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Resumo

Este trabalho analisa o efeito de vestir o propagador de quarks na formação do estado

ligado no espaço de Minkowski. A equação de Bethe-Salpeter é resolvida, para um estado

ligado de férmion-antifermion 0� interagindo através de uma troca de bósons vetoriais na

aproximação tipo escada, usando um propagador de quark vestido com uma função de

massa fenomenológica ajustada aos cálculos QCD da rede. O modelo desenvolvido contém

três escalas gluônicas: a massa efetiva do glúon ⇠ ⇤
QCD

, o tamanho do vértice quark-

gluon estendido ⇠ 2 fm, e a vestimenta do propagador de quarks. Quantidades estáticas

e dinâmicas que caracterizam o estado ligado são calculadas e os efeitos dessas escalas na

dinâmica do sistema ligado são discutidos. Em especial, para o caso do quark com massa

“bare” leve, uma mudança de hierarquia entre a constante de acoplamento do modelo de

massa vestida do quark e do caso de massa fixa é vista conforme o valor da massa de estado

ligado M varia. O aumento mais lento da constante de acoplamento do modelo de massa

vestida quando comparado com o aumento da constante de acoplamento do modelo de

massa fixa, de acordo com que a “binding” cresce, reflete a interação entre as três escalas

gluônicas. As amplitudes da frente de luz e as distribuições longitudinal e transversal

do momento de valência são analisadas para duas massas de estado ligado diferentes,

M = 653 MeV e M = 447 MeV, com ou sem efeitos de vestimenta. Mostra-se que, no

modelo de quarks vestidos, essas distribuições de momento decaem mais lentamente para

momentos transversais altos quando comparadas ao modelo de massa de quark fixa igual

à massa infravermelha de 344 MeV. Em particular, para os dois modelos é observado que

a componente de spin alinhado da função de onda de valência é suprimida em relação a

componente anti-alinhada.



Abstract

This work analyzes the e↵ect of dressing the quark propagator in the bound state for-

mation in Minkowski space. The Bethe-Salpeter equation is solved, for a 0� fermion-

antifermion bound state interacting through a vector boson exchange in the ladder ap-

proximation, using a dressed quark propagator with a phenomenological running mass

function fitted to Lattice QCD calculations. The developed model contains three gluonic

scales: the e↵ective gluon mass ⇠ ⇤
QCD

, the size of the extended quark-gluon vertex

⇠ 2 fm, and the dressing of the quark propagator. Static and dynamical quantities that

characterize the bound state are calculated and the e↵ects of those scales in the dynamics

of the bound system are discussed. In special, for the light quark mass case, a change of

hierarchy between the coupling constant of the running quark mass model and of the fixed

mass case is seen as the value of bound state mass M varies. The running mass coupling

constant slower increase when compared with the increase of the fixed mass model cou-

pling constant with the binding growth reflects the interplay between the three gluonic

scales. The light-front amplitudes and the longitudinal and transverse valence momen-

tum distributions are analyzed for two di↵erent bound state masses, M = 653 MeV and

M = 447 MeV, with or without dressing e↵ects. It is shown that, in the quark dressing

model, those momentum distributions decay slower for high transverse momentum when

compared to the case of an undressed one with a fixed quark mass equal to the Infrared

mass of 344 MeV. In particular, either for the fixed mass model or running mass function

model, the aligned spin component of the valence wave function is suppressed with respect

to the anti-aligned one.
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1 Introduction

In 1935, Hideki Yukawa predicted the existence of mesons as mediator particles that

are responsible for the strong interactions between hadrons (YUKAWA, 1935). Nonetheless,

only in 1947 and 1950 that the charged and neutral pion, the mesons foretold by Yukawa,

was experimentally first seen (LATTES et al., 1947; BJORKLUND et al., 1950; STEINBERGER

et al., 1950).

Hadrons are by concept non-elementary particles. In this aspect, the pion is a hadronic

particle composed by a quark and anti-quark bound states. On the other hand, it is also

accepted that the pion is a Nambu-Goldstone boson, which means that pion comes into

existence by the spontaneous breaking of the chiral symmetry (NAMBU, 1960; GOLD-

STONE, 1961). The chiral symmetry is the invariance under parity transformation and

when it is dynamically broken the result is the manifestations of non-vanishing masses of

nonpertubative origin (HORN; ROBERTS, 2016).

In particular, quarks and gluons are the building blocks of the baryonic matter. They

carry color fundamental degrees of freedom, where the color confinement reflects the fact

we didn’t detect isolated colored particles in nature. This leads to an indirect measurement

of quark mass since they are confined to other particles. Quarks are fermions and six types

of them are known: up, charm, top, down, strange, and bottom. Their characteristics are

given by their mass, electric charge, baryonic number, strangeness number, and charm

number. By the number of quarks, one can classify the hadrons as baryons (three valence

quarks) and mesons (a valence quark and an antiquark) (BELYAEV; ROSS, 2021).

The hadronic matter and its phenomena can be understood in the framework of the

Standard Model. Within it, Quantum Chromodynamics (QCD) describes the interac-

tions between quarks and gluons and is a tool to explain interesting phenomena, e.g.

asymptotic freedom, confinement, and chiral symmetry breaking. To understand better

hadrons as protons or pions, we need to understand quarks and gluons dynamics. In

fact, e↵orts have been made to obtain a three-dimensional tomograph, in terms of QCD’s

quarks and gluons, of the hadron’s structure. This 3D image can be obtained by such

observables as the Generalized Parton Distributions (GPDs) and Transverse-Momentum

Distributions (TMDs) (ACCARDI et al., 2023), which are experimentally probed by Deeply
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Virtual Compton Scattering (DVCS) and Semi-Inclusive Deep Inelastic Scattering (SIDIS)

(FANELLI et al., 2016; BACCHETTA, 2016; PASQUINI, 2020; KAUR et al., 2020). In special, a

new generation of colliders are being made with the purpose to access the inner structure

of hadrons (ARBUZOV et al., 2021; KHALEK et al., 2022; CHAPON et al., 2022).

A phenomenological study of quarks and gluons bound-states in the Minkowski space

is necessary for a better understanding of the structure of the hadrons. One way to do

that is through the Bethe-Salpeter (BS) formalism. The BS approach is a tool to study

the properties of the relativistic few-body systems (SALPETER; BETHE, 1951). In special,

as it is developed in the Minkowski space, it gives a suitable framework to study the

hadronic phenomena (CARBONELL; KARMANOV, 2010; CARBONELL; KARMANOV, 2016;

CASTRO et al., 2019).

In literature, this formalism has been applied with success for the description of a two-

scalar bound-state (KUSAKA et al., 1997; CARBONELL; KARMANOV, 2010; FREDERICO et

al., 2014; GUTIERREZ et al., 2016; PIMENTEL; PAULA, 2016), two fermions bound-state

(CARBONELL; KARMANOV, 2010; PAULA et al., 2016; SALMÈ et al., 2017), scalar-fermion

bound-state (NORONHA et al., 2023). Additionally, pion observables were obtained within

the BS framework,i.e. electromagnetic form-factors (YDREFORS et al., 2021), the light-

front momentum distributions (PAULA et al., 2021), the parton distribution functions

(PAULA et al., 2022) and the unpolarized transverse-momentum dependent distribution

functions (YDREFORS et al., 2023).

Moreover, to solve the BS equation one can use the Nakanishi Integral Representation

(NIR) to the components of the BS amplitude, which gives them an explicit analytical

structure in terms of the external momenta, allowing the treatment of singularities and

making easier to do the projection onto the Light-Front (NAKANISHI, 1963; NAKANISHI,

1969; BAKKER et al., 2014). Thus, by solving the Bethe-Salpeter Equation one can obtain

the light-front amplitudes, that enable the calculation of hadron observables (BRODSKY,

1998).

To better understand the structure of a bound system of quark and antiquark in

Minkowski space, we developed a model to a 0� bound state based on the BS approach

considering dressed quark propagators, an extended quark-gluon vertex and an e↵ective

gluon mass. In solving the BS equation for a dressed quark propagator, it is possible to

compute pion observables as, for example, the time- and space-like electromagnetic form

factors, parton distribution functions, and transverse momentum distributions, directly

in Minkowski space. In this thesis, using a dressed quark propagator, it is presented the

relation between the binding and the coupling constant, the Light-Front amplitudes, and

longitudinal and transverse light-front momentum distributions.
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This thesis has the following organization:

• Chapter 2: an overview of selected topics of quantum field theory, which presents

key concepts used in this thesis;

• Chapter 3: through the BS approach for the study of a pseudoscalar bound-system

with dressed quark propagators in Minkowski space, it is presented the analytical

steps to obtain a set of coupled equations that are suitable for numerical imple-

mentation. The dressed quark propagator is expressed using the Källén-Lehmann

Representation and the components of the BS amplitude are represented by Nakan-

ishi Integral representation.

• Chapter 4: by using a phenomenological mass function compatible with Lattice

QCD computations, we obtain the full set of coe�cients that will be used in the

numerical implementation in order to solve the BS equation. Also, it is presented

the necessary expressions to calculate the valence probability and the light-front

momentum distributions.

• Chapter 5: the BS equation is solved and the numerical results are presented. At

first, it is analyzed the relation between the binding and the coupling constant in the

case of a heavy quark mass. Then, the Light-Front amplitudes and longitudinal and

transverse light-front momentum distributions are shown to the case considering a

light quark constituent for a system-mass range 3m
⇡

< M < 5m
⇡

.

• Chapter 6: conclusions and future perspectives are discussed.



2 Selected topics in quantum field theory

The physics pertaining to the nuclear matter and the hadronic regime is very extensive.

It has a multitude of topics and problems to discuss and solve. In this chapter, we will

focus on doing some overview about those which are connected with our main study:

bound state formation within strong interactions. First, we will discuss the theoretical

framework where the electro-weak and strong interactions are described, called Standard

Model. It will follow a description of the Bethe-Salpeter approach to describe and calculate

the observables of a bound state of particles. Then we will discuss about mass generation

through the study of the Dyson-Schwinger equation, in special we will consider about

the pion’s position in this context. To finish, we will consider the spectral representation

methods necessary to solve the Bethe-Salpeter equation in Minkowski space, in special

the Nakanishi Integral Representation.

2.1 Standard Model

In Particle Physics, the Standard Model (SM) is known for explaining some of the

fundamental interactions of nature. Nowadays, we consider as the fundamental building

blocks of nature: gravity, strong interaction, weak interaction, and electromagnetism.

Each of them has its own mediator particle. The carrier of the electromagnetic interaction

is the photon, a massless particle. The weak interactions are mediated by W+, W� and

Z0 bosons, with average mass of m
W

= 80.376±0.033 GeV, m
Z

= 91.1876±0.0021 GeV,

respectively (WORKMAN et al., 2022). The strong interaction has as carriers the gluons,

which are massless particles (BELYAEV; ROSS, 2021).

Besides, theoretically, the gravitational interaction has as its mediator particle the

massless graviton. Apart from those mediator particles, we have the Higgs boson, respon-

sible for generating the masses of the elementary particles and experimentally discovered

in 2012 (AAD et al., 2012; CHATRCHYAN et al., 2012). The gravitational force is the only

one outside the scope of the Standard Model. Quantum Chromodynamics (QCD) is the

theory that describes the strong force and Quantum Electro-Weak Theory describes the

electro-weak forces. Together they form the theoretical framework of the Standard Model
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of particle physics, its fundamental interactions are enumerated in Table 2.1 (BELYAEV;

ROSS, 2021).

TABLE 2.1 – The fundamental interactions described by the Standard Model of physics.

interaction coupling by mediator boson
EM electric charge photon
Weak weak charge W±,Z0

Strong color charge gluons

The term elementary particles encompasses two groups: fermions and bosons. Fermions

obey the Fermi-Dirac statistics, quarks and leptons are fermionic particles, and they

have half-integer spin. Particles that have integer spin are called bosons, they obey the

Bose–Einstein statistics. Quarks interact via strong forces and the leptons (electrons,

muons, and neutrinos) do not. Example of bosonic particles are W+, W� and gluons,

with spin-1, and Higgs boson, a spin-0 particle (BRAIBANT et al., 2012; MARTIN; SHAW,

2019).

The historical development of SM began with the discovery of electrons, photons, pro-

tons, and neutrons. Probing and explaining the atom was the focus of the last century.

Both experimental and theoretical developments were made, thus enabling the discovery

of radioactivity, atomic nuclei, antimatter, and a multitude of quantum phenomena. In

the first half of the twentieth century the main topic was the characterization of, then

known, elementary constituents of matter and the nature of space-time. Quantum Elec-

trodynamics emerged as a product of the work of Julian Schwinger, Shin’ichirō Tomonaga,

Freeman Dyson and Richard Feynman (SCHWEBER, 1994; GLASHOW, 2018).

Between the decades of 1920 and 1930, there were superior achievements in the de-

scription of particles with Quantum Field Theory (QFT). It made possible to specify the

particles by characteristics such as mass, spin, statistics, charge, and magnetic moment,

and predict physical phenomena such as Compton and Bremsstrahlung scattering, and

even some particle’s prediction as the muon (SCHWEBER, 1994; GLASHOW, 2018). At

the end of the 1940s, Schwinger and Tomonaga developed the QED using variational dif-

ferentiation while Feynman used functional integration (TOMONAGA, 1946; SCHWINGER,

1948a; SCHWINGER, 1948b; TOMONAGA; OPPENHEIMER, 1948; FEYNMAN, 1949a; FEYN-

MAN, 1949b), and Dyson proved that both approaches are equivalent (DYSON, 1949b).

The strong sector of the Standard Model describes the interactions of quarks, anti-

quarks and gluons, making up fundamental constituents of the baryonic matter, such as

protons and neutrons, and mesons such as the pions. Quarks are found in six varieties:

up (u), down (d), strange (s), charm (c), bottom (b) e top (t). They carry three colors:

red, blue, and green. Besides, in Nature, we observe eight types of gluons that carry both
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color and anti-color numbers. The theoretical framework of this sector is given by the

gauge theory of interactions Quantum Chromodynamics (QCD), formulated in the 1970s

by works of Murray Gell-Mann, Harald Fritzsch, David J. Gross, Frank Wilczek, Hugh

David Politzer (FRITZSCH et al., 1973; MARCIANO; PAGELS, 1978; GROSS; WILCZEK, 1973;

POLITZER, 1973).

2.2 Bethe-Salpeter Equation

The hadronic matter is made up of relativistic bound states of quarks interacting

through the exchange of gluons. E. Salpeter and H. Bethe developed a covariant relativis-

tic description of a bound state, thus providing the methodology known as Bethe-Salpeter

(BS) equations to investigate the hadronic matter (SALPETER; BETHE, 1951).

The bound state can be represented by the pole of the four-point Green function.

Let us consider a four-point Green’s function that describes all possible interaction and

self-interaction of two particles interacting through a scalar particle 1

G(x1, x2; y1, y2) = h0|T{�1(x1)�2(x2)�
†
1(y1)�

†
2(y2)|0i , (2.1)

where T is the time-order operator. Such function is composed by three terms that

represent the contribution of the free propagation of the two particles, the infinite sum of

irreducible graphs and the infinite sum of reducible graphs, which it can be obtained by

iterations of irreducible ones. Thus, one can write

G(x1, x2; y1, y2) = G0(x1, x2; y1, y2) +

Z

d4z1d
4z2d

4z01d
4z02 G0(x1, x2; z1, z2)

⇥ I(z1, z2; z
0
1, z

0
2)G(z01, z

0
2; y1, y2) , (2.2)

with I(z1, z2; z01, z
0
2) representing the interaction kernel that contains all the irreducible

diagrams of two particles. The G0(x1, x2; y1, y2) corresponds a Green’s function of two

non-interacting particles and it is given in terms of the particles propagators as follows

G0(x1, x2; y1, y2) = �(x1 � y1)�(x2 � y2) . (2.3)

where �
i

(x
i

� y
i

) = h0|T{�
i

(x
i

)�†
i

(y
i

)}|0i. One can diagrammatically express equation

(2.2) as in Fig. 2.1. By considering that IG = TG0, where the integral equation deter-

mining T is given by T = I + IG0T , the Green’s function present in equation (2.2) can

1For a more detailed derivation of the Bethe-Salpeter equation one can review the work of Gómez
(GóMEZ, 2016).
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FIGURE 2.1 – Pictorical representation of four-point Green’s function integral equation.

be expressed as G = G0 +G0IG0.

The four-point Green’s function G can be written in the momentum space. In order

to do that we will use a Fourier transform. First let us consider the global and relative

coordinates:

x = x1 � x2 ; X = ⌘1x1 + ⌘2x2

y = y1 � y2 ; Y = ⌘1y1 + ⌘2y2 (2.4)

with ⌘1 + ⌘2 = 1. Having those, we can write the a Fourier transform of a function

F (x1, x2; y1, y2) = F (x, y,X � Y ) as

F (p1, p2; q1, q2) = (2⇡)4�(P �Q)F̃ (k, p;P ) (2.5)

with

F̃ (k, q;P ) =

Z

d4x

Z

d4y

Z

d4Z e�iP ·Ze�ik·xe�iq·yF (x, y;Z) (2.6)

wherein P = p1 + p2, Q = q1 + q2, k = ⌘1k1 � ⌘2k2, q = ⌘1q1 � ⌘2q2 are the conjugate

momenta of Z = X � Y , x and y.

In special, in order to apply equation (2.5) in (2.2), we need to consider the two terms

of the four-point Green’s function. The Fourier transformation of the first term G0, after

considering the free propagators as

�(x1 � x2) =
1

(2⇡)4

Z

dp�(p)ep·(x1�x2) , (2.7)

and using delta functions, is given by

F1 = (2⇡)4�(4)(k � q)G0(k, q;P ) . (2.8)

where G0(k, q;P ) = �1(⌘1P + k)�1(⌘2P � k). The second term of equation (2.2), the

integral of the kernel I and the Green’s function G, in a similar way can be written in

terms of the relative and global coordinates as to have I(z1, z2; z01, z
0
2) = I(z, z0;Z � Z 0)

and G(z01, z
0
2; y1, y2) = G(z0, y;Z 0 � Y ). Thus, through Fourier transformation presented
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in equation (2.5), the term two (F2) can expressed as:

F2 = G0(k, q;P )

Z

dq0

(2⇡)4
I(k, q0;P )G(q0, q;P ) , (2.9)

therein our four-point Green’s function is written in the momentum space

G(k, q;P ) = (2⇡)4�(4)(k�q)G0(k, q;P )+G0(k, q;P )

Z

dq0

(2⇡)4
I(k, q0;P )G(q0, q;P ) . (2.10)

The equation (2.10) can be visualized in the Fig. 2.1, in which the first term is

representing the propagation of the free particles and the second one accounts for the

interaction between them. Now that we have the four-point Green’s function, we need to

consider the pole term related to it, as it is connected to the bound state.

The bound state has all its information expressed by the Bethe-Salpeter (BS) ampli-

tude, enabling the last to be used to evaluate the physical observables related to the first.

Considering that |P
B

, �i represents the bound state, with P
B

= (E
B

,P), E
B

=
p
P2 +M2

where M is the bound state mass, and � is the set of the quantum numbers of it, it can

be written the BS amplitude and its conjugate as

�(x1, x2;PB

, �) = h0|T{�1(x1)�2(x2)}|PB

, �i
�̄(x1, x2;PB

, �) = hP
B

, �|T{�†
1(x1)�

†
2(x2)}|0i (2.11)

Otherwise, applying a translational transformation in �(x1, x2;PB

, �) and considering

the translation invariance of the vacuum, the Bethe-Salpeter amplitude can be written in

a reduced form

'(x;P
B

, �) = (2⇡)3/2h0|T{�1(⌘x)�2(�⌘x)}|PB

, �i , (2.12)

where the relation between the BS amplitude and the reduced amplitude is

�(x1, x2;PB

, �) =
e�iPB ·X

(2⇡)3/2
'(x;P

B

, �) . (2.13)

By considering that one bound state of two particles, when inserting a completeness

relation
P

n

|n >< n| = 1, with |n > representing the Fock state with n particle, the
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four-point Green’s function turns to be

G(x1, x2; y1, y2) = ✓[min(x0
1, x

0
2)�max(y01, y

0
2)]

Z

d3P

2E
B

(2⇡)3

⇥h0|T{�1(x1)�2(x2)}|PB

, � >< P
B

, �|T{�†
1(y1)�

†
2(y2)}|0i

G(x1, x2; y1, y2) = ✓[min(x0
1, x

0
2)�max(y01, y

0
2)]

⇥
Z

d3P

2E
B

(2⇡)3
e�iP ·Z'(x;P

B

, �)'̄(y;P
B

, �) . (2.14)

The theta function, present in the equation above, can be rewritten in therms of

relative coordinates present in equation (2.4), as its follow

✓[min(x0
1, x

0
2)�max(y01, y

0
2)] = ✓[X0 � Y 0 + f(x0, y0)] (2.15)

f(x0, y0) = �x0

2
� y0

2
+

(⌘2 � ⌘1)

2
(x0 � y0) , (2.16)

and then by using the integral representation of the ✓ function can be expressed as

✓[min(x0
1, x

0
2)�max(y01, y

0
2)] =

1

2⇡

Z

e�it(X0�Y

0+f(x0
,y

0))

t+ i✏
dt . (2.17)

Our four-point Green’s function is expressed, by using the identity present in equation

(2.17), as

G(x1, x2; y1, y2) =

Z

d4P

(2⇡)4
'(x;P

B

, �)'̄(y;P
B

, �)

2E
B

[P0 � E
B

+ i✏]
e�i((P0�EB)f(x0

,y

0)+(X�Y )·P ) , (2.18)

which shows that the mass of the bound state is the own pole of the Green’s function.

Then, we can think of it as having two contributions, the one that comes from the regular

terms that has no pole at P0 = E
B

and the one which has. With the Fourier transform

of G
B

(x, y;X � Y )

G
B

(k, q;P ) =

Z

d4x d4y d4Z e�ik·xe�iq·yeiP ·ZG
B

(x, y;Z) (2.19)

= i
'(k;P

B

, �)'̄(q;P
B

, �)

2!
B

(P0 � E
B

+ i✏)
, (2.20)

we can rewrite the equation (2.10) as

'(k;P
B

, �)'̄(q;P
B

, �) = G0(k, PB

)

Z

d4q0

(2⇡)4
I(k, q0;P

B

)'(q0;P
B

,↵)'̄(q;P
B

,↵) . (2.21)
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Finally we obtain

'(k;P
B

, �) = �1(⌘1P + k)�1(⌘2P � k)

Z

d4q0

(2⇡)4
I(k, q0;P

B

)'(q0;P
B

,↵) , (2.22)

which is the integral equation in terms of the BS amplitude that is known as the homo-

geneous Bethe-Salpeter Equation. Note that the kernel of the BS equation I(k, q0;P
B

) is

the same of the integral equation for the four-point Green’s function, equation (2.2).

2.3 Quantum Chromodynamics

The physics of strong interactions is related to phenomena pertaining to hadrons, their

structure and interactions. The theory that describes such physics is known as Quantum

Chromodynamics (QCD). It has as main objective to study the force (“color force”) that

binds quarks and gluons inside of the hadrons, such as protons and pions. Especially, it

can be seen as the theory of strong interaction of quarks mediated by gluons, which are

massless particles with integer spin and two polarization (left or right-handed).

