the idempotent f, one can rewrite v as

Y= f((h —151) + (12 — 152)iv23 — (13 — 153)7y30 — (T2 — i84)710>

= f<(7“1 — 81721) + (—=r2y31 — S27v32) + (73730 + 831) + (=7ray10 — 54720)>, (4.133)

which corresponds to the complex conjugate of the reverse of 1. In this way, in view

of the relations (4.123), one obtains the following correspondence relations between the
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classical adjoint Dirac spinor and its algebraic and operator counterparts:

U= Uity — 2 s o) =

\ Iﬁ (4.134)

= 4.

Now, products of the form W@, where ¥ and @ are classical Dirac spinors, can be
expressed in terms of algebraic and operator Dirac spinors. For this, note that, since such
a product is a scalar, it corresponds to the trace of the corresponding product in terms of

square matrices, that is,
VP =tr(Vd), (4.135)

where ¥ and ® are the square matrices corresponding to ¥ and @. This is easily visualized
by noting that
D = (Y171 + o2 — V3" b3 — Yu"Pu)F, (4.136)

whose trace corresponds to W@ = 1)1*d1 + Uo* Py — Vs*d3 — Yu*¢4. Since the algebraic

version of the above expression is

Vo = (V1" b1 + V2" o — V3™ 3 — Ya"du) f, (4.137)

where ¢ and ¢ are the algebraic spinors corresponding to ¥ and &, the trace operation

furnishing ¥ @ corresponds to four times the scalar part of z/_@
VP =tr(VP) = 4(o). (4.138)

In this way, if ¢ = 4(Re(¢)); and ¢ = 4(Re(¢))4, that is, 1) and ¢ are the operator
spinors corresponding to ¢ and ¢, then ¢ =9 f and ¢ = ¢f, and the above product can

be written also as

A p) = A fhof) = 4of), (4.139)

where the property of invariance of the scalar part of a geometric product with relation
to cyclic permutations of the factors and the fact that f is idempotent were used. Then,

by expressing the idempotent f in expanded form, one can write the last expression as

Ao f) = (Pd(1 + 70 + P2 + iv07n2))- (4.140)

From the fact that the geometric product of even grade multivectors is also an even grade
multivector and the geometric product of an even grade multivector and an odd grade
multivector is an odd grade multivector, it follows that the multivectors ﬂgbvg and ﬁgb'yo'yu

are odd grade and, consequently, <zﬁ¢70> = <2/~)§b’)/0’)/12> = 0. Thus, the above expression
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reduces to

(§6) + i(na). (4.141)
In summary, one has the following equivalent expressions:

Ud = tr(UD) = 4(g) = (Vg) +i(dma). (4.142)

_ T
Analogously to the non-relativistic case, the classical Dirac spinor (¥ ®) (1 0 0 O)
can be transformed through the maps a and f, defined in relations (4.123), to furnish
the equivalent expressions for the “Dirac inner product” ¥ @ in the algebraic and operator

forms,
(FO)F — 4(6)f = ((06) +ildémna) ) f
- s (4.143)
<T/~)¢>q = @@ - @(%5]03)[0'3,

where

1
0

4.144
. (4.144)
0

In general, given a third Dirac spinor = £ 2 &, it follows the maps

(70)Z = 5(F0) —— §(1(00)f) = £((D) + (o) ) f
15 (4.145)

§(00), = €( (o) — (Polay) o),

Boa

where it is worth noting that, although the Dirac inner product commutes with the third
Dirac spinor in the classical expression, it necessarily appears as a factor on the right in
the algebraic expression, and this order for the product is preserved in terms of operator
spinors. These maps are in agreement with the relation between the classical and the

operator version of the Dirac inner product as presented by Doran and Lasenby (2003).

A particular case of a Dirac inner product ¥ of great importance is that for which
¢ = AW, where the matrix A represents a linear operator which is covariant under Lorentz
transformations. A product of the form WA ¥ is usually known as a bilinear covariant
expression and in general it corresponds to an observable quantity. The basic bilinear
covariant expressions and the corresponding observable quantities are considered case by
case in the following in their classical, algebraic and operator forms with assistance of the
relations (4.143).
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The simplest bilinear covariant expression is ¥ ¥, which is usually associated with the

probability density p. For this case, relations (4.143) furnish the following mappings

(F0)F s 40} f = (W) +iwrni)) f
- Iﬁ (4.146)

(V)g = (W) — (WIosp)Ios,

where the invariance of the scalar part of a geometric product with relation to cyclic
permutations of the factors was used. The multivector wyuzﬁ = =l o3 is even grade
and is the opposite of its reverse, then it is a bivector and has no scalar part. In this way,

the above relations reduce to

(POVF —s () f = (Vi) f

\ Iﬁ (4.147)

V).

By using the factored expression of an even grade multivector from C¢; 31 for the operator
spinor v, given by ¢ = p%e%mR (see the final paragraph of the chapter 2), one obtains

Vip = pel® which allows one to express

(Y)g = (Y1) = pcos(p). (4.148)

Another basic bilinear covariant expression is @F# ¥, which multiplied by ¢ defines the
components j, of the probability current density vector. In this case, taking into account
the translation for the action of operators (cf. the mappings (4.124)), relations (4.143)

furnish:

(IT, 0)F — 4y f = (Bt} + ildrwoms) ) f
P I 5 (4.149)

W70 = (D7u870) — (Wybrolos)Ios.

These can be rewritten as

(UL, 0)F —— 4yh) f = ((%Wm/?) +i<%w%%21§>>f
P I , (4.150)

@%ﬂﬁ%)q = mwwﬂ) - <%¢70[0'31;>1—0'3-
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Since ?ﬂ'}/o"}/lziz = —Yyl 0'37; is an odd grade multivector which is the opposite of its

reverse, it is a trivector and has no scalar part. The multivector 1yt is odd grade
and is equal to its reverse, so it is a vector and, consequently, the projection <7H1/1701;>
corresponds to the scalar product 7, - (w’yo@. In this way, the above mappings can be

written simply as

(I, 0)F — () = (- (Br0d) ) f
Iﬁ (4.151)

Wvv0)g = Y - (Pr0).

Boa

Given that LI:/FM Vo=, - (wﬂymz) multiplied by ¢ correspond to the components of the

probability current density, such a vector is given by
j = eyt (4.152)

The next basic bilinear covariant expression to be considered is ¥i[',,T,] ¥, where
the square brackets denote a commutator, [I',,I',)] = I',I', —=I',T',. This bilinear covariant
expression, as multiplied by g‘, defines the components S, of the spin tensor, which is
clearly antisymmetric. In this case, again taking into account the mappings for the action

of operators, relations (4.143) furnish:

(@i[F r,) L_D)F Lo 4@”(7# A 'Vu)ﬂ@f = i<¢(7u ANy)Y) — WJ(VM AY)dme) ) f
e = (@7 A1 )y21) + i (v A1) ) f

Boa :[,B
W Aw)Ios)g = (1 Ay )0Ios) + (D (v, Av)y) o
(4.153)

Since 1;(% A 7,)¢ is an even grade multivector which is the opposite of its reverse, it

corresponds to a bivector and has no scalar part. In this way, by noting also that

<1;(7H A %W[0'3> = <(7ﬂ A %)1?10'31;)7 (4154)

and noting that ¥ Io31 is a bivector, one can rewrite the above mappings as

(7300 TIO)F 2 (il Av ) = (0 A ) - (W) £
; Iﬁ (4.155)

WNJ(VM A 7u)¢10'3>q = ('7u A '71/) : (¢I‘737;)-
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Once @%[Fu, L) = (v, A7) - (w[a'gzﬂ) multiplied by g correspond to the components

of the spin tensor, one can define the spin bivector by

S = gwagz/?. (4.156)

Consider now the basic bilinear covariant expression given by WI',['s¥, which are
usually associated to the components of an axial vector. For this case, taking into account
the translation for action of operators (cf. the mappings (4.124) and (4.125)), relations
(4.143) furnish:

Ay, 50) f = <1/~WM/JU3%> +i<1/~)%¢0370712>>f
= ((yus) + i@wm?mﬁ) f

Boa I/B

@%ﬂﬂ%)q = @%ﬂﬂ%) - <&7u¢73[0'3>10'3-

( @F#F5 LP)F —
(4.157)

These can be rewritten as

(T, L5 0)F —— A(pyysh) f = ((%M%@ + i<7u1/173712@/~1>>f
s (4.158)
Boa

(1, 073)g = (10730) — (Vubyalosy) o

Since w'yg'ymz = —Yy3l 0'37; is an odd grade multivector which is the opposite of its
reverse, it is a trivector and has no scalar part. The multivector 1)y3¢ is odd grade and
is equal to its reverse, so it is a vector and, consequently, (mﬂb%@ corresponds to the

scalar product v, - (w’yg@). In this way, the above relations reduce to

(IL, L5 0)F = 45t} f = (- (019) ) f
I 5 (4.159)

(W ¥3)g = Y - (Py33)).

Boa

The components 7, - (1y31)) multiplied by ! can be identified as the components ps,, of

the spin density vector, which is then given by
A _
ps = 5%073@/1- (4.160)

The last basic bilinear covariant expression to be considered is ¥il's ¥. In this case,

taking into account that 5 = —il and using the mappings (4.124) for action of operators,
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relations (4.143) furnish:

(FiDs W) F — a(insi) f = ((B1v) + (0T ) £
1 5 (4.161)

(WIY), = (DIY) — (YIvIos)Ios.

Boa

These can be rewritten as

(L5 0)F — (s} f = (1) + il ) £
Iﬁ (4.162)

(WIb), = (WPI) + (Yozv)os.

Boa

The fact that y301) = o3 is even grade and is the opposite of its reverse implies that

it is a bivector and has no scalar part. This reduces the above relations to

(il5 W) F — 4(insp) f = (i) f
Iﬂ (4.163)

(VI)g = (WidI).

Boa

By considering the factored expression of an even grade multivector from Ct; 31 for 1,
given by ¢ = p%e%mR (see the final paragraph of the chapter 2), one obtains Qﬂ@Z = pel?,
which furnishes

(1) = (PI) = —psin(B). (4.164)

It should be noted that the basic bilinear covariant expressions in terms of operator
spinors obtained, as well as the corresponding expressions for the observables, reproduce

the expressions presented by Doran and Lasenby (2003).

4.2.5 Plane Waves

As a simple illustration of some of the above results concerning the Dirac equation and
Dirac spinors, one can consider the particular case of the plane wave equation and its

associated solutions.

The positive energy plane wave solutions of equation (4.109) can be stated to be of

the form |
Y(x) = Yo(p)ei?, (4.165)

where ¢y(p) is an algebraic Dirac spinor depending only on the spacetime momentum p
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of the particle. By writing vo(p) = vo(p) f, where 1o(p) = 4(Re(¢o(p)))+ is the operator
spinor corresponding to v¢y(p), and using the property iyiof = f this solution can be

written
V(x) = to(p)e 1P f = ty(p)e P f. (4.166)
Substitution of this expression in the equation (4.109), with A, = 0, furnishes
1 1 1
ihy"o(p) (—ﬁvzlp;L) e~ w1210 f — meahy(p)e” BT f (4.167)
that is,
1 1 , 1 1 .
p¢o(p)§(1 + 70)5(1 +iv12) = m0¢o(p)§(1 + 70)5(1 + iv12) (4.168)

(note that the form 1 (z) = vy (p)e~#®) f for the assumed solution could be used in place
of Y(z) = wo(p)e 7@ f in the same way to obtain the above expression). The real

and imaginary parts of this equation correspond to the same equation,

po(p)(1 +0) = meo(p)(1 + Y0), (4.169)

and the even grade and odd grade parts of this new equation are also the same, and

correspond to
po(p) = meo(p)o- (4.170)

This is the expected equation in terms of the algebra C/; 3 (cf. Doran and Lasenby (2003)).
In addition, this equation is obtained four times from the equation (4.168), and this latter

is known to be equivalent to the traditional plane wave equation, pu(p) = mcu(p).

