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Resumo

O já estabelecido e bem-sucedido modelo padrão da Cosmologia (Modelo ΛCDM), cujas

equações de campo derivam da Relatividade Geral, descreve relativamente bem o universo

como sendo isotrópico e homogêneo em sua distribuição de matéria e energia. Algumas

explicações f́ısicas consistentes, porém, parecem estar longe de serem explicadas apenas

por esse modelo, como os 96% que não são matéria bariônica, mas uma outra forma de

energia e matéria que compõem o universo (Matéria e Energia Escuras). A Relativi-

dade Geral de Einstein também se provou adequada em pequenas escalas ao explicar o

avanço do periélio da órbita de Mercúrio em torno do Sol como também o desvio da luz

e na Astrof́ısica Relat́ıvistica ao descrever as estrelas de nêutrons e prevendo a existên-

cia de buracos negros. Nesta tese vamos explorar extensões da teoria da Relatividade

Geral : o Modelo de Matéria Induzida – ou Modelo STM (sigla em inglês para Space-

Time-Matter Model) e a teoria de gravidade f(R, T ) conservada, onde R é o escalar de

curvatura de Ricci e T o traço do tensor energia-momentum. Aplicamos o modelo STM à

Cosmologia e obtemos uma equação de estado única para as três eras do universo (radi-

ação, matéria e energia escura). Esse modelo apresenta o nosso universo, 4-dimensional,

e toda matéria existente nele, como uma manifestação geométrica na superf́ıcie de um

vácuo espaço-temporal em 5 dimensões, com uma energia associada a este vácuo. Todos

os parâmetros cosmológicos foram analisados e comparados com os dados observacionais

do modelo ΛCDM . Também analisamos buracos de minhoca atravessáveis. Esse estudo

foi feito à luz da teoria f(R, T ) conservada, ou seja, impondo-se a conservação do tensor

energia-momentum na teoria. Neste segundo trabalho analisamos parâmetros que levam

à obediência das condições de energia no interior do buraco de minhoca sem a necessidade

de ser preenchido com matéria exótica, como ocorre se consideramos as soluções previstas

pela Relatividade Geral, como condição para que sejam atravessáveis.



Abstract

The already established and successful standard model of Cosmology, the ΛCDM Model,

(an acronym for Lambda Cold Dark Matter Model), whose field equations are derived from

General Relativity, describes very well the universe as being isotropic and homogeneous in

its distribution of matter and energy. Some solid physical explanations, however, seem to

be far from being explained by this model alone, such as the 96% of energy and matter that

fills the universe (Dark Matter and Dark Energy). Einstein’s General Relativity has also

proved adequate on small scales in explaining the advance of the perihelion of Mercury’s

orbit around the Sun as well as the bending of light, and the Relative Astrophysics in

describing neutron stars and predicting the existence of black holes. In this thesis, we are

going to explore extensions of the theory of General Relativity: the Induced Matter Model

– or STM Model (Space-Time-Matter Model), and the f(R, T ) conserved theory of gravity,

where R is Ricci´s scalar of curvature and T the trace of the energy-momentum tensor.

We applied the STM model to Cosmology and obtained a unique equation of state for

the three eras of the universe (radiation, matter, and dark energy). This model presents

our universe, 4-dimensional, and all the matter in it, as a geometric manifestation on

the surface of a 5-dimensional space-time vacuum, with the energy associated with that

vacuum. All cosmological parameters were analyzed and compared with observational

data from the ΛCDM model. We also analyzed traversable wormholes. This study was

carried out in the light of the conserved f(R, T ) theory, that is, imposing the conservation

of the energy-momentum tensor in the theory. In this second work, we analyze parameters

that satisfied energy conditions inside the wormhole without the need to be filled with

exotic matter, as occurs as a condition for them to be traversable in the solutions obtained

from General Relativity,
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1 Introduction

For more than a century, since it was proposed by Einstein in 1915 (EINSTEIN, 1915),

General Relativity has gone through several tests that established it as the standard grav-

itational theory. The first three of these experimental tests were proposed by Einstein

himself still in 1915. They are the anomaly in Mercury perihelion, the gravitational red-

shift, and the bending of light in the vicinity of strong gravitational fields. (GUIDRY, 2019;

D’INVERNO, 1992; RYDEN, 2017). The Hulse-Taylor´s pulsar (PSR 1913+16), a binary

system with a pulsar and a neutron star orbiting a common barycenter was discovered in

1974. (HULSE; TAYLOR, 1975). This discovery became a powerful test of predictions for

the time behavior as perceived by a distant observer, predicted by General Relativity.