Quarks are fermionic particles that have three basic color-charge configurations, la-

beled as red (r), green(g) and blue (b). Gluons also carry color charge. Each color has its

own counterpart anticolor. Those color states of quarks are SU(3) triplets.

The classical Lagrangian of the QCD can be expressed as (CHENG, 1984)

L =

Nf
X

f=1

X

c=r,g,b

 ̄f

c

⇣

i�µD
µ

�mf

0

⌘

 f

c

� 1

4
Ga

µ⌫

Gaµ⌫

a

, (2.23)

with  f = { f

r

, f

g

, f

b

} are the quark fields which are Dirac spinors and f and c refer to

the flavor quantum number and to the color, respectively. The term D
µ

= @
µ

� igAa

µ

ta

is covariant gauge derivative, expressed in terms of coupling constant g, the Gell-Mann

matrices 2 ta, gauge field Aa

µ

. And the tensor Ga

µ⌫

is the color fields tensor given by

Ga

µ⌫

= @
µ

Aa

⌫

� @
⌫

Aa

µ

+ gfabcAb

µ

Ac

⌫

, (2.24)

where fabc is the structure constants of the SU(3) color group.

We have an invariant Lagrangian under global and local gauge transformations by

writing the Lagrangian as expressed in equation (2.23). On other hand, if one explic-

itly writes every term of the Lagrangian, it will be clear the presence of quark-gluon

2Those matrices are known as the generators of SU(3) group. They satisfy the following relations:
⇥

�a
2 , �b

2

⇤

= ifabc �c

2 ; tr(�a,�b) = 2�ab. The indices a runs between one and eight, representing each gauge
boson or colored mediator boson.
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interactions, 3-point gluon interaction and 4-point gluon interaction, as diagrammatically

pictured in Fig.2.2. Therefore, because gluons carry color and anticolor charges, they can

interact with each other.

FIGURE 2.2 – The basic vertices of the Quantum Chromodynamics.

The quantized version of the classical QCD Lagrangian is derived by doing some con-

siderations. In order to do the quantization of quantum field theory, in path integral

formalism 3, it is necessary to take the path-integral over all the possible field configura-

tions, which means having a generating functional

Z[A, J ] =

Z

DA

⇢

exp



i

Z

d4xL(A) + J
µ

(x)Aµ(x)

��

. (2.25)

where J
µ

(x) is the external source associated to the field Aµ(x).

The sum includes configurations that are connected by gauge transformations. It is

necessary to identify the physical distinct field configurations, meaning that one needs

“fix” the gauge. The usual method to do that is using the Faddev-Popov method, in

which auxiliary fields4 c and c̄ (Faddeev-Popov ghosts) are introduced in the Lagrangian.

By imposing that @
µ

Aaµ = 0, we have as the gauge fixing term and the Faddev-Popov

term of the Lagrangian

L
GF

=
�1

2⇠
(@

µ

Aaµ)2 , (2.26)

L
FP

= (@
µ

c̄
a

)(�ab@µ � gfabcAµ

c

)c
b

(x) , (2.27)

then the quantization of the QCD results in a Lagrangian that is composed by three

3It was developed by Feynman in 1948, being a formulation of quantum mechanics equivalent to the
formulations of Schrodinger’s and Heisenberg (FEYNMAN, 1948; MACKENZIE, 2000).

4The ghosts fields ca and c̄a are two independent scalar Grassmann fields.
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contributions

L
QCD

= L
quark

+ L
gauge

+ L
FP ghosts

L
QCD

=  ̄ (i�µD
µ

�m) � 1

4
Ga

µ⌫

Gaµ⌫

a

� 1

2⇠
(@

µ

Aaµ)2

+(@µc̄a)Dab

µ

c
b

. (2.28)

An important remark is that the Faddeev-Popov procedure is not enough to select a

unique physical configuration. For an Abelian gauge theory, the gauge condition @·A = 0 is

su�cient to uniquely fix the gauge. While for a non-Abelian gauge theory, Gribov showed

there are distinct transverse configurations, A 6= A0, that respect such gauge condition,

related by a gauge transformation. These are known as Gribov copies (GRIBOV, 1978).

Thus a non-Abelian gauge theory needs an additional constraint such as that the Gribov

copies are identified physically. The solution to this problem is still a line of research

(VANDERSICKEL; ZWANZIGER, 2012; DUDAL et al., 2008; CAPRI et al., 2021).

One final point is that by working with generating functional of the Lagrangian in

equation (2.28) one can obtain the expression to quark, gluon and ghost field’s propagator.

It is also possible to derive the Feynman rules to quark-gluon interactions and gluon-gluon

interactions. By doing so, we will have Green’s functions of two, three, and four points.

Along with each possible Green’s function, it will be a Dyson-Schwinger equation, which is

the result of doing a functional integral over a total derivative of the generating functional,

which vanishes. In the next section, we will derive the expression for the quark propagator

and the Dyson-Schwinger for a fermion propagator.

2.4 Mass Generation

The dynamics of a quantum field is determined by its Lagrangian. The classical

field theory has the dynamics given by equations of motion, derived from the action

of the Lagrangian using the action principle. The quantization of a classical field can

be achieved by using the path-integral formalism, constructed by Feynman (FEYNMAN,

1948). The n-points Green functions, that describe the physical systems which quantum

field theory has as object of study, can be calculated in this formalism by using integral

equations, devised by Dyson and Schwinger independently (DYSON, 1949a; SCHWINGER,

1951). The Dyson-Schwinger (DS) equations give us an understanding that is a dynamic

mass generation in the framework of the QCD. Besides, QCD theory points out that the

fermions have their mass coming from the Higgs mechanism, and the hadronic matter gain

mass by the dynamical chiral symmetry breaking (DCSB) mechanism. In this section, we

will discuss about the DS equations and the breaking of the chiral symmetry as means of
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mass generation.

2.4.1 Fermion Propagator

Fermions are described in quantum field as Dirac spinors fields  (x). The Lagrangian

for a free fermion field is written as

L( ,  ̄) =  ̄
a

(x) (i�µ
ab

@
µ

�m�
ab

) 
b

(x) , (2.29)

where the indices a and b are spinors indices running from one to four. The adjoint

spinor  ̄
b

(x) is defined by  ̄
b

(x) =  †
a

(x)�0
ab

. The equation of motion derived from this

Lagrangian is the Dirac equation. One consideration when one quantizes the fermion

field is that they are anti-commuting operators, thus the path-integral has to be made

over a function that has the same characteristic. One method of doing that is adopting

Grassmann variables, as they are anti-commuting values (GRASSBERGER, 1978).

First, the vacuum-to-vacuum transition amplitude with external sources is expressed

by

Z[⌘, ⌘̄] =

Z

D D ̄
⇢

exp



i

Z

d4xL( ,  ̄) + ⌘̄
a

 
a

+  ̄
a

⌘
a

��

, (2.30)

with ⌘ and ⌘̄ being anti-commuting spinors with four components. The Z[⌘, ⌘̄] term is

known also as the generating functional, and it is normalized to one if one considers the

sources being zero. The next step is to do a di↵erentiation with respect to ⌘ and another

with respect to ⌘̄. Considering that the n-point functions can be, in general, calculated

using the generating functional in the presence of external sources, we can write

h0|T{ 
a1(x1) · · ·�al

(x
l

) ̄
b1(y1) · · ·  ̄bl

(y
n

)}|0i
=

(�i)l+n�l+nZ[⌘
bl
, ..., ⌘̄

an ]

�⌘
bl
(y

l

) · · · �⌘
b1(y1)�⌘̄an(xn

) · · · �⌘̄
a1(x1)

�

�

�

�

⌘bl
=⌘̄an=0

. (2.31)

Wherein one also express the generating functional in terms of the Feynman propagator

of the fermion field S
F

(x, y) ⌘ SF

ab

, as follows

Z[⌘, ⌘̄] = N exp



�i

Z

d4xd4y⌘̄
a

(x)S
F

(x, y)⌘
b

(y)

�

, (2.32)

where propagator satisfies: (i/@
x

�m)
ab

SF

bc

(x, y) = �4(x� y)�
ac

. One thing though, this is

possible only if (i/@
x

�m) has an inverse. Therefore a two-point function can be written
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as follow

h0|T{ 1(x) ̄2(y)}|0i = (�i)2�2Z[⌘, ⌘̄]

�⌘
b

(y)�⌘̄
a

(x)

�

�

�

�

⌘=⌘̄=0

= iS
F

(x, y). (2.33)

It is interesting to point out that the Fourier representation of the fermion propagator is

S
F

(x) =

Z

d4k

(2⇡)4
/k
ab

+m�
ab

k2 �m2 + i✏
e�ikx , (2.34)

with the poles present at k2 = m2. In the momentum space one has

S
F

(p) =
/p+m

p2 �m2 + i✏
. (2.35)

2.4.2 Dyson-Schwinger Equation

The Dyson-Schwinger equations (DSE) are obtained through the path-integral for-

malism 5. By considering that a functional integral over a total derivative is null, field

equations are obtained. We will consider, for illustration of DSE derivation, the action of

the QED

S[A, ,  ̄] =

Z

d4x
⇣

 ̄(i/D �m) � 1

4
F
µ⌫

F µ⌫ � 1

2⇠
(@

µ

Aµ)2

+J
µ

(x)Aµ(x) + ⌘̄(x)�(x) + �̄(x)⌘(x)
⌘

, (2.36)

with D
µ

= @
µ

� igAa

µ

(x)ta, the gauge field Aa

µ

(x) and ta are the generators of the Lie

algebra. Therefore doing the derivative in terms of  ̄(x)

Z

DAD D ̄ �

� ̄(x)
eiS[A, , ̄] = 0

Z

DAD D ̄
"

�S[A, ,  ̄]

� ̄
+ ⌘(x)]

#

Z[A, ⌘, ⌘̄] = 0 . (2.37)

Before performing the derivative of the action, we should consider the connected Green’s

functions, W [J, ⌘, ⌘̄], and its relation with the e↵ective action �[A, ,  ̄]:

W [J, ⌘, ⌘̄] ⌘ i�[A, ,  ̄] + i

Z

d4x[A
µ

Jµ +  ̄⌘ + ⌘̄ ] , (2.38)

5The derivation of DSE presented in this section is based on the doctoral work of Richard Williams
(WILLIAMS, 2007).
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wherein one can define the classical fields as

 =
�W
i �⌘̄

,  ̄ =
�W
�i �⌘

, Aµ =
�W
i �J

µ

, (2.39)

in similar manner

⌘ = i
��

� 
, ⌘̄ = �i

��

� 
, J

µ

= i
��

�Aµ

. (2.40)

Now we can do the derivative and use the relations above:

[⌘(x) + (i/@ �m+ e�µA
µ

(x)) (x)]Z[J, ⌘, ⌘̄] = 0


⌘(x) +

✓

i/@ �m+ e�µ(�i)
�

�Jµ(x)

◆

(�i)
�

�⌘̄(x)

�

Z[J, ⌘, ⌘̄] = 0 , (2.41)

hence, doing another functional derivative in terms of ⌘(y), one has as follow

�(x� y)Z[J, ⌘, ⌘̄]�
✓

i/@ �m+ e�µ(�i)
�

�Jµ(x)

◆

Z[J, ⌘, ⌘̄]S
F

(x� y) = 0 , (2.42)

with S
F

(x� y) given in terms of equation (2.33). The generating functional is related to

connected Green’s functions as Z[J, ⌘, ⌘̄] = exp(W)[J, ⌘, ⌘̄], applying it we have

eW


�(x� y)�
✓

i/@ �m+ e�µ(�i)

✓

�W
�Jµ(x)

+
�

�Jµ(x)

◆◆

S
F

(x� y)

�

= 0 ,

�(x� y)�
✓

i/@ �m+ e�µ
✓

A
µ

(x) + (�i)
�

�Jµ(x)

◆◆

S
F

(x� y) = 0 . (2.43)

Then again using the relation between the generating functional and the propagator,

presented in equation (2.33), and using the ones in equation (2.40), one can obtain the

expression to the term (�i) �

�J

µ(x)SF

(x� y)

(�i)
�

�Jµ(x)
S
F

(x� y) = �ie

Z

d4zd4ud4wD
µ⌫

S
F

(x� w)�
⌫

(u, w; z)S
F

(w, y) , (2.44)

hence, if we put the external sources equal to zero in equation (2.43) and multiplying its

equation by S�1
F

(y, y0), its turns to be that we have

�(x� y)S�1
F

(y, y0) =
⇣

(i/@ �m) + e�µ(�i)
�

�Jµ(x)

⌘

S
F

(x� y)S�1
F

(y, y0) , (2.45)

integrating with respect to y0

S�1
F

(x, y) = �(i/@ �m)�(x� y)� ie2
Z

d4zd4uDµ⌫(x, z)�
µ

S
F

�
⌫

(u, y; z) , (2.46)
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then obtaining the Dyson-Schwinger equation for the fermion propagator of a quantum

field theory QED like in coordinate space. And by doing the Fourier transformation of it,

it follow the DSE in momentum space, i.e.

S�1
F

(p) = /p�m0 � ie2

(2⇡)4

Z

d4k�µS(k)�⌫(k, p; k � p)D
⌫µ

(k � p) . (2.47)

The interpretation of the Dyson-Schwinger equation is the understanding of the dy-

namical mass generation, by looking in the Fig. 2.3 we can see that fermions can get mass

that came through the interactions, when the coupling is large enough.

FIGURE 2.3 – The diagrammatic representation of the Dyson-Schwinger equation for a fermionic prop-
agator.

The fermion propagator expression will be written di↵erently, because now we under-

stand that beyond “bare” mass we have also a mass that has a momentum dependency.

The inverse of the propagator will be

S�1(p) = /p�m0 � ⌃(p) , (2.48)

with m0 being the bare mass and ⌃(p) being the self-energy of the fermion.

Another way of writing the quark propagator considering the dynamical mass genera-

tion is defining two functions A(p2) and B(p2), in such way that the fermion propagator

can be written as

S(p) =
A(p2)/p+B(p2)

A2(p2)p2 � B2(p2)
, (2.49)

where

M(p2) =
B2(p2)

A2(p2)
, (2.50)

is the running mass function of the fermion.
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2.4.3 Dynamical Chiral Symmetry Breaking & Pion

In 1935, Hideki Yukawa predicted the existence of particles that could be responsible

for the short-range strong force between protons and neutrons (YUKAWA, 1935). Those

particles, named pions, should be massive, around µ ⇠ 200MeV, and were experimentally

discovered in 1947 by Cecil Frank Powell, Giuseppe Occhialini and César Lattes (LATTES

et al., 1947). After that, in 1949, Yukawa was awarded with the Nobel Prize because

of “his prediction of the existence of mesons on the basis of theoretical work on nuclear

forces”(PRIZE, 2023).

Pions are mesons composed by a bound state of two quarks, making them the simplest

hadrons. In nature, we observe three types of pions: ⇡+, ⇡�, and ⇡0. Those particles can

be considered both as a hadron, a bound state of two fermions, and as the approximate

Nambu–Goldstone bosons originated from the breaking of chiral symmetry. Because of

those particular characteristics, pions can be seen as probes to better understand the

physics of strong interactions (AGUILAR et al., 2019; DING et al., 2020; PAULA et al., 2021;

CHAVEZ et al., 2021).

To understand what it means by saying that the pion is a Goldstone’s boson we need to

discuss one of the symmetries of the QCD: the chiral symmetry, a continuous symmetry

of this theory. The appearance of the Goldstone’s bosons is related to the dynamical

breaking of this symmetry. Besides, the current understanding of how matter gains its

mass is found in basically two phenomena: the Higgs mechanism and Dynamical Chiral

Symmetry Breaking (DCSB). The Higgs boson is the particle behind the mass of all

fermions and the hadronic particles have their mass originated dynamically within the

QCD.

The chiral property refers to the aspect of the orientation of the particle’s spin in

relation to the direction of its movement. If we consider a massless quark, its spin can be

right-handed (in the direction of the movement) or left-handed (in the opposite direction).

In terms of Dirac spinors we can define a projection operator P± = 1
2(1± �5) that can be

used to express our massless free quark chirality. Considering  as the total quark field

we have

 =  
L

+  
R

(2.51)

with

 
L

= P� ;  
R

= P+ (2.52)
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The Lagrangian L
q

of free massless quark is written as

L
q

=  ̄ (i�µ@µ) , (2.53)

by applying the expression (2.51) in the equation (2.53), the quark Lagrangian splits in

two terms each connected with a chiral configuration,

L
q

=  ̄
L

(i�µ@µ) 
L

+  ̄
R

(i�µ@µ) 
R

. (2.54)

It is interesting take a look closely at the algebra concerning the step between equation

(2.53) and (2.54), we have

i 
L

�µ@
µ

 
R

=
i

4
 (1 + �5)�µ@

µ

(1 + �5) 

=
i

4
( �µ@

µ

 +  �µ�5@
µ

 +  �5�µ@
µ

 +  �5�µ�5@
µ

 )

=
i

4
( �µ@

µ

 +  �µ�5@
µ

 �  �µ�5@
µ

 �  �µ@
µ

 )

= 0 , (2.55)

i 
R

�µ@
µ

 
L

=
i

4
 (1� �5)�µ@

µ

(1� �5) 

=
i

4
( �µ@

µ

 �  �µ�5@
µ

 �  �5�µ@
µ

 +  �5�µ�5@
µ

 )

=
i

4
( �µ@

µ

 �  �µ�5@
µ

 +  �µ�5@
µ

 �  �µ@
µ

 )

= 0 . (2.56)

This means that our massless quark Lagrangian will not have terms with a mix of

 
L

and  
r

. Then when we apply a global transformation like  !  0 = ei��
5
 in the

Lagrangian it has no change, thus one can call it invariant under such transformation,

that is called chiral transformation.

Now if consider, for example, the light quarks, up and down, that are not massless but

have small mass, the Lagrangian will change

L
q

= i( 
L

+  
R

)�µ@
µ

( 
L

+  
R

)�m( 
L

+  
R

)( 
L

+  
R

)

= i 
L

�µ@
µ

 
L

+ i 
L

�µ@
µ

 
R

+ i 
R

�µ@
µ

 
L

+ i 
R

�µ@
µ

 
R

+ m( 
L

 
L

+  
L

 
R

+  
R

 
L

+  
R

 
R

)

L
q

= i 
L

�µ@
µ

 
L

+ i 
R

�µ@
µ

 
R

+m( 
L

 
R

+  
R

 
L

) , (2.57)

where  
L

 
L

=  
R

 
R

= 0, the relations {�5, �µ} = 0 and (�5)2 = 1 were used. Thus the

 
L

and  
R

that were decoupled from each other when the quark had zero mass, turns

coupled in the presence of the mass term, as we can see in the Lagrangian. Therefore
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the chiral symmetry is broken when the quark is massive. In fact, in nature until now we

only have observed massive quarks (six types of quarks) with mass ranging between ⇠ 1.8

MeV/c2 and ⇠ 172 GeV/c2 (WORKMAN et al., 2022).

As the physical quarks are not massless we have chiral symmetry breaking. However,

according to Goldstone’s theorem, when a spontaneous symmetry breaking occurs there

will be at least one massless mode or boson in the spectrum of the theory (see (GOLDSTONE

et al., 1962)). Therefore, physically there should be a boson that comes from the dynamical

breaking of the chiral symmetry (DCSB). In fact, the pion is the Goldstone’s boson of

QCD, with its mass coming from the fact that the light quarks are not massless. In nature

we observe three pions: ⇡+,⇡� and ⇡0, with their mass being between ⇠ 139.57 MeV/c2,

(⇡±), and ⇠ 134.97 MeV/c2 (⇡0)(WORKMAN et al., 2022).

2.5 Integral Representation

In a free field theory, the two-point function is interpreted as the amplitude of a

particle propagating between a point x and a point y. For an interacting field theory, the

representation of the two-point function is called Källén-Lehmann (PESKIN; SCHROEDER,

1995). In turn, the generalization of that can be obtained by a perturbative method called

Nakanishi Integral Representation (NIR), which can be applied as an ansatz to solve the

Bethe-Salpeter equation (SALMÈ et al., 2017; PAULA et al., 2017; PAULA et al., 2018; MOITA

et al., 2022).

2.5.1 Källén-Lehmann Representation

In this subsection, we review the derivation presented in Peskin (PESKIN; SCHROEDER,

1995). A first step to obtain the Källén-Lehmann representation is to consider a real scalar

field theory valid to all kinds of interaction, without any perturbative theory dependency.

This kind of consideration permits us to assume that the Hamiltonian Ĥ is a Lorentz

invariant and the momentum operator P̂ commutes with the operator Ĥ. This is true

because we are considering states that represent a set of particles that we treat as a single

body, where the binding energy is already contained in the mass of the bound state, which

in turn is free.

Let |�
~p

i be the eigenstate of Ĥ and P̂ , with � carrying all quantum numbers of the

possible quantum states. Each |�
~p

i is related through a Lorentz boost with the state

corresponding to rest, called |�0i. The eigenvalue equation is given by

Ĥ|�
~p

i = E
p

|�
~p

i; P̂ |�
~p

i = ~p|�
~p

i. (2.58)
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The eigenstate |�
~p

i can represent one particle state |1
~p

i, with energy E
p

=
p

~p2 +m2
�

and rest mass m
�

. It can represent a bound state or a state of N -particles, with N � 2,

composed of a 1-particle state and bound states. All states are created from the |⌦i
vacuum. The crucial di↵erence between interacting scalar field theory and free field theory

is that �(x) cannot simply be a superposition of the operators a(~p) and a†(~p), as it does

not obey the equations of free motion:

(@2 +m2)� 6= 0 =) (@2 +m2)� = j, (2.59)

where j is the current. Thus, applying � to ⌦ does not simply create a 1-particle state as

in the free theory. Another important point is to note that in the completeness relation,

in Hilbert space,

1̂ = |⌦ih⌦|+
X

�

Z

d3p

(2⇡)3
1

E
p

(�)
|�
~p

ih�
~p

|, (2.60)

the sum in � includes the 1-particle states, the bound states, and the multi-particle states,

while the integral in p refers to the momentum of the center of mass ~p of states �. In

particular, specifying a multi-particle state requires specifying the relative momentum

of each individual state plus the ~p momentum. Thus, the sum over � is a sum over a

continuum of states.

In free field theory the function of two points h⌦|T�(x)�(y)|⌦i is the amplitude for

a particle to propagate from y to x. The question is if this interpretation follows in

the interacting theory. The first objective is to obtain an expression for the interacting

Feynman propagator:

h⌦|�(x)�(y)|⌦i =
(

h⌦|�(x)�(y)|⌦i if x0 > y0

h⌦|T�(y)�(x)|⌦i if y0 > x0.