The negative energy plane wave solutions of the equation (4.109) can be stated to be

of the form
Y(x) = o (p)er ™) = gy (p)e 1P £, (4.171)

Similarly to the above above, this solution furnishes the equation

Wo(p)%(l + ’Vo)%(l + i) = —mcwo(p)%(l + 70)%(1 + iv12), (4.172)

where either the even or odd grade part of either its real or imaginary part corresponds
to

po(p) = —mctho(p)0- (4.173)

Again this is the expected plane wave equation in terms of C¢; 5 (cf. Doran and Lasenby

(2003)), which is encoded four times in equation (4.172), as well as in its classical coun-
terpart, pv(p) = —mcv(p).

The plane wave solutions in terms of the real geometric algebra of spacetime can be
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obtained as follows (DORAN; LASENBY, 2003). The equations (4.170) and (4.173) imply
that

Yt = EmedTy, (4.174)

where the plus and minus signs superscripts distinguish positive and negative energy
solutions, given by
Pt = gt (2) = Y (p)eTITR ) (4.175)

The above equations allow one to write
plE* = Emeptyo® = £mj, (4.176)

where 7 is the probability current density vector. Now, by using the factored expression
Y = p%e%mR for an even grade multivector from C¢; 3% (see the final paragraph of the

chapter 2) in the equation (4.176), one obtains
ppe'? = £mj. (4.177)

Since both p and j are vectors, one must have e/? = £1, that is, 5 = 0 or 3 = 7. Given
that j -7 =c¢p > 0 and p- vy = E/c > 0, where FE is the energy, one must have § = 0
for the positive energy solutions and $ = 7 for the negative energy solutions. The plane

wave solutions can then be written in the form
WE = preslfe LUeTlosn o) (4.178)

where 3, =0, f_ = mand R = LU is a spacetime rotor, L being a rotor describing a boost
and U being a rotor describing a spatial rotation. The rotor ReFlosi(pe) — [[JFloss(pa)
must transform mcy, in the momentum p of the particle, so that the rotor U must be a
spatial rotor relative to an observer of normalized spacetime velocity ~y; in particular, it

must correspond to a definite spin state. In this way, one must have

% = LUeﬂ”?’%(p'x)’yoeﬂ”?’%(p'x)UE = LvoL. (4.179)

From the known expression for a boost transforming a time-like vector into another

(cf. subsection 3.3.4), the rotor L can be written as

B L+py/me mc + pyo _ mc+E/c+p
V2 +p-y/me)  \2me(me+p-y)  /2me(me+ Efc)’

(4.180)

where p = p A 7p is the relative momentum of the particle. In summary, the plane wave
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solutions of positive and negative energies are respectively given by

U = pEL(p)Use 1705 P ) and ;= p2IL(p)U,e! 7350, (4.181)
where L(p) is the rotor given by equation (4.180) and the spatial rotor U, describes a
well-defined spin state (a “spin-up” or a “spin-down” state), with U; = 1 and Uy = —I 0.
4.2.6 Energy-Momentum Tensor

The ambiguity in the definition of the energy-momentum tensor allows one to define it

for the Dirac field to be
", = %(gf/mr“ay v+ (Zinr9, )", (4.182)
This can be rewritten as
T, = %(@mr#a,, W — 8, UTyihl*T, y’x) (4.183)
Since I'\I'*Ty = I'*, the above expression can be simplified to
T, = % (m GTHY, U — ihd), UT* w) (4.184)

This corresponds to a choice similar to that made by Hiley and Callaghan (2010), for the
energy-momentum tensor, except for a sign. Note now that the above expression can be

written in terms of square matrices as follows:
1 - _
1%, = 5 (6 (RO 9,0) — tx(ih), VTW) ). (4.185)
In terms of algebraic Dirac spinors, this expression reads

™, = %(4@@%6@) — 40, 7)). (4.186)

In terms of operator Dirac spinors, this is given by

7, = 2 (Aihf 0,0 ) — Aihfain o)), (4.187)

or, considering the property of the scalar part of invariance under cyclic permutations of

the factors in its argument,

T, = 3 (Mt D,070) — Alitnt 6 10,0) ). (4.188)
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Since v* is a vector, only the terms in the expressions

- 1 3
o[y = &/wz(l + 7 + 712 + iY0712) Y (4.189)

and .
Y fO, = ¢1(1 + % + 1712 + i70712) O Y (4.190)

which have a non-null vector part furnish in principle non-null scalar parts in the above
expression for the energy-momentum tensor. It is found that the terms 8,¢1, 9,1ivi20,
¥, and wifylg&,zﬁ are all even grade multivectors (since they are products of even grade
multivectors), so that they furnish null contributions for the energy-momentum tensor.
The remaining terms are odd grade multivectors which can have a vector part. The above

expression for the energy-momentum tensor can then be written as
Ly, - 4 . ~
™, =5 (<mwamo¢> + (i7" 0, Yirom12)
— (ihy"Y100,5) — (i iro1120,5)). (4.191)
This can be rewritten as
1/, ~ ~
™, = 5((1717“(9%0%1/1) + ("0, v0v21)
= (ih0d,B7) = (P70921007") ) (4.192)

Now, by using the property of invariance of the scalar part under the reversion operation,

one can rewrite the above expression with the third and fourth terms reversed:
™, = %<<ih7“au¢701/~)> + (I 0, v0021))
— (iR 0,0 y0) + (A" V@Zwml@). (4.193)
This furnishes the following expression for the energy-momentum tensor:
T, = h(y Do losi). (4.194)

These match to the components of the canonical energy-momentum tensor as presented
by Doran and Lasenby (2003), which express it in a coordinate-free manner, in terms of

its action in a vector a, as

T(a) = h{(a- V)yolosi):. (4.195)
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The relation to the expression in terms of components is given by

T, =~"-T(v) =T(w) - " (4.196)



5 Multi-Particle Spinors

The study in the previous chapter treats states of a single Spin—% particle. The objective
here is to extend that study to states of a system of multiple particles with spin % This

objective and its motivation are clarified in the following section.

5.1 Introduction

In the context of quantum mechanics (PIZA, 2003; MESSIAH, 2014), the state space for
a system composed of two or more particles is usually described by the tensor product
of the state spaces for the individual particles. States for the composite system are then
described in terms of tensor products of states for the individual particles, considered in a
fixed order, compatible with the labeling of the particles (recalling that the tensor product
is associative, but non-commutative). As an example, consider a system composed of two
particles, labeled as “particle 1”7 and “particle 2”7, whose state spaces are the Hilbert spaces
H1 and H,, respectively. In this case, the space of possible states of the composite system
is the tensor product H; ® Ha, and a state of the form |¢) ® |x), where |¢p) € H; and
|xX) € Ho, is a possible state for the composite system. Although not all states from
H1 ® Ho can be written in the form |¢) ® |x), a general state for the composite system
is a linear combination of tensor products of this form. For this case of a system of
two particles, given the states 1) = |¢) @ |x) and |¢) = [¢/) @ [X) from H; @ Hs, the

Hermitian inner product of the two is naturally defined as

(Yl') = (2l¢") {(XIX)- (5.1)

The action of operators is also extended in a natural way. Given an operator a defined on
the state space of particle 1, H;, its extension to the tensor product space H; ® Ho can

be denoted by a; and defined to act on a state |¢)) = |¢p) ® |x) through the expression

a|y) = (ald)) @ [x)- (5.2)
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It follows that a; is the tensor product of the operator a with the identity operator for
the state space of particle 2:
ah=a®l. (5.3)

The same applies to operators defined on the state space of particle 2. In general, an
operator defined on the tensor product space is a linear combination of tensor products
of operators defined on each factor space. All the constructions defined for the case of
two-particle systems extend naturally to the case of systems composed of any number
N of particles by considering tensor products with /N factors, each corresponding to a
particle. These are the basic elements for the description of N-particle systems in quantum

mechanics.

One question that arises is whether it is possible to implement such a description in
terms of Clifford algebras, as in the case of a single particle. Doran et al. (1993, 1996)
have addressed this question by introducing the multi-particle spacetime algebra, which,
for the case of a system of N non-relativistic spin—% particles, is an algebra constructed
from N copies of the Minkowski spacetime, each copy associated to a geometric algebra

of spacetime, with the following defining property

(%" + %) = 6, (5.4)

N | —

where 7, is the p-th canonical basic vector of the a-th copy of Minkowski spacetime, so
that u,v € {0,1,2,3} and a,b € {1,...,N}. This property implies, in particular, that
the geometric product of vectors from the same copy of Minkowski spacetime obeys the
standard property of the geometric algebra of spacetime, while the geometric product of
vectors from different copies of Minkowski spacetime anticommutes. Through this algebra,
Doran et al. (1993, 1996) were able to describe states for multi-particle systems, at least
in the non-relativistic context, in a similar way to the description provided by Hestenes
(HESTENES, 1967; HESTENES, 1971; HESTENES; GURTLER, 1971; HESTENES, 1975) for the

case of a single particle.

Since their introduction, multi-particle spacetime algebras have been applied in several
contexts — cf. e.g. Doran et al. (1996), Lasenby et al. (1993), Somaroo et al. (1998, 1999),
Havel et al. (2001), Parker and Doran (2002), Havel and Doran (2002a, 2002b), Lasenby
et al. (2004), and Arcaute and Lasenby (2008). Moreover, Doran et al. (1996) argue that
the approach in terms of this algebra brings advances in clarity and insight to the subject
of multi-particle quantum systems. Despite this, the topic is still little explored and there
are still fundamental questions to be answered. Which Clifford algebra does the multi-
particle spacetime algebra correspond to? Is this the same as the algebra of operators
acting on classical multi-particle states?” How can a spinor be defined in terms of these

algebras? How do the different definitions of spinors relate in this context?
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Adopting as a basic premise the adequacy of the multi-particle spacetime algebras in
their descriptions, the aim of this work is to answer the above questions by extending the

study realized in the previous chapter to the case of multi-particle states.

5.2 Non-Relativistic Multi-Particle Spinors

As shown above, a possible state for a system of two non-relativistic spin—% particles can
be expressed by the tensor product |¢) ® |x), where |¢) and |y) are states for the particles
1 and 2, respectively. In this case, an operator defined on the tensor product space is
represented by a linear combination of tensor products of the form a ® 13, where @ and b
are operators acting on the spaces of the particles 1 and 2, respectively. Since the algebra
of operators for each of the two particles is Cl3, the algebra of operators acting on the
tensor product space corresponds to Clso @ Clso. Analogously to the case of a single
particle, the algebra Cl3;, @ Cls can be used to represent states as well as operators for

the system of two particles.

5.2.1 The Tensor Product Algebra Acting on Two-Particle States

According to the usual definition of the tensor product of algebras (LANG, 2002), the
tensor product Cl3 o ® Cls is defined to be another algebra, whose product is defined by

(A® B)(A'® B') = (AA') @ (BB), (5.5)

where A, A, B, B" € Cl3, and extended by bilinearity. It is noted from this definition
that the product of elements of the form u ® 1, where u is a vector from Cl3, obeys a
property similar to that for the algebra Cls(, with the element 1 ® 1 playing the role of
the unity. The same is observed about the product of elements of the form 1 ® v, where

v is a vector from Cl3. Note also from the definition (5.5) that

that is, the product of elements of the form u ® 1 with elements of the form 1 ® v is

commutative. At this point, it is useful to denote
I®l=1 o;®l=0;' and 1®0; =0 (5.7)
The defining property of the algebra Cls o @ Cls can then be expressed by

bO'ia) = 52']', if a= b, (58)

1
§(Uia0jb +o;
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and .
5( Z‘aO'jb — O'jbO'Z‘a> = O, if a 7é b. (59)
These properties define the algebra Cl3¢ ® Cl3¢ as a commuting product of two copies
of Cl3p. An inconvenience is that this is not a Clifford algebra. As an alternative, one

would think that a suitable algebra to replace Cl3 ¢ ® Cls would be that satisfying the

properties

1

é(aiaa'jb + O'jbO'ia) = 5@', if a= b, (510)
and .

§(O'ia0'jb + G'jbO'ia) = 0, if a 7& b. (511)

This could be obtained by redefining the product (5.5) in such way that the relation

holds instead of relation (5.6), but the product of elements of the form u®1, and in the
same way the product of elements of the form 1®v, still obey the same fundamental
properties of Cl3, with 11 playing the role of the unity. This alternative way to define
the tensor product yields a new Clifford algebra and is called an alternating tensor product,
or a graded tensor product (VAZ; DA ROCHA, 2019; CRUMEYROLLE, 1990). But this
definition does not allow one to construct the adequate idempotents and corresponding

ideals to define spinors, since in this case

%(1—1—0'31)%(1—1—0'32) £ %(1—1—0'32)%(14—0'31). (5.13)

A solution requires the extension of the algebra defined by the usual tensor product

Cls © Clsy.