Another prediction of the theory is the existence of gravitational waves. These waves

are emitted when masses are accelerated, in Hulse-Taylor´s binary the masses are the

pulsar and its companion, or by the coalescence of compact stars, black holes, and black

holes and compact stars, to cite some examples. These ripples in space-time were ex-

perimentally detected for the first time in 2015 (ABBOTT et al., 2016). Since then more

than 50 gravitational-wave events were detected by the Ligo-Virgo Collaboration and most

recently, by the Kagra detector. (CASTELVECCHI, 2020). Other tests that legitimate Gen-

eral Relativity as the standard gravity was carried out along the observational discoveries,

both in astrophysical and cosmological scales.

However, there are regimes of very intense gravitational fields, such as in the interior

of compact stars or structures of galactic/cosmological scales, singularities, in which ap-

parently some deviations can appear thus lacking theoretical models of extended gravity.

One of the main characteristics that these alternative models are able to properly describe

gravity in these extreme regimes, with the analytical capacity to recover the structure of

General Relativity, based on the definition of its own parameters. Thus, as it will be

possible to verify, the two extended gravity models used in the applications presented in

this thesis, namely the Space-Time-Matter model theory and the conservative f(R, T )

gravity have this extensive property for General Relativity.

In special, there are some open questions in Cosmology and Astrophysics that General

Relativity itself has some difficulties explaining. In standard Cosmology, the ΛCDM model
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with a time-dependent scaling factor on the spatial components describes the geometry

of space-time in the presence of matter in an expanding universe and its distinct eras

in cosmological time. However, this model explains only 5% of the universe we know in

the baryonic form but fails in explaining the nature of Λ (dark energy that accelerates

the expansion of the Universe), that represents 68% of all energy in the Universe, and

the origin of ’CDM ’, i.e., the Cold Dark Matter which is 27% of Universe energy. These

percentages of dark matter and dark energy in the Universe were recently confirmed

in 2018 by the Planck Collaboration, after observations made by the Planck satellite.

(AGHANIM; et. al., 2018).

Another question related to standard cosmology concerns the equations of state for

each of the three stages of the Universe’s evolution. Eras of radiation, matter, and the

current era of dark energy are described by separate Equations of State (EoS) in the form

p = ωρ, with p being the pressure, ρ the density, and ω the cosmological parameter. This

parameter assumes three discrete values along with the cosmological evolution. According

to the ΛCDM model (RYDEN, 2017), this ω factor is 1
3
, in radiation era, equal to 0 in

matter era and equal to −1 in current dark energy era. In the search for an EoS that

is continuous in its analytical form, there are works in which some parameterizations are

proposed, but as ansatz, especially for the ω factor. (MAOR et al., 2002; SZYD LOWSKI et

al., 2006; EFSTATHIOU, 1999; NAKAMURA; CHIBA, 1999).

In the Benchmark Model for the Universe (ΛCDM model) the scale factor a(t) has

different analytical solutions for each era. The transition from the radiation-dominated

phase where a(t) ∝ t1/2 to the a(t) ∝ t2/3 matter-dominated era is not so abrupt. Nor is

it the later transition from the matter-dominated phase to the lambda-dominated phase

of exponential growth. However, to cure this transition behavior of the scale factor it is

necessary to find numerical solutions to the Friedmann equation, as described in (RYDEN,

2017).

Obtaining analytic functions for both the ω EoS parameter and the scale factor a

is something unusual in the literature. For example, in (LIMA et al., 2013a) the authors

propose a cosmological model based on a dynamical vacuum energy density which is

dependent on a power series of the Hubble parameter. This inception gives a unified

cosmological framework with a more complete description of the Universe’s evolution.

Similarly, but using the extended f(R, T ϕ) gravity model (MORAES, 2016) also presents

a complete cosmological scenario including inflationary and radiation-dominated eras in

a self-consistent way, describing all the different stages of the dynamics of the universe.

Here, R and T ϕ are, respectively the Ricci curvature scalar and the trace of the energy-

momentum tensor of a scalar field ϕ.

The question surrounding the widely assumed superiority of analytics solutions on nu-
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merical methods has been the object of argumentation mainly on the part of the philoso-

phers of science, as in (ARDOUREL; JEBEILE, 2017).