By doing

h⌦|�(x)1̂�(y)|⌦i = h⌦|�(x)|⌦ih⌦|�(y)|⌦i+
X

�

Z

d3p

(2⇡)3
1

E
p

(�)
h⌦|�(x)|�

~p

ih�
~p

|�(y)|⌦i,

=
X

�

Z

d3p

(2⇡)3
1

E
p

(�)
h⌦|�(x)|�

~p

ih�
~p

|�(y)|⌦i, (2.61)

considering that h⌦|�(0)|⌦i = 0. If c ⌘ h⌦|�(0)|⌦i 6= 0 one can redefine � as � ! �� c,

thus obtaining the result above. On the other hand, h⌦|�(x)|�
~p

i can be written as

h⌦|�(x)|�
~p

i = h⌦|eiP ·x�0e
�iP ·x|⌦i = h⌦|�0|⌦ie�ip·x, (2.62)

with e�iP ·x|⌦i = |⌦ie�ip·x and h⌦|eiP ·x = h⌦|. The next step is to relate |�
~p

i to |�0i using
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a boost. Considering that the classical scalar field transforms as �(x) = U�1(⇤)�(x0)U(⇤),

one have

h↵0|�(x0)|�0i = h↵|U�1(⇤)�(x0)U(⇤)|�i = h↵|�(x)|�i. (2.63)

h⌦|�(x)|�
~p

i = h⌦|U�1U�(0)U�1U |�
~p

ie�ip·x = h⌦|�(0)|�0ie�ip·x. (2.64)

With that, the propagator can be expressed, without the time orderer, as

h⌦|�(x)�(y)|⌦i =
X

�

Z

d3p

(2⇡)3
1

E
p

(�)
|h⌦|�(0)|�0i|2e�ip·(x�y), (2.65)

while the scalar field result of the free theory is written as

D(x� y) = h0|�(x)�(y)|0i =
Z

d3p

(2⇡)3
1

E
p

(�)
e�ip·(x�y). (2.66)

Rewriting the integral present in the equation (2.65) as

Z

d3p

(2⇡)3
1

E
p

(�)
e�ip·(x�y) =

Z

d4p

(2⇡)4
i

p2 �m2
�

+ i✏
e�ip·(x�y), (2.67)

one obtain the expression that relates the Feynman propagator D
F

with the function of

two points

h⌦|T�(x)�(y)|⌦i =
X

�

|h⌦|�(0)|�0i|2DF

�

(x� y),m2
�

�

, (2.68)

For each state � there will be a contribution to the two-point function and to the

amplitude of creation from vacuum. Another way to write the sum in � is

h⌦|T�(x)�(y)|⌦i =

Z 1

0

dM2

2⇡

X

�

2⇡�(M2 �m2
�

)|h⌦|�(0)|�0i|2DF

�

(x� y),m2
�

,

=

Z 1

0

dM2

2⇡
⇢(M2)D

F

((x� y),m2
�

), (2.69)

with the spectral density ⇢(M2) =
P

�

2⇡�(M2�m2
�

)|h⌦|�(0)|�0i|2. This expression above

corresponds to the spectral representation of Källén-Lehmann.

For an intermediate state of a particle, we will have m
�

= m, being m the energy

eigenvalue of the interacting hamiltonian in the particle’s rest frame. The mass m is the

observable mass of the interacting particle and may di↵er from the bare mass m0. In this

case the spectral density will be (PESKIN; SCHROEDER, 1995)

⇢(M2) = 2⇡�(M2 �m2)Z + �(M2), (2.70)
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with Z = |h⌦|�(0)|10i|2, where 10 is the 1-particle state with zero momentum, and �(M2)

represents the contributions of N-particle states. Depending on the energy there can be

production of two or more “free” real particles or bound states of two or more particles.

In momentum space we have

Z

d4xeipxh⌦|T�(x)�(y)|⌦i =

Z 1

0

dM2

2⇡
⇢(M2)

i

p2 �m2 + i✏

=
iZ

p2 �m2 + i✏
+

Z 1

m

2
e

dM2

2⇡

i�(M2)

p2 �m2 + i✏
, (2.71)

with m2
e

being the mass of the bound state (PESKIN; SCHROEDER, 1995). For the free

field case, we have
Z

d4xeipxh0|T�(x)�(0)|0i = i

p2 �m2
0 + i✏

. (2.72)

The Källén-Lehmann representation is a one-variable integral representation for a two-

point function. Next we will discuss about the Nakanishi integral representation, which

is a generalized two-variable integral representation.

2.5.2 Nakanishi Integral Representation

The Nakanishi Integral Representation (NIR) formalism of a transition amplitude of a

generic N-particle scattering is based on a perturbative treatment. However, despite being

formulated in the perturbative regime, it can be used as an ansatz in the non-perturbative

regime. This representation has been used in studies of bound state problems, with results

in agreement with other methods in the literature (KUSAKA; WILLIAMS, 1995; FREDERICO

et al., 2012).

The probability amplitude of a certain process can be written in terms of a power series

of the coupling constant, where each term can be interpreted as a sum of Feynman integrals

generated by a particular Lagrangian and corresponding to a set of graphs of Feynman.

Using Feynman’s parametric integral, performing a change of integration variables that

leads to a new set of variables that is equal to the number of independent variables, one

can obtain the Nakanishi integral representation (NAKANISHI, 1971).

The perturbation theory integral representation (PTIR) permits to have a parametric

representation of any Feynman diagram in the Minkowski space. Through the NIR,

the amplitude is given in terms of an integral with a kernel function of real variables

(Nakanishi weight function). Despite the perturbative framework where the Nakanishi

Integral Representation has been originally devised, it can be extended or applied to the

nonperturbative regime. This is the case when we use the NIR to obtain the solution of

the bound state Bethe-Salpeter equation (NAKANISHI, 1971; FREDERICO et al., 2013).
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In this section, we will derive the expression of the NIR to the Bethe-Salpeter ampli-

tude. As notation, we have the external 4-moment designated by p
i

, such that,
P

N

i

p
i

= 0,

the 4-moment k
j

and the mass m
j

are associated with particles that propagate inside the

loops, and q
l

is the 4-moment at which the integration is performed in the l-th loop.

Considering sets of Feynman graphsG havingN outer lines, with n inner propagations,

V outer vertices and s loops, we have

k
j

=
s

X

l=1

b
jl

q
l

+
N

X

i=1

c
ji

p
i

, (2.73)

where b
jl

and c
ji

can assume the values (�1, 0, 1) due to the conservation of moments at

the vertices. The Feynman integral associated with G is represented (GóMEZ, 2016) as

f
G

= �(4)
⇣

N

X

i=1

(p
i

)
⌘

Z

⇣

n

0
Y

s=1

d4q
s

⌘ 1
Q

n

j=1(k
2
j

�m2
j

+ i✏)
, (2.74)

where n0 = n� (V � 1). To combine the n-denominators, Feynman’s parametric formula

is used
1

[A1A2 . . . An

]
= (n� 1)!

n

Y

i=1

Z 1

0

d↵
i

�(1�P

n

j=1 ↵j

)

[A1↵1 + A2↵2 + · · ·+ A
n

↵
n

]n
, (2.75)

as soon as,

f
G

= (n� 1)!�(4)
⇣

N

X

i=1

(p
i

)
⌘

Z

⇣

n

0
Y

s=1

d4q
s

⌘

Z 1

0

n

Y

j=1

d↵
n

�(1�P

n

j=1 ↵j

)
h

P

n

j=1(k
2
j

�m2
j

+ i✏)↵
j

i

n

. (2.76)

In the equation (2.73) we have the relation between k
j

and q
l

, when substituting

this relation in the equation (2.76) there will be quadratic and linear terms of q
j

in the

denominator. So that one can write

"

n

X

j=1

(k2
j

�m2
j

+ i✏)↵
j

#

n

=

"

n

0
X

s=1

d
s

q2
s

+ 2
n

0
X

s=1

N

X

i=1

B
si

(q
s

· p
i

)

+
N

X

i=1

N

X

i

0=1

C
ii

0(p
i

· p0
i

)�
n

X

j=1

m2
j

↵
j

+ i✏

#

n

, (2.77)

making the following change of variable,

q0
s

= q
s

+
1

d
s

N

X

i=1

B
si

p
i

, (2.78)
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there is

"

n

X

j=1

(k2
j

�m2
j

+ i✏)↵
j

#

n

=

"

n

0
X

s=1

d
s

q02
s

+
N

X

i=1

N

X

i

0=1

(p
i

· p0
i

)(C
ii

0 �
n

0
X

s=1

1

d
s

B
si

B
si

0)

�
n

X

j=1

m2
j

↵
j

+ i✏

#

n

, (2.79)

where d
s

is the set of eigenvalues corresponding to the matrix D
ss

0 , D
ss

0 =
P

j

↵
j

b
js

b
js

0 ,

and with B
ss

0 =
P

j

↵
j

b
js

c
ji

and C
ss

0 =
P

j

↵
j

c
ji

bc
ji

0 . The next step is to perform the

integration on q0
s

, assuming that the integrate is convergent we can invert the order of

integration:

Z

n

0
Y

s=1

d4q0
s

1
h

P

n

0

s=1 dsq
02
s

+H(n,N,↵
j

, p
i

) + i✏
i

n

=

(n� 2n0 � 1)!(i⇡2)n
0

(n� 1)! [
Q

n

0 d
n

0 ]2 [H(n,N,↵
j

, p
i

) + i✏]n�2n0 , (2.80)

with

H(n,N,↵
j

, p
i

) =
N

X

i=1

N

X

i

0=1

(p
i

· p0
i

)(C
ii

0 �
n

0
X

s=1

1

d
s

B
si

B
si

0)�
n

X

j=1

m2
j

↵
j

. (2.81)

Substituting this result in the Feynman integral of the equation (2.76), we obtain

f
G

= �(4)
⇣

N

X

i=1

(p
i

)
⌘(n� 2n0 � 1)!(i⇡2)n

0

[
Q

n

0 d
n

0 ]2

Z 1

0

n

Y

j=1

d↵
n

�(1�P

n

j=1 ↵j

)

[H(n,N,↵
j

, p
i

) + i✏]n�2n0 . (2.82)

Note that in the Feynman integral, the denominator depends on the masses m
j

and

the number of loops. Nakanishi’s idea is to move this dependency to the numerator. To

move the dependency from the denominator to the numerator, it will be necessary to

write the function f
G

in terms of the weight function �
G

. Thus, we rewrite the equation

(2.82) using a delta function, such that we have

f
G

=
Y

h

Z 1

0

dz
h

�(1� z
h

)

Z 1

0

d⇠
�
G

(z, ⇠)

[⇠ �P

h

z
h

a
h

� i✏]n�2n0 , (2.83)
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with

�
G

(z, ⇠)�(1�
X

h

z
h

) = const
n

Y

j=1
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d↵
j

�(1�P

n

j=1 ↵j
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0 ]2(��)n�2n0

⇥ �

✓

z
h

� ⌘
h

�

◆

�

 

⇠ �
X

l

m2
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↵
l

�

!

�

 

1�
X

h
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h
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. (2.84)

The variables ⌘
h

and � are given by the following relations:

X

h

⌘
h

· s
h

=
X

i

X

i

0

E
ii

0(p1 · p0
i

) , � =
X

h

⌘
h

, (2.85)

where s
h

is the set of all independent variables that can be constructed with N external

moments. To remove the dependence on n and n0, we just perform integration by parts,

where the surface terms cancel out due to the dependence of �
G

on ⇠. After performing

n� 2n0 � 1 integrations, the result will be

f
G

=
Y

h

Z 1

0

dz
h

�(1�
X

h

z
h

)

Z 1

0

d⇠
�0
G

(z, ⇠)

[⇠ �P

h

z
h

a
h

� i✏]
, (2.86)

with
P

z
h

6= 1 and z�0
G

(z, ⇠) written as

�0
G

(z, ⇠) =
1

n� 2n0 � 1

@n�2n0�1�
G

(z, ⇠)

@⇠n�2n0�1
. (2.87)

To obtain the representation of the amputated amplitude or vertex, let’s calculate the

case of a three-legs diagram. For G = 3 we have

f3 =

Z 1

0

dz1

Z 1

0

dz2

Z 1

0

dz3�(1� z1 � z2 � z3)

Z 1

0

d⇠
�3(z1, z2, z3, ⇠)

[⇠ � z1a1 � z2a2 � z3a3 � i✏]
, (2.88)

integrating in ↵3

f3 =

Z 1

0

dz1

Z 1

0

dz2

Z 1

0

d⇠

z1 + z2

�3(z1, z2, ⇠)✓(z1 + z2)✓(1� z1 � z2)
⇥

⇠�z1a1�z2a2�(1�z1z2)a3
z1+z2

� i✏
⇤

. (2.89)

Performing the following change of variable

� =
⇠

z1 + z2
� (1� z1 � z2)

z1 + z2
a3, (2.90)

the equation (2.89) becomes

f3 =

Z 1

0

dz1

Z 1

0

dz2

Z 1

�0

d�
�3(z1, z2, ⇠)✓(z1 + z2)✓(1� z1 � z2)

⇥

� � z1a1+z2a2
z1+z2

� i✏]
, (2.91)
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with �0 = �a3(1� z1 � z2)/(z1 + z2). Introducing the following variables

y = z1 + z2 , y0 =
z1

z1 + z2
, (2.92)

we can redefine the weight function as

g�(y
0, �) =

Z 1

0

ydy�3(z, y, �)✓(y)✓(1� y)✓(� + a3
(1� y)

y
), (2.93)

with �0 = �a3
(1�y)

y

.

So the equation (2.91) will be

f3 =

Z 1

0

dy0
Z +1

�1
d�

g�(y0, �)

� � y0a1 � (1� y0)a2 � i✏
, (2.94)

Considering the bound state with momentum p and the constituent particles with

momentum p1 and p2, where

p = p1 + p2 , k = (p1 � p2)/2, (2.95)

the expression for the vertex, for z = 1� 2y0, becomes:

�(k, p) =

Z 1

0

dz

Z +1

�1
d�

g�(z, �)

[� � M

2

4 � k2 � zp · k � i✏]
, (2.96)

which is the Nakanishi integral representation for a 3-point function (NAKANISHI, 1964).

By considering that �(k, p) = S
F

(k+p/2)�(k, p)S
F

(k�p/2) and applying the expression

of �(k, p) present in equation (2.96), we can write the Bethe-Salpeter amplitude in terms

of the Nakanishi Integral Representation as

�(k, p) =

Z 1

�1

dz

Z 0

�1
d�

g(�, z)

[k2 + p·k z � 2 � � + i✏]3
, (2.97)

where k is the relative momentum, p is the total momentum, 2 = m2 �M2/4.



3 General formalism for the two-fermion

homogeneous BSE with dressed quark

propagators

In this chapter, we analyze the 0� bound-state, formed by a fermion and antifermion

that interacts through a massive vector boson. The Bethe-Salpeter (BS) equation is shown

for dressed quark propagator, where the Källen-Lehman spectral representation is used

for its scalar and vector parts. In order to analyze the BS equation in Minkowski space, we

introduce the Nakanishi Integral representation for the components of the Bethe-Salpeter

amplitude, which allows us to perform the four-dimensional momentum loop integral.

The BS equation is projected onto the light front and, finally, it is obtained a system

of integral coupled equations in terms of the Nakanishi weight functions, suitable for

numerical implementations.

3.1 Bethe-Salpeter Equation

The Bethe-Salpeter Equation for a 0� fermion-antifermion bound state, with total

momentum p and bound state mass M , p2 = M2, exchanging a vector boson with mass

µ is given by (CARBONELL; KARMANOV, 2010; PAULA et al., 2016)

�(k, p) = S(k + p/2)

Z

d4k0

(2⇡)4
Dµ⌫(q)�

µ

(q)�(k0, p) �̂
⌫

(q) S(k � p/2) , (3.1)

where k is half of the relative quark momentum and q = k � k0 is the gluon momentum.

The dressed quark propagator 1 has as its form the Källen-Lehman spectral representation

(ITZYKSON; ZUBER, 1980)

S(k) = i

Z 1

0

/k

k2 � s+ i✏
⇢
V

(s) ds+ i

Z 1

0

⇢
S

(s)

k2 � s+ i✏
ds , (3.2)

1It’s possible from equation (3.2) to obtain the quark propagator with constant mass, in Appendix A
the connection is explicitly written.
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with ⇢
S(V )(s) are the scalar (vector) spectral densities. The massive gluon propagator is

given by Dµ⌫(q), in the Feynman gauge, as follow

Dµ⌫(q) = �i
gµ⌫

(q2 � µ2 + i✏)
, (3.3)

where µ is the e↵ective gluon mass.

In general, the quark-gluon vertex �µ(q) has two contributions, longitudinal and trans-

verse ones relative to the gluon momentum. The longitudinal component is given by

(OLIVEIRA et al., 2018):

�L

µ

(p1, p2, p3) = �i (�1�µ + �2(/p1 � /p2)(p1 � p2)µ + �3(p1� p2)µ + �4�µ⌫(p1 � p2)
⌫) ,(3.4)

In particular, in Ref. Oliveira et al. (2019a) and Oliveira et al. (2020), using a combined

analysis of Lattice QCD calculation, Dyson-Schwinger Equations and Slanov-Taylor iden-

tities, it is shown that �1 has a huge increase in the Infrared (IF) region. Inspired by this

achievement, in this model we consider the quark-gluon vertex with the �1 component as

�µ(q) = i g
µ2 � ⇤2

q2 � ⇤2 + i✏
�µ , (3.5)

where ⇤ represents the color distribution dressing for the interaction vertex. We also have

that �̂
µ

= C �T

µ

C�1, where C = i �2 �0 is the charge-conjugation operator.

For a 0� bound state, the Bethe Salpeter amplitude can be decomposed as

�(k, p) =
4
X

i=1

S
i

(k, p)�
i

(k, p) (3.6)

where S
i

is an orthogonal basis, given by

S1(k, p) = �5 ; S2(k, p) =
/p

M
�5

S3(k, p) =
k · p
M3

/p�5 � /k

M
�5 ; S4(k, p) =

i�µ⌫p
µ

k
⌫

M2
�5 (3.7)

The amplitude �(k, p) is antisymmetric by exchanging the fermionic constituents, that

means k ! �k. It implies that the scalar functions �
i

, given in terms of (k2, p2, k · p),
are even for i = 1, 2, 4 and odd for i = 3, with respect to the transformation k ! �k

(CARBONELL; KARMANOV, 2010). Thus in decomposing the BS amplitude as present in
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equation (3.6), the Bethe-Salpeter equation is written as

4
X

i=1

S
i

(k, p)�
i

(k, p) =

Z 1

0

ds



(/k + /p/2)⇢
V

(s)

(k + p/2)2 � s+ i✏
+

⇢
S

(s)

(k + p/2)2 � s+ i✏

�

⇥
Z

d4k0

(2⇡)4
ig2(µ2 � ⇤2)2

(k � k0)2 � µ2 + i✏
�1

4
X

i=1

S
i

(k0, p)�
i

(k0, p) �̂2

⇥
Z 1

0

ds0


(/k � /p/2)⇢
V

(s0)

(k � p/2)2 � s0 + i✏
+

⇢
S

(s0)

(k � p/2)2 � s0 + i✏

�

. (3.8)

Multiplying equation (3.8) by S
j

, performing the trace and using the orthogonality of

the basis, we have

�
i

=

Z 1

0

ds
1

(k + p/2)2 � s+ i✏

Z 1

0

ds0
1

(k � p/2)2 � s0 + i✏

⇥
Z

d4k0

(2⇡)4
ig2(µ2 � ⇤2)2

(k � k0)2 � µ2 + i✏

4
X

j

X

l

P
l

(s, s0)C
ij,l

(k, k0, p)�
j

(k0, p), (3.9)

where C
ij,l

(k, k0, p) is given in Appendix B and P
l

(s, s0) is given by

P1(s, s
0) = ⇢

V

(s) ⇢
V

(s0)

P2(s, s
0) = ⇢

V

(s) ⇢
S

(s0)

P3(s, s
0) = ⇢

S

(s)⇢
V

(s0)

P4(s, s
0) = ⇢

S

(s) ⇢
S

(s0) (3.10)

We use the Nakanishi Integral Representation to represent the scalar functions �
i

(k, p)

(NAKANISHI, 1963)

�
i

(k, p) =

Z 1

�1

dz0
Z 1

0

d�0
g
i

(�0, z0)

(k2 + z0 p · k � �0 � 2 + i✏)3
(3.11)

where 2 = m2
1 � M

2

4 , with m1 as the lowest mass pole in the quark propagator. The

Bethe-Salpeter equation for a fermion-antifermion bound state in terms of the Nakanishi
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weight functions is a system of coupled integral equations given by:

Z 1

�1

dz0
Z 1

0

d�0
g
i

(�0, z0)

(k2 + z0 p · k � �0 � 2 + i✏)3

= ig2(µ2 � ⇤2)2
Z 1

0

ds

Z 1

0

ds0
Z 1

�1

dz0
Z 1

0

d�0
Z

d4k00

(2⇡)4

⇥
"

P

j

P

l

P
l

(s, s0) C
ij,l

(k, k00, p)

((k + p/2)2 � s+ i✏) ((k � p/2)2 � s0 + i✏) ((k � k00)2 � µ2 + i✏)

⇥ g
j

(�0, z0)

((k � k00)2 � ⇤2 + i✏)2 (k002 + z0 p · k00 � �0 � 2 + i✏)3

#

. (3.12)

3.2 Feynman’s Parametrization

An important tool to deal with the BS equation in Minkowski space is the Nakanishi

Integral representation, which gives the analytical structure in terms of the external mo-

menta. It makes possible to perform the four-dimensional integration analytically. In this

section, we present the relevant steps to solve the loop integration.

The starting point is equation (3.12), where we use the Feynman parametrization

(WEINBERG, 2005) upon the denominators with k00 dependence. In the case of 3 factors

in the denominator, a general expression for the Feynman parametrization is given as

follows

1

XmY nZ l

=
�(m+ n+ l)

�(m)�(n)�(l)

⇥
Z 1

0

d�1

Z 1

0

d�2
�m�1
1 �n�1

2 (1� �1 � �2)l�1⇥(1� �1 � �2)

[X�1 + Y �2 + Z(1� �1 � �2)]m+n+l

. (3.13)

Our terms of interest (X(k00), Y (k00), Z(k00)) will be present in I(k00) function

I(k00) =
1

X3(k00)Y (k00)2Z(k00)
, (3.14)

with

Z(k00) = (k � k00)2 � µ2 + i✏

Y (k00) = (k � k00)2 � ⇤2 + i✏

X(k00) = k002 + z0p · k00 � �0 � 2 + i✏ . (3.15)
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Hence, if we apply the Feynman parametrization we obtain

I(k00) = 60

Z 1

0

dv

Z 1

0

d⇠ v2⇠✓(1� v � ⇠)

⇥ 1
h

k002 � 2
�

(1� v)k + vz0 p2
� · k00 + f(k, �0) + i✏

i6 . (3.16)

where f(k, �0) = (1� v)(k2 � µ2)� v(2 + �0) + ⇠(µ2 � ⇤2) .

3.3 Momentum Loop Integration

Now that we made Feynman’s Parametrization we have

�
i

(k, p) = 60(ig2)(µ2 � ⇤2)2
Z 1

�1

dz0
Z 1

0

d�0
Z 1

0

ds

Z 1

0

ds0
Z 1

0

dv

Z 1
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⇥
Z

d4k00

(2⇡)4
v2⇠ ✓(1� v � ⇠)

P

j

P

l

P
l

(s, s0) C
ij,l

(k, k00, p) g
j

(�0, z0)
h

k002 � 2
�

(1� v)k + vz0 p2
� · k00 + f(k, �0) + i✏

i6

⇥ 1
h

(k + p/2)2 � s+ i✏
ih

(k � p/2)2 � s0 + i✏
i , (3.17)

where the coe�cient C
ij,l

(k, k00, p) can be written as follows

C
ij,l

(k, k00, p) = a0
ij,l

+ a1
ij,l

(p · k) + a2
ij,l

(p · k)2 + a3
ij,l

k2

+
1

B

h

(p · k)(p · k00)�M2(k · k00)
i h

b0
ij,l

+ b1
ij,l

(p · k) + b2
ij,l

(p · k)2 + b3
ij,l

k2
i

+
h

(p · k)(p · k00)�M2(k · k00)
i h

d0
ij,l

+ d1
i,j

(p · k)
i

, (3.18)

with B = (p · k)2 � M2k2. The coe�cients an
ij,l

, bn
ij,l

and dn
ij,l

, are given in Appendix B.