5.2.2 The Two-Particle Spacetime Algebra

As shown in section 3.1, the algebra Cls is isomorphic to the even subalgebra Cl; 31 of
the Clifford algebra C¢; 3. Thus, a way to extend the algebra Cl;, ® Cls5, would be to
consider it as C¢; 37 ®C¢; 37, included as the even subalgebra into the algebra Cf; 3C/; 3,
which is taken as an alternating tensor product, ensuring it to be a Clifford algebra. The
product of this larger algebra is then defined by expressions similar to the relations (5.10)

and (5.11), which can be summarized in this case by

1 a a a
5 "W+ 3 ") = 0, (5.14)
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where 7,! = 7,®1 and v, = 1®7,. This is identical to the defining property of the
multi-particle spacetime algebra introduced by Doran et al. (1993, 1996), equation (5.4),
for a two-particle system. In this way, the Clifford algebra Cf; 30Cf; 3, understood as
an alternating tensor product, is identified as the two-particle spacetime algebra. The
inclusion of the algebra Cls3, ® Cls3o =~ C€1,3+®Cfl,3+ into the two-particle spacetime
algebra, Cly 3&0C¢; 3, can then be defined by

;" =" %" (5.15)
From this relations, it is simple to verify that
1 a b b_a\ __ 5 f o
5(0'7, g; +O'j ag; )— ij) or (I—b, (516)

while

oo’ =aola*, for a#b. (5.17)

This construction also conveniently allows one to associate the inclusion with the fixing

of a common spacetime reference frame, defined by 7o' and o2

5.2.3 Two-Particle Pauli Spinors

According to the above, the tensor product ¢ ® X, where @ and X are classical Pauli
spinors, can be understood as a classical two-particle Pauli spinor. 1If ® and X are the
square matrices corresponding to @ and X, then the tensor product ¢ ® X corresponds

to @ ® X in terms of square matrices. This can be written as
PX=(P)(1eX)=1X)(Px1), (5.18)

and corresponds to a matrix representation for an element of Cl3(®Cl3 o >~ C€1,3+®C€1,3+.

Such an element can be written as

oRx = ¢'x* = X9, (5.19)

where ¢! = gﬁ®1 and x? = 1®X, and ¢ and x are the algebraic Pauli spinors corresponding
to ® and X, and consequently to the classical Pauli spinors @ and X. Since both ¢ and x
correspond to elements of the minimal left ideal Z = {Af | A € Clsp and f = 1(1+ 03)},
they can be written as ¢ = ¢f and x = xf, where ¢ and x are the even grade elements
defining the corresponding operator Pauli spinors. In this way, from the above equation,

one can write

ooy = o'x* = ¢ fIX°f, (5.20)
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where ¢! = ¢®1 and y? = 1®Y, and
. 1 21 2
ft= 5(1 +o3) and f°= 5(1 + o37). (5.21)

Since one expects the product of elements of the algebra Cl3y ® Clsy ~ C€173+®C€173+

belonging to different copies of Cl3 ~ Cl; 37 to commute, one can write
Ppox = ¢'x* = ¢S (5.22)

The fact that f! and f? are commuting primitive idempotents imply that f!f? is also
a primitive idempotent. In this way, the above expression defines the algebraic two-
particle Pauli spinor corresponding to @ ® X to be an element of the minimal left ideal
T, = {Af | A € Clz™®Cli 5" and f = 3(1 + 03')2(1 + 05%)}. The reduction of an
algebraic two-particle Pauli spinor A*B2f!f? to an element of the form (5.22), where the
multivectors A' and B? are replaced by even grade multivectors from their respective
copies of Cl3p™ =~ Cl; 3™t (note the notation introduced), is straightforward from the
commutativity of elements of different copies of Cl3 o ~ Cf; 37 and from the known way in
which the reduction is performed in the case of a single copy (cf. subsection 4.1.3), which

follows in this case from the property o3®f* = f.

As in the single-particle case, this reduction and the fact that the idempotent f!f? is
a fixed factor in the expression for an algebraic two-particle Pauli spinor imply that the
even grade multivectors belonging to the subalgebra Cl3 0" ® Cls o™ =~ Cl1 37T ®Cl 31+
can be sufficient to describe the states in question. This allows one to define an operator
two-particle Pauli spinor as an element of the subalgebra Cf; 37T®Cl 37, Since the
single-particle operator spinors ¢ and x in equation (5.22) are given in terms of their
algebraic counterparts by ¢ = 2(¢); = 2(¢)_o5 and x = 2(x)+ = 2(x)—03 (cf. subsection

4.1.3), there are four ways to express the operator two-particle Pauli spinor ¢'y? in terms

of its algebraic counterpart, ¢'x?, namely

¢'x*) - _os'os’, (5.23)

where (A) ., denotes the extraction of the even grade part of both factors of an element
A from Clz o @ Clsg ~ Cly 37 @Cl 3%, and (A)_, (A)_; and (A)__ are defined similarly.
This is an expression of the fact that an operator two-particle Pauli spinor is encoded four

times in its algebraic counterpart.

The relation between the above definitions for two-particle spinors can be expressed
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through the following extensions of the maps « and 3, introduced in the previous chapter
(cf. subsection 4.1.3, equation (4.44)):

m 15
PP =(a"+a'lo) (VO +b'1o?) =4(p" x?) 1+
(5.24)
In this case, by writing ¥ = & ® X, ¢ = ¢'x? and ¢ = ¢'x?, and using the following

notations

04,43 bO ~b3 ] ]
sox= " e TV} et o= (T ) (0 0 ) = 6
—a?+iat —b?+ibt -

AW = (A®)® X and A’V = 9 ® (AX), (5.25)
the action of operators is translated through
800 —2— 0% = oo f1f?
Iﬁ (5.26)

Hoj"Y)sq = 003"

Boa

and
@y & ]aqlb — ¢1a03af1f2

o 15 (5.27)
AIY) oy = PI05".

It is worth mentioning that the above definition of an operator two-particle Pauli
spinor can be identified with the representation introduced by Doran et al. (1993, 1996)
for the case of non-relativistic two-particle states. In this representation, a basis for the

state space is given by
(1,10, 10 1o 10;°}, where 1,5 € {1,2,3}, (5.28)

and the shorthand notation Io;* = [%0;* was used. This basis has 16 elements, while
a classical two-particle Pauli spinor can be expressed in terms of 4 complex or 8 real
coefficients. This doubling is a consequence of the fact that the algebraic and operator
representations of the spinors include a distinct substitute for the imaginary unit i = /—1.

Indeed, from relations (5.27) it follows that ¢ ¥ is mapped by

[0}

=) X S I'v S plos (5.29)
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and

iv=0®(X) S % B gl (5.30)

This ambiguity can be eliminated by requiring that the algebraic and operator two-particle
Pauli spinors satisfy
I'y =1* and olos' =¢los”. (5.31)

These requirements, whose ramifications can be analyzed simply from either the algebraic

or the operator representation, imply in this later that
= —ylos'loy?, (5.32)

which allows one to write )
b=z (1 . 10311032). (5.33)
Then, the considered state can be described by

(e

P=00X S Y=¢"\E S ¢=¢\E, (5.34)

where

|
E-= 5(1 . 10311032). (5.35)

The multivector £ is an idempotent and its product on the right with a state represents
a projection operation (E? = F and F(1 — F) = 0). The meaning of this projection
operation can be understood by noting that the product of £ with both Io3! and Io3>
results in the bivector %(I 03! + Io3?), which implies that the product on the right of
1 = ¢'?E with both Io3! and Io3? has the same result. Thus, the resulting effect of
the projection operation is to halve the number of degrees of freedom in the algebraic and

operator spinors. In this representation, the product on the right with the multivector
1 21 1 2
J = Eloy! = Bloy? = 5(103 + loy ) (5.36)

which satisfies
J? = —F, (5.37)

is the representative for multiplication by the imaginary unit ¢+ = y/—1 in the classical
representation. The complex linear combinations of states are then expressed by sums of
products on the right with multivectors of the form a 4 b.J, where a and b are real scalars.

The four complex basic states of a system of two spin—% particles are represented in this
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1 1\ . 8

® aY Lf2E N E,
1 0\ .
()ell) & winrr 2 toss
0 1\ .
<1>®<0> N N ) 27 JB S e o}

0 0 a
<1>®<1> — 10'21]0'22f1f2E lg 10'21[0'22E.

context by:

(5.38)

5.2.4 The N-Particle Case

The generalization of the above results for the case of a system of N spin—% particles is
simple, and essentially consists of introducing a factor algebra in the tensor product for
each particle introduced in the system. More precisely, the algebra of operators in this

case is given by

TNClyo = Clso® -+ @ Clsy, (5.39)
T veas
corresponding to
TNCH 3" = Clig @ - &Cls", (5.40)
N factors

and included through the relations o;* = 7;v,® in the N-particle spacetime algebra,

TNCl 3 = Clig®- - &Cl g, (5.41)

~
N factors

whose fundamental property is given by
1 a., b b., a ab
5(7# Yoo+ W Vi ) =0 Umz (542)

Where7u1:7u®"'®17 -~-»7uN:1®"~®%A-

The representation of a wave function given by a simple tensor product is represented
with an extra factor corresponding to each new particle introduced in the system. A
classical N-particle Pauli spinor is then defined in terms of tensor products of N single-
particle Pauli spinors. The expression of such a classical spinor in terms of square matrices
gives an element of the algebra of operators, leading naturally to the algebraic description

for the spinor, guaranteed by the commutativity of elements of the algebra of operators
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from different factor algebras (this guarantees the commutativity of the idempotents with
other elements of the algebra). In this way, an algebraic N -particle Pauli spinor can be

defined as an element of the minimal left ideal

In = {Af ' Ae TNC€173+ and f = %(1—!—0'31)--- (1—1—03N)}. (5.43)

N | —

The reduction of an algebraic N-particle Pauli spinor,
AL BNfLL N ?1"'XN:¢1"'XNf1"'fN (5.44)

where the elements A', ..., BY each belonging to a copy of Cl3 ~ Cl; 3T, are replaced by
the elements ¢', ..., x", each belonging to a copy of Cl3 " ~ Cl; 37T, is straightforward
from the commutativity of elements of different copies of Cl3o ~ C¢; 37 and from the
property o3®f* = f°.

This reduction and the fact that the idempotent f'--- f¥ is a fixed factor in the
expression for an algebraic N-particle Pauli spinor leads to the definition of an operator
N -particle Pauli spinor as an element of the subalgebra TNC€370+ ~ TANC€1,3++. Given
that a single-particle operator spinor ¢ is given in terms of its algebraic counterpart
by ¢ = 2(¢)+ = 2(¢)_0o3, there are 2V ways to express the operator N-particle Pauli
spinor ¢! -+ x in terms of its algebraic counterpart, ¢'---x". The simplest is given by
Pt xN = 2N(pt - xN)4q, where (A),.. denotes the extraction of the even grade
part of all factors of an element A from TNClsy ~ TNCly5*. This is an expression of
the fact that an operator N-particle Pauli spinor is encoded 2V times in its algebraic

counterpart.

The generalization of the transformations (5.24) are immediate and, at the same time,

too extensive to be given here.

The representation (5.34) of the algebraic and operator spinors, required to make the
algebraic and operator descriptions compatible with the classical one, can be extended to
systems of any number of spin—% states as follows. Any multivector corresponding to a
state for a system of NV spin—% states contains the multivector Ey as a factor on the right.

For this general case, the multivector Ey is required to be idempotent and satisfy
Eyxlos' = Exlos® =--- = Exlos” = -+ = Exlas". (5.45)
These conditions are equivalent to

EN = —ENIO'31[O'32 == —EN[0'31[0'3a == —EN[O'31[O'3H, (546)
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which in turn can be expressed by

1 1 |
En = EN§(1 . 10'3110'32> — = ENQ(l . 10311030) = = B (1 . 1031103").