The central result of this thesis is the proposal of a unique and continuous EoS for the

Universe’s evolution to describe its three eras. This EoS has been obtained analytically

from a cosmological model, the Induced Matter Model (STM), based on field equations

induced from a metric in 5 dimensions, in an empty space-time (LAPOLA et al., 2021).

The STM model (Space-Time-Matter Model) was proposed and studied extensively by

Paul Wesson and James Overduin (WESSON; OVERDUIN, 2018) - (OVERDUIN; WESSON,

1997) - (OVERDUIN et al., 2013)

This model was the evolution of the initial works by Kaluza-Klein (KK) models

(KALUZA, 1921)-(HOHM; SAMTLEBEN, 2013). Kaluza’s original idea was to unify the

known fundamental forces at that time, namely gravity and electromagnetism. Knowing

that Einstein’s description of gravity was made in terms of space-time warps and curves,

Kaluza had to consider an extra space-like dimension in which electromagnetism could

also manifest as “warps” and “curves” in space-time.

As astrophysical and cosmological observations have been progressed over time, KK

theory applications were not restricted to the unification of forces. For instance, KK dark

energy and dark matter alternatives were recently proposed (REDDY; LAKSHMI, 2015)-

(SHARIF; KHANUM, 2011) and (CHENG et al., 2002)-(KONG; MATCHEV, 2006). Even stellar

models were constructed in 5D theory. (KARSAI et al., 2016)-(BARNAFÖLDI et al., 2010).

The existence and stability of strange stars in extra dimensions have been investigated

by (ARBANIL et al., 2019). Other recent interesting applications of KK 5D theory to

cosmology can be seen in (SENGUPTA, 2020)-(MORAES; CORREA, 2019) and experimental

tests of KK theory in (MBELEK, 2020). Measurements of geodesic precession from Gravity

Probe B experiment constrained possible departures from Einstein’s GR for a spinning

test body in KK theory (OVERDUIN et al., 2013). Wetterich’s parametrization EoS was

used to obtain cosmological solutions in a 5D Ricci-flat universe (ZHANG et al., 2006).

Some relations for the embedding of spatially flat Friedmann Lemâıtre Robertson Walker

(FLRW) cosmological models in flat 5D manifolds were presented in (SEAHRA; WESSON,

2002). More applications and references of this Space-Time-Matter model are summarized

and cited in Section 3.2 of this thesis.

The novelty of our work, presented in Chapter 3 is that by using this model we start

from an empty Riemannian fifth-dimensional space-time but with associated constant

vacuum energy. In this framework, all the energy and pressure of our 4D Universe appears

as a geometric manifestation of the bulk surface of this empty 5D space-time.

In a previous work (MORAES; MIRANDA, 2012), which originated the one presented in

this thesis, the authors have already used this model, applying a 5d metric like ours, but
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looking for a solution only for the time component of the Einstein tensor in order to find

a form for the dark energy. We extend this study, including a cosmological constant and

investigating the solution of all components of Einstein’s equations.

An important result found concerns the scale factor obtained from the solutions of

the cosmological field equations. The analytical form found is a(t) = c5

√
sinh

(√
2
3
|Λ| t

)
,

where c5 is a integration constant, the cosmological constant from the fifth dimension

and the time t. This scale factor obtained as the solution of the 5-dimensional model is

able to describe the main phases of the Universe’s evolution.

Another important feature that this work brings is the comparison we make of the

cosmological parameters obtained from the model with the data observed experimentally.

In the end, comparing our results with the observational data (AGHANIM; et. al., 2018;

ALAM et al., 2017), the Hubble parameter obtained fits satisfactorily with the newest

experimental measurements.

An alternative gravity theory in 4-dimensional space-time popularized in the second

decade of the 2000s is the f(R, T ) theory, originally proposed in (HARKO et al., 2011), to

correct some incompleteness of f(R) theory, with R being the Ricci curvature scalar, in

studies on the galactic scale and the solar system as appointed, for example in (ERICKCEK

et al., 2006). Like the f(R) gravity (SOTIRIOU; FARAONI, 2010), f(R, T ) theory modifies

the Einstein-Hilbert action and includes in the original Lagrangian new terms dependent

only on the trace of the energy-momentum tensor T .