The integration in d4k00, after a change of variable such as k00 ! q + (1� v)k � z0vp/2,

can be calculated as (YAN, 1973)

Z

d4q
⇥

q2 + b+ i✏
⇤

n

=
i⇡2

(n� 1)(n� 2)bn�2
. (3.19)
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For the terms in C
ij,l

(k, k00, p) that do not contain k00, the following integral is relevant

I1 =

Z

d4k00 1
h

k002 � 2
�

(1� v)k + vz0 p2
� · k00 + f(k, �0) + i✏+ i✏

i6

=

Z

d4q
1

h

q2 �
⇣

(1� v)k � z0v p

2

⌘2

+ f(k, �0) + i✏
i6

= i
⇡2

20

1
h

�
⇣

(1� v)k � z0v p

2

⌘2

+ f(k, �0) + i ✏
i4 , (3.20)

where q = k00�(1�v)k+z0v p/2. Then another integral we will use is I2, that is expressed

as follows

I2 = 3i⇡2

Z 1

0

dv

Z 1�v

0

d⇠
v2⇠

h

A(v, k, z, z0, �0;2, µ2) + ⇠
⇣

µ2 � ⇤2
⌘

+ i✏
i4 , (3.21)

which by integrating it over ⇠ one gets

I2 =
i⇡2

2

Z 1

0

dv v2 (1� v)2
3A(v, k, z, z0, �0;2, µ2) + (1� v)

⇣

µ2 � ⇤2
⌘

h

A(v, k, z, z0, �0;2, µ2) + (1� v)(µ2 � ⇤2) + i✏
i3

⇥ 1
h

A(v, k, z, z0, �0;2, µ2) + i✏
i2 . (3.22)

where A(v, k, z, z0, �0;2, µ2) = k� k+
D

+ `
D

, with

k+
D

= v(1� v)
M

2
(z0 � z)

`
D

= �v(1� v)
⇣

� + zz0
M2

4

⌘

� v2z0
2M

2

4
� v(�0 + 2)� (1� v)µ2 . (3.23)

We also have to deal with the terms in C
ij,l

(k, k00, p) that are dependent on k00. In

equation (3.18), we can see that one has (p · k)(p · k00) �M2(k · k00) multiplying b
ij,l

and

d
ij,l

coe�cients. If we perform change of variable k00 ! q + (1� v)k � z0vp/2, we obtain

(p · k)(p · k00)�M2(k · k00) = (p · k)(p · q)�M2(k · q) + (1� v)
⇥

(p · k)�M2k2
⇤

. (3.24)

With that, we can integrate over k00 the integrand of equation (3.12) that contains k00
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dependence as follows

I3 =

Z

d4k00 V (k00)
h

k002 � 2
�

(1� v)k + vz0 p2
� · k00 + f(k, �0) + i✏

i6

=

Z

d4q
V (q)

h

q2 �
⇣

(1� v)k � z0v p

2

⌘2

+ f(k, �0) + i✏
i6

= i
⇡2

20

(1� v)
h

b0
ij,l

+ b1
ij,l

(p · k) + b2
ij,l

(p · k)2 + b3
ij,l

k2
i

h

�
⇣

(1� v)k � z0v p

2

⌘2

+ f(k, �0) + i✏
i4

+i
⇡2

20

(1� v)
⇥

(p · k)�M2k2
⇤

h

d0
ij,l

+ d1
ij,l

(p · k)
i

h

�
⇣

(1� v)k � z0v p

2

⌘2

+ f(k, �0) + i✏
i4 , (3.25)

where the contribution containing p · q, k · q is vanishing and

V (k00) =
1

B

h

(p · k)(p · k00)�M2(k · k00)
i h

b0
ij,l

+ b1
ij,l

(p · k) + b2
ij,l

(p · k)2 + b3
ij,l

k2
i

+
h

(p · k)(p · k00)�M2(k · k00)
i h

d0
ij,l

+ d1
ij,l

(p · k)
i

, (3.26)

and after change of variables turns to be

V (q) =



(p · k)(p · q)�M2(k · q)⇤
�

"

1

B



b0
ij,l

+ b1
ij,l

(p · k) + b2
ij,l

(p · k)2 + b3
ij,l

k2

�

+



d0
ij,l

+ d1
ij,l

(p · k)
�

#

+

"

(1� v)
⇥

(p · k)2 �M2k2
⇤

#

⇥

⇥
"

1

B

h

b0
ij,l

+ b1
ij,l

(p · k) + b2
ij,l

(p · k)2 + b3
ij,l

k2
i

+
h

d0
ij,l

+ d1
ij,l

(p · k)
i

#

,(3.27)

where the contribution containing V · q is vanishing.
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Therefore, the BS equation now has the following form

Z +1

�1

dz0
Z 1

0

d�0
g
i

(�0, z0)
h

k2 + p · kz0 � �0 � 2 + i✏
i3 = (µ2 � ⇤2)2

i⇡2(ig2)

2(2⇡)4

Z 1

�1

dz0
Z 1

0

d�0

⇥
Z 1

0

ds0
Z 1

0

ds

Z 1

0

dv v2(1� v)2
h

X

l

X

j

P
l

(s, s0) C
ij,l

(k, p) g
j

(�0, z0)
i

⇥
h

A(v, k, z, z0, �0;2, µ2) + (1� v)
⇣

µ2 � ⇤2
⌘i

h

(k + p/2)2 � s+ i✏
ih

(k � p/2)2 � s0 + i✏
ih

A(v, k, z, z0, �0;2, µ2) + i✏
i2

⇥ 1
h

A(v, k, z, z0, �0;2, µ2) + (1� v)
⇣

µ2 � ⇤2
⌘

+ i✏
i3 . (3.28)

which the coe�cients are written as follows

C
ij,l

(k, p) = a0
ij,l

+ a1
ij,l

(p · k) + a2
ij,l

(p · k)2 + a3
ij,l

k2 +

+ (1� v)
h

b0
ij,l

+ b1
ij,l

(p · k) + b2
ij,l

(p · k)2 + b3
ij,l

k2
i

+ (1� v)
h

(p · k)2 �M2k2
i h

d0
ij,l

+ d1
ij,l

(p · k)
i

, (3.29)

3.4 Light-Front Projection

A physical system can be described in the Minkowski space by choosing a suitable

set of variables, known as Light-Front dynamics. This framework considers the hyper-

surface tangent to the light-cone, where x+ = x0 + x3. The four-vector xµ in this choice

of dynamics is given by xµ = (x�, x+, x1, x2), where x� = x0 � x3 . In this section some

relations will be useful such as

k2
? = � , k+ =

�zM

2
, k2 = k�k+ � k2

? , p · k = (k� + k+)
M

2
, (3.30)

so that we will have

(k + p/2)2 � s =
M(1� z)

2

h

k� +
M

2
� 2

M

(� + s)

(1� z)

i

, (3.31)

(k � p/2)2 � s0 = �M(1 + z)

2

h

k� � M

2
+

2

M

(� + s0)

(1 + z)

i

, (3.32)
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(p · k) = M

2

⇣

�zM

2 + k�
⌘

= �zM

2

4 + M

2 k� , (3.33)

k2 = �zM

2 k
� � � = �� � zM

2 k
� , (3.34)

(p · k) k2 = M

2

4 z� � M

2

⇣

� � z2M
2

4

⌘

k� � zM

2

4 (k�)2 , (3.35)

(p · k)2 = z2M
4

24 � 2zM

3

23 k
� + M

2

4 (k�)2 , (3.36)

(p · k)3 = �z3M
6

26 + 3z2M
5

25 k� � 3zM

4

24 (k
�)2 + M

3

8 (k�)3 . (3.37)

Integration on k� of the left-hand side of Eq. (3.28)

The projection of the Bethe-Salpeter equation onto the Light-Front can be done by

performing an integration over k� in both sides of the BS equation(PAULA et al., 2017).

Therefore, the Light-Front projection of the LHS of equation (3.28) is given as follows

Z

dk�

2⇡

Z +1

�1

dz0
Z 1

0

d�0
g
i

(�0, z0)
h

k2 + p · kz0 � �0 � 2 + i✏
i3 =

=

Z

dk�

2⇡

Z +1

�1

dz0
Z 1

0

d�0
g
i

(�0, z0)
h

k�(z0 � z)M/2� � � z0zM2/4� �0 � 2 + i✏
i3

=
�i

M

Z +1

�1

dz

Z 1

0

d�0
g
i

(�0, z0)�(z0 � z)
h

� + z0zM2/4 + �0 + 2 � i✏
i2

=
�i

M

Z 1

0

d�0
g
i

(�0, z)
h

� + z2M2/4 + �0 + 2 � i✏
i2 , (3.38)

where the four-dimensional integration on k� can be performed by considering that (YAN,

1973)
Z

dx

2⇡

1

[� x� y ⌥ i✏]n
= ± i

n� 1

�(�)

[�y ⌥ i✏]n�1
. (3.39)

Integration on k� of the right-hand side of Eq. (3.28)

In the right-hand side of equation (3.28) we have three kinds of integration terms

Vn

ij

, that after performing the change of variable to the Light-Front variables it can be
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expressed as

V1
ij

=
g2

2(4⇡)2
(µ2 � ⇤2)2

4

M2

Z 1

0

ds0
Z 1

0

ds

Z 1

0

dv v2 (1� v)2

⇥
X

l

Z

dk�

2⇡

P
l

(s, s0)
h

a0
ij,l

+ a1
ij,l

(p · k) + a2
ij,l

(p · k)2 + a3
ij,l

k2
i

(1� z)(1 + z)
h

k� + M

2 � 2
M

(�+s)
(1�z) + i✏

i h

k� � M

2 + 2
M

(�+s

0)
(1+z) � i✏

i

⇥
3k�k+

D

+ 3`
D

+ (1� v)
⇣

µ2 � ⇤2
⌘

h

k+
D

k� + `
D

+ (1� v)
⇣

µ2 � ⇤2
⌘

+ i✏
i3 h

k+
D

k� + `
D

+ i✏
i2 , (3.40)

V2
ij

=
g2

2(4⇡)2
(µ2 � ⇤2)2

4

M2

Z 1

0

ds0
Z 1

0

ds

Z 1

0

dv v2 (1� v)3

⇥
X

l

Z

dk�

2⇡

P
l

(s, s0)
h

b0
ij,l

+ b1
ij,l

(p · k) + b2
ij,l

(p · k)2 + b3
ij,l

k2
i

(1� z)(1 + z)
h

k� + M

2 � 2
M

(�+s)
(1�z) + i✏

i h

k� � M

2 + 2
M

(�+s

0)
(1+z) � i✏

i

⇥
3k�k+

D

+ 3`
D

+ (1� v)
⇣

µ2 � ⇤2
⌘

h

k+
D

k� + `
D

+ (1� v)
⇣

µ2 � ⇤2
⌘

+ i✏
i3 h

k+
D

k� + `
D

+ i✏
i2 , (3.41)

V3
ij

=
g2

2(4⇡)2
(µ2 � ⇤2)2

4

M2

Z 1

0

ds0
Z 1

0

ds

Z 1

0

dv v2 (1� v)3⇥

⇥
X

l

Z

dk�

2⇡

P
l

(s, s0)
h

(p · k)2 �M2k2
ih

d0
ij,l

+ d1
ij,l

(p · k)
i

(1� z)(1 + z)
h

k� + M

2 � 2
M

(�+s)
(1�z) + i✏

i h

k� � M

2 + 2
M

(�+s

0)
(1+z) � i✏

i

⇥
3k�k+

D

+ 3`
D

+ (1� v)
⇣

µ2 � ⇤2
⌘

h

k+
D

k� + `
D

+ (1� v)
⇣

µ2 � ⇤2
⌘

+ i✏
i3 h

k+
D

k� + `
D

+ i✏
i2 , (3.42)

where those can be united as: L
ij

(�, z, s; �0, z0, s0) = iM
�V1

ij

+ V2
ij

+ V3
ij

�

. In a more

explicitly way we have

L
ij

(�, z, s; �0, z0, s0) = (µ2 � ⇤2)2
i

M

Z 1

0

dv v2 (1� v)2
Z 1

0

ds

Z 1

0

ds0
Z

dk�

2⇡

⇥
P

l

P
l

(s, s0) F
ij,l

(v, �, z, k�, p)
h

(1� z)k� + (1� z)M2 � 2
M

(� + s) + i✏
i h

(1 + z)k� � (1 + z)M2 + 2
M

(� + s0)� i✏
i

⇥
3k�k+

D

+ 3`
D

+ (1� v)
⇣

µ2 � ⇤2
⌘

h

k+
D

k� + `
D

+ (1� v)
⇣

µ2 � ⇤2
⌘

+ i✏
i3 h

k+
D

k� + `
D

+ i✏
i2 , (3.43)
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with

F
ij,l

(v, �, z, k�, p) = F0;ij,l + k� F1;ij,l + (k�)2 F2;ij,l + (k�)3 F3;ij,l. (3.44)

with F
n;ij,l are explicitly written in Appendix C. Therefore, after a light-front projection,

we rewrite the equation (3.28), thus having the Bethe-Salpeter equation written as

Z 1

0

d�0
g
i

(�0, z)
h

� + z2M2/4 + �0 + 2 � i✏
i2 =

↵

2⇡

X

j

Z 1

�1

dz0
Z 1

0

d�0L
ij

(�, z, s; �0, z0, s0) g
j

(�0, z0) , (3.45)

where ↵ = g

2

4⇡ .

Another way of writing the L
ij

(�, z, s; �0, z0, s0) terms is

L
ij

(�, z, s; �0, z0, s0) =
i(µ2 � ⇤2)2

M

Z 1

0

dv v2(1� v)2
X

l

P
l

(s, s0)

⇥
3
X

n=0

F
n;ij,l(v, �, z, p)Cn , (3.46)

which the C
n

terms carries the dk� integral terms. We have non-singular and singular

terms. It is necessary to take into account the poles in the denominators to classify

those. From now on, we omit the dependence (�, z, s; �0, z0, s0) to simplify the notation,

i.e. L
ij

⌘ L
ij

(�, z, s; �0, z0, s0).

Non-singular contributions to L
ij

Now we will solve the integration through Cauchy’s integral theorem. Therefore we

need to determine the position of the poles, paying attention to k+
D

in particular. Looking

at C
n

, that is explicitly written as

C
n

=

Z

dk�

2⇡

(k�)n
h

3k�k+
D

+ 3`
D

+ (1� v)
⇣

µ2 � ⇤2
⌘i

h

(1� z)k� � (1� z)k�
d

+ i✏
i h

(1 + z)k� � (1 + z)k�
u

� i✏
i

⇥ 1
h

k+
D

k� + `
D

+ (1� v)
⇣

µ2 � ⇤2
⌘

+ i✏
i3 h

k+
D

k� + `
D

+ i✏
i2 , (3.47)
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where

k�
u

=
M

2
� 2

M(1 + z)
(� + s0) =

2

M(1 + z)



M2

4
(1 + z)� (� + s0)

�

k�
d

= �M

2
+

2

M(1� z)
(� + s) = � 2

M(1� z)



M2

4
(1� z)� (� + s)

�

k+
D

= v(1� v)
⇣

k+ + z0
M

2

⌘

= v(1� v)
M

2
(z0 � z) ,

`
D

= �v(1� v)
⇣

� + zz0
M2

4

⌘

� v2z0
2M

2

4
� v(�0 + 2)� (1� v)µ2 , (3.48)

if we consider that k+
D

6= 0 and k+
D

> 0, we can perform a closed curve in the upper

semi-plane and get the residue at the pole k�
u

. Thus we obtain

C+
n

(⌘) =
i

(1� z2)
✓(k+

D

� ⌘)
(k�

u

)n
h

3k�
u

k+
D

+ 3`
D

+ (1� v)
⇣

µ2 � ⇤2
⌘i

h

k�
u

� k�
d

+ i✏
i

⇥ 1
h

k+
D

k�
u

+ `
D

+ (1� v)
⇣

µ2 � ⇤2
⌘

+ i✏
i3 h

k+
D

k�
u

+ `
D

+ i✏
i2 ,

= i ✓(k+
D

� ⌘) (1 + z)4
M

4

(k�
u

)n
h

� + s0/2 + s/2 + z(s� s0)/2� (1� z2)M2/4� i✏
i

⇥
h

�3D(�,�z, �0,�z0, v) + (1� v)(1 + z)
⇣

µ2 � ⇤2
⌘i

h

D(�,�z, �0,�z0, v)� (1� v)(1 + z)
⇣

µ2 � ⇤2
⌘

� i✏(1 + z)
i3

⇥ 1
h

D(�,�z, �0,�z0, v)� i✏(1 + z)
i2 , (3.49)

where in the denominator we used the following relations

k+
D

k�
u

+ `
D

=
�1

1 + z
D(�,�z, �0,�z0, v) , (3.50)

(1� z2) (k�
u

� k�
d

) = � 4

M

h

� + s0/2 + s/2 + z(s� s0)/2� (1� z2)M2/4
i

,(3.51)

which D(�,�z, �0,�z0, v) = v2 A+ v B + C and

A = (z0 � z)
⇥

(1 + z)M2/4� (� + s0)
⇤�(1 + z)(� + (zz0 � z02)M2/4),

B = (z � z0)
⇥

(1 + z)M2/4� (� + s0)
⇤

+(1 + z)(� + zz0M2/4 + �0 + 2 � µ2),

C = (1 + z)µ2. (3.52)

Analogously, for k+
D

< 0 we can close in lower semi-plane, taking the residue at k�
d

,
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obtaining the following result

C�
n

(⌘) = � i

(1� z2)
✓(�⌘ � k+

D

)
(k�

d

)n
h

3k�
d

k+
D

+ 3`
D

+ (1� v)
⇣

µ2 � ⇤2
⌘i

h

k�
d

� k�
u

� i✏
i

⇥ 1
h

k+
D

k�
d

+ `
D

+ (1� v)
⇣

µ2 � ⇤2
⌘

+ i✏
i3 h

k+
D

k�
d

+ `
D

+ i✏
i2 ,

= �i ✓(�k+
D

� ⌘) (1� z)4
M

4

(k�
d

)n
h

� + s0/2 + s/2 + z(s� s0)/2� (1� z2)M2/4 + i✏
i

⇥ [3D(�, z, �0, z0, v, s) + (1� v)(1� z)(⇤2 � µ2)]
h

D(�, z, �0, z0, v, s)� (1� v)(1� z)(µ2 � ⇤2)� i✏(1� z)
i3

⇥ 1
h

D(�, z, �0, z0, v, s)� i✏(1� z)
i2 . (3.53)

with

k+
D

k�
d

+ `
D

= � 1

1� z
D(�, z, �0, z0, v) , (3.54)

with D(�, z, �0, z0, v) = D(�,�z, �0,�z0, v)
�

�

z!�z

. Now with the those resulting C
n

we will

build the non-singular LNS

ij

contributions. Those are written as

LNS

ij

= � i

M
(µ2 � ⇤2)2

(1� z)4

4

Z 1

0

dv v2 (1� v)2 ✓(�k+
D

)

⇥
Z 1

0

ds0
Z 1

0

ds
X

l

P
l

(s, s0) FNS
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(v, �, z, k�
d

, p)

⇥ 1
h

� + s0/2 + s/2 + z(s� s0)/2� (1� z2)M2/4 + i✏
i

⇥
h

3D(�, z, �0, z0, v, s) + (1� v)(1� z)
⇣

⇤2 � µ2
⌘i

h

D(�, z, �0, z0, v, s)� (1� v)(1� z)
⇣

µ2 � ⇤2
⌘

� i✏(1� z)
i3

⇥ 1
h

D(�, z, �0, z0, v, s)� i✏(1� z)
i2 +

h

z ! (�z) and z0 ! (�z0)
i

, (3.55)
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which under the transformation (z ! �z, z0 ! �z0, s ! s0) obey the relations

k+
D

! �k+
D

, (3.56a)

`
D

! `
D

, (3.56b)

k�
d

! �k�
u

(3.56c)

D(�, z, �0, z0, v) ! D(�,�z, �0,�z0, v) (3.56d)

As well we have

k+
D

= v(1� v)M(z0 � z)/2 ,

k�
d

= � 2

M(1� z)



M2

4
(1� z)� � � s

�

,

FNS

ij,l

(v, �, z, k�
d

, p) = F0;ij,l + k�
d

F1;ij,l + (k�
d

)2 F2;ij,l + (k�
d

)3 F3;ij,l ,

D(�, z, �0, z0, v) = v2(z � z0)
⇥

(1� z)M2/4� (� + s)
⇤�v2(1� z)(� + (zz0 � z02)M2/4)

+v(z0 � z)
⇥

(1� z)M2/4� (� + s)
⇤

+v(1� z)(� + zz0M2/4)

+v(1� z)(�0 + 2 � µ2) + (1� z)µ2 . (3.57)

Singular Contributions to L
ij

Now we should carefully consider the value of C
n

in the case of k+
D

= 0, which means

to consider when z0 = z. The C
n

can be written as

C
n

= 3 B(n)� (1� v)
⇣

µ2 � ⇤2
⌘ @

@E
B(n) , (3.58)

where

B(n) =

Z

dk�

2⇡

(k�)n
h

(1� z)k� � (1� z)k�
d

+ i✏
i h

(1 + z)k� � (1 + z)k�
u

� i✏
i

⇥ 1
h

k+
D

k� + C + i✏
i3 h

k+
D

k� + E + i✏
i

, (3.59)

with C = `
D

+ (1 � v)
⇣

µ2 � ⇤2
⌘

and E = `
D

, with `
D

given in equation (3.48). At

this point, we should remember that n varies between zero and three. Thus we need to

consider C
n

for each value of n. For n = 0, we have

B(0) =

Z

dk�

2⇡

(k�)0
h

(1� z)k� � (1� z)k�
d

+ i✏
i h

(1 + z)k� � (1 + z)k�
u

� i✏
i

⇥ 1
h

k+
D

k� + C + i✏
i3 h

k+
D

k� + E + i✏
i

, (3.60)
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if we consider the integral I(0)
M

as follow in equation (3.61), we can rewrite B(0) in terms

of it.