(5.47)

The fact that each multivector in these equations is idempotent allows one to write
Ex = Ey 1B 1—Ios' o5 ), (5.48)

where the product in question is the geometric product. The idempotent Ey can then be

defined by
N

1
Ey = H1 : (1 - 1031103‘1). (5.49)
The complex structure is provided by the multivector

Jy = Exlos®, for a€{l,...,n}. (5.50)

A basic example is provided by the case of N = 3, for which

1 1
Eg = 5(1 — 10'31]0'32>§<1 — 10'3110'33>
1
o (1 o' oy — [os Tog® — 10321033) (5.51)
and .
J3 = Z(Iagl + o2+ Io3® — 10'3110321033>. (5.52)

5.2.5 Inner Product of Two-Particle Pauli Spinors

The Hermitian adjoint of the classical two-particle Pauli spinor ¥ = ¢ ® X can be defined
to be
vt = ¢t @ XT. (5.53)

It can be translated to the algebraic and operator forms as

Ut = ¢t @ XT —2 7/,1‘ — ¢ITX2T _ f1f2¢1TX2T
oy 15 (5.54)

pf = gty
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The Hermitian inner product of ¥ = & ® X with a second classical two-particle Pauli

spinor, ¥' = ¢ ® X', is given by
iy = (T¢)(XTX). (5.55)

As a generalization of relations (4.68), in section 4.1.4, this Hermitian inner product can
be mapped through the maps « and 3, given by relations (5.24), to its algebraic and

operator counterparts, as follows:

(é) ® <(1]) v = ply! = (oM )2 x'?) = ((9116) — (6110 Tos)Iost) (M) = X Tos?)To?) 112
x} Lﬁ
(@161 0P Tx"g = ((0116) — (61 T¢/ Tos ) Tast) (M) — (X Tos?) Tas?).
(5.56)

5.3 Relativistic Multi-Particle Spinors

As in the non-relativistic case, a possible state for a system of two relativistic spin—%
particles can be expressed by the tensor product @ ® X, where ¢ and X are classical
Dirac spinors describing states for the particles 1 and 2, respectively. In this case, an
operator defined on the tensor product space is represented by a linear combination of
tensor products of the form A ®B, where A and B are complex 4 x 4 matrices representing
operators acting on the spaces of the particles 1 and 2, respectively. As shown in the
previous chapter, the algebra of operators for each of the two particles is the Dirac algebra,
which corresponds to the complexified geometric algebra of spacetime, C ® C¢; 3. In this
way, the algebra of operators acting on the tensor product space of two relativistic spin—%
particles corresponds to (C ® Cl;3) ® (C ® Cly3). Analogously to the case of a single
particle, this algebra can be used to represent states as well as operators for the system
of two particles. However, as in the non-relativistic case, this does not correspond to
a Clifford algebra, and an inclusion of it into a Clifford algebra is necessary to properly
define multi-particle spinors. An adequate extension of the algebra (C®C/l; 3)®@(C®Cl, 3)
to a Clifford algebra can be realized only if a compatible extension of the Dirac algebra,
C ® Cly 3, could be performed.
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5.3.1 The Dirac Algebra and its Inclusion in a Higher-Dimensional
Algebra

As emphasized by Figueiredo et al. (1990), the usual Dirac algebra considered in physics,
C ® Cly 3, is isomorphic to the real Clifford algebra Cl¢,; (cf. also, da Rocha and Vaz
(2007)). If {eo, €1, €2, €3, €4} is an orthogonal basis of unit vectors for the vector space R*!,
the product of the Clifford algebra Cl4; is defined by

602 = —]_7 Ej = €4 = ]_7 and €EAER =— —€EREy, (557)

where j € {1,2,3} and A, B € {0,1,2,3,4}, with A # B. It follows that, the unit

pseudoscalar of Cly 1, given by €5 = €p€1€2€3€4, satisfies
€s€q = €465 and €50 = —1, (5.58)

for A € {0,1,2,3,4}. In this way, the isomorphism C ® Cl;3 ~ Cl,; can be defined
through the identifications
Yo =€u€s and i = €5, (5.59)

where u € {0, 1,2,3}. Indeed, these identifications imply
702 = (e0€s)(€0€s) = —€’e4> =1 and 7]2 = (ejeq4)(€j€4) = _6]'2642 =—1, (5.60)

for j € {1,2,3}, and

Ty = (€u€a)(€v€a) = —(evea)(€nes) = =7, (5.61)

for p,v € {0,1,2,3} and p # v. In addition, i = €5 commutes with arbitrary elements of

the algebra and its square is —1.

Note that the correspondences v, = €,¢4 identify the vectors of the algebra C¢; 3 with
bivectors of the algebra C/¢,;. In this way, products of vectors of C¢; 3, which generate
general elements of this Clifford algebra, correspond to products of bivectors of Cly 1,
which generate even grade elements of this larger Clifford algebra. This shows that the
real Clifford algebra C/;3 is isomorphic to the even subalgebra Cl;;* of the Clifford
algebra Cly1: Cly 3~ Cly,™.

One might consider the even subalgebra Cly 1" ~ C/, 3 as the subalgebra relevant to de-
fine multi-particle Dirac spinors. However, the imaginary unit, given by the pseudoscalar
€5, is the product of the five generators of the algebra and is thus an element of C/4; but
not of C¢41 ™. One can not construct the appropriate idempotents in an alternating tensor

product of copies of Cl4;, since in this case the spin factors of the idempotents do not
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commute, that is,
1 -1 1 1 -2 2 1 -2 2 1 -1 1
5(1"‘1 Y12 )5(1+Z Y12 )7&5(14‘2 Y12 )5(1—}‘7[ Y12 )7 (562)

where (14 %712%) = $(1 + e5%€21).

Now, the pattern in the sequence of inclusions
66370 — Cgl’g — 664’1, (563)

wherein each Clifford algebra is included in the next as its even subalgebra, allows one to
conclude that the Clifford algebra that will permit the construction of the correct idem-
potents is the next in the sequence, Cly 4. This is indeed the case. If {(o, (1, 2, (3, Ca, G5}
is an orthogonal basis of unit vectors for R?4, the Clifford algebra Cly4 can be defined

such that its product is given by

(=¢G'=1, ¢(*=G*=-1, and (Gl =Gy, (5.64)

where j € {1,2,3} and U,V € {0, 1,2,3,4,5}, with U # V. In this case, the isomorphism
Clyy ~ Cly 4" can be defined through the identifications

€A = CaGs, (5.65)
where A € {0,1,2,3,4}. Note from these relations that
€' =—(G'=-1 ¢ =-(G"=1, and &’=-(°GP=1, (5.66)
for j € {1,2,3}, and
eaep = (Cal5)(CBGs) = —(CBGs)(Cals) = —€pea, (5.67)

for A,B € {0,1,2,3,4} and A # B.

The Clifford algebra Cl; 4 is not the only one whose even subalgebra corresponds to
the Dirac algebra C¢,;. A construction similar to the one above allows one to verify that
another possibility is furnished by the Clifford algebra Cl4 5. This is a simple consequence

of the isomorphism Cly 47 ~ Clyo™.

5.3.2 The Tensor Product Algebra Acting on Two-Particle States

As shown above, the Dirac algebra C ® C/; 3 is isomorphic to the Clifford algebra C/,,
through the identifications v, = €,e4 and ¢ = €5. This fact implies that the algebra of
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operators acting on relativistic two-particle spin—% states, (C® Cly3) ® (C® Cly3), can
be identified with the algebra Cls; ® Cl4; through the relations

7. =€, and " =€, (5.68)

where 7,' =7, ®1, 7> =1®7, =i®1, 2 =1R1i 4" = ea®1, €42 = 1R ey,

€52 = 1®e5. According to the usual definition of the tensor product of algebras, it satisfies

1
5(%“%13 + %b%“) =N, for a=0b, (5.69)
ylﬁvyb = %,b%“, for a #0, (5.70)
and
i%,> =~ for a,be {1,2}. (5.71)

These properties do not define a Clifford algebra. In addition, despite the fact that
the alternating tensor product C€4,1®C€471 is a Clifford algebra, it does not allow one to
construct the appropriate idempotent and corresponding ideal, as seen in the previous
subsection. A way to circumvent the problem is to embed the algebra Cly; ® Cly; in a

Clifford algebra, and refer the desired constructions to this larger algebra.

Since, as seen above, the Clifford algebra C/4; is isomorphic to the even subalgebra
Cly.4™ of the Clifford algebra Cls 4, through €4 = (a5, where A € {0, 1,2, 3,4}, the algebra
Clyy ® Cly; can be identified with the algebra Cla 4T ®Cly 4T through the relations

€A’ = (a"Gs", (5.72)

where (pt = (p®1 and (? = 1&(y, for U € {0,1,2,3,4,5}. In this case, the algebra
C€274+®C€274+ is understood as the even sublagebra of the Clifford algebra C€274®C€274,

given by an alternating tensor product. The product of this larger algebra is then given
by

()= (G =1 (¢)=(u)=-1 and @'¢"=-G"C" (5.73)

where U,V € {0,1,2,3,4,5}, with U # V, and a,b € {1,2}, with a # b. This properties
can be summarized by

%(CUGCVZ) + &) = 8%y, (5.74)

where 7y are the components of the metric tensor for the space R?*. This expression
makes it clear that C€2,4®C£274 is in fact a Clifford algebra.
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5.3.3 Two-Particle Dirac Spinors

A tensor product of the form & ® X, where @ and X are classical Dirac spinors, can be
understood as a classical two-particle Dirac spinor. The corresponding tensor product
in terms of square matrices, ® ® X, can be understood as a matrix representation for an
element of the algebra of operators (C®C/l; 3)®@(CRCl 3) == Cly1@Clyy == Cly s TRClay ™.

Such an element can be written as

oRx = o'x* = x°¢', (5.75)

where @1 = @®1 and X2 = 1®)_(, and ¢ and x are the respective elements of the algebra
C®Clg~Cly ~ C@LA defining the algebraic Dirac spinors corresponding to @ and
X. Given that the elements ¢ and x correspond to elements of the minimal left ideal

={Af|AeC®Clgand f = 5(1+7)(1+1iv2)}, they can be written respectively
as gb f and xf, where ¢ and x are the even grade elements defining the corresponding
operator Dirac spinors. This, in addition to the fact that the product of elements of the
algebra (C ® Cly3) ® (C® Cly3) =~ Clyy ® Clyy =~ ClysT®Cly,™ belonging to different

copies of Cly 3) >~ Clyy ~ Cly 4" is commutative, allows one to write
oRx = ¢'x* = o'\ f P, (5.76)
where ¢! = ¢p®1 and y? = 1®Y, and,
1 11 41 o 1 o 1 2 2

The expression (5.76) defines the algebraic two-particle Dirac spinor corresponding to
®®X as an element of the minimal left ideal Z, = {Af | A € ClosT®Cly st and f= f1f2}.
The reduction of an algebraic two-particle Dirac spinor A'B?f!f? to an element of the
form (5.76), where A' and B? are replaced by elements from their respective copies of
Clizt ~ Cly T ~ Cly 7 (see Table 5.1), is straightforward from the commutativity of
elements of different copies and from the known way in which the reduction is performed

in the case of a single-particle (cf. subsection 4.2.2), which follows in this case from the

property 1%y f* = f2.

algebra ‘ multiplier ‘ generators
Clo 4 - G =¢2=1,0G2=0*=3" =0 =-1
Clyy =~ Clyy™ s (€1G)° = (06)° = (G36G)? = (Gals)? =1, (Go¢ ) -1
Clig >~ Clys T ~ Cly ™ CaCs (G¢a)? =1, (G16)” = (G&)? = (C3C4)2
Clgo ~ Cly g 2 Clyq T = Clyy T CaCo (€160)° = (¢260)” = (¢360)* =

TABLE 5.1 — Generators of even subalgebras of C/s 4.
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This reduction and the fact that the idempotent f!f? is a fixed factor in the expression
for an algebraic two-particle Dirac spinor imply that the even grade multivectors belonging
to the subalgebra Cly 37 ® Cly 3% ~ Cly 7+ @ Cly T = Clog T RCly 4T can suffice to
describe the considered states. This allows one to define an operator two-particle Dirac
spinor as an element of the subalgebra Cly 47 ++®Cly 4 *++. Given that the single-particle

operator Dirac spinor ¢ in equation (5.76) can be expressed in terms of its algebraic
counterpart by ¢ = 4(Re(d))s = 4(Re(6))—70 = 4(Im(6))+721 = 4(Im(6))_70721, and

similar expressions hold for x (cf. subsection 4.2.3), there are 16 ways to obtain the
operator two-particle Dirac spinor ¢'x? from its algebraic counterpart, ¢'x*. The simplest
is given by ¢*x? = 16(Re(¢")Re(x?))1+. This is an expression of the fact that an operator

two-particle Dirac spinor is encoded 16 times in its algebraic counterpart.