Since Harko´s article, the f(R, T ) gravity theory has been successfully tested in many

areas, as wormhole solutions of spherically symmetric spacetime via Noether symmetry

(SHARIF; NAWAZISH, 2019), models corresponding to different relations for the pressure

components in wormholes (radial and lateral), and several EoS, reflecting different mat-

ter content (ELIZALDE; KHURSHUDYAN, 2019), cosmological scenarios with some mod-

ifications in the field equations (TRETYAKOV, 2018), and a non-equilibrium picture of

thermodynamics at the apparent horizon of FRW universe (SHARIF; ZUBAIR, 2012).

In the astrophysics context, the hydrostatic equilibrium of neutron stars and white

dwarfs in f(R, T ) gravity was first investigated by (MORAES et al., 2018) and (CARVALHO

et al., 2017). Recently (DEB et al., 2019), also showed that f(R, T ) gravity is a good can-

didate for a suitable theory for explaining the observed massive stellar objects like super-

Chandrasekhar stars, and magnetars, which remain difficult to describe at the standard

framework of General Relativity unless one significantly changes the structure of the star

as, for example, investigated in (LENZI; LUGONES, 2012). In this work, were presented

hybrid stars in the General Relativity framework to explain massive pulsars.

It is known that one of the main criticisms of the f(R, T ) extended gravity theories

is the fact that they are not conservative, i.e., the covariant derivative of the energy-
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momentum tensor is non-zero, i.e., ∇µT
µν ̸= 0, indicating the non-conservation of energy.

This question was commented by (BARRIENTOS; RUBILAR, 2014), that correct the con-

servation equation of the energy-momentum tensor since that in the original development

of the theory in (HARKO et al., 2011) the authors left aside an essential term that has

consequences in the equation of motion of test particles. In this way, this theory can be

actually conservative and is in better agreement with the assumption that all energy in

the universe is conserved, without the ”creation” of matter. In (ALVARENGA et al., 2013)

the authors shows that for a linear equation of state p = ωρ, for the theory to be conserved

the function f(T ) needs to have a power-law form in the trace of the energy-momentum

tensor. In particular, in a dust-dominated Universe (ω = 0), the exponent is equal to 1
2
.

The implications of a conserved f(R, T ) gravity model in astrophysics, in particular

for investigating neutron stars, were studied for the first time in (SANTOS et al., 2019). The

application for conservative f(R, T ) theory in quark stars was done by (CARVALHO et al.,

2020). Also in astrophysics, the specific form for the energy-momentum tensor function in

conserved theory depends on the equation of state chosen for the neutron and quark star

matter. In contrast with previous works of compact stars in the non-conservative version

of the theory, these new results of conservative theory show that neutron and quark star

masses can change considerably with an increase in stellar radii.

However, so far in the literature, the conserved f(R, T ) gravity has not been ap-

plied to wormhole metrics, only the non-conserved version. (SHARIF; NAWAZISH, 2019;

ELIZALDE; KHURSHUDYAN, 2019; MORAES; SAHOO, 2018). Thus, in a work presented in

Chapter 4, we investigate, in the light of the conservative f(R,T) theory, the field equa-

tions from a four-dimensional metric of space-time that describes a classical traversable

wormhole, as proposed in (MORRIS; THORNE, 1988). Imposing the conservation of the

energy-momentum tensor expression, the conservation equation results in a specific form

for f(R, T ) function, depending on the form of the equation of state used, and the shape

function factor assumed in the wormhole metric.

For the case of wormholes, starting with a well-known form for the shape function

b(r) = ro
r

, where r = r0 is the throat of the wormhole (ELIZALDE; KHURSHUDYAN,

2019). Assuming for both radial and transverse pressure a linear relation with the energy

density, that the f(R, T ) needs to be linear in T for the theory to be conserved. Notably,

f(R, T ) = R+λT function. In this function, R the Ricci curvature scalar, λ is a constant

parameter, and T is the trace of the energy-momentum tensor.

This particular linear form for f(R, T ) is the only one possible with an EoS linear in

the energy density, for the theory to be conserved when applied to wormholes. In the

sequence, we obtained the conditions for the wormhole to be traversable without the need

for its throat to be filled with exotic matter.
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This present work is organized as follows. In Chapter 2 there is a brief summary

of the Einstein field equations for General Relativity in 4 dimensions and presents the

Space-Time-Matter Model. Chapter 3, the principal results of the thesis, we reproduced

our article entitled ”Induced equation of state for the universe epochs constrained by the

Hubble parameter” (LAPOLA et al., 2021). A copy of this article is also included at the end

of the thesis. Chapter 4 discuss for the first time the results of a wormhole model in the

conservative f(R, T ) gravity with both radial and transverse pressure depending linearly

on the energy density, and in Chapter 5 we present our main conclusions.