I
(0)
M

=

Z

dk�

2⇡

1
h

(1� z)k� � (1� z)k�
d

+ i✏
i h

(1 + z)k� � (1 + z)k�
u

� i✏
i

⇥ 1
h

k+
D

k� + C + i✏
i h

k+
D

k� + E + i✏
i . (3.61)

Looking at equation (3.61), we apply the residue theorem to evaluate I
(0)
M

taking the

following considerations: i. one pole at k�
u

+ i✏/(1 + z) 2 the upper plane; ii. one pole

at k�
d

� i✏/(1 � z) 2 the lower plane; iii. one pole at �C/k+
D

� i✏/k+
D

; iv. one pole at

�E/k+
D

� i✏/k+
D

. The result after the application of the Cauchy’s integration in I
(0)
M

is

I
(0)
M

=
i

(1� z2)

n ✓(k+
D

)
h

k�
u

� k�
d

i h

k+
D

k�
u

+ C + i✏
i h

k+
D

k�
u

+ E + i✏
i

� ✓(�k+
D

)
h

k�
d

� k�
u

i h

k+
D

k�
d

+ C + i✏
i h

k+
D

k�
d

+ E + i✏
i

o

. (3.62)

Therefore B(0) will be expressed as

B(0) =
1

2

@2

@C2
I
(0)
M

= i
1

(1� z2)

1
h

k�
u

� k�
d

i

n ✓(k+
D

)
h

k+
D

k�
u

+ C + i✏
i3 h

k+
D

k�
u

+ E + i✏
i

+
✓(�k+

D

)
h

k+
D

k�
d

+ C + i✏
i3 h

k+
D

k�
d

+ E + i✏
i

o

. (3.63)

It does not contain any singular contribution, leading to the expression of C0 as follow

C0 = lim
⌘!0

h

C+
0 (⌘) + C�

0 (⌘)
i

= 3 B(0)� (1� v)
⇣

µ2 � ⇤2
⌘ @

@E
B(0) . (3.64)

To n = 1, 2, 3, we will perform the same ideas where the next calculations are more

explicitly done in Appendix E. The term B(1) has the first power of k�, and it is given

by

B(1) =
1

(1 + z)

1

2

@2

@C2
I
(1)
M

+ k�
u

B(0) , (3.65)
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where

I
(1)
M

=

Z

dk�

2⇡

1
h

(1� z)k� � (1� z)k�
d

+ i✏
i

1
h

k+
D

k� + C + i✏
i h

k+
D

k� + E + i✏
i . (3.66)

Solving the integration in k� we obtain

I
(1)
M

= �i
1

(1� z)

✓(�k+
D

)

[k�
d

k+
D

+ E] [k�
d

k+
D

+ C]
, (3.67)

which means we have

B(1) = i
1

(1� z2)

1

(k�
u

� k�
d

)

"

k�
u

✓(k+
D

)
h

k+
D

k�
u

+ C + i✏
i3 h

k+
D

k�
u

+ E + i✏
i

+
k�
d

✓(�k+
D

)

[k�
d

k+
D

+ C]3 [k�
d

k+
D

+ E]

i

. (3.68)

In conclusion, there is no singular correction for B(1). Therefore one can verify that

C1 = lim
⌘!0

h

C+
1 (⌘) + C�

1 (⌘)
i

= 3 B(1)� (1� v)
⇣

µ2 � ⇤2
⌘ @

@E
B(1) . (3.69)

The next term is B(2), that can be written as

B(2) =
1

2

1

(1� z2)

@2

@C2
I
(2)
M

+ (k�
u

+ k�
d

) B(1)� k�
u

k�
d

B(0) . (3.70)

where

I
(2)
M

=

Z

dk�

2⇡

1
h

k+
D

k� + C + i✏
i h

k+
D

k� + E + i✏
i . (3.71)

In this case we need consider the following relation

Z 1

�1
dx

1
h

� x� y ⌥ i✏
i2 = ±(2⇡)i

�(�)
h

�y ⌥ i✏
i , (3.72)

Thus we have

I
(2)
M

= �i
�(k+

D

)

(E � C)
ln

✓

E

C

◆

, (3.73)

1

2

@2

@C2
I
(2)
M

= �i �(k+
D

)
1

(E � C)2



1

(E � C)
ln

✓

E

C

◆

+
(E � 3C)

2C2

�

(3.74)
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Then one gets B(2) composed of two terms, one that is the singular part while and

the second term yields the standard contribution, as we can see in the following equation:

B(2) = � i

(1� z2)
�(k+

D

) S2(C,E) + BNS(2) , (3.75)

with

BNS(2) =
i

(1� z2)

1

(k�
u

� k�
d

)

(k�
u

)2 ✓(k+
D

)
h

k+
D

k�
u

+ C + i✏
i3 h

k+
D

k�
u

+ E + i✏
i

+
i

(1� z2)

1

(k�
u

� k�
d

)

(k�
d

)2 ✓(�k+
D

)

[k�
d

k+
D

+ C]3 [k�
d

k+
D

+ E]

#

(3.76)

S2(C,E) =
1

(E � C)2



1

(E � C)
ln

✓

E

C

◆

+
(E � 3C)

2C2

�

. (3.77)

Then singular contribution of B(2) will give us the expression C2 as one can see in the

following expression

C2 = 3 B(2)� (1� v)
⇣

µ2 � ⇤2
⌘ @

@E
B(2)

= � i

(1� z2)
�(k+

D

)
h

3 S2(C,E) + (E � C)
@

@E
S2(C,E)

i

+ lim
⌘!0

h

C+
2 (⌘) + C�

2 (⌘)
i

, (3.78)

with E�C = �(1� v) (µ2�⇤2). Also, we have to pay attention to the singular behavior

for v = 1. Now considering that

3 S2(C,E) + (E � C)
@

@E
S2(C,E) =

1

EC2
. (3.79)

The singular contribution to C2 will be

CS

2 = � i

(1� z2)
�(k+

D

)
1

EC2
. (3.80)

The last integral is B(3) that can be expressed as

B(3) = 1

(1� z2)
I
(3)
M

� 1

2

E

k+
D

(1� z2)

@2

@C2
I
(2)
M

+ (k�
u

+ k�
d

) B(2)� k�
u

k�
d

B(1) . (3.81)

with

I
(3)
M

=
1

k+
D

Z

dk�

2⇡

1
h

k+
D

k� + C + i✏
i3 =

i

2

�0(k+
D

)

[C + i✏]2
. (3.82)
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We observe that it was used that �(x)
x

= ��0(x) and
Z 1

�1
dx

1
h

� x� y ⌥ i✏
i3 = ±⇡i �0(�)

h

�y ⌥ i✏
i2 . (3.83)

Then B(3) is explicitly written as

B(3) =
i

2(1� z2)
�0(k+

D

)



1

C2
� 2E S2(C,E)

�

� i

(1� z2)
(k�

u

+ k�
d

) �(k+
D

) S2(C,E)

+
i

(1� z2)

1

(k�
u

� k�
d

)

"

(k�
u

)3✓(k+
D

)
h

k+
D

k�
u

+ C + i✏
i3h

k+
D

k�
u

+ E + i✏
i

+
(k�

d

)3✓(�k+
D

)

[k�
d

k+
D

+ C]3[k�
d

k+
D

+ E]

#

. (3.84)

Thus having C3 =
�

3 B(3)� (1� v)
�

µ2 � ⇤2
�

@

@E

B(3)� and B(3) as given in equation

(3.84), the singular part of it will be

CS

3 =
i

2(1� z2)
�0(k+

D

)
h 3

C2
� 2

C2
� 2(E � C)S2(C,E)

i

+ (k�
u

+ k�
d

) CS

2

=
i

(1� z2)
�0(k+

D

)
1

(E � C)



1

C
� 1

(E � C)
ln

✓

E

C

◆�

+
2

M

2z� � s0 + s+ z(s0 + s)

(1� z2)
CS

2 (3.85)

The singular functions CS

2 and CS

3 are proportional to distributions such as �(z0� z) or

�0(z0 � z) as we can see in equation (3.80) and (3.85), respectively. It is suitable to write

the delta function of k+
D

as �(z0 � z) and do the same to the derivative of the delta. As

one can see in equation (3.57), we have k+
D

with dependence in z0 and z. Thus we can

write

�(k+
D

) =
2 �(z0 � z)

M v(1� v)
;

@

@k+
D

�(k+
D

) =
4

[M v(1� v)]2

h @

@z0
�(z0 � z)

i

. (3.86)

In particular, it should be pointed out that C, E = `
D

, �(k+
D

) and �0(k+
D

) are even for

the exchanges z ! �z and z0 ! �z0, as easily seen bellow

C = `
D

+ (1� v)
⇣

µ2 � ⇤2
⌘

,

E = `
D

= �v(1� v)
⇣

� + zz0
M2

4

⌘

� v2z02M2/2� v(�0 + 2)� (1� v)µ2 . (3.87)



CHAPTER 3. GENERAL FORMALISM FOR THE TWO-FERMION
HOMOGENEOUS BSE WITH DRESSED QUARK PROPAGATORS 61

Therefore, by taking those considerations and defining

D
`

=
h

˜̀
D

+ (1� v)
⇣

µ2 � ⇤2
⌘i2

˜̀
D

; ˜̀
D

= `
D

�

�

�

z

0=z

, (3.88)

one has for CS

2

CS

2 = � i

1� z2
�(k+

D

)
1

C2E
= � i

M

�(z0 � z)

v(1� v)(1� z2)

2

D
`

, (3.89)

and for CS

3

CS

3 =
i

(1� z2)
�0(k+

D

)
1

(E � C)

⇢

1

C
� 1

(E � C)
ln

✓

E

C

◆�

+
2

M

2z� � s0 + s+ z(s0 + s)

(1� z2)
CS

2

= � i

M

4

M v(1� v)(1� z2)

h DS

3

v(1� v)

+
�(z0 � z)(2z� � s0 + s+ z(s0 + s))

(1� z2) D
`

i

, (3.90)

with

DS

3 =
1

h

(1� v)
⇣

µ2 � ⇤2
⌘i2

h @

@z0
�(z0 � z)

i

⇥
2

4

(1� v)
⇣

µ2 � ⇤2
⌘

h

`
D

+ (1� v)
⇣

µ2 � ⇤2
⌘i + ln

8

<

:

`
D

h

`
D

+ (1� v)
⇣

µ2 � ⇤2
⌘i

9

=

;

3

5 . (3.91)

Finally, from equation (3.46), one can write LS

ij

as

LS

ij

=
i(µ2 � ⇤2)2

M

Z 1

0

dvv2(1� v)2
Z 1

0

ds

Z 1

0

ds0
X

l

P
l

⇥
h

F2;ij,l(v, �, z)CS

2 + F3;ij,l(v, �, z)CS

3

i

=
2

M2

(µ2 � ⇤2)2

(1� z2)

Z 1

0

dv v (1� v)
X

l

P
l

⇥
n

�(z0 � z)
1

D
`

h

F2;ij,l(v, �, z) + 2
(2z� � s0 + s+ z(s0 + s))

M (1� z2)
F3;ij,l(v, �, z)

i

+
2

v(1� v)M
F3;ij,l(v, �, z) DS

3

o

, (3.92)
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with F
n;ij,l derived in Appendix C. In particular:

F2;ij,l =
M2

4

n

a2
ij

+ (1� v)b2
ij,l

+ (1� v)d0
ij,l

+ (1� v)
M2

4
z d1

ij,l

o

,

F3;ij,l = (1� v)
M3

8
d1
ij,l

. (3.93)

If one consider the only non-zero F
n;ij,l terms present in Appendix C, the surviving

singular contributions will be

LS

13 =
2

M2

(µ2 � ⇤2)2

(1� z2)

Z 1

0

dv v (1� v)2
n�(z0 � z)

4M D
`

⇥
Z 1

0

ds

Z 1

0

ds0
h

⇢
V

(s, )⇢
S

(s0)� ⇢
S

(s, )⇢
V

(s0)
io

, (3.94)

LS

14 = � 2

M2

(µ2 � ⇤2)2

(1� z2)

Z 1

0

v(1� v)2dv
�(z0 � z)

4D
`

Z 1

0

ds

Z 1

0

ds0⇢
V

(s, )⇢
V

(s0) , (3.95)

LS

22 = � 1

M2

(µ2 � ⇤2)2

(1� z2)

Z 1

0

v(1� v)dv
�(z0 � z)

D
`

Z 1

0

ds

Z 1

0

ds0⇢
V

(s, )⇢
V

(s0) , (3.96)

LS

23 = � 2

M2

(µ2 � ⇤2)2

2(1� z2)

Z 1

0

dv v(1� v)

Z 1

0

ds

Z 1

0

ds0⇢
V

(s, )⇢
V

(s0)

⇥
"

(1� v)�(z0 � z)
1

4D
`

h

z + 4
(2z� � s0 + s+ z(s0 + s))

M2(1� z2)

i

+
1

vM2

1
h

(1� v)(µ2 � ⇤2)
i2

⇥


@

@z0
�(z0 � z)

�

"

(1� v)(µ2 � ⇤2)
�

`
D

+ (1� v)(µ2 � ⇤2)
� + ln

"

`
D

�

`
D

+ (1� v)(µ2 � ⇤2)
�

###

,(3.97)

LS

24 = � 2

M2

(µ2 � ⇤2)2

(1� z2)

Z 1

0

dv v (1� v)2
n

�(z0 � z)
1

4M D
`

⇥
Z 1

0

ds

Z 1

0

ds0
h

⇢
V

(s, )⇢
S

(s0) + ⇢
S

(s, )⇢
V

(s0)
io

, (3.98)

LS

33 =
1

M2

(µ2 � ⇤2)2

(1� z2)

Z 1

0

v(1� v)2dv
�(z0 � z)

D
`

Z 1

0

ds

Z 1

0

ds0⇢
V

(s, )⇢
V

(s0) . (3.99)

Furthermore, with the results present in equations (3.55) and (3.95)-(3.99), the com-
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plete BS equation is now expressed as follow

Z 1

0

d�0
g
i

(�0, z)
h

� + z2M2/4 + �0 + 2 � i✏
i2 =

↵

2⇡

X

j

Z 1

�1

dz0
Z 1

0

d�0

⇥
"

LNS

ij

(�, z, s, s0; �0, z0) + LS

ij

(�, z, s, s0; �0, z0)

#

g
j

(�0, z0) (3.100)

with ↵ = g

2

4⇡ . This equation is almost ready for using a numerical method to obtain the

relation between the coupling constant and the binding energy. It is still necessary to deal

with the delta functions present in the singular terms and with the theta functions present

in the non-singular terms. The numerical method chosen for this work is the discretization

of the Nakanishi weight function g
i

(�, z) onto a bi-orthogonal basis of Laguerre (to �

variable) and Gegenbauer polynomials (to z variable). Thus, in doing that we reduce the

BS equation into a generalized eigenvalue problem, where the coupling constant ↵ is the

eigenvalue.

3.5 Explicit Removal of the Theta and Delta Functions

To perform the numerical calculations it is important to explicitly remove the theta

functions in equation (3.55), and the delta functions in equations (3.95)-(3.99). This can

be done by carefully considering the integrations over z0 in equation (3.56). We first

consider the non-singular contribution. One can rewrite L(ns)
ij

as

L(ns)
ij

(�, z, s, s0; �0, z0) = ✓(z � z0)L(ns,1)
ij

(�, z, s, s0; �0, z0) + ✓(z0 � z)L(ns,2)
ij

(�, z, s, s0; �0, z0),

(3.101)

where

L(ns,1)
ij

(�, z, s, s0; �0, z0) =
1

4
(µ2 � ⇤2)2

⇥
Z 1

0

ds0
Z 1

0

ds

P

l

P
l

FNS

ij,l

(v, �, z, k�
d

, p)
h

� + s0/2 + s/2 + z(s� s0)/2� (1� z2)M2/4 + i✏
i
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Z 1
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v2(1� v)2

⇥

3k�
d
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D

+ 3`
D

+ (1� v)(µ2 � ⇤2)
⇤

⇥
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D

k�
d

+ `
D

+ (1� v)(µ2 � ⇤2) + i✏
⇤3⇥

k+
D

k�
d

+ `
D

+ i✏
⇤2 , (3.102)
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L(ns,2)
ij

(�, z, s, s0; �0, z0) =
1

4
(µ2 � ⇤2)2
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Z 1

0

ds0
Z 1

0
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l
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l

FNS
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, p)
h
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i
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0

dv
v2(1� v)2

⇥

3k�
u
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D

+ 3`
D

+ (1� v)(µ2 � ⇤2)
⇤

⇥

k+
D

k�
u

+ `
D

+ (1� v)(µ2 � ⇤2) + i✏
⇤3⇥

k+
D

k�
u

+ `
D

+ i✏
⇤2 . (3.103)

If we define H(ns)
ij

(�, z) as being

H(ns)
ij

(�, z) =
1

2⇡

Z 1

�1

dz0
Z 1

0

d�0L(ns)
ij

(�, z, s, s0; �0, z0)g
j

(�0, z0) , (3.104)

one can write

H(ns)
ij

(�, z) =
1

2⇡

Z 1

0

d�0

"

Z

z

�1

dz0L(ns,1)
ij

(�, z, s, s0; �0, z0)g
j

(�0, z0)

+

Z 1

z

dz0L(ns,2)
ij

(�, z, s, s0; �0, z0)g
j

(�0, z0)

#

, (3.105)

It is seen from Eqs. (3.94) - (3.99) that one has a singular contribution for (i, j) =

(1, 3),(1, 4), (2, 2), (2, 4), (3, 3), (2, 3) when z = z0. In the same way, if we define H(s)
ij

(�, z)

as

H(s)
ij

(�, z) =
1

2⇡

Z 1

�1

dz0
Z 1

0

d�0L(s)
ij

(�, z, s, s0; �0, z0)g
j

(�0, z0) , (3.106)

and taking in consideration the equations (3.95)-(3.99), after the z0 integration, the sin-
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gular terms will be written as follow

H(s)
13 (�, z) =

(µ2 � ⇤2)2

2⇡M2

2

(1� z2)

Z 1
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ds0
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`
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⇢
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(s, )⇢
S

(s0)� ⇢
S

(s, )⇢
V

(s0)
i

g3(�
0, z) , (3.107)

H(s)
14 (�, z) = �(µ2 � ⇤2)2
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1
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0, z) , (3.108)

H(s)
22 (�, z) = �(µ2 � ⇤2)2
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i

g2(�
0, z) , (3.109)

H(s)
24 (�, z) = �(µ2 � ⇤2)2

2⇡M2
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0, z) , (3.110)

H(s)
33 (�, z) =
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2⇡M2

1
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We have to consider more carefully the last term H(s)
23 , which has two parts:

L(s,a)
23 = � 2

M2

(µ2 � ⇤2)2

2(1� z2)
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0

dv v (1� v)
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1

4D
`

h

z + 4
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M2(1� z2)

i

(3.112)

L(s,b)
23 = � 2

M2

(µ2 � ⇤2)2

2(1� z2)
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dv v (1� v)
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0
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o

, (3.113)
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that yields to us

H(s,a)
23 (�, z) =

1
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�1

dz0
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H(s,b)
23 (�, z) =

1
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On the contrary, the contribution coming from L(s,b)
23 is proportional to @

@z

0 �(z0 � z),

that is handled by doing a partial integration where the surface term vanishes and the

derivative in (3.113) is written as

@

@z0
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. (3.116)

3.6 Generalized eigenvalue equation for the Nakanishi weight

functions

Now we write the equation (3.100) in matrix form by using the Laguerre and Gengen-

bauer basis (PAULA et al., 2016). So, the Nakanishi weight function of each component i

is given as expansion of the form

g
i

(�, z) =
Nz
X

k=1

N�
X

n=1

Ai

kn

G�i
2(k�1)+ri

(z)L
n�1(�), (3.117)
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where Ai

kn

are the coe�cients to be determined.

The functions G�i
2m+ri

, and L
n

are defined by

G�

n

(z) = (1� z2)(2��1)/4�(�)

s

n!(n+ �)

21�2�⇡�(n+ 2�)
C�

n

(z),

L
n

(�) =
p
aL

n

(a�)e�a�/2,

(3.118)

where C�

n

denotes Gegenbauer polynomial and L
n

is a Laguerre polynomial. Thus, in

regards to obtain the Bethe-Salpeter equation as eigenvalue problem we define

A(i)
kn

(�, z) = G
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2(k�1)+ri
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Z 1
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d�0
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, (3.119)

B(ij)
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(�, z) = B(ij,ns)
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(�, z) + B(ij,s)
kn

(�, z), (3.120)

where
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which the L(ns,1)
ij

and L(ns,2)
ij

terms are defined by equation (3.102). By defining the

following terms
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the singular contributions are written as
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. (3.123)

Hence the Equation (3.100) is given now by

X

kn

A(i)
kn

(�, z)Ai

kn

= ↵
X

j

X

kn

B(ij)
kn

(�, z)Aj

kn

, i = 1, 2, 3, 4 . (3.124)

We then act on each side of equation (3.124) the operator
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d�
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(z)L
n
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we obtain
X

j

X
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Ãij
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0
n

0
,kn
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X

kn

B̃ij
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0
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with ↵ = g

2

4⇡2 and

Ãij

k

0
n

0
,kn

= �
ij
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d�L
n

0�1(�)

Z 1

�1

dzG
(li+1/2)
2(k0�1)+ri

(z)A(i)
kn

(�, z), (3.126)

B̃ij

k

0
n

0
,kn

=

Z 1

0

d�L
n

0�1(�)

Z 1

�1

dzG
(li+1/2)
2(k0�1)+ri

(z)B(ij)
kn

(�, z) . (3.127)

The coe�cients for the Nakanishi weight functions and the coupling constant ↵ are

thus obtained by solving a generalized eigenvalue problem of the form

Âa = ↵B̂a, (3.128)

where Â and B̂ are square matrices. The one-dimensional eigenvector ↵ enable us to

reconstruct Nakanishi weight functions g
i

(�, z), thus we can obtain the Bethe-Salpeter

amplitude of the bound-state.



4 Phenomenological Mass Function

In this chapter, we solve the Bethe-Salpeter equation for a phenomenological dressed

quark propagator, where the correspondent running mass is consistent with Euclidean

Lattice QCD simulations (OLIVEIRA et al., 2019; PARAPPILLY et al., 2006). The functional

form used for the propagator was proposed in Mello et al. (2017) 1. Within this choice,

we solve the BS equation and we intend to calculate hadronic observables. As a first

step, we obtain the relevant coe�cients for the numerical implementation. In addition, we

present the analytical expressions of the valence probability and the light-front momentum

distributions.

4.1 The Dressed Quark Propagator

As discussed in section 2.4.2, an interesting property of QCD is the appearance of mass

due to the non-perturbative e↵ects of the strong interaction in the deep IR. Even if one

considers a zero bare quark mass, by solving the Dyson-Schwinger equation one obtains a

non-zero running mass M(k2) (chiral symmetry breaking). In general, the dressed quark

propagator is given by (PESKIN; SCHROEDER, 1995)

S
F

(k) = i
Z(k2)

/k �M(k2) + i✏
(4.1)

where, Z(k2) is the wave function renormalization factor. In this thesis, it is considered a

model where Z(k2) = 1 and the dynamical mass function M(k2) is renormalization-point-

independent (FISCHER; ALKOFER, 2003) and has a phenomenological form given by Mello

et al. (2017)

M(k2) = m0 �m3[k2 � �2 + i✏]�1 , (4.2)

where m0, m and � are free parameters. We fix the parametrizations in order to adjust

the mass function to recent Lattice QCD calculations (OLIVEIRA et al., 2019; PARAPPILLY

et al., 2006). In particular, given a set of m0, m and �, we can obtain the masses m1, m2

1See also the works of Moita et al. (2022a) and Moita et al. (2022b).
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and m3 (they are the poles positions) by solving the following equation

m
i

(m
i

� �2) = ±[m0(k
2 � �2)�m3] , (4.3)

that arises from analyzing the poles of the propagator (4.1), when considering the mass

function given by (4.2).