It is worth mentioning that the above developments, specifically the identification and
extension of the algebra of operators to the alternating tensor product of copies of the
conformal spacetime Clifford algebra C/s 4, as well as the definitions of multi-particle Dirac

spinors, have not been presented before this work.

The relation between the above definitions for two-particle spinors can be expressed
through the following extensions of the maps « and 3 for Dirac spinors, introduced in the

previous chapter (cf. subsection 4.2.3, equation (4.123)):

a® + ia3 @ +ic3
—a? +ial —c? +ict
e X = ®
b0 + b3 d® + id®
—b? + b —d? +id!
Ia (5.78)

0'x% = (a0 + ¥ To ) + (00 + D o9)os ) (0 + I ry2) + (d + d o 2)as® ) f1 12 = xS /2
I
61 = (@ +aiTo;1) + (1 + b 1o39)os" ) (0 + I 02) + (d° + di [0;2)03% ) = 16(Re(9!)Re(x?))-+-+.
In this case, by writing ¥ = ¢ ® X, ¢ = ¢'x* and ¢ = ¢'x?, and using the notations
AW = (A®)® X and AV = 9 ® (AX), (5.79)

the action of operators is translated through

F,ua ¥ —— 'Vual_p = 'Y,uaw'yoaflfQ
Iﬁ (5.80)

7#a¢70a7

Boa
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D500 —— yfp = 3" f1L 2 = ot f1 f?
s (5.81)
Yot

Boa

and

X |L> Z'aqlb — ia¢f1f2 — ¢103af1f2
- Iﬁ (5.82)
¢103a.

Note from the expressions for the algebraic and operator two-particle Dirac spinors
in relations (5.78) that such spinors are determined by 8 x 8 = 64 coefficients, while the
corresponding classical spinor is determined by 32 coefficients. As in the non-relativistic
case, this doubling is a consequence of the fact that both the algebraic and operator
representations has two representatives for the imaginary unit. This ambiguity can be

eliminated by requiring that
12 1 2
i =147 and Yloz =los®, (5.83)

which implies the following description for the considered state

P=0aX % p=0¢'"\VE S ¢=¢\E, (5.84)
where .
B=3 (1 . 10311032>. (5.85)

Again, the multivector F is an idempotent and its product on the right with a state
represents a projection operation, whose resulting effect is to halve the number of degrees
of freedom in the algebraic and operator spinors. The product on the right with the
multivector

J = Bloy! = BEloy? = %(Iagl + 1032), (5.86)

for which

J? = —F, (5.87)

is the representative for multiplication by the imaginary unit, and the complex linear
combinations of states are performed by sums of products on the right with multivectors

of the form a + bJ, where a and b are real scalars.

As a final remark on the definitions of multi-particle spinors, it should be noted that
although the descriptions are based on simple tensor products, the fact that a general state

is given by a sum of these simple ones does not imply that the definitions are incorrect.
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The algebraic definition of a multi-particle spinor describes it as an element of an ideal
of a Clifford algebra, which may be a sum of elements of the ideal. In the same way, the
operator definition of a multi-particle spinor describes it as an element of a subalgebra of

a Clifford algebra, which may be a sum of elements of the subalgebra.

5.3.4 The N-Particle Case

Similarly to the non-relativistic case, the generalization of the above results for the case
of a system of NV spin—% particles is simple. The algebra of operators in this case is given
by

TNClyy =Clyy @ @ Clyy, (5.88)
I o—
corresponding to
TNClyyt = Cloy™® - - ©Claa”, (5.89)
N factors

and included through the relations €4* = (4*(;* in the N-particle algebra

TNClyy = Cloy® - @Clyy, (5.90)

~
N factors

whose fundamental property is given by
1 ar b br a ab
S G+ GGw) = 0o, (5.91)

where (! = (® - ®L, ..., @V =18 (.

A classical N-particle Dirac spinor is defined in terms of tensor products of IV single-
particle Dirac spinors. The expression of such a classical spinor in terms of square matrices
gives an element of the algebra of operators, leading naturally to the algebraic description,
guaranteed by the commutativity of elements of the algebra of operators belonging to
different factor algebras. An algebraic N-particle Dirac spinor can then be defined as an
element of the minimal left ideal
(149" 5 (1 +im2") - s (1+7%"Y)

Iy = {Af ‘ AeTNCly," and f = (1 +z'mN)}

(5.92)

1
2

N | —
N | —
N | —

Again, the reduction of an algebraic N-particle Dirac spinor,
At BNfLLN @1"'>_CN:¢1"‘XNf1"'fN (5.93)

where the elements A', ..., BY, each belonging to a copy of Cly; ~ Cly 4™, are replaced

by the elements @', ..., x", each belonging to a copy of Cly 37 =~ Cly1 7 =~ Cly 7T, is
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straightforward from the commutativity of elements of different copies of Cly; ~ Cly4*

and from the property iy{, f* = f*.

This reduction and the fact that the idempotent f'--- fV is a fixed factor in an
algebraic N-particle Dirac spinor leads to the definition of an operator N -particle Dirac
spinor as an element of the subalgebra TNCly st ~ TNCl T+ ~ TNCl,#+. Since a

single-particle operator spinor ¢ is given in terms of its algebraic counterpart by ¢ =

4(Re(9))+ = 4(Re(¢))-v0 = 4(Im(¢))+721 = 4(Im(¢))_~0721, the operator N-particle
Dirac spinor ¢' - -+ x can be obtained from its algebraic version, ¢'-- - x¥, in 22V
The simplest is given by ¢' - x = 22V(Re(¢") - - Re(x"))+..+. This is an expression

of the fact that an operator N-particle Dirac spinor is encoded 22V times in its algebraic

ways.

counterpart.

The representation (5.84) is extended to the case of N-particle Dirac spinors in a
similar manner to the extension of two-particle to N-particle Pauli spinors, since the
complex structure in the operator representation is similar in the non-relativistic and

relativistic cases.

5.3.5 Relativistic Two-Fermion Wave Equation

A relativistic wave equation for two Dirac particles is important for many reasons, one
of which is the case when dealing with bound states (GREINER; REINHARDT, 2008). The

principal equation in this context can be written as

(th“ <0, — mac) (thb -0y — mbc) v (a:“, xb) = fd4x‘”d4xb’ V (x“, 2%z, xb') v (x“', xb’) ,

(5.94)
where all irreducible contributions to the interaction of the two particles are included
into the interaction V (xa,xb; ¥ ¥ ) This is one of the versions of the Bethe-Salpeter
equation (SALPETER; BETHE, 1951; NAKANISHI, 1969). The point here is not to study this
equation, but simply to express it in Clifford algebraic and operator terms, by recognizing
the wave function as a classical two-particle Dirac spinor, recognizing the product of Dirac
operators on the left-hand side of the equation as a tensor product, and then mapping all
the elements of the equation to their algebraic and operator counterparts. The right-hand
side involves an interaction term which is not analyzed here. In this way, the algebraic

version of equation (5.94) can be written as

(iah,yuaaua_mac> (Z'bh,yubaub_mbc),[lb (l,a’ ZL‘b) — jd4$a/d4$b/ v (xa’ [L’b; xa/, xb,) EZ} (l’al’ l’b/> :
(5.95)
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or,

(i*AV* — mqc) (ibﬁvb — mpc) Y (2%, l’b) = fd4a:a'd4xb’ V (27, 2% 2, a:b’) Y (2%, xb') ,

(5.96)
where the wave function is now given by an algebraic two-particle Dirac spinor, that is,
an element of the minimal left ideal Z, = {Af | A € ClyyT®Cly,t and f= f1f%}. In
this form, the equation is expressed in terms of the algebra (C ® Cl;3) ® (C® Cly3) =~
Clyy ®@Clyy ~ C€274+®C€274+, and a search for solutions should target those elements that
belong to the ideal Zy. If one requires the same action for multiplication by each of the
two imaginary units, the representation (5.84) should be used. In this case, the above

equation can be rewritten as
(p* — mac) (ﬁb — mpc) (2, a:b) = fd4x“'d4xb’ v (2°, 2%z, :Eb') Y (¥, xb') . (5.97)

where now the wave function includes the projector £ as a factor on the right, and the

operator p%, and in the same manner p°, are defined by
p(Y) = iV Ylos® = iV J (5.98)

(see the previous subsection for the definitions of £ and J).

Finally, transforming ¢ = ¢ f¢ f° into its operator counterpart, 1), which corresponds
essentially to the removal of the idempotents f¢ and f? as factors, transforms the equation

(5.97) to
(p* — mac) (p° — mye) (2%, 2%) = fd4x“’d4xb' V(2% 2% 2 2") o (2, 2) . (5.99)
where the operators p* and p® are now given by
P*(¥) = BV Y™, (5.100)

and the wave function is now given by an element of the subalgebra Cl; 317 @ Cly 3T ~
Clys ™t ® Clyy ™ = ClyyHH@Cl 4 T, In this form, the equation is written in terms
of the algebra Cl1 3 ® Cly3 ~ Cly,+t @ Clyy ™ ~ Cly Tt @Cl 4t and the wave function
is restricted to involve only even grade elements. Remember that a similar reduction
is also present in the passage of the Pauli and Dirac equations to their operator forms
(cf. subsections 4.1.5 and 4.2.2). This fact raises the possibility that the operator forms of
the wave equations may be more fundamental. Even if this is not the case, they at least

appear to be more economical.



6 Conclusions

In this work, the states for systems of multiple spin—% particles in the context of quantum
mechanics (both non-relativistic and relativistic) are described through the concept of
a multi-particle spinor — in particular, multi-particle Dirac spinors are introduced for
the first time in this work. This concept is introduced in chapter 5 as a generalization
of single-particle Pauli and Dirac spinors, in their classical and Clifford algebraic and
operator forms, which are presented in chapter 4. To prepare for these developments,
the basic concepts of the algebra of the three-dimensional Euclidean space Cl3, and of
the algebra of Minkowski spacetime C/; 3 are introduced in chaper 2. In chapter 3, the
deep relationship between the two algebras is used to develop the basics of relativistic
kinematics and of the Lorentz group of transformations. To close the chapter, a brief
development of Maxwell’s equations and other aspects of electromagnetism in the context
of the algebra C/; 3 is given. In chapter 4, the forms of single-particle Pauli and Dirac
spinors are examined in detail. The transformations from classical to algebraic to operator
spinors are rigorously defined here and are used to systematically define the corresponding
single-particle spinors and observable expectation values. These explicit transformations
are presented for the first time here. The different but equivalent forms of the Pauli
equation and of the Dirac equation are also discussed. The rigorous definitions given here
of the transformations to algebraic and operator spinors are essential for their extension

to the transformations of multi-particle spinors studied in chapter 5.

The classical definition of a multi-particle Pauli spinor is straightforward, and is given
in terms of tensor products of single-particle classical Pauli spinors. The fact that the
algebra of operators acting on the multi-particle states, given by tensor products of copies
of the Clifford algebra Cls;, does not correspond to a Clifford algebra, motivated the
search for an embedding of this algebra in a Clifford algebra, which would allow spinors to
be defined in this context in a similar way to the case of a single particle. In view of the fact
that Cl;p is isomorphic to the even subalgebra C¢; 37, the algebra of operators could be
considered as the corresponding tensor product of copies of C/; 37, which, when interpreted
as an alternating tensor product, was found to correspond to the even subalgebra of a
Clifford algebra. This larger algebra is identical to the multi-particle spacetime algebra,

first introduced by Doran et al. (1993). A multi-particle algebraic Pauli spinor could then
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be defined as an element of a minimal left ideal of the even subalgebra of the multi-particle
spacetime algebra. From this definition, as in the single-particle case, a multi-particle
Pauli spinor could be defined in operator form, as an element of the subalgebra given by
a tensor product of copies of the subalgebra C¢; 37, isomorphic to the subalgebra given

by the corresponding tensor product of copies of Cl3%.