2 Space-Time-Matter

2.1 Matter as a geometric manifestation of a 5D manifold

2.1.1 Field Equations of General Relativity

The matter as energy changes spacetime geometry, and its existence curves the sur-

rounding spacetime. This is the essence of Einstein’s General Relativity (GR), originally

formulated by him in 1915 (EINSTEIN, 1915) As a preamble let us remember, the original

field equations given by the Einstein equation from General Relativity. The basic role of

GR field Einstein equations is to calculate the space-time geometry around a gravitational

field source, finding an expression for the metric tensor gµν (the indices µ and ν range

from 0 to 3).

The Einstein equation is given by

Gµν − Λgµν =
8πG

c4
Tµν , (2.1)

where the Einstein tensor is Gµν and Λ is the cosmological constant. The Einstein tensor

is given by

Gµν = Rµν −
1

2
gµνR. (2.2)

In Eq. (2.2) the Einstein tensor is written in terms of Ricci tensor Rµν and the

Ricci scalar curvature R. At the right-hand side of the Eq (2.1), G is the Newtonian

gravitational constant, c is the speed of light and Tµν is the energy-momentum tensor

that describes the energy density and pressure in a certain locality in space-time. In all

subsequent chapters and sections, we use the geometrized unit system G = c = 1. Taking

the trace on both sides of the Eq. (2.1), i.e. multiplying each term by gµν , remembering

that in this 4-dimensional space-time we have gµνgµν = 4. After this operation, one

multiplies the result of the trace of Eq.(2.1) by 1/2gµν , and finally subtracting this new
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result from Eq. (2.1), one obtains another form to express the Einstein Equation as

Rµν − Λgµν =
8πG

c4

(
Tµν −

1

2
gµνT

)
(2.3)

.

In cosmology, for the case of our Universe, or even in astrophysics, for a compact star,

for example, matter can be described as a perfect fluid, where T = diag(ρ,−p,−p,−p).

In this expression, ρ is the energy density, and p is the pressure of the universe or the star,

respectively. For the case of wormholes, where we have anisotropy in the pressure as we

will see, we have, still in the general relativity framework that T = diag(ρ,−pr,−pt,−pt),

being ρ the energy density and pr and pt the radial and tangential pressures, respectively.

2.1.2 Space-Time-Matter Theory

Also called the Induced Matter Model, the Space-Time-Matter theory with five di-

mensions is primarily based on Einstein’s idea of general relativity with 4 dimensions.

General relativity is a theory that can reasonably be called complete as a theory of grav-

ity in the four dimensions of space-time. But, analyzing the physics, it is possible to see

that the gravitational field and their matter source are not to be regarded as separate

things, but unified. In the same way, a space-time that presents curvature in a certain

location indicates the presence of matter, i.e., the curvature is matter, and vice-versa. Or

in the words of John A. Wheeler: “Space-time tells matter how to move. Matter tells

space-time how to curve” (THORNE et al., 2000). As Einstein’s field equations can also

be used in any number of dimensions, we can generalize GR increasing the space-time

dimensions, in particular for 5D. The primal idea that the Universe may have more than

four dimensions was introduced by Theodor Kaluza, who in 1921 realized that a 5D man-

ifold could be used to unify Einstein’s theory of general relativity with Maxwell’s theory

of electromagnetism (KALUZA, 1921). After this, Einstein endorsed the idea. In 1926

Oskar Klein proposed the connection to quantum theory by assuming that the extra di-

mension was microscopically small, with a size in fact connected via Planck’s constant to

the magnitude of the electron charge. (KLEIN, 1926). After these inaugural works, other

studies related to the 5 dimensions were published over time, as mentioned in chapter 4.

At the final of the 1980s and at beginning of the 1990s a series of papers and results using

the called Space-Time-Matter (STM) theory took place (KALUZA, 1921; WESSON, 1985;

WESSON, 1986; WESSON, 1992; SUNDRUM, 1999; WESSON; et al., 1996; LEON, 1988). This

STM theory is based on a 5D Riemannian manifold, where the extra dimension intends to

induce matter into 4D space-time (WESSON; OVERDUIN, 2018). This happens because the

seemingly empty 5D field equations RAB = 0, where RAB is the 5D Ricci tensor, contains

the 4D Einstein’s equations Gµν = 8πGTµν with an effective energy-momentum tensor
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that depends on derivatives of the metric coefficients with respect to the extra coordinate

x4 = l. This result is based on Campbell’s embedding theorem of differential geometry