Spectral decomposition of the quark propagator

The quark propagator also can be written as

S
F

(k) = i
�

S
V

(k2)/k + S
S

(k2)
�

(4.4)

where the spectral decomposition of that propagator is given by (ITZYKSON; ZUBER, 1980)

S
S(V )(k

2) =

Z 1

0

ds
⇢
S(V )(s)

k2 � s2 + i✏
(4.5)

where the correspondent scalar and vector spectral densities, ⇢
S

(s) and ⇢
V

(s), for such

model, is given by a sum of delta functions, as follow

⇢
S

(s) =
X

a
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a

�(s�m2
a

) ; ⇢
V

(s) =
X

a

RV

a

�(s�m2
a

) (4.6)

where the R
S(V )
a

are residues, expressed as

R(V )
a

=
(�2 �m2

a

)2

(m2
a

�m2
b

)(m2
a

�m2
c

)
,

R(S)
a

=
m3(�2 �m2

a

)

(m2
a

�m2
b

)(m2
a

�m2
c

)
+m0 R

(V )
a

, (4.7)

with the indices {a, b, c} following the cyclic permutation {1, 2, 3}.
The functions RS(V )

a

fulfill some interesting properties:

3
X

a=1

RV

a

= 1 ;
3
X

a=1

RS

a

= m0 ;
3
X

a=1

m2
a

RV

a

= �2�2 +
3
X

a=1

m2
a

. (4.8)

4.2 The Kernel for a Phenomenological Mass Function

In this section we obtain the relevant coe�cients necessary to numerically solve the

BS equation given the phenomenological mass function expressed by (4.2).
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The BS equation (3.100) obtained in the previous chapter is given by

Z 1

0

d�0
g
i

(�0, z)
h

� + z2M2/4 + �0 + 2 � i✏
i2 = ↵

X

j

Z 1
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dz0
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d�0

⇥
"

Lns

ij

(�, z; �0, z0) + Ls

ij

(�, z; �0, z0)

#

g
j

(�0, z0) , (4.9)

where ↵ = g

2

4⇡ , 
2 = m1 � M

2

4 , with m1 being the lightest pole and the functions

Lns(s)
ij

(�, z; �0, z0) are given in equations (3.55) and (3.92). To solve the BS equation

numerically, we chose to expand the Nakanishi weight function on a basis of Gegenbauer

and Laguerre functions, as we have discussed in Chapter 3. The equation to be solved is

X

j

X

kn

Ãij

k

0
n

0
,kn

Aj

kn

= ↵
X

j

X

kn

B̃ij

k
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, (4.10)

with

A(i)
kn

(�, z) = G
(li+1/2)
2(k�1)+ri

(z)

Z 1

0

d�0
L

n�1(�0)

[� + �0 +M2z2/4 + 2]2
, (4.11)
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(�, z), (4.12)

B̃ij
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(�, z) , (4.13)

B(ij)
kn

(�, z) = B(ij,ns)
kn

(�, z) + B(ij,s)
kn

(�, z) . (4.14)

Regarding to B(ij,ns)
kn

and B(ij,s)
kn

, we apply to the equations (3.121) and (3.123) our

expression of the spectral densities defined in (4.6). By doing that the non-singular

contribution of the B(ij)
kn

(�, z) tensor is given by the following expression
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] ,

(4.15)
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with
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(4.16)

where the coe�cients Fns

ij,l

are given in Appendix E and D(�, z, �0, z0, v) is expressed as

D(�, z, �0, z0, v) = v2(z � z0)
⇥

(1� z)M2/4� (� +m2
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+v(1� z)(�0 + 2 � µ2) + (1� z)µ2. (4.17)

We can write Lns

ij

in a more easier way to implement by using the decomposition

Fns

ijl

= F̃ (1)
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+ (1� v)F̃ (2)
ijl
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Thus having
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where the Lns

ij

coe�cients are given in appendix D.



CHAPTER 4. PHENOMENOLOGICAL MASS FUNCTION 74

The singular contribution of the B(ij)
kn

(�, z) tensor is given by
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0)Ĩ2(�, z, �
0),

B(23,s)
kn

(�, z) = �G
(l3+1/2)
2(k�1)+1(z)

Z 1

0

d�0L
n�1(�
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0)Ĩ5(�, z, �
0),

(4.20)

with Ĩ1, Ĩ2, Ĩ3, Ĩ4, Ĩ5, Ĩ6 are expressed as
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Ĩ6(�, z, �
0) =

z(µ2 � ⇤2)2

8⇡M4(1� z2)2

Z 1

0

dv
v(1� v)2

D
`

(�, z, �0)

n

�

(1� z2)M2 + 8�
�

X

a,a

0

R(v)
a

R
(v)
a

0

+8
X

a,a

0

R(v)
a

R
(v)
a

0 m
2
a

o

. (4.26)

Using the set of coe�cients given in (4.19) and (4.20), one can numerically solve the

BS equation to obtain the Nakanishi weight functions, which allow us to reconstruct the

BS amplitude and then calculate hadronic observables.
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4.3 Valence Probability and Light-Front Momentum Distri-

butions

In this section we follow the derivation of the valence probabilities expressions, as

shown in Paula et al. (2021). In particular, we demonstrate that the valence component

can be decomposed into two spin contributions, where one configuration corresponds to

a total spin of the quark-antiquark pair S = 0, while the other one corresponds to a spin

state S = 1.

A fermionic field on the null plane component is described as follow:

 (+)(x̃, x+ = 0+) =

Z

dq̃

(2⇡)3/2
✓(q+)p
2q+

X
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[U (+)(q̃, �)b(q̃, �)eiq̃·x̃ + V (+)d†(q̃, �)e�iq̃·x̃](4.27)

with U (+)(q̃, �) = ⇤(+)u(q̃, �) , V (+)(q̃, �) = ⇤(+)v(q̃, �) and the normalization given by

ūu = 2m and v̄(q̃, �0)v(q̃, �) = �2m. The creation and annihilation operators enable the

construction of the Fock space. We define the valence component as the state with the

lowest number of constituents. Therefore we can now introduce the Light Front (LF)

valence amplitude '2:
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with q̃1 ⌘ {M(1� ⇠),�k?}, q̃2 ⌘ {M⇠,k?} and ⇠ = 1
2 +

k

+

p

+ . The steps between the two

lines above come from writing the Bethe Salpeter (BS) amplitude, in coordinate space, as

follow
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in which U and D are fields with quantum numbers corresponding to u and d quarks.

In order to obtain a more explicit expression of '2 one need expand the BS amplitude

in terms of orthogonal basis (equation (4.31)) that enable to have the BS equation as a

system of four coupled integral equations (one to each �
i

). As well, the scalar functions



CHAPTER 4. PHENOMENOLOGICAL MASS FUNCTION 76

can be conveniently written in terms of the Nakanishi Integral Representation (NIR).
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Consequently one has
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with D�1�2
1 , D�1�2

2 and the u and v spinors (in LF variables) written as follow
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After doing the necessary products and traces operations present in equation (4.32)

one will obtain that D��
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2 = 0 and
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The integration over k� can be performed if we use the NIR of the scalar functions �
i

as given in equation (3.11), allowing us to define
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where � = |k?|2 and ⇠ = 1
2 +

k

+

p

+ . Therefore we can write valence component of light-front

wave function
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where k
L(R) = ± 1p

2
(k

x

⌥ ik
y

). By looking at �
�2,��1 and ��2,�1 , we can see that, depending

on the spin configuration, the first or the second term of the valence amplitude '2 will

survive. Thus, we can define two contributions, aligned and anti-aligned, as follow
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Now we can account for the valence probability, which is the probability to measure

the valence state of the pion, in terms of the valence momentum distributions density:

P
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where z = 1 � 2⇠ and the P
val

(�, z) is given in terms of the antialigned and the aligned
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probability densities as follow

P
val

(�, z) = P"#(�, z) + P""(�, z) (4.40)
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16⇡2
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The valence longitudinal �(⇠) and transverse P (�) light-front momentum distributions

densities are give as follow

�(⇠) =

Z 1
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d� (P"#(�, z) + P""(�, z)) , (4.43)

P (�) =

Z �1
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dz (P"#(�, z) + P""(�, z)) . (4.44)

The two spin configurations, anti-aligned and aligned, correspond to a total spin S = 0

and S = 1, respectively. To a model considering a bound state where the quark propagator

has a fixed mass, the anti-aligned configuration yields the largest contribution and is

related to the eigenstate of the operator L
z

with eigenvalue l
z

= 0. Besides, the aligned

configuration is connected to l
z

= ±1, whose contribution reveals a signature of the

relativistic dynamical regime inside of the pion (PAULA et al., 2021). In the next chapter,

we will discuss those contributions to a bound state of quark and antiquark considering

a phenomenological dressed quark propagator. Thus we will be able to evaluate the

contribution of those configurations and understand better the relativistic features inside

light hadrons.



5 Numerical Results

In this chapter, we discuss the static and dynamical quantities obtained from the

solution of the BSE for a pseudoscalar bound-system, with a ladder kernel with massive

gluons, a dynamically-dressed quark mass function and an extended quark-gluon vertex.

We call the attention to the reader that there is a competition between three gluonic

phenomena: the dressing of the quark propagator, the extension of the quark-gluon vertex

and the ladder exchange of massive gluons.

In the dressed quark propagator, it is used a phenomenological mass function (CASTRO

et al., 2023). The solutions of the pion BSE have been obtained by using two sets of

parameters, {m0,m,�}, in equations (4.1) and (4.2). They have been extracted after fitting

LQCD calculations with very di↵erent bare quark mass, mLQCD

0 , in order to explore the

sensitivity of the present approach. In particular, we got two sets of fitting parameters:

i) Model I, which corresponds to LQCD calculations with mLQCD

0 = 155 MeV (BOWMAN

et al., 2005), and ii) Model II, which corresponds to the ones with mLQCD = 8MeV

(OLIVEIRA et al., 2019). The two sets of fitting parameters of the mass function are shown

in Table 5.1.

In special, we study the behavior of the coupling constant of our model in comparison

with the results of a model with a bare quark propagator. We also study two cases from

Lattice QCD, in which we adjust our parameters aiming to be able to compare our results

with the fixed mass case. The first one is from LQCD calculations of Ref. Bowman et al.

(2005), where we fit the parameters of the mass function (4.2) accordingly. The second

case we want to compare is the one of Ref. Oliveira et al. (2019) The parameters that

correspond to each case are described in the Table 5.1.

TABLE 5.1 – Fitting parameters of the mass function and the poles defining the weight functions in
equation (4.6). Those parameters correspond to the LQCD calculations of Ref. Bowman et al. (2005),
with mLQCD

0 = 155 MeV, and to the ones of Ref. Oliveira et al. (2019), with mLQCD
0 = 8 MeV.

Model m0 GeV m GeV � GeV M(0) GeV m1 GeV m2 GeV m3 GeV
I 0.175 0.770 1.170 0.508 0.674 0.796 1.29
II 0.008 0.648 0.900 0.344 0.469 0.573 1.035
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5.1 Heavy Quark Bare Mass

In this subsection we solve the BS equation considering a constituent gluon mass of

637 MeV, ⇤ = 306 MeV and the bound state mass M equal to the pion mass of 140 MeV

for di↵erent parametrizations of the quark-mass function M(p2). In particular, we obtain

a set of parameters compatible with LQCD calculations with bare quark mass mLQCD of

155 MeV (BOWMAN et al., 2005), which we call Model I, as shown in Fig. 5.1.

FIGURE 5.1 – The running quark-mass, M(p2), as a function of the Euclidean momentum pE =
p

�p2.
Solid line: Model I, with m0 = 175MeV, m = 770MeV and � = 1.17GeV in the fitting expression (4.2).
Circles: LQCD calculations from Ref. Bowman et al. (2005).

TABLE 5.2 – The mass pole positions for each value of m. In all cases, � = 1.17GeV and bare mass
m0 = 0.175GeV. The mass values are in GeV.

m m1 m2 m3 M(0)
0.05 0.1750 1.16994 1.17004 0.1751
0.10 0.1757 1.16957 1.17031 0.1757
0.20 0.1809 1.16654 1.17253 0.1808
0.40 0.2235 1.14134 1.18987 0.2218
0.50 0.2715 1.11149 1.20800 0.2663
0.60 0.3481 1.06066 1.23378 0.3328
0.70 0.4750 0.96752 1.26754 0.4256
0.77 0.6745 0.79630 1.29587 0.5085

In order to understand the impact of considering a dynamical mass function over the

solutions of the BS equations, we vary the parameter m from 0 to 0.77 GeV, keeping fixed

m0 = 0.175 GeV and � = 1.17 GeV. In this way, we interpolate between the constituent
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quark mass and Model I. The pole positions and the Infrared (IR) mass M(0) are shown

in Table 5.2. In Fig. 5.2 it is shown that the coupling constant increases quadratically

with the value of the parameter m, which tune the e↵ect of the running quark mass.

FIGURE 5.2 – The coupling constant ↵ as a function of m. The parameters are: µ = 637MeV, ⇤ =
306MeV, m0 = 175MeV, � = 1.17GeV and pion mass of 140MeV. The point m = 0 corresponds to a
constituent quark mass of 175MeV, that gives a coupling constant of ↵ = 4.918. The point m = 770MeV
corresponds to Model I.

In Chapter 4, we have seen that the phenomenological dressed quark propagator has

three poles, which combined e↵ects is able to reproduce the expected quark mass function

from lattice QCD computations (BOWMAN et al., 2005). In contrast, the constituent quark

mass model has a single pole. So, in order to better capture the dressing e↵ect, in Fig. 5.3

the coupling constant ↵ is shown as a function of the respective lightest polem1 for a given

value of m. In the same figure, it is also presented the solution of the BSE considering a

constituent quark mass of m1.

In Table 5.2 is presented the mass pole positions for each value of m. For small values

of m, the poles m2 and m3 are almost the same. This fact leads to a cancellation of their

e↵ect in the quark propagator. Indeed, in Fig. 5.3, it is observed an agreement between

the constituent mass computation and the one considering dressing quark propagator for

m  0.06 GeV. For higher values of m (> 0.06 GeV), the di↵erence of m2 and m3 becomes

large and a detachment is seen between the curves.

The QCD IR dynamics have a pivotal role in the hadronic structure. The quark-gluon

vertex has a huge enhancement in the deep IR, as discussed in Refs. Oliveira et al. (2019)

and Oliveira et al. (2020) This outcome was used in the actual model to set the parameter

⇤. In this way, it is expected that IR quantities could be responsible for determining the

general features of the particles. With this in mind, in Fig. 5.4 is shown the coupling
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FIGURE 5.3 – The coupling constant vs the lightest quark propagator mass pole m1. Circles: coupling
constant obtained by using the running mass function with m0 = 175MeV and � = 1.17GeV. Square:
coupling constant for a constituent quark mass of m1. The parameters are: µ = 637 MeV, ⇤ = 306 MeV
and pion mass of 140 MeV.

FIGURE 5.4 – The coupling constant vs the IR mass M(0). Circles: dressed quark propagator model
with m0 = 175 MeV and � = 1.17 GeV. Square: constituent quark mass of M(0). The parameters are
µ = 637 MeV, ⇤ = 306 MeV, and pion mass of 140 MeV.

constant vs the deep IR mass M(p2 = 0), where it was fixed m0 = 175 MeV and � = 1.17

GeV. It is observed an almost linear behavior and a small deviation from the constituent

quark mass calculation, which illustrates the importance of the IR mass in the bound

state formation.
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5.2 Light Quark Bare Mass

FIGURE 5.5 – The quark running-mass, M(p2), as a function of the Euclidean momentum pE =
p

�p2.
Solid line: equation (4.2) with m0 = 0.008GeV, m = 0.648GeV and � = 0.9GeV. Dashed line: pa-
rameterization proposed in Ref. Oliveira et al. (2020) of the LQCD calculations in Ref. Oliveira et al.
(2019).

In this subsection, the BS equation is solved for µ = 637 MeV, ⇤ = 306 MeV, and pion

mass of 140 MeV. It is also considered a dynamical mass function with di↵erent sets of

parameters. In particular, we present a particular parametrization able to fit the running

mass function LQCD calculation with a quark bare mass of 8 MeV (OLIVEIRA et al., 2019),

which we call Model II. In Fig. 5.5, it is shown Model II and the parametrization of LQCD

calculations proposed in Ref. Oliveira et al. (2020), which is described by a dynamical

mass function M
l

(k2) given in the following

M
l

(k2) =
m

q

(k2)
⇥

A+ log(k2 + �m2
q

(k2))
⇤

�m , (5.1)

m
q

(k2) = M
q

k2 +m1

k4 +m2
2k

2 +m4
3

+m0 (5.2)

where the parameters used are �
m

= 12
29 , the quark anomalous dimension for N

f

= 2, the

gluon anomalous dimension equal to �
A

=�13/22, Z=1.36486 ± 0.00097, M2
1=2.510 ±

0.030 GeV2, M2
2=0.471 ± 0.0014 GeV2, M4

3=0.3621 ± 0.0038 GeV4, M2
0=0.216 ± 0.026

GeV2, ! = 33↵
s

(k2)/12⇡ and ⇤
QCD

= 0.425 GeV with the running coupling constant

↵
s

(9 GeV2) = 0.3837.

In order to illustrate the di↵erence between the constituent and the dressed quark

propagator, we present in Fig. 5.6 two quantities: SV (p2) [p2 �M2(0)] and SS(p2) [p2 �
M2(0)]/M(0) (cf. equation (4.4)), obtained by means of equation (4.6), with poles and
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FIGURE 5.6 – The two quantities SV (p2) [p2�M2(0)] (solid line) and SS(p2) [p2�M2(0)]/M(0) (dashed
line) vs. pE/M(0).

residues given in Table 5.3. It is worth noting that, for both functions, the tails are the

expected ones in the limit p
E

� M(0), i.e. the ones pertaining to a massless quark

propagator, /p/p2.

TABLE 5.3 – Poles, mi, and residues, Ri,(cf equations (4.6) and (4.7)) for the fit to the LQCD mass
function in Ref. Oliveira et al. (2019). The IR mass M(0) = m0 + m3/�2 is 0.344GeV, and the
parameters of the running mass are also given in the Table 5.1.

i m
i

/M(0) RV

i

RS

i

/M(0)
1 1.365 3.7784 5.1578
2 1.667 -2.8863 -4.8099
3 3.008 0.1079 -0.3244

In Fig. 5.7, the parameter m is used to interpolate between a current-mass quark

scenario and a fully-dressed one (Model II). For each case, we kept fixed the IR mass

M(0) = 344 MeV and � = 900 MeV. As expected from the discussion regarding Fig. 5.4,

the coupling constant has a small variation between the constituent quark mass and Model

II. The reason is that the relevant parameter in the bound state formation dynamics is

the IR mass.
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FIGURE 5.7 – The coupling constant vs m for a fixed IR mass of 344 MeV. The parameters are: � = 900
MeV, µ = 637 MeV, ⇤ = 306 MeV and pion mass of 140 MeV.

5.3 Light-front Amplitudes

In this section we obtain the light-front (LF) amplitudes for Model II. The physical

parameters are the constituent gluon mass of 0.469 GeV and an extended quark-gluon

vertex scale ⇤ = 0.1 GeV. We present results for two di↵erent bound state masses,

M = 0.447GeV and M = 0.653GeV.

The light-front amplitudes  
i

(�, ⇠) can be obtained by projecting the components of

the BS amplitude �
i

(k, p) onto the light-front. Using the NIR of the scalar functions �
i

as given in equation (3.11), we obtain

 
i

(�, ⇠) =

Z

dk�

2⇡
�
i

(k, p) = � i

M

Z 1

0

g
i

(�0, z)

(�0 + � +m2
1z

2 + (1� z2)2)2
, (5.3)

where � = |k?|2 and ⇠ = 1
2 +

k

+

p

+ = (1� z)/2, with ⇠ belonging to [0,1]. Once we solve the

BS equation, we have the Nakanishi weight functions and we can obtain the light-front

amplitudes  
i

(�, ⇠), which are scalar functions that will be used to construct the valence

component of the 0� bound state system.

The LF amplitudes  
i

(�, ⇠) for the pseudoscalar system bound by a vector exchange

are presented in Fig. 5.8 and 5.9. We compare the results using dressed quark propa-

gator (Model II) against the fixed mass model, for two di↵erent binding energies, which

correspond to bound state masses of M = 0.653GeV and M = 0.447GeV.

The motivation of this comparison is to understand the impact of using dressed quark

propagator in the bound state analysis, as well as how the binding a↵ects its inner struc-
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ture. In Fig. 5.8, it is shown the dependence on ⇠ of the LF amplitudes. They present

the expected maximum around 1/2, except for  3, which is anti-symmetric in z.

FIGURE 5.8 – Light-front amplitudes as a function of ⇠. On the left are presented the LF amplitudes
considering the running mass function. On the right are presented the amplitudes considering fixed quark
mass of mq = 0.344GeV. In the upper panel M = 0.653GeV. In the lower panel M = 0.447GeV. The
other parameters are ⇤ = 0.1GeV and µ = 0.469GeV. Solid line:  1. Dashed line:  2. Doted line:  3.
Doted-dashed line:  4.

By increasing the binding, we obtain the expected behavior: the peak decreases and

it starts to increase the value of  
i

close to the end-points. The reason is that higher

bindings imply more compact systems and therefore relativistic e↵ects are more important,

which are present in the end-points. In general, the e↵ect of the dressing in  
i

is also a

broadening of the distribution. One can see that, with respect to ⇠, the fixed mass cases

present narrow peaks around 1/2.

The amplitudes  1 and  2 present similar behavior when considering their dependence

on ⇠, almost coinciding with each other in the fixed mass model and with little distance

between them in the running mass case. The change in their behavior, when the binding

is stronger, is a broadening distance amidst them in the fixed mass model. However, in

the running mass propagator case,  2 acquires two peaks while  1 has a more flat curve

in comparison with the fixed mass model.
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FIGURE 5.9 – Light-front amplitudes as a function of �. On the left are presented the LF amplitudes
considering the running mass function. On the right are presented the amplitudes considering fixed quark
mass of mq = 0.344GeV. In the upper panel M = 0.653GeV. In the lower panel M = 0.447GeV. The
other parameters are ⇤ = 0.1GeV and µ = 0.469GeV. Solid line:  1. Dashed line:  2. Doted line:  3.
Doted-dashed line:  4.

In the Fig. 5.9, it is presented the dependence in � of the LF-amplitudes. It is shown

that the system explores a higher transverse momentum region when the binding increases.

This is also explained by the fact that for higher binding, the system shrinks and therefore

becomes more relativistic. The same e↵ect is obtained by comparing the fixed mass case

(right panels) against the model with dressed quark propagators (left panels).

The LF-amplitudes are the building blocks to construct hadronic observables. In the

next section, we are going to discuss the valence momentum distributions, which give

more information about the 0� bound state structure under analysis.

5.4 Valence Momentum Distributions

In this section we use the mass function parameterized in Model II to calculate the

valence momentum distributions. We considered a constituent gluon mass of 0.469 GeV
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and quark-gluon vertex scale ⇤ = 0.1 GeV, exploring the mass of the bound system in

the range 3m
⇡

< M < 5m
⇡

(cf. Table 5.4). The analysis of the coupling constant gives a

TABLE 5.4 – The chosen masses, M , of the 0� bound-system (in unit of the IR mass M(0) = 0.344 GeV)
are presented along with the coupling constants ↵ = g2/4⇡ and the percentages of the spin configurations
in the valence wave function. Recall that in addition to M the set of model parameters is completed by:
i) the gluon mass µ/M(0) = 1.363, ii) a the vertex parameter ⇤/M(0) = 0.291 and iii) �/M(0) = 2.616
(see equation (4.2)). For each M , the first line represents the dressed case, while the second line is the
undressed one with a quark mass equal to 0.344GeV.