A formally consistent extension of the single-particle Dirac spinor to a multi-particle
one has not been proposed previous to this work. To perform such an extension, it is first
observed that the classical complex Clifford algebra C®C/; 3, used in chapter 4 to develop
the classical, algebraic and operator forms of the single-particle Dirac spinor, is isomorphic
to the real Clifford algebra C¢, ;. The latter is taken to be the correct Clifford algebra for
the single-particle Dirac spinor. In analogy to the case of the Pauli spinor, the embedding
in a Clifford algebra of the commutative structure of the classical tensor product requires
that the Dirac algebra Cly; be interpreted as the even subalgebra of a larger Clifford
algebra, in this case, as either Cl, o™ or Cly4T. The latter of the two, Cly 4™, was adopted
here, since it is the even subalgebra of the conformal spacetime Clifford algebra Cfs 4
that serves as the basis of the twistor program developed by Penrose and collaborators
(PENROSE; RINDLER, 1988). The “multi-particle Dirac algebra”, including the algebra
of operators as an even subalgebra, is then found to be given by an alternating tensor
product of copies of C/3 4. This construction is proposed for the first time in this work. A
multi-particle algebraic Dirac spinor could then be defined as an element of a minimal left
ideal of the even subalgebra of such a multi-particle Dirac algebra. From this definition,
an operator multi-particle Dirac spinor can be defined as an element of the subalgebra
given by a tensor product of copies of the subalgebra Cls 471, Finally, the Bethe-Salpeter

two-fermion equation was briefly discussed.

Several avenues of research could be of interest in the future. The most obvious of
these would be to look for deeper relations between the multi-particle Dirac algebra and
the conformal spacetime algebra. At the moment, we have no interpretation for the
additional degrees of freedom necessary to describe the multi-particle spinors. A better
understanding of their relation to conformal spacetime could provide physical content to
the embedding of the usual spacetime Clifford algebra C¢; 3 in Cl4; and its extension to
Cly 4.

Other attempts to interpret the additional degrees of freedom could also be explored.
Among these are theories of the Kaluza-Klein type, although such theories normally only
introduce additional space coordinates, consistent with the extension to Cl4;. Inclusion
of what could be interpreted as an additional time coordinate as well is more difficult,
although there is some precedent in a proposal to include a proper time as well as local
time in a relativistic formalism (SAAD et al., 1989). The square of the proper time is in

fact one of the coordinates of the usual null vector representation in the conformal algebra
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Cly 4 of a coordinate vector in C/; 3.

A simple and, at the same time, more radical line of research would be based on the
observation that, for both the Pauli and Dirac spinors, the embedding of the algebra in a
larger one in order to reproduce the tensor product, would appear to be necessary only to
perform the transformation from the classical to the algebraic and operator forms of the
spinors. Once the spinors and wave equations have been expressed in operator form, the
commutativity of their tensor products is a natural property, even within the initial multi-
particle algebra, since the operator forms of the Pauli and Dirac spinors and equations
involve only even elements of this algebra. The extent to which this alternative formalism

can provide new or interesting insights and solutions is still to be determined.
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Appendix A - Published Work

At a certain stage of this work, a possible objective was to provide an extension of the
Bohmian mechanics (BOHM, 1952) to spin—% particles, and possibly to the relativistic
domain, through a Clifford algebraic formulation, which appeared to be convenient for the
purpose of this extension. In a preliminary study, the bipolar reduction of the Schédinger
equation was used, in the context of nuclear scattering, to examine the effects of absorption
on incoming and outgoing scattering waves. Through the Wigner transform, the bipolar
incoming and outgoing waves could be interpreted in terms of incoming and outgoing

trajectories (DA CONCEICAO et al., 2023). The resulting article is attached in the following
pages.
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Abstract

In the context of nuclear scattering, we use the bipolar reduction of the Schrodinger equation to
examine the effects of optical model absorption on incoming and outgoing scattering waves. We
compare the exact solutions for these waves, obtained using a bipolar quantum trajectory-based
formalism, with their approximate WKB counterparts. Aside from reducing the magnitudes of the
incoming and outgoing waves, absorption smooths the variation of the potential at the turning point,
reducing reflection in this region. This brings the incoming exact solution and WKB approximation
into closer agreement, but tends to worsen the agreement between the outgoing solutions. Inside the
turning point, the WKB approximation overestimates the inward decaying solution. The exact
solution also possesses an outward going component, solely due to reflection, with no WKB
counterpart.

Introduction

Due to the complexity of the nucleus, flux is often lost to reaction channels different from those of immediate
interest in nuclear scattering. In early experimental and theoretical efforts, this effect was explicitly attributed to
the formation and decay of neutron resonances at low energy [ 1] and to nucleon-nucleon collisions at higher
energy [2]. It was first characterized as an average imaginary contribution to the nucleon-nucleus effective
(optical) potential by Bethe, in an analysis of compound nucleus formation [3]. Such a complex potential was
later used effectively to describe nucleon-nucleus scattering, first using semiclassical methods [4] and, then, in
exact solutions of the Schrédinger equation [5, 6]. The formal definition of the potential provided by Feshbach
[7] has served as a basis for further developments that continue to the present, as can be attested by reviews of the
subject, both old [8] and new [9, 10]. At present, with few exceptions, an imaginary term iW (¥), W < 0, is
automatically included in the nuclear optical potential in any analysis of nucleon-nucleus or nucleus-nucleus
scattering. Although the absorptive potential is ubiquitous in nuclear scattering studies, investigations of the
effect of this potential on the traveling wave components or associated quantum trajectories have only been
performed in the context of the WKB approximation [11-15].

In chemical physics, absorptive potentials are often used to absorb outgoing flux in quantum scattering
calculations of colliding molecular partners, encompassing elastic and inelastic as well as chemically reactive
scattering [16—25]. In this context, the absorbing potentials [called ‘absorbing boundary conditions’ (ABC’s)] are
only applied in the asymptotic regions, to avoid artificial reflections off of the hard wall edges of the numerical
grids that would otherwise occur. Of course, there is still some reflection, due to the flux that is not absorbed by
time the edge of the grid is reached; moreover, the ABC itself influences the asymptotic dynamics unphysically.
One can always ‘turn on’ the ABCs more slowly, or otherwise extend them further into the asymptotic regime, in
order to mitigate these sources of error, but this can add considerably to the computational cost, especially in the
limit of deep tunneling. Accordingly, significant effort has been spent attempting to optimize the form of the
ABCs, so as to minimize the extent of the asymptotic absorbing regions [22—-25], but this remains a considerable
challenge.

©2023 IOP Publishing Ltd
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More recently, the quantum trajectory approach [26-55] offers an avenue that is particularly appealing for
scattering applications. In this approach, in addition to (or in some formulations, instead of [48—55]) the usual
quantum wave function, one works with a quantum trajectory or ensemble of trajectories. The quantum
trajectories satisfy their own Newton-like time evolution equation that includes a ‘quantum force’, in additional
to the usual classical forces. The quantum trajectory approach has the great advantage that ABCs are not needed;
instead, all scattering quantities may be extracted directly from the quantum trajectories themselves, once they
first reach the asymptotic region. This approach has proven particularly effective for extremely deep tunneling,
for which the requisite ABC regions would be many orders of magnitude larger than the scattering region itself,
and thus numerically unfeasible [51, 53, 55].

One of the defining features of scattering is reflection, which necessarily leads to interference with the
incident wave. In most quantum trajectory formulations, interference manifests as oscillations in the
corresponding quantum trajectories (corresponding to probability density oscillations), which can be quite
severe and difficult to model. However, in the so-called ‘bipolar’ formalism [42-47, 54], the exact scattering
wave function solution is decomposed into incoming and outgoing waves, in analogy with the WKB
approximation. In this fashion, the bipolar waves—as well as the bipolar quantum trajectories that come from
them—become much less oscillatory and better behaved. Moreover, the bipolar formalism naturally
encompasses the idea of flux transfer during the scattering process, between incoming and outgoing components
[43,44,47].

For these reasons, in this paper, we make a first effort to extend the previous studies of the exact bipolar
decomposition in the chemical physics context, to include the effects of dynamical absorption (i.e. as opposed to
ABCs) so as to allow the method to be applied in the nuclear scattering context. In addition, we make a
comparison with the WKB approximation, which is often used in this context, and is in effect, an approximation
of the exact bipolar formulation presented here [40-44, 47, 56-58]. In any event, the literature on the WKB
approximation is immense [40, 56—68].

In the following, we will first discuss the unipolar and bipolar quantum trajectory formalisms, of which the
latter most easily permits a classical-like trajectory interpretation of solutions of the Schrédinger equation. We
will then comment on the relation between the exact bipolar quantum trajectory method and the well known
but approximate WKB method. We will then develop and discuss numerical solutions to the equations, which
furnish exact solutions to the Schrédinger equations, and compare these to semiclassical WKB solutions. Finally,
we will discuss our results and possible future directions before concluding.

Formalities

Unipolar treatment
When an imaginary potential is included explicitly, the single-channel time-dependent Schrédinger equation
takes the form

7 oL
=
i o (D)

——V2) + V@Y + iWF)yY =
2m
Using the standard ‘unipolar’ (Madelung-Bohm) [26-30] decomposition of the wave function,

(7, 1) = R(7, ) exp [iS(7, 1)/ /2], @)

the Schrédinger equation can be separated into two equations, which suggest a natural trajectory
implementation.
The first of these two equations is the quantum Hamilton-Jacobi equation,

Vs)? R R as
O v +amn+ S =, @)
2m ot
which will be seen to govern the dynamics of the quantum trajectories. Here,
A1
7,1) = ———V2R 4
Q7 1) R 4

is the quantum potential [26, 27, 29], whose negative gradient is the aforementioned quantum force.
The second equation is the continuity equation,

0 1= - 2 5
LV (pVS) = ZW@p, ®)
ot m 7
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with the density defined as
p(7, t) = (R(7, 1))* = Y1) (6)

The reduction of the wave equation defines trajectories when we associate the gradient of the action with the
linear momentum,

P =my=VS. 7)
The continuity equation can then be written as
dpo 0p = » 2 . S
LY. ] =2WEe 1), 8
i o ] = T @) p(7 (1)) ®)

with the current density given by
JEW®) = pFW)7(F(1)). )

The continuity equation normally associates the time rate of change of the density p with the flux f into or
out of the region. In trajectory terms, equation (8) would normally (i.e. if the right-hand side were zero) imply
that probability is conserved along individual quantum trajectories. However, in the present absorbing context,
the continuity equation is modified by the inclusion of an additional loss term on the right hand side, i.e. 2Wp/#,
which accounts for the loss of flux to reaction channels that are not being considered in the calculation. Such a
continuity equation, including the absorptive potential, was proposed by Bethe in a study of compound nucleus
formation [3].

In the time-independent case, the Hamilton-Jacobi equation becomes

PP v +am=k (10)
2m
while the continuity equation reduces to
= o 2 N
V.j= EW(r)p(r) (11)

The case in which W = 0 has been treated in many studies by using a family of quantum trajectories that adhere
to both equations above [27,31-39, 42-47,49-51, 53-55]. It is not clear how the method might be extended to
include the absorptive potential, as it is based on the invariance of the density under coordinate transformations.
This will not be the case when absorption is included, as the density will no longer vary in accord with the flux as
it would if the flux were conserved.

Bipolar treatment
An alternative that can be applied in the one-dimensional case, in particular, to the radial time-independent
Schrédinger equation,

2 92
o + V(r) + iW (r) = i7EY, 12)
2m Or?
is the bipolar method, which expresses the wave function in terms of incoming and outgoing components,
Y(r) = Y (r) + Yo(n). 13)

Using the continuous limit of transmission and reflection equations, these can be shown to satisfy the coupled
equations [43, 44, 47],

d(ve)_ P (=1 1\(v), i, (1 0\
5(1/,_) m (_1 1)(¢_)+5(E 2[V+1W])(0 1)(w_), (14)

where we take the local momentum p(r) to be,

p(r) = 2m(E — V(r) — iW(r)) with p' = Z—p (15)
r

A few comments are in order. First, note that the bipolar trajectories implied by the equations above are
actually classical trajectories, unlike in the unipolar case. Classical trajectories are, of course, much more in line
with the WKB approximation, even though the bipolar methodology above is exact. Second, note that the
evolution equations above are couched in a time-dependent form, even though they are in fact designed to
compute stationary or time-independent solutions of the Schrodinger equation. This was by design, in order
thata trajectory-based or time-evolving theory could be developed (consult [44]).