(CAMPBELL, 1926). Briefly, Campbell‘s theorem says that any analytic Riemannian space

with n dimensions is embedded in a Riemannian space with n + 1 dimensions. Here, n is

the dimension of the space. In this work, we are using this theorem in a 4D Riemannian

manifold that is embedded in a 5D space, i.e., n = 4. Then this implies that the 4D

equations of General Relativity Gµν = 8πTµν are embedded in a system of 5D equations

like GAB = 0, or still with a cosmological term, i.e.,GAB = Λ. STM theory gives physical

meaning to this theorem. If we take one of the components of the equation

GAB = 0, (2.4)

with A,B = 0, 1, 2, 3, 4, write out all of its components, it is always possible to identify

them into those which do not involve the extra dimension and those that depend on it.

Putting these on the left and right sides of an equals sign produces a relation between the

field and matter. This method was applied using a Friedman-Lemaitre-Robertson-Walker

metric tensor for the standard Cosmology, with an extra dimension and a scale factor as

its fifth coordinate. So is possible to see in detail how the STM theory works and the

results fit very well with observational data. Then, it will be possible to see in detail and

in practice a complete 4D cosmological scenario induced from an empty 5D Riemannian

space-time, which leads, among other results, to a unified equation of state for the three

eras of the evolution of our 4D Universe (LAPOLA et al., 2021).



3 Induced equation of state for the

universe epochs constrained by the

Hubble parameter

This chapter presents the main results of the article published in the Chinese Journal

of Physics in its August 2021 edition. In the present work, the central theme of this

thesis, we apply the STM model to standard ΛCDM cosmology and confront the theo-

retical with observational data. The article generalizes a model proposed in (MORAES,

2015) that considers the possibility of the existence of an extra dimension in space, which

could explain not only the generation of energy and the consequent existence of matter

in the Universe but also the origin of dark energy responsible for its current accelerated

expansion. The research was developed from just three hypotheses: the first proposed

the existence of a 5th dimension in the Universe, with an expansion rate different from

the other dimensions, which expand in our 4D homogeneous and isotropic space-time.

The second is the association of the energy density and pressure of the Universe in 4D

to terms involving the rate of expansion of the extra dimension, in the components of

Einstein’s equation in five dimensions. Finally, the third hypothesis assumed the ex-

istence of a constant energy density associated with the creation of a vacuum in this

five-dimensional space. Based only on these three assumptions, it was possible to ob-

tain an expression for the Hubble parameter, which measures the expansion rate of our

Universe and its evolution over time, that is, from the Big Bang to current times. The

fitting with the observational data was in good agreement, as is possible to see in the final

section. (www.doi.org/10.1016/j.cjph.2021.04.021)

3.1 Synthesis

We present a five-dimensional cosmological metric that reveals a four-dimensional

energy-momentum tensor. We analyze three cases for the resulting field equations: null,

positive, and negative cosmological constant Λ. For the case with a null cosmological
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constant, we obtain a solution able to describe the radiation-dominated era of the Uni-

verse. The positive five-dimensional cosmological constant case yields a bounce, cosmo-

logical model. In the negative Λ case, the scale factor for the line element is obtained

as a(t) = c5

√
sinh

(√
2
3
|Λ| t

)
, where c5 is a constant. This solution can remarkably de-

scribe not only the late-time cosmic acceleration but also the non-accelerated stages of

the cosmic expansion, namely the radiation and matter-dominated epochs in a continu-

ous form. We obtain an analytical equation of state capable of describing the different

epochs of the universe and it reads as p = ω(z)ρ with ω(z) = 1
3

[
1 − 4

1+c45(1+z)4

]
, with p

being the pressure of the universe, ρ its density and z is the redshift. In our model, the

constant c5 is related to the Hubble constant as H0 =
√

|Λ|
6

coth

[
arcsinh

(
1
c5

)2]
and this

satisfactorily fits the observational data for the low redshift sample of the experimental

measurements of the Hubble parameter, which results in H0 = 72.2+5.3
−5.5km s−1 Mpc−1 and

c5 = 0.600+0.061
−0.058

3.2 Introduction

Since the late nineties of the last century, a lot of efforts have been made to describe the

observable universe as a brane embedded in a higher-dimensional space (SUNDRUM, 1999;

GOGBERASHVILI; SINGLETON, 2004; SAMI et al., 2004; FABBRI et al., 2004; BURGESS et al.,

2001; FLANAGAN et al., 2000). Some results obtained from such a set up for the universe

are remarkable. Braneworld models of dark energy were recently presented in references

(JAWAD, 2015)-(RANI; JAWAD, 2016). In Reference (SAHNI et al., 2005), the possibility

of the ΛCDM cosmological model be a braneworld model in disguise was investigated.