M/M(0) g2 ↵ P"#(%) P""(%)
1.9 7.62 0.61 93 7

3.76 0.30 96 4
1.6 12.46 0.99 93 7

11.29 0.90 93 7
1.5 14.13 1.12 93 7

13.67 1.09 93 7
1.4 15.78 1.26 94 6

15.93 1.27 93 7
1.3 17.38 1.38 94 6

18.07 1.44 93 7

global information of the bound state formation. In general, the behavior for the running

and fixed mass models is in accordance with the physical intuition: decreasing the mass

of the bound state implies in higher values of the coupling constant.

For a fixed mass model, the binding energy B is defined as the di↵erence between the

bound-system mass M and the constituent mass m
q

, B = 2m
q

�M . Intuitively, one can

generalize to the dressed quark propagator model by considering B = 2m
eff

�M , being

m
eff

an e↵ective quark mass. In Table 5.4, we compare the running mass model with

the fixed mass case considering m
q

= M(0). On the other hand, Fig. 5.5 shows that the

e↵ective mass should be smaller than the IR mass. For small M the coupling constant

of the Model II is higher than the fixed mass case. When the binding energy increases,

the e↵ective mass decreases, because the system shrinks and the momentum-distribution

tail grows, emphasizing the small mass region in M(p2). Therefore, by increasing the

binding, the coupling constant for the running mass case increases slower than the fixed

mass model. In the limit, we expect that m
eff

achieves an asymptotic value in the IR

region. At some point, around M = 0.48, there is an inversion of the hierarchy with the

coupling of the fixed mass case higher than the running mass model.

The valence wave function is obtained by LF-projecting the BS amplitude, and notably,

it can be decomposed into its quark-spin configurations, S = 0 and S = 1, as demonstrated

in Chapter 4, which is clear in equation (4.37). The amplitudes  
i

(�, z) are obtained by

integrating on k� the scalar functions in equation (5.3), as we discussed in section 4.4.
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In correspondence, we can write the valence probability density (cf. equation (4.42)) as

follows

P
val

(�, z) = P"#(�, z) + P""(�, z) , (5.4)

where one has the antialigned and the aligned probability densities given as

P"#("")(�, z) =
N

c

16⇡2
| "#("")(�, z)|2 . (5.5)

Considering the normalization of P
val

= 1, we have calculated the percentage of each

spin component, P"# and P"", as one can see in Table 5.4. We can define the longitudinal1

and the transverse momentum distributions as follows

�(⇠) =

Z 1

0

d� (P"#(�, z) + P""(�, z)) , (5.6)

P (�) =

Z �1

1

dz (P"#(�, z) + P""(�, z)) , (5.7)

with P"#(�, z) and P""(�, z) defined in equation (5.5). Furthermore, we define the com-

ponents of the longitudinal and transverse momentum distributions as:

�(⇠)"#("") =

Z 1

0

d�P"#("")(�, z) , (5.8)

P (�)"#("") =

Z 1

�1

dzP"#("")(�, z) . (5.9)

The longitudinal and transverse momentum distributions are presented in Figs. 5.10

and 5.13, for bound state masses of M = 0.653 GeV and M = 0.447 GeV. It is also

presented the spin components in Figs. 5.11, 5.12, 5.14 and 5.15. On the left panels

of the above figures, it is used dressed quark propagator (Model II), while on the right

panels, it is considered a constituent quark propagator model.

By looking at Fig. 5.10, for M = 0.653 GeV, the total longitudinal distribution for

the fixed-mass model is narrower than the running-mass one, decreasing faster when

approaching the end-points. That can be understood by a smaller value of the coupling

constant (cf. the first two lines in Table 5.4) that leads to a larger size of the system

and hence a smaller average relative momentum. While to M = 0.447GeV, we have the

opposite behavior between them, which reflects the hierarchy’s change of the coupling

constant (c.f. Table 5.4).

The aligned component of the longitudinal momentum distribution (Fig. 5.11) is

broader than the anti-aligned one (Fig. 5.12) whether in the dressing of the quarks or

1The longitudinal momentum distributions are represented by �(⇠). On the other side, the Nakanishi
amplitudes are also represented by �(�0, z0).
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FIGURE 5.10 – The longitudinal momentum distribution defined in equation (5.6), with ⇤ = 0.1GeV
and µ = 0.469GeV. Left panel: Thick solid line - running mass model for M = 0.653GeV. Thin solid
line - the same as the thick one, but for M = 0.447GeV. Dotted line: fixed quark mass with bound state
mass M = m⇡ = 0.141GeV. Right panel: Thick dashed Line - fixed quark mass equal to 0.344GeV and
M = 0.653GeV. Thin dashed line - the same as the thick one, but for M = 0.447GeV. Dotted line - the
same as the thick one, but for M = m⇡ = 0.141GeV.

FIGURE 5.11 – Parallel component of the longitudinal momentum distributions defined in equation
(5.8), with ⇤ = 0.1GeV and µ = 0.469GeV. Left panel: Thick solid line - running mass model for
M = 0.653GeV. Thin solid line - the same as the thick one, but for M = 0.447GeV. Dotted line: fixed
quark mass with bound state mass M = m⇡ = 0.141GeV. Right panel: Thick dashed Line - fixed quark
mass equal to 0.344GeV and M = 0.653GeV. Thin dashed line - the same as the thick one, but for
M = 0.447GeV. Dotted line - the same as the thick one, but for M = m⇡ = 0.141GeV.

fixed mass model, which can be explained due to the relativistic nature of the aligned

component. For M = 0.447 GeV, the running mass-case and the fixed-mass one yield

closer results than the one obtained for M = 0.653. This can be expected if one looks at

the similar values of the corresponding coupling constants present in Table 5.4.

In Table 5.4 is shown the relative weight in the valence state between the anti-aligned

and the aligned spin components. By varying M , both spin configurations keep almost

the same percentage for both running and fixed quark masses. A possible explanation

of this feature regards to adoption of the same interaction kernel in both the fixed mass
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FIGURE 5.12 – Anti-Parallel component of the longitudinal momentum distributions defined in equation
(5.8), with ⇤ = 0.1GeV and µ = 0.469GeV. Left panel: Thick solid line - running mass model for
M = 0.653GeV. Thin solid line - the same as the thick one, but for M = 0.447GeV. Dotted line: fixed
quark mass with bound state mass M = m⇡ = 0.141GeV. Right panel: Thick dashed Line - fixed quark
mass equal to 0.344GeV and M = 0.653GeV. Thin dashed line - the same as the thick one, but for
M = 0.447GeV. Dotted line - the same as the thick one, but for M = m⇡ = 0.141GeV.

model and dressed quark propagator model.

FIGURE 5.13 – Transverse momentum distribution defined in equation (5.7), with ⇤ = 0.1GeV and
µ = 0.469GeV. Left panel: Thick solid line - running mass model for M = 0.653GeV. Thin solid line
- the same as the thick one, but for M = 0.447GeV. Dotted line: fixed quark mass with bound state
mass M = m⇡ = 0.141GeV. Right panel: Thick dashed Line - fixed quark mass equal to 0.344GeV and
M = 0.653GeV. Thin dashed line - the same as the thick one, but for M = 0.447GeV. Dotted line - it
is the same as the thick one, but for M = m⇡ = 0.141GeV.

The dressing of the quark-propagator generates a larger momentum tail than in the

undressed case as one can see in the transverse momentum distribution presented in

the inset of Fig. 5.13 2. Also, when analyzing the parallel (Fig. 5.14) and anti-parallel

(Fig. 5.15) spin components, the same behavior is observed. Furthermore, the dressing of

the quark-gluon vertex weakens the kernel at a scale of ⇤2/M2(0) ⇠ �/M2(0) ⇠ 0.1, as

2The thick black dashed line, in the right panel, was divided by 3 in order to compare the behavior of
the curves more easily. Thus in order to see the real curve one needs to multiply by 3.
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shown in the plots for the larger binding corresponding to M = 0.447 in both dressed and

undressed quark cases. Another point to remark is that the aligned transverse momentum

distribution vanishes for � = 0, as one can see in Fig. 5.14. This is expected for an orbital-

angular momentum L = 1 component. The insets in Figs. 5.13-5.15 show that the tail of

the transverse distributions has a power law on �.

FIGURE 5.14 – Parallel component of the transverse momentum distribution defined in equation (5.9),
with ⇤ = 0.1GeV and µ = 0.469GeV. Left panel: Thick solid line - running mass model for M =
0.653GeV. Thin solid line - the same as the thick one, but for M = 0.447GeV. Dotted line: fixed quark
mass with bound state mass M = m⇡ = 0.141GeV. Right panel: Thick dashed Line - fixed quark
mass equal to 0.344GeV and M = 0.653GeV. Thin dashed line - the same as the thick one, but for
M = 0.447GeV. Dotted line - the same as the thick one, but for M = m⇡ = 0.141GeV.

FIGURE 5.15 – Anti-parallel component of the transverse momentum distribution defined in equa-
tion (5.9), with ⇤ = 0.1GeV and µ = 0.469GeV. Left panel: Thick solid line - running mass model
for M = 0.653GeV. Thin solid line - the same as the thick one, but for M = 0.447GeV. Dotted line:
fixed quark mass with bound state mass M = m⇡ = 0.141GeV. Right panel: Thick dashed Line - fixed
quark mass equal to 0.344GeV and M = 0.653GeV. Thin dashed line - the same as the thick one, but
for M = 0.447GeV. Dotted line - the same as the thick one, but for M = m⇡ = 0.141GeV.



6 Conclusions

In this thesis, we calculated bound state static and dynamical quantities by solving the

Bethe-Salpeter equation, in Minkowski space, for a pseudo-scalar system 0�, considering

a dressed quark propagator, a massive gluon exchange, in the ladder approximation, and

extended quark-gluon vertex. The outcome of the model reflects the competition between

three gluonic scales: the e↵ective gluon mass around ⇤
QCD

, the size of the extended

quark-gluon vertex ⇠ 2 fm and the dressing of the quark propagator. Thus, the impact

of the dressing on the bound state structure depends on the binding scale.

The main tool to deal with Minkowski space dynamics is to make use of integral

representations. In particular, we adopted the Nakanishi integral representation for the

components of the Bethe-Salpeter amplitude and the Källen-Lehman spectral representa-

tion for the components of the fermionic propagators. The reason for their utility is due to

the fact that they give an analytical structure in terms of the external momenta, allowing

to perform the loop integration of the kernel of the BS equation. Also, in our framework,

we project the BS equation onto the Light-Front. This mathematical step simplifies the

coupled integral equations, which are solved numerically by using basis expansion.

The considered dressed quark propagator has a phenomenological mass function, in

which parameters are fixed in order to reproduce LQCD calculations. We analyzed two

cases: i) Model I - LQCD calculations for bare quark mass of 155 MeV; ii) Model II -

LQCD calculations for bare quark mass of 8 MeV. For Model I, we studied the evolution

of the coupling constant in terms of the parameter m, which interpolates between the

fixed mass case and the fully dressed one. We observed a quadratically increasing of the

eigenvalues (c.f Fig. 5.2).

Also, it was made an analysis of the coupling constant in terms of the lightest pole m1,

where we observed a detachment of the fixed mass model and dressed quark propagator

only for m > 0.06 GeV (see Fig. 5.3). The reason for the discrepancy is due to the fact

that for m > 0.06 GeV the other two poles of the running mass function have the same

order of magnitude of the lightest one (see Table 5.2). Finally, by plotting the coupling

constant against the IR mass M(0), it was observed a linear dependence and a small

di↵erence between the fixed quark mass calculation and the dressed one, which shows the
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important role of the QCD IR dynamics in the hadronic structure (c.f. Fig. 5.4).

For Model II, we studied the di↵erence between the constituent and the dressed quark

propagator behavior (see Fig. 5.6), observing that in the limit p
E

� M(0) the tails

behave as expected for a massless quark propagator. In addition, the coupling constant

dependence with the IR mass was shown, demonstrating a small variation (⇠ 10%) be-

tween the fixed mass case and the dressed quark model (c.f. Fig. 5.7), as already obtained

for Model I. The analysis of the coupling constant behavior shows, in the case of the light

quark mass, that depending on the value of M we have a change of hierarchy between the

coupling constant of the running quark mass model and of the fixed mass case (see Table

5.4). Such e↵ect happens because the running mass coupling constant increases slower

than the one of the fixed mass model as the binding increases, reflecting the interplay

between the three gluonic scales.

An important step for understanding the bound state internal structure is to deter-

mine the momentum distributions. In this thesis, we calculated the longitudinal and

transverse valence momentum distributions in a dynamical model for two di↵erent bound

state masses, M = 653 MeV and M = 447 MeV. We showed that, in the quark dressing

model, the valence momentum distributions decay slower for high transverse momentum

when compared to the case of an undressed one, with a fixed quark mass equal to the

IR mass M(0) = 344 MeV. In our analysis, we found that in whatever cases, fixed mass

model or running mass function model, the aligned spin component of the valence wave

function is suppressed with respect to the anti-aligned one, which could be explained by

the fact that in both cases we used a ladder kernel approximation with the same gluon

propagator and quark-gluon vertex.

The analyzed system that we discussed in this work is a first step to build a dynamical

model with dressed quark propagators for the pion. We will implement an absolute

normalization (c.f Appendix F), which is important to assure the predictability of the

model when we construct observables that depend on the LF amplitudes. There are many

observables that we intend to calculate in order to gain a better understanding of the pion

structure. Firstly, we aim to implement the Electromagnetic Form Factor (c.f Appendix

G) and the correspondent decay constant and charge radius. Furthermore, we intend

to calculate the parton momentum distributions functions (PDFs), transverse momentum

distributions (TMDs) and generalized parton distributions (GPDs), which are in line with

the ongoing experimental e↵orts of JLAB (RADYUSHKIN, 2017) and CERN (ADOLPH et

al., 2013) in producing a three-dimensional (3D) tomographic image of the structure of

hadrons. It is worth mentioning the planned accelerator ”Electron-Ion Collider”(ACCARDI

et al., 2023; AGUILAR et al., 2019), which will be dedicated to this purpose.

An important improvement for the model is to solve the BS equation for a dressed

quark propagator which is an actual solution of the Dyson-Schwinger equation, in rainbow
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ladder approximation. We stress that the expressions of the coe�cients of the kernel in

chapter 4 are suitable for using the spectral densities derived from the solution of the DS

equation for the quark propagator. Furthermore, one can extend this framework to other

hadrons, such as the kaon, by considering di↵erent quark propagators.



Bibliography

AAD, G. et al. Observation of a new particle in the search for the standard model higgs
boson with the atlas detector at the lhc. Physics Letters B, v. 716, n. 1, p. 1–29, 2012.
ISSN 0370-2693.

ACCARDI, A. et al. Strong Interaction Physics at the Luminosity Frontier with 22 GeV
Electrons at Je↵erson Lab. 6 2023.

ADOLPH, C. et al. Hadron Transverse Momentum Distributions in Muon Deep
Inelastic Scattering at 160 GeV/c. Eur. Phys. J. C, v. 73, n. 8, p. 2531, [Erratum:
Eur.Phys.J.C 75, 94 (2015)], 2013.

AGUILAR, A. C. et al. Pion and Kaon Structure at the Electron-Ion Collider. Eur.
Phys. J. A, v. 55, n. 10, p. 190, 2019.

ARBUZOV, A. et al. On the physics potential to study the gluon content of proton and
deuteron at NICA SPD. Prog. Part. Nucl. Phys., v. 119, p. 103858, 2021.

BACCHETTA, A. Where do we stand with a 3-D picture of the proton? Eur. Phys. J.
A, v. 52, n. 6, p. 163, 2016.

BAKKER, B. et al. Light-front quantum chromodynamics: A framework for the analysis
of hadron physics. Nuclear Physics B - Proceedings Supplements, v. 251-252, p.
165–174, international Conference on Light-Cone Physics: Hadronic and Particle
Physics, 2014. ISSN 0920-5632.

BELYAEV, A.; ROSS, D. The Basics of Nuclear and Particle Physics. Southampton:
Springer Nature Switzerland, 2021.

BJORKLUND, R. et al. High Energy Photons from Proton-Nucleon Collisions. Phys.
Rev., v. 77, p. 213–218, 1950.

BOWMAN, P. O. et al. Unquenched quark propagator in landau gauge. Phys. Rev. D,
American Physical Society, v. 71, p. 054507, Mar 2005.

BRAIBANT, S.; GIACOMELLI, G.; SPURIO, M. Particles and Fundamental
Interactions. Berlin: Springer, 2012. (Undergraduate Lecture Notes in Physics).

BRODSKY, S. Quantum chromodynamics and other field theories on the light cone.
Physics Reports, v. 301, n. 4-6, p. 299–486, aug 1998.



BIBLIOGRAPHY 97

CAPRI, M. A. L.; SORELLA, S. P.; TERIN, R. C. All order renormalizable refined
Gribov-Zwanziger model with BRST invariant fermionic horizon function in linear
covariant gauges. Phys. Rev. D, v. 104, n. 5, p. 054048, 2021.

CARBONELL, J.; KARMANOV, V. A. Solving Bethe-Salpeter equation for two
fermions in Minkowski space. Eur. Phys. J. A, v. 46, p. 387–397, 2010.

CARBONELL, J.; KARMANOV, V. A. Direct Bethe-Salpeter solutions in Minkowski
space. EPJ Web Conf., v. 113, p. 03012, 2016.

CASTRO, A. et al. The Bethe-Salpeter approach to bound states: from Euclidean to
Minkowski space. J. Phys. Conf. Ser., v. 1291, n. 1, p. 012006, 2019.

CASTRO, A. et al. Exploring the 0� bound state with dressed quarks in Minkowski
space. arXiv, v. 2305.12536, 2023.

CHAPON, E. et al. Prospects for quarkonium studies at the high-luminosity LHC.
Prog. Part. Nucl. Phys., v. 122, p. 103906, 2022.

CHATRCHYAN, S. et al. Observation of a new boson at a mass of 125 gev with the cms
experiment at the lhc. Physics Letters B, v. 716, n. 1, p. 30–61, 2012. ISSN 0370-2693.

CHAVEZ, J. M. M. et al. Pion gpds: A path toward phenomenology. arXiv, n.
2110.06052v1, 2021. Available at: https://doi.org/10.48550/arXiv.2110.06052.

CHENG, T. Gauge Theory Of Elementary Particle Physics: Problems and solutions.
Oxford: Oxford University Press, 1984. (Oxford science publications). ISBN
9780195693287.

DING, M. et al. Drawing insights from pion parton distributions. Chin. Phys. C, v. 44,
n. 3, p. 031002, 2020.

DUDAL, D. et al. A Refinement of the Gribov-Zwanziger approach in the Landau
gauge: Infrared propagators in harmony with the lattice results. Phys. Rev. D, v. 78, p.
065047, 2008.

DYSON, F. J. The s matrix in quantum electrodynamics. Phys. Rev., American
Physical Society, v. 75, p. 1736–1755, Jun 1949.

DYSON, F. J. The Radiation theories of Tomonaga, Schwinger, and Feynman. Phys.
Rev., v. 75, p. 486–502, 1949.

FANELLI, C. et al. Pion Generalized Parton Distributions within a fully covariant
constituent quark model. Eur. Phys. J. C, v. 76, n. 5, p. 253, 2016.

FEYNMAN, R. P. Space-time approach to non-relativistic quantum mechanics. Rev.
Mod. Phys., American Physical Society, v. 20, p. 367–387, Apr 1948.

FEYNMAN, R. P. Space - time approach to quantum electrodynamics. Phys. Rev.,
v. 76, p. 769–789, 1949.

FEYNMAN, R. P. The Theory of positrons. Phys. Rev., v. 76, p. 749–759, 1949.



BIBLIOGRAPHY 98

FISCHER, C. S.; ALKOFER, R. Nonperturbative propagators, running coupling, and
the dynamical quark mass of landau gauge qcd. Phys. Rev. D, v. 67, p. 094020, May
2003.

FREDERICO, T.; SALME, G.; VIVIANI, M. Two-body Scattering States in Minkowski
Space and the Nakanishi Integral Representation onto the Null Plane. Phys. Rev., D85,
p. 036009, 2012.

FREDERICO, T.; SALME, G.; VIVIANI, M. Nakanishi representation onto the null
plane and the solution of the bethe-salpeter equation. Acta Physica Polonica B,
Proceedings Supplement, v. 6, p. 303–309, 01 2013.
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Appendix A - Constant mass propagator

In this appendix we show how to map the constant mass propagator model (CAR-

BONELL; KARMANOV, 2010; PAULA et al., 2016)

S(k)
f

= i
/k +m0

k2 �m02 + i✏
, (A.1)

with the dressed propagator model proposed in this thesis

S(k)
d

= i

Z 1

0

/k

k2 � s+ i✏
⇢
v

(s)ds+ i

Z 1

0

⇢
s

(s)ds

k2 � s+ i✏
, (A.2)

one has to apply, in equation (A.2), the following spectral densities

⇢
v

(s) = �(s�m02) and ⇢
s

(s) = m0 �(s�m02) . (A.3)

which were obtained by considering the spectral densities residues in equation (4.6) written

as

R
(v)
1 = 1 (A.4)

R
(s)
1 = m0, (A.5)

with Rv,s

2 = Rv,s

3 = 0 and � = 0. Besides it is necessary that m0 = m0 and m = 0.



Appendix B - Cij,a Coe�cients

In this appendix, we present the non-vanishing coe�cients C
ij,l

(k, k0, p) necessary for

calculations in Chapter (3). The Bethe-Salpeter equation can be written as

�(k, p) = S(k + p/2)

Z

d4k0

(2⇡)4
i K(k, k0)�1 �(k

0, p) �̂2 S(k � p/2) , (B.1)

where S(k + p/2) and S(k � p/2) are the quark propagators, and the quark-gluon vertex

is represented by �
↵

. Those vertice structures the coupling can be scalar, pseudoscalar,

or vectorial which means �
↵

= 1, �
↵

= �5 and �
↵

= �µ. In special, �̂2 = C �T

2 C.

To obtain the C
ij,l

(k, k0, p) we have to take the equation (3.8) in comparison (3.9),

thus we have that

X

l

P
l

(s, s0)C
ij,l

(k, k0, p) =
1

N
i

Tr
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(k, p)

✓✓

/k +
/p

2

◆

⇢
V

(s) + ⇢
S

(s)

◆

⇥ �1Sj

(k0, p)�̂2

✓✓

/k � /p

2

◆

⇢
V

(s0) + ⇢
S

(s0)

◆�

, (B.2)

with N
i

= Tr[S2
i

(k, p)]. By performing the trace operation, choosing the scalar coupling

and defining that P
l

(s, s0) as

P1(s, s
0) = ⇢

V

(s) ⇢
V

(s0),

P2(s, s
0) = ⇢

V

(s) ⇢
S

(s0) ,

P3(s, s
0) = ⇢

S

(s)⇢
V

(s0) ,

P4(s, s
0) = ⇢

S

(s) ⇢
S

(s0) , (B.3)
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we have the non-vanishing scalar coe�cients CS

ij,a

:

CS

11,1 = �k2 +M2/4,

CS

14,1 = �B0/M2,

CS

22,1 = �2(k · p)2/M2 + k2 +M2/4,
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23,1 = �2(k · p) B0/M4,
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B
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#

,
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,
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CS
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with
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The pseudoscalar and vector coe�cients are obtained by the following relations

CPS

ik,l

(k, k0, p) = CS
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, (B.5)
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In the chapter 3, in order to do the four-dimensional integration in k00, the coe�cients

are organized in terms of the dependence of k00, k and p:

C
ij,l

= a0
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In the case of the vectorial coupling the non-vanishing an, bn e dn are given by
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b034,3 = �M

2
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M
,

a042,3 = M ,
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2
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M
,
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Appendix C - Fn;ij,l Coe�cients

In Chapter 3, the F
ij,l

(v, �, z, k�, p) coe�cients appears on the right-hand side of

Bethe-Salpeter equation (3.28). They were obtained by writing the C
ij,l

(k, p), expressed

in the equation below, in terms of the Light-Front (LF) variables.