On the other hand, for the present work, we find it useful to extract a fully equivalent time-independent
equation, effectively replacing the coordinate t with r, through the following substitution:

3
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e _ e, p O
dt ot m Or

The evolution equations then become

=2 G )26 ()

which in terms of Pauli matrices reduces to

P oYy

m Or

i
s ——Fipy &
% Py (16)

(n

For radial applications as considered here, the above equations determine an incoming solution ¢)_ and an
outgoing one v, whose local phase variations (which would be equal and opposite if W were zero) are
determined by the momentum p(r) . Although neither the ¢, nor the 1_ solution satisfies the Schrodinger
equation in general, their sum always does, as we demonstrate below. Note that these bipolar equations were also
derived by H Bremmer [57], as the continuous limit to scattering from a sequence of discrete steps, and used by
Berry and Mount [58] in their extensive review of WKB-type approximations. Related, but more general,
expressions were also derived by Froman and Fréman [56].

An alternative but informative form of these equations can be obtained by projecting them onto equations
for the sum v =1, + ¢ and difference 1), = 1), — 1/ of the bipolar solutions. The scalar product with the
row vector (1, 1) furnishes the equation for the sum,

G =1, 1)) = =L, D - (1 = 0T

+2(1,1) - () = Lp(r)tu(r) (19)

, .
v=-La_o)vi Low, wih v= (w+). (18)
2p 7

while the scalar product with the row vector (1, — 1) gives the equation for the difference,
a0 = (1, =1) - (Y = =21, =1 - (1 = 6T
+ 70 ) W) = L) + p (). (20)

We rewrite these as
V() = 5p ()t (r)
(p(NYa(r)) = é(P(f))Z%D(T). (21

The Schrédinger equation follows trivially from the two equations, as

Y(r) = é(P(f)%(f))' = —%(P(f))zlﬁ(r)- (22)
We note that the the coupled equations for ) and v),,, when written as
(CICONNAY 0 1 P(r)
i =1 -1 2 i > (23)
gP(f)il)u(T) F(p(r)) 0 gP(T)Z/Ju(T)
are identical to the standard reduction of the second-order Schrédinger equation to a first-order one,
G 0 D\ ()
(w(r)/) - (;Z_zl(p(r))Z O)(Qﬂ(r)’) (24)

with the advantage that we can now identify the incoming and outgoing components as
1 1 7
Vi (r) = —(¢(r) + ——.¢(T)’)- (25)
2 p(r)i

This association is general and can be applied to any solution of the radial Schrédinger equation. The bipolar
components obtained in this manner will satisfy the coupled bipolar equations for ., but, in general, will not
satisfy the Schrodinger equation. Note that a similar equation has been derived previously [47].

The analysis above confirms the choice of including the absorptive contribution to the optical potential
directly in the local momentum, taking

p(r) = J2m(E — V(r) — iW(r)). (26)

With this definition of the local momentum, the solutions of the bipolar equation, /., furnish the exact solution
1 =1, + 1_ to the Schrédinger equation. But we must than ask how one can associate p(r) with a real
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momentum: in terms of the magnitude of the complex quantity, | p(r)|, as its real part, Re[ p(r)], or in terms of
the truncated quantity,

po(r) = y2m(E — V(1) ? (27)

Considering the fact that it is the real part that furnishes the oscillatory contribution to the action when the
kinetic energy is positive, the most logical choice would seem to be Re[ p (r)]. We will return to this question
shortly.

Relation to the WKB approximation
Neglecting the terms coupling 1~ in the bipolar equations, the latter reduce to the standard WKB equations,

Ywkp+ (1) = (i% - ﬁ—p)iﬂwai(r), (28)

when we make the Langer modification to the centrifugal potential in the Hamiltonian [58], taking

1A+ _ 7 (1 +1/2)°

29
2m  r? 2m r2 29)
The solutions to these equations solutions can be written as
A )
Ywkns(r) = ———exp [iism], (30)
V(1) h
with
sty = [ pear. 31)
o

Since the terms neglected in the WKB equations are those that produce reflection of one component to the other,
the WKB solutions are the reflectionless counterpart to the exact bipolar solutions.

The principal difficulty with the WKB solutions is determination of the constant coefficients A, which,
strictly, should not be constants. This is often done by analyzing the values expected near a turning point, where
the real part of p(r)? changes sign and p’ /p has a peak. However, the imaginary contribution to the momentum
p(r) smooths this transition, making it less important when compared to neighboring points, even when the
energy is high. Other regions of space can also introduce large variations in A depending on the local variations
in the potentials. In any event, a fairly rigorous, ‘refined WKB’ theory has been developed, which computes the
first-order contribution to the reflection (and thereby changes to A, ) through the use of ‘Stokes’ and ‘anti-
Stokes’ lines in the complex plane, emanating from real- and complex-valued turning points [23, 24, 56, 58—60].
The refined WKB approach is still an approximation, however.

The Wigner transform [69] of the bipolar solutions furnishes additional information about their physical
content. For simplicity, we analyze their WKB approximations in a ‘semiclassical Wigner’-type context [61, 65],
calculating

Fwkp+ (R, P) = fjc ds e~
X wips (R 4 5/2)Piygpe (R — 5/2). (32)

Expanding the wave functions to first order in s before integrating, we find

_ [As 2
Fup+ (R, P) = 22l exp | F7ImIS(R)] |

2p(R)

x 5(P F Re[p(R)] — Im[ﬁp(R)/]). (33)

Consistent with our discussion above, we find that the momentum is determined principally by the real part of p
(R), with the incoming/outgoing solutions corresponding to incoming and outgoing trajectories in the Wigner
transform. However, here the momentum is modified by the imaginary part of the logarithmic variation in the
momentum, which is nonzero only when an absorptive potential is included. Numerically, we have found the
contribution of this additional factor to be quite small, except in the region of a turning point,

where Re[p(1;)?] = 0.

The Wigner function also contains an attenuation factor exp [ F %Im [S(R)] ], when the potential is

absorptive. When the magnitude of the imaginary potential is small compared to the kinetic energy, we can
approximate itas
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R
exp [:F%Im[S(R)] ] ~ exp [ﬁ:%j}; ﬁW(r)dr]

t(R)
~ exp [% ft " W(r(t))dt], (34)

where we have used the trajectory to convert the integral in r to one in t by taking +m dr/py = + dr/v, = dt.
Note that in this expression, the association between dr and dt depends on the direction of propagation. Taking
this into account, we can associate the attenuation factor with the absorption term in the continuity equation,
equation (8).

Numerical results

Here we will analyze solutions to the bipolar equations for protons incident on the nucleus >°Fe. We use a fairly
standard form for the real part of the potential, consisting of centrifugal term and a Woods-Saxon nuclear
potential, together with a Coulomb potential modified to take into account a constant charge density in the
nuclear interior. For the nuclear potential, we adopt the phenomenological optical potential of Becchetti and
Greenlees [70]. We have

V(r) = Vi(r) + W(r) + Ve(), (35)

where the centrifugal potential is,

A% 11+ 1
Vi = 2D (36)
2m r
the real nuclear potential is given by
Vae(r) = e , (37)
1 + exp[(r — Ry)/av]
with a radius of
RV = vaYI/S) (38)
and the Coulomb potential is
ZpZpe? r 2
B —ZRC (37(5)) T<RC
Ve(R) = ) ) (39)
ZpZre’ r > Re
with a charge density radius of
Re = rcAy?, (40)

where Zpand Zrare the charge numbers of the projectile and target, respectively, and Aris to the mass number
of the target.

The imaginary part of the potential is normally composed of a Woods-Saxon plus a Woods-Saxon derivative
term, commonly called volume and surface terms,

W(r) = W, (r) + Wi(r), (41)
where the volume term is
Woo
1+ exp[(r — Rw,)/aw,]’

W, (r) = (42)

with a radius of
Rw, = iy, Ay (43)
and the surface term is given by

4Wy exp [(r — Rw;)/aw]

Wi(r) = ,
(1 + exp[(r — Rw)/aw])?

(44)

with
Ry, = rw AL/, (45)

The surface term of the imaginary potential is usually associated with absorption due to coupling to low-energy
collective excitations of the nucleus, while the volume term is associated with higher energy single-particle
excitations. The surface term is normally dominant at low incident energy, while the volume mode grows in
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importance as the energy increases. In a phenomenological potential such as the Becchetti-Greenlees one, the
reduced radii of each of the terms in the potential, 1, 7¢, ny, and ry;, as well as the diffuseness parameters,
ay, aw, and ay;, and the potential strengths, V, W, and W, are obtained by fitting to experimental data.

To solve the bipolar equations, we integrate outward from r = 0 and match to Coulomb wave functions (or
to spherical Bessel functions, when the product of the charges is zero) at a radius R,,, at which the nuclear
potential Viy + iW = 0. At the matching radius, taken to be R,,, = 14.6 fm for the system studied here, we define
the internal wave function normalization A;and the S-matrix S;by requiring, for each value of the angular
momentum /, that

AR (Ry) = LH Ry) = SH (Ryp))
AR (Ry) = S (H (Ry) = SH' (Ry), (46)
where

Y(Ri) = Y (Rm) + Y- (Ri) (47)

is the wave function obtained by integrating the coupled equations from r = 0 to r = R,,and H™ are the
outgoing/incoming Coulomb/spherical Bessel wave functions.
To integrate the equations, we begin by requiring that the solution be regular at = 0. For the case of | = 0,

we take
¥4(0) _ ( 1 ) (48)
$-(0) -1
and, at the first integration point r = h,
I AOR 0] p'(h)
¥y (h) _( 1 )+ 2ty A 2p(h) ( 1 )
Yo(hy) \-1 0] _p _ip [\-1
2p(h) 2p(h) /
ip() _ p'(h)
_ L+ p(h) (49)
_ ipthy | p' [
L+ h + p(h)
For !> 0,whenr — 0, we have
JId+1 !
p() — i ¢+ and 2 (") — —i. (50)
h r 2p(r) 2r

In this limit, the coupled equations become
d (m) 1(1—2yId+1) -1 (M) 5
dr\y-)  2r —1 1+ 210+ \¢)

A=2l+2 or -2l (52)

with eigenvalues

furnishing solutions of the form

(:ﬁr;) _ A(_1/(1 + 21+ 210 + 1)))rz+1
L (r 1

1 1
’ B(l/(l + 20+ 210+ 1)))7' (53)

For the solution to be regular, we must have B = 0.
To take into account the contributions of other terms in the momentum at a finite value of r = h, for [ > 0,
we take the more general form of the eigenvector corresponding to the positive eigenvalue,

U, (h) ip'(h) / 2p(h)
( - ) = | p /[ i+ o) /7Y = '/ 2p0)? |. (54)

v (h) |

We have also tested and compared solutions by solving the equations for ¢ and 1/, More explicitly, we solved for
1 and v’ and then determined v, and 1. The matching condition at the radius R,,, is the same. At small r, we
use the fact that for angular momentum I, we have ¢ (r) = Arl + 1 to take

7
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O
(w(hy) B (l + 1) )

We have solved both sets of equations using an adaptive stepsize Runge-Kutta algorithm and obtained
identical results from the two sets of equations for the incoming/outgoing waves ¢, and the total wave function
1. We have also compared our results to those of a standard optical scattering code using a modified Numerov
method to solve the standard Schrodinger scattering problem, theSCAT?2 code [71]. We have made comparisons
for the scattering of neutrons, protons and alpha particles incident on *°Fe at energies between 10MeV and
100 MeV, using the Becchetti-Greenless phenomenological optical potentials for neutrons and protons [70] and
the McFadden-Satchler potential for alpha particles [72]. We obtain agreement between our results and those of
SCAT2 for the S-matrix elements and the cross sections of better than one part in 10°.