In the astrophysics of compact objects context, braneworld models can predict some

deviations from standard General Relativity (GR) outcomes and fit with some peculiar

observations (GERMANI; MAARTENS, 2001)-(LUGONES; ARBANIL, 2017). Recent literature

on braneworld models applications can be found in (PRASETYO et al., 2018)-(BARBOSA-

CENDEJAS et al., 2014).

The braneworld scenario was originally proposed as an alternative to the hierarchy

problem, as it can be checked, for instance, in References (YANG et al., 2012)-(DAS et al.,

2008). The concept of extra dimensions has also been used in attempts to unify the

four fundamental forces of nature (HALL; NOMURA, 2002)-(APPELQUIST, 1984). On this

regard, one should recall that braneworld models are a low energy limit of string theory

(BURIKHAM, 2005; EL-NABULSI, 2009).

The extra dimensional universe configurations are not only related to brane scenar-

ios. There are the Kaluza-Klein (KK) models too (KALUZA, 1921)-(HOHM; SAMTLEBEN,

2013). Kaluza’s original idea was to unify the known fundamental forces at that time,
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namely gravity and electromagnetism. Knowing that Einstein’s description of gravity was

made in terms of space-time warps and curves, Kaluza had to consider an extra space-

like dimension in which electromagnetism could also manifest as “warps” and “curves”. In

fact, by elevating the Einstein’s field equations of GR to a five-dimensional (5D) manifold,

Kaluza obtained the original four-dimensional (4D) Einstein’s field equations of GR to-

gether with Maxwell electromagnetism formalism. Klein’s contribution came a few years

later motivated by the “invisible” feature of the extra dimension. Klein’s idea was that

we could not see or perceive the extra dimension because it was really tiny and curled up.

In other words, it was compactified in a circular topology.

As astrophysical and cosmological observations have progressed over time, KK the-

ory applications were not restricted to the unification of forces. For instance, KK dark

energy and dark matter alternatives can be seen, respectively in (REDDY; LAKSHMI, 2015)-

(SHARIF; KHANUM, 2011) and (CHENG et al., 2002)-(KONG; MATCHEV, 2006). Even stellar

models were constructed in KK theory (KARSAI et al., 2016)-(BARNAFÖLDI et al., 2010).

Moreover, the virtual effects of KK states on Higgs physics in universal extra-dimensional

models were examined in (PETRIELLO, 2002). The Space-Time-Matter Model introduced

a generalized gravitational conformal invariance in the context of non compactified 5D

KK theory (DARABI; WESSON, 2002). The stability of strange stars in extra dimensions

has also been investigated recently (ARBANIL et al., 2019). Other recent interesting ap-

plications of KK 5D theory to cosmology can be seen in (SENGUPTA, 2020)-(MORAES;

CORREA, 2019) and experimental tests of KK theory in (MBELEK, 2020).

Effective properties of matter in KK theory have been investigated in (LIU; WESSON,

1994) and outlined a Machian interpretation of KK gravity (MASHHOON et al., 1994).

Some classical tests were applied to the theory in (KALLIGAS et al., 1995) and the referred

equation of motion was derived in (WESSON; LEON, 1995).

Measurements of geodesic precession from Gravity Probe B experiment constrained

possible departures from Einstein’s GR for a spinning test body in KK theory (OVER-

DUIN et al., 2013). The Wetterich’s parametrization equation of state (EoS) was used to

obtain cosmological solutions in a 5D Ricci-flat universe (ZHANG et al., 2006). Some rela-

tions for the embedding of spatially flat Friedmann Lemâıtre Robertson Walker (FLRW)

cosmological models in flat KK manifolds were presented in (SEAHRA; WESSON, 2002).

The cosmological constant problem, namely, the huge discrepancy between theoretical

and observed values of the cosmological constant in standard ΛCDM cosmology, was

investigated in KK gravity by (WESSON; LIU, 2001) and in a quantum cosmology bf model

derived from KK theory with a non-compactified extra dimension in (DARABI et al., 2000).