C
ij,l

(k, p) = a0
ij,l

+ a1
ij,l

(p · k) + a2
ij,l

(p · k)2 + a3
ij,l

k2 +

+ (1� v)
h

b0
ij,l

+ b1
ij,l

(p · k) + b2
ij,l

(p · k)2 + b3
ij,l

k2
i

+ (1� v)
h

(p · k)2 �M2k2
i h

d0
ij,l

+ d1
ij,l

(p · k)
i

. (C.1)

In the LF framework we have a four-vector xµ given by xµ = (x�, x+, x1, x2), where

x� = x0 � x3 and x+ = x0 + x3, which we can write as

k2
? = � , k+ =

�zM

2
, k2 = k�k+ � k2

? , p · k = (k� + k+)
M

2
. (C.2)

Therefore, by expressing the coe�cients C
ij,l

(k, p) in terms of their k dependence and

applying the LF variables, we have F
ij,l

(v, �, z, k�, p) expressed as

F
ij,l

(v, �, z, k�, p) =
h

a0
ij,l

+ (1� v)b0
ij,l

i

�
n

z
M2

4

h

a1
ij,l

+(1� v)b1
ij,l

i

+ �
h

a3
ij,l

+ (1� v)b3
ij,l

� (1� v)M2d0
ij,l

io

+
M4

24

n

z2
h

a2
ij,l

+(1� v)b2
ij,l

+ (1� v)d0
ij,l

i

� (1� v)z4�d1
ij,l

o

� (1� v)
M6

64
z3d1

ij,l

+k�M

2

nh

a1
ij,l

+ (1� v)b1
ij,l

i

� z
h

a3
ij,l

+ (1� v)b3
ij,l

� (1� v)M2d0
ij,l

io

+k�M
3

23

n

�2z
h

a2
ij,l

+ (1� v)b2
ij,l

+ (1� v)d0
ij,l

i

+ (1� v)
�

4� � z2M2
�

d1
ij,l

o

+k�(1� v)
M5

32
3z2d1

ij,l

+ (k�)2
M2

4

n

a2
ij

+ (1� v)b2
ij,l

+ (1� v)d0
ij,l

+(1� v)M2z d1
ij,l

o

� (k�)2(1� v)
M4

16
3zd1

ij,l

+ (k�)3(1� v)
M3

8
d1
ij,l

. (C.3)

Another way of expressing F
ij,l

(v, �, z, k�, p) is by defining new coe�cients F
n;ij,l that
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doesn’t have dependence in k�, which mean to write F
ij,l

(v, �, z, k�, p) as

F
ij,l

(v, �, z, k�, p) = F0;ij,l + k� F1;ij,l + (k�)2 F2;ij,l + (k�)3 F3;ij,l , (C.4)

where

F0;ij,l = a0
ij,l

� z
M2

4
a1
ij,l

+
M4

24
z2a2

ij,l

� �a3
ij,l

+ (1� v)

"

b0
ij,l

� z
M2

4
b1
ij,l

� �b3
ij,l

+
M2

4

 

4� + z2
M2

4

!

d0
ij,l

+
M4

24

h

z2b2
ij,l

� z

 

4� + z2
M2

4

!

d1
ij,l

i

#

,(C.5)

F1;ij,l =
M

2

"

a1
ij,l

� z
h

a3
ij,l

+
M2

2
a2
ij,l

i

+ (1� v)
h

b1
ij,l

� z b3
ij,l

� M2

2
zb2

ij,l

i

+
M2

4
(1� v)

h

2zd0
ij,l

+
⇣

4� � z2
M2

4

⌘

d1
ij,l

i

#

, (C.6)

F2;ij,l =
M2

4

n

a2
ij,l

+ (1� v)b2
ij,l

+ (1� v)d0
ij,l

+ (1� v)
M2

4
z d1

ij,l

o

,

F3;ij,l = (1� v)
M3

8
d1
ij,l

. (C.7)

The non-vanishing coe�cients F
n;ij,l are given explicitly in next sections of this appendix.

C.1 Coe�cients F0;ij,l

F0;11,1 =
M2

4
+ � ,

F0;14,1 = �(1� v)(� +
⇣

z
M

4

⌘2

) ,

F0;22,1 =
M2

4
� � � 2

⇣

z
M

4

⌘2

,

F0;23,1 =
z(1� v)

2

h

� +
⇣

z
M

4

⌘2i

,

F0;32,1 = �z
M2

2
,

F0;33,1 = (1� v)

"

� M2

4
+ � + 2

⇣

z
M

4

⌘2
#

,
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F0;41,1 = M2 ,

F0;44,1 = �(1� v)
hM2

4
+ �

i

,

F0;12,2 =
M

4
(2� z) ,

F0;13,2 =
1

M

h

� +
⇣

z
M

4

⌘2i

,

F0;21,2 =
M

4
(2� z) ,

F0;24,2 = �(1� v)
1

M

h

� +
⇣

z
M

4

⌘2i

,

F0;31,2 = �M ,

F0;34,2 = (1� v)
M

4
(2� z) ,

F0;42,2 = M ,

F0;43,2 = (1� v)
M

4
(2� z) ,

F0;12,3 =
M

4
(2 + z) ,

F0;13,3 = � 1

M

h

� +
⇣

z
M

4

⌘2i

,

F0;21,3 =
M

4
(2 + z) ,

F0;24,3 = �(1� v)
1

M

h

� +
⇣

z
M

4

⌘2i

,

F0;31,3 = M ,

F0;34,3 = �(1� v)
M

4
(2 + z) ,

F0;42,3 = M ,

F0;43,3 = �(1� v)
M

4
(2 + z) ,

F0;11,4 = 1 ,

F0;22,4 = 1 ,

F0;33,4 = 1� v ,

F0;44,4 = 1� v .
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C.2 Coe�cients F1;ij,l

F1;11,1 =
zM

2
,

F1;14,1 = �z(1� v)
M

4
,

F1;23,1 = �(1� v)

M

h

� �
⇣

z
M

4

⌘2i

,

F1;32,1 = M ,

F1;44,1 = �z(1� v)
M

2
,

F1;12,2 =
1

2
,

F1;13,2 = (1� v)
z

4
,

F1;21,2 =
1

2
,

F1;24,2 = �(1� v)
z

4
,

F1;34,2 =
(1� v)

2
.

F1;43,2 =
(1� v)

2
,

F1;12,3 = �1

2
,

F1;13,3 = �(1� v)
z

4
,

F1;21,3 = �1

2
,

F1;24,3 = �(1� v)
z

4
,

F1;34,3 =
(1� v)

2
,

F1;43,3 =
(1� v)

2
.
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C.3 Coe�cients F2;ij,l

F2;14,1 = �(1� v)

4
,

F2;22,1 = �1

2
,

F2;23,1 = �z

8
(1� v) ,

F2;33,1 =
(1� v)

2
,

F2;13,2 =
(1� v)

4M
,

F2;24,2 = �(1� v)

4M
,

F2;13,3 = �(1� v)

4M
,

F2;24,3 = �(1� v)

4M
.

C.4 Coe�cients F3;ij,l

F3;23,1 = �(1� v)

4M
.



Appendix D - Fij,l Coe�cients

In this appendix, we present explicitly the Fns

ij,l

(v, �, z,m
a

) coe�cients of L(ns,1)
ij

(�, z, �0, z0)

contributions present in the Bethe-Salpeter equation (4.9), where it is already consid-

ered the phenomenological mass function given in equation (4.2). The non-vanishing

Fns

ij,l

(v, �, z,m
a

) are

Fns

11,1(v, �, z,m
2
a

) = (1� z)3
h

(zm2
a

+ �) +
M2

4
(1� z)2

i

,

Fns

11,4(v, �, z,m
2
a

) = (1� z)4 ,

Fns

12,2(v, �, z,m
2
a

) = (1� z)3
h(m2

a

+ �)

M
+

M

4
(1� z)2

i

,

Fns

12,3(v, �, z,m
2
a

) = �Fns

12,2 +M(1� z)4 ,

Fns

13,2(v, �, z,m
2
a

) =
(1� z)2

16

"

(1� z)2(z2M + 16�/M) + (1� v)M(�(1� z)

+4(� +m2
a

)/M2)2 + 2z(1� z)(1� v)(�(1� z)M

+4(� +m2
a

)/M)

#

,

Fns

13,3(v, �, z,m
2
a

) = �Fns

13,2 ,

Fns

14,1(v, �, z,m
2
a

) = � (1�v)(1�z)2

16

h

M2(1� z)4 � 8(1� z)2(m2
a

� �)

+16((� +m2
a

)/M)2
i

,

Fns

21,2(v, �, z,m
2
a

) = Fns

12,2 ,

Fns

21,3(v, �, z,m
2
a

) = Fns

12,3 ,

Fns

22,1(v, �, z,m
2
a

) = � (1�z)2

8

h

� (1� z)3(1 + z)M2 � 8(1� z)(m2
a

+ �z)

+16((m2
a

+ �)/M)2
i

,

Fns

22,4(v, �, z,m
2
a

) = Fns

11,4

Fns

23,1(v, �, z,m
2
a

) = �(1� z)(1� v)

32

��(1� z2) + 4(m2
a

+ �)/M2
�

⇥
⇣

M2(1� z)4 � 8(1� z)2(m2
a

� �)

+16
�

(m2
a

+ �)/M
�2
⌘

,
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Fns

24,2(v, �, z,m
2
a

) =
1

M
Fns

14,1 ,

Fns

24,3(v, �, z,m
2
a

) = Fns

24,2 ,

Fns

31,2(v, �, z,m
2
a

) = �MFns

11,4 ,

Fns

31,3(v, �, z,m
2
a

) = MFns

11,4 ,

Fns

33,1(v, �, z,ma

) = �(1� v)Fns

22,1 ,

Fns

33,4(v, �, z,m
2
a

) = (1� v)Fns

11,4 ,

Fns

34,2(v, �, z,m
2
a

) = (1� v)Fns

12,2 ,

Fns

34,3(v, �, z,m
2
a

) = �(1� v)Fns

12,3 ,

Fns

41,1(v, �, z,m
2
a

) = M2Fns

11,4 ,

Fns

42,2(v, �, z,ma

) = MFns

11,4 ,

Fns

42,3(v, �, z,ma

) = Fns

42,2 ,

Fns

43,2(v, �, z,ma

) = (1� v)Fns

12,2 ,

Fns

43,3(v, �, z,ma

) = �(1� v)Fns

12,3 ,

Fns

44,1(v, �, z,ma

) = �(1� v)Fns

11,1 ,

Fns

44,4(v, �, z,ma

) = (1� v)Fns

11,4 .

We can obtain the Fns

ij,l

(v, �,�z,m
a

0) coe�cients, which are the ones necessary to calcu-

late the L(ns,2)
ij

(�, z, �0, z0) contributions to the BS equation, by using the Fns

ij,1(v, �, z,ma

).

This means that one needs to exchange z ! �z and a ! a0, thus obtaining

Fns

ij,1(v, �, z,ma

) = �
ij

Fns

ij,1(v, �,�z,m
a

0) , (D.1a)

Fns

ij,2(v, �, z,ma

) = �
ij

Fns

ij,3(v, �,�z,m
a

0) , (D.1b)

Fns

ij,3(v, �, z,ma

) = �
ij

Fns

ij,2(v, �,�z,m
a

0) , (D.1c)

Fns

ij,4(v, �, z,ma

) = �
ij

Fns

ij,4(v, �,�z,m
a

0) . (D.1d)

Furthermore, the matrix � is defined as

� =

0

B

B

B

B

@

1 1 �1 1

1 1 �1 1

�1 �1 1 �1

1 1 �1 1

1

C

C

C

C

A

. (D.2)

The coe�cients Fns

ijl

also can be decomposed in terms of the v dependence as follow

Fns

ijl

= F̃ (1)
ijl

+ (1� v)F̃ (2)
ijl

, (D.3)
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with the non-zero coe�cients being

F̃ (1)
11,1(�, z,m

2
a

) = (1� z)3
h

(zm2
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+ �) +
M2

4
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+ �)

M
+

M

4
(1� z)2

i

,

F̃ (1)
12,3(�, z,m

2
a
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,
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F̃ (2)
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Appendix E - Singular Integrals

In order to evaluate the C
n

integrals, one has to carefully take care of the value of

k+
D

= v(1 � v)M2 (z
0 � z), if it is positive, negative or null. In particular, it is z0 � z that

defines what signal k+
D

will have. In particular, we have that in the case z0 = z, i.e. k+
D

= 0,

singular contributions appear. In Chapter 3, it is presented the non-singular contributions

of C
n

. In this appendix, a more explicit derivation of the singular contributions is made.

The C
n

integrals are written as follow

C
n

= 3

Z

dk�

2⇡

(k�)n
h

(1� z)k� � (1� z)k�
d

+ i✏
i h

(1 + z)k� � (1 + z)k�
u

� i✏
i

⇥ 1
h

k+
D

k� + `
D

+ (1� v)
⇣

µ2 � ⇤2
⌘

+ i✏
i3 h

k+
D

k� + `
D

+ i✏
i

+

Z

dk�

2⇡

(k�)n
h

(1� z)k� � (1� z)k�
d

+ i✏
i h

(1 + z)k� � (1 + z)k�
u

� i✏
i

⇥
(1� v)

⇣

µ2 � ⇤2
⌘

h

k+
D

k� + `
D

+ (1� v)
⇣

µ2 � ⇤2
⌘

+ i✏
i3 h

k+
D

k� + `
D

+ i✏
i2 . (E.1)

If we define

B(n) =

Z

dk�

2⇡

(k�)n
h

(1� z)k� � (1� z)k�
d

+ i✏
i h

(1 + z)k� � (1 + z)k�
u

� i✏
i

⇥ 1
h

k+
D

k� + C + i✏
i3 h

k+
D

k� + E + i✏
i

(E.2)

with n = 0, 1, 2 and 3, C = `
D

+ (1� v)
⇣

µ2 � ⇤2
⌘

and E = `
D

, we can write

C
n

= 3B(n)� (1� v)
⇣

µ2 � ⇤2
⌘ @

@E
B(n) , (E.3)

since a derivative of the result with respect to E leads to the second integral in equation
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(E.1). The singularities came from the di↵erence between the power of k� in the numerator

and in the denominator of C
n

. To n = 0, 1 we don’t have real issues with the poles. The

singularities arise to n = 2, 3.

The first case that we have is to n = 0. If we consider the following integral

I
(0)
M

=

Z

dk�

2⇡

1
h

(1� z)k� � (1� z)k�
d

+ i✏
i h

(1 + z)k� � (1 + z)k�
u

� i✏
i

⇥ 1
h

k+
D

k� + C + i✏
i h

k+
D

k� + E + i✏
i , (E.4)

we can express B(0) in terms of the derivative of I(0)
M

.

To integrate in dk�, We apply the residue theorem considering the following poles:

1.k�
u

+ i✏/(1 + z) 2 the upper plane

2.k�
d

� i✏/(1� z) 2 the lower plane

3.�C/k+
D

� i✏/k+
D

4.�E/k+
D

� i✏/k+
D

Therefore, we have the term I
(0)
M

is given as

I
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The function B(0) does not contain any delta function, thus at z0 = z, the C0 has no

singular contribution.

First power (n=1)

The integral with the first power of k� is given by
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where if one use the Feynman parametrization, the terms of the denominator can be
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unified. Therefore one has
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where we used the identity
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In conclusion, no singular correction for C1 at k+
D

= 0.
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Second power (n=2)

To n = 2, we have B(2) given by
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where we have that I(2)
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is written as
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Therefore the second derivative of I(2)
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Then one can rewrite the expression of B(2) as

B(2) = � i
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with
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The first term of B(2) presents a delta function in terms of k+
D

, thus is responsible for

the singular contribution of C2 at z0 = z, which is given by
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with E � C = �(1 � v) (µ2 � ⇤2). In special, by performing the derivative related to E
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then we can write
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Therefore, by using that
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the singular contribution to C2 can be expressed as
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Third power (n=3)

The last integral is B(3), given by
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In conclusion, the singular part of C3 is (cf equation (E.21))
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The singular functions CS

2 and CS

3 ,that are proportional to distributions such as �(z0�z)

or �0(z0 � z), are given in equation (E.22) and (E.27), respectively. It should be pointed

out that `
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) are even for the exchanges z ! �z and z0 ! �z0. Then by
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we have the expression to the singular contribution that appears at z0 = z to C2 and C3:
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In conclusion one has
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Appendix F - Normalization Condition

In this section, we obtain the normalization of the BS amplitude for a Fermion and

anti-Fermion interacting system with a given Mass Function. The normalization condition

to a bound-state is given by (LURIÉ et al., 1965)

Tr
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where we should consider in our case that
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where �
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are the Nakanishi functions, scalar functions of (k2, p2, k · p) with well-defined

properties under the exchange k ! �k: even for i = 1, 2, 4 and odd for i = 3.
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After doing the derivative operation in equation (F.1) and multiplying pµ in both sides

of that equation, we will have
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In other to do the trace operation, we need to introduce in equation (F.4) the expression

of the propagators and amplitudes present in equations (F.2) and (F.3). Then we have

two ways of proceeding: do the trace operation considering or not the symmetry present

when do exchange k ! �k. If we chose to calculate the trace without considering it we

will to do the trace of the four parts present in equation (F.5). This will give us more

work and more complicated terms to perform the integration in d4k. The equation (F.4)

will turn to be after the traces operation:

i

Z

d4k

(2⇡)4

"

X

ij

a1
ij

(�
i

�
j

) +
X

ij

a2
ij

(�
i

�
j

)

#

= 1 . (F.6)

with the a1
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and a2
ij

coe�cients being
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where

B(k2) =
1

M4
⇡

⇥

(k · p)2 �M2
⇡

k2
⇤

, (F.8)
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Now if chose the other way, from the four traces
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we will have to truly calculate two of them, because if do the exchange k ! �k in the

traces I2 and I4 we obtain I2(�k, p) = I1 and I4(�k, p) = I3. Thus, after doing the

trace operation we will have
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Therefore the normalization reads
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that is a easier expression to calculate than equation (F.6). To obtain an expression ready

to be numerically implemented we need to do the Feynman parametrization and after do

the four-dimensional integration in dk�. Thus, after doing the mentioned steps we have

the following expression to the normalization:
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with
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where we have
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Appendix G - Electromagnetic Form

Factor

In order to calculate the Electromagnetic Form Factor of the pion, we will consider

the quark-photon vertex where the quark propagator is given by the following expression

S�1(k) = �i
⇣

/k �M(k2)
⌘

(G.1)

M(k2) = m0 � m3

k2 � �2 + i✏
, (G.2)

with M(k2) is a running mass fitted to lattice QCD calculations.

The pion-photon vertex is given by

�i�µ

⇡

(P, P 0; q) ⌘< ⇡(P 0)|Jµ|⇡(P ) >= (P + P 0)µF
⇡

(Q2) (G.3)

where Q2 = �q2, |⇡(P ) > is the pion state and Jµ the electromagnetic current operator.

Besides, in the impulse approximation, the meson-photon vertex is written as
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with Q̃
u

and Q̃
d̄

are the electromagnetic charges. One important detail is to have �µ

⇡

which satisfies the Ward-Takahashi identity

q
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(p) (G.5)

considering the expression to the propagator given in ((G.1)). It is important to take in

consideration the equation (7.69) of Peskin (PESKIN; SCHROEDER, 1995), where the Ward-

Takahashi identity have a �µ ! �i�µ. Thus, considering the income photon momenta

q
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p0̄q pq̄

FIGURE G.1 – Pictorial representation of the pion electromagnetic form factor, in one-loop approxima-
tion. The full dots represents the vertex functions for the initial and final bound states, respectively.

One can write

< qq|Jµ(x)|qq > = i
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where � and �̄ are the BS amplitude of the bound state. Where Kµ(x; y1, y2, x1, x2) in

terms of the he photon-fermion vertex �µ

(i)(x):
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By looking at Fig. G.1, in the first graph the relations of 4-momentum conservation

given by
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In the second contribution we have
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Then the fermion-antifermion matrix elements are given by the following expression
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where C = i�2�0 and C2 = �I has been used. We also have considered the following

relations

b�µ(q) = C�1 [�µ(q)]T C ; ST (p) = C S(�p) C�1

C�1 ̄(k0, P 0) = �̄(k0, P 0) ;  (k, P ) C�1 = �(k, P ) .

Furthermore, the expressions of the photon-fermion vertex are
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In the last to b�µ one has
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Therefore the matrix element for the elastic case is
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which can also be expressed in terms of a form factor

< qq̄|Jµ(q)|qq̄ >= (P 0 + P )µF (Q2) , (G.16)

with Q2 = �q2. Hence, by using the equations (G.15) and (G.16) and multiplying (P 0 +
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where (P 0+P )2 = 4M2 (1+⌧) with ⌧ = Q

2

4M2 . The Form Factor expression that we obtain

is
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Where we have then two traces to calculate:
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We can demonstrate that if do k ! �k one has k0 ! �k00, the result of calculating I2

will be equal to �I1. To demonstrate that we should consider how each term of the Form

Factor expression in equation (G.18) reacts to that changes. First let us consider the BS

amplitudes. To a 0+ state they are written as (CARBONELL; KARMANOV, 2010)

�(k, p) = S1�1 + S2�2 + S3�3 + S4�4 ,

�̄(k, p) = �0�†(k, p; +i✏)�0 = �S1�1 + S2�2 + S3�3 + S4�4 . (G.20)
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with �
µ⌫
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). Regarding to the basis, note that S1 and S2 does not depend

on k. But if we do k ! �k, the others one that has k dependence behave as:
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The antisymmetry of the BS amplitude with respect to permutation of two fermions

implies:
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The relations present in equation (G.9) and (G.10) give us that when we do k ! �k
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it is equal to do k0 ! �k00. Thus we have that by doing k ! �k we obtain
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Thus, we can write the Form Factor expression as
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�iN

c

4M2 (1 + ⌧)

Z

d4k

(2⇡)4
Tr

"

(/k � /P/2�M(k2
q̄

)) �̄(k0, P 0)

 

(P 0 + P )
µ

�µ

� m3(P 0 + P )
µ

(2k + q + P )µ

((k + q + P

2 )
2 � �2 + i✏)((k + P

2 )
2 � �2 + i✏)

!

�(k, P )

#

. (G.27)



FOLHA DE REGISTRO DO DOCUMENTO
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