We have also solved the WKB equations in the same manner, integrating from r = 0, but taking into account
the Langer modification of the centrifugal potential. In the limit r — 0, we find for all values of the angular

momentum /,
!
Ywp+(1) _ B/r ) (56)
Ywkp-(r) Arltl
which requires that B = 0 for the solution to be regular. The outgoing WKB wave ¢yyxp is thus identically zero

in the region inside the turning point at Re[ p(r;)?] = 0. To continue the integration into the oscillatory region,
just outside the turning point, at r,, , we set

Ywis— (1) = Ywis— (1) /N2 (57)

and

Vwisr () = —iYwrs—(n-) /N2, (58)

in order to reproduce the usual WKB matching conditions at the turning point[58]. We note that we have also
tested this expression without the factor of /2 . Given the fact that we normalize the solutions at the matching
radius, the only effect of this change would be to reduce the WKB wave function by a factor of +/2 in the region
interior to the turning point.

We have found that, outside the range of the nuclear potential, the inward/outward bipolar solutions
oscillate in phase with the Coulomb/spherical Bessel solutions to the Schrodinger equation. However, the
bipolar solutions, which are not solutions to the Schrédinger equation, maintain magnitudes more consistent
with the semiclassical WKB approximation than to those of the incoming/outgoing solutions to the
Schrodinger equation.

In figure 1, we compare the behavior with and without absorption of the exact incoming and outgoing waves
1 and 1, (solid green and red curves, respectively) as well as their WKB approximations (dashed green and red
curves, respectively) for the values of the angular momentum, / = 0, 3, 5 for a proton incident on 56Fe atan
energy of 10 MeV. Rescaled real and imaginary parts of the potential (solid and dashed black curves, respectively)
are also shown in order to correlate the variations in the wave functions with those of the potentials.

Several general features of the results are clear at a glance. In the case of no absorption, outside the turning
point, the magnitudes of the exact incoming and outgoing waves are identical, as are those of the WKB solutions.
In contrast, when absorption occurs outside the turning point, the magnitude of the incoming wave is always
larger than that of the outgoing one, both for the exact and for the WKB solutions. This is a direct result of the
absorption. Inside the turning point, the incoming WKB solution is identical to the total WKB one, as the
outgoing WKB solution is zero in this region. In this region, the exact incoming wave dominates its outgoing
component, but is smaller than the WKB incoming wave, in part due to reflection to the outgoing wave. The
exact outgoing solution inside the turning point is nonzero only as a result of reflection from the rapidly
changing potential, although it can also suffer absorption.

For I = 0, both exact incoming and outgoing waves suffer strong absorption as the pass through the
imaginary potential. The absorption effectively cancels the effects of the reflection from the surface of the real
potential seen in the nonabsorptive scattering, when compared to the nonabsorptive WKB solution. With
absorption, the incoming WKB wave closely follows the exact one, while the outgoing WKB wave deviates
substantially from the exact one. The relatively constant magnitude of the outgoing WKB component is due to
compensation of the attenuation by a decrease of the 1 / \/m flux factor as the outgoing component leaves the
potential well. The summed wave functions differ both in magnitude and phase as a result.

For I = 3, the real potential dominates the scattering, with or without absorption, with both the incoming
and outgoing components varying significantly in the region of the Coulomb barrier. The incoming exact and
WXKB components again lie fairly close to one another in the absorptive case, both decreasing strongly in the
absorptive region. The outgoing components again differ greatly in this case. The increase in the exact outgoing
component ¢, is due to strong reflection from the Coulomb barrier, before the absorptive region is reached,




10P Publishing

Phys. Scr. 98(2023) 115303 N Cda Conceigao etal

Bhis o nee T o gl B ey Lo
p+ Fe E=10MeV 1=0 pt+ Fe E=10MeV 1=0

=
T T

Iyl 1yl

T

r (fm)

s T
p+ Fe E=10MeV 1=3

IR e S e e e e

—
-
— v,
— Y
ML
— v“kh
ot
v\\k)l

r(fm) ’ r (fm)

Figure 1. Incoming/outgoing waves and total wave functions for protons incident on **Fe at 10 MeV for the partial waves1 = 0, 3, and
5. The left column corresponds to scattering with no absorption while absorption is included in the calculations shown in the right
column. Exact results are shown as solid lines and WKB approximations to these as dashed lines. The incoming waves are given in red
and the outgoing waves in green. The total exact and WKB wave functions are shown in blue. The real potential (solid black line) and
the imaginary potential (dashed black line) are included to show their variation and their range of action but are not to scale.

while the WKB outgoing wave displays a similar compensation of attenuation by variation in the flux factor as
seen at/ = 0. Note that both with and without absorption, the exact and the WKB incoming/outgoing waves
have a strong peak at the classical turning point, where Re[ p(;)*] = 0. The contributions of the exact 1), and
1_ are equal and opposite at the peak and cancel in the total wave function.

For | = 5, the turning point is outside the range of the absorptive potential and the scattering is dominated by
reflection from the barrier. Here the solutions with and without absorption are almost identical. The exact
incoming and outgoing solutions lie atop one another, as do the WKB solutions.

In figure 2, we show similar results for the / = 0, 5, 10 partial wave in the case of a proton incident on 56Fe at
an energy of 30 MeV. Here, the additional kinetic energy greatly reduces the effects of the variations in the real
potential. For I = 0, the exact and WKB incoming and outgoing waves lie close to one another at all radii,
attesting to the limited importance of reflection in the scattering. The variation in magnitude of the incoming/
outgoing waves in the case of no absorption is due to the variation in the flux factor 1 / W .Inthe case ofan
absorptive potential, both the incoming and outgoing waves suffer significant attenuation. The behavior of the
incoming and outgoing waves with [ = 5 is similar to those for I = 0, although some reflection can be observed in
the slight bumps in the exact outgoing wave with absorption, as well as the solutions without absorption, in the
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Figure 2. Incoming/outgoing waves and total wave functions for protons incident on **Fe at 30 MeV for the partial waves1 = 0, 5, and
10. The left column corresponds to scattering with no absorption while absorption is included in the calculations shown in the right
column. Exact results are shown as solid lines and WKB approximations to these as dashed lines. The incoming waves are given in red
and the outgoing waves in green. The total exact and WKB wave functions are shown in blue. The real potential (solid black line) and
the imaginary potential (dashed black line) are included to show their variation and their range of action but are not to scale.
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region of the Coulomb barrier. Finally, at [ = 10, the scattering is again dominated by the turning point, which
lies outside the absorptive region. The behavior of the incoming and outgoing solutions is similar to that
observed for I = 5 at 10 MeV and is the same with or without absorption. As also seen at 10 MeV for the
analogous peripheral partial wave, the exact solutions approach the turning point more abruptly than the

WKB ones.

Conclusions

We have studied the effects of absorption on the incoming and outgoing solutions to the bipolar equations, as
well as on their WKB counterparts. As we have seen, through the Wigner transform, the bipolar incoming/
outgoing waves can be interpreted in terms of incoming and outgoing trajectories.

As discussed in the Numerical Results section above, several trivial observations can be made immediately
concerning our results. In the case of no absorption, outside the turning point, the exact incoming and outgoing
waves are equal in magnitude, as are the WKB solutions. In contrast, when absorption occurs outside the turning

10
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point, the magnitude of the incoming wave is always larger than the outgoing one, both for the exact and for the
WKB solutions. This is simply a result of the absorption. Inside the turning point, the incoming WKB solution is
identical to the total WKB one, as the outgoing WKB solution is zero in this region. In this region, the exact
incoming wave dominates its outgoing component, but is smaller than the WKB incoming wave, in part due to
reflection to the outgoing wave. The exact outgoing solution inside the turning point is nonzero only as a result
of reflection from the rapidly changing potential, although it can suffer absorption as well.

A comparison of the incoming bipolar solution and its WKB approximation, which neglects reflection, show
that absorption tends to diminish the importance of reflection on the incoming wave, as the exact incoming
wave and the WKB solution are, in general, quite similar in this case. This contrasts with the behavior of the
outgoing wave, where reflection can produce large differences between the exact solution and the WKB one at
low incident energy. As a result, at low energy, the WKB approximation succeeds in providing a better
approximation to the solution without absorption than to the more physical solution with absorption. The
discrepancies between the two decrease fairly quickly with energy, as can be seen in the comparison at 30 MeV.

Both the exact incoming/ outgoing solutions and their WKB counterparts have sharp peaks in magnitude at
aturning point. The peak is smoothed somewhat when the turning point occurs in the absorptive region, but
does not disappear. The large contributions to the exact bipolar waves are almost equal and opposite in sign, as
their sum furnishes the total wave function, which, as can be seen in the figures, is smooth in the region of the
turning point.

Singularities (or near-singularities) in the vicinity of turning points (and more generally, caustics) are a
notorious feature of semiclassical methods, and certainly nothing new. Various ‘tricks’ have been developed for
dealing with them [56, 58—60], such as the method of comparison equations, used to obtain connection
formulae. Expanding our scope a bit more broadly, the Froman approach [56] yields a WKB-like approximation
designed to work in conjunction with arbitrary trajectories, i.e. not necessarily classical trajectories. In this
formalism, trajectories may easily be chosen that exhibit no turning points—and therefore no sharp features.
Moreover, an exact, bipolar version has also been developed, that can easily incorporate even deep
tunneling [44].

We have shown how a trajectory interpretation of the incoming and outgoing waves can be made evident
through the Wigner transform. However, we have based this interpretation on the phase of the WKB
approximation rather than on that of the exact bipolar waves. A comparison of the oscillatory behavior of the
exact and WKB wave functions permits us to conclude that the local momentum obtained from the derivative of
the phase factor of the exact solution will furnish a momentum very similar to that of the WKB solution. We thus
consider the trajectory interpretation to be just as valid for the exact solution as for the WKB ones.

Considering the numerical methods used here, we conclude that the modified Numerov method is faster for
solving the Schrddinger equation than the adaptive stepsize Runge-Kutta method but is not as precise. Solving
for the wave function is more precise and faster than solving for the bipolar waves because of the turning points.
Outside the turning points, the bipolar solutions are more stable. The advantage of the bipolar waves is their
connection to classical physics and the deeper insight this furnishes into the dynamics. In any case, for the
equations discussed here, all solutions were obtained at the stroke of a key.

Going forward, it is of course important to generalize the bipolar theory for multidimensional applications.
To this end, there are two primary challenges that have been previously identified [47, 51]. The first is ensuring
that the number of separate wave function components remains at just two (or at least some small number) and
does not grow exponentially with d, the number of dimensions. In particular, bifurcating along each dimension
separately would lead to 29 separate multipolar components to content with. The second challenge is ensuring
that both (or all) of the bipolar (or multipolar) components are themselves fairly smooth and interference-free.
Satisfying both conditions at once is indeed nontrivial.

In the context of reactive scattering in chemical physics, substantial progress has been made by recognizing
that within the space of internal coordinates, one dimension in particular—the ‘reaction coordinate’, describing
the overall progress from reactant to product molecules—can be singled out as special [60]. Thus, previous
multidimensional bipolar approaches [47, 51] have exploited this situation by bifurcating 1) only along the
reaction coordinate—which can be done despite this coordinate being highly curvilinear, as is typical.

Of course, many scattering applications, including those in nuclear physics, require a more general
treatment, not limited to internal coordinates with a single primary reaction coordinate. Even for the simplest
cases where one or both colliding partners are treated as point particles (e.g., nucleons), unless central forces are
in play and exploited to reduce the problem to 1D as is the case in this paper, the above reaction coordinate
strategy will not be applicable. Thus, other ideas are needed.

One such idea for generalizing the bipolar equations to three Cartesian dimensions is naturally suggested by
the present work. In particular, the association of the bipolar components with a wave function and its derivative
suggests the following:
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VA - - -
LG () = B ()
e m e g oy
V(PO ha(P) = p() Y (@), (59)
We can then write
1
p(™)?
Note that equation (60) was derived previously [47], except with p an arbitrary vector momentum field, chosen
to correspond to the aforementioned reaction coordinate. Here, we propose to investigate other choices for
p (r), better suited to more general scattering situations. Although these are four equations rather than two, our

results here suggest that they could be worth the time and effort necessary to understand them better. We plan to
work in this direction in the future.

Gu () = %(W) + L 5@ ?W(?)). (60)
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