Particularly, regarding the interpretation of the extra dimension in the 4D observable

universe, the References (LIU; WESSON, 1994), (MORAES, 2015)-(FUKUI et al., 2001) have
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fundamental importance. They consist of the following concept. The KK field equations

read

GAB = 0, (3.1)

with GAB being the Einstein tensor and the indices A,B run from 0 to 4. From Eq.(3.1),

it can be seen that the KK field equations depend only on the 5D metric gAB. By

collecting in Eq.(3.1) the terms that depend on the extra coordinate we can associate

them to an induced energy-momentum tensor in 4D. In practice we can transpose the

extra dimensional terms of the Einstein tensor to the rhs of (3.1) inducing the energy-

momentum tensor of matter.

This physical model, known as Space-Time-Matter, Model is strongly supported by

Campbell’s theorem of Riemannian geometry (CAMPBELL, 1926).

The extra-dimensional components of this 5D Ricci tensor are being naturally related

with matter. This unify the gravitational field with its sources, as idealized by Einstein.

Further applications of this remarkable idea can be appreciated in Refs.(LEON, 2010)-

(HALPERN, 2000).

In the present article we apply this idea to the Friedmann–Lemâıtre–Robertson

–Walker (FLRW) metric including an extra spatial dimension. The field equations will

be taken as (1) in the presence of Λ, that is (SAHNI; SHTANOV, 2003)

GAB + ΛgAB = 0. (3.2)

In this way, we will investigate three cases, namely Λ = 0,Λ > 0, and Λ < 0.

We will be particularly concerned with the role of the scale factors a(t) and ξ(t) of the

5D FRLW metric (MORAES; MIRANDA, 2012)-(CAMERA, 2010)

ds2 = dt2 − a(t)2[dr2 + r2(dθ2 + sin2 θdϕ2)] − ξ(t)2dl2. (3.3)

In (3.3), a(t) is the scale factor of the observable universe, and ξ(t) is the extra-dimension

scale factor. Moreover, we are assuming the spatial curvature of the universe to be null,

in accordance with recent observational data on the fluctuations of the temperature of

the cosmic microwave background radiation (HINSHAW et al., 2013). Still, in (3.3), t

is the time coordinate, r, θ, and ϕ are the polar spherical coordinates and l is the extra

spatial coordinate. Throughout this work, natural units will be assumed, unless otherwise

advised.

In the present article, we shall investigate the cosmological solutions obtained from the

substitution of (3.3) in the different cases of (3.2). Remarkably, the field equations (3.2),
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that contain only the Einstein tensor and a cosmological constant, both in five dimensions,

will induce a particular energy-momentum tensor for the matter in the form of radiation,

dust and dark energy in the four-dimensional universe, as a geometrical manifestation of

this five-dimensional setup. In the negative Λ case, from the Friedmann-like equations the

time dependent solutions of the scale factors allow us to derive a quite elegant and simple

EoS. This EoS is able to describe, in an analytical and continuous form, the radiation,

matter and dark energy eras of the universe. Thus, in our model it is possible to obtain

a unique EoS for the universe evolution, in our knowledge, a remarkable novelty in extra

dimensional models. It will be shown that our results are in accordance with low-redshift

observational data of the Hubble parameter.

The section is organized as follows. After the Introduction, in Sec. 3.3, we present

the foundations of our model and how we obtain the 4D dynamics from a 5D space in

the case of null, positive and negative cosmological constants. In Sec. 3.4 we obtain the

analytical and continuous EoS for the Universe evolution, deceleration factor, and density

parameter. In Sec. 3.5, using observational data from the Hubble parameter we constrain

our model.

3.3 4D dynamics from 5D space

In the present section we will substitute Eq.(3.3) in Eqs.(3.1) and (3.2). For all cases,

we will consider that matter in the 4D observable universe is a manifestation of a 5D

universe. The terms on the 5D Einstein tensor for (3.3) which depend on the extra

coordinate are transposed to the rhs of Eqs. (3.1) and (3.2) to play the role of an induced

energy-momentum tensor.

Throughout our discussions, the energy-momentum tensor of a perfect fluid will be

assumed, that is,

TB
A = diag(ρ,−p,−p,−p, 0), with ρ being the matter-energy density and p the pressure

of the universe. Note that T 4
4 = 0 since we will consider, such as in braneworld models,

that matter is restricted to the 4D universe.

3.3.1 Null cosmological constant model

The non-null components of the Einstein tensor obtained when substituting the metric

(3.3) in the field equations (3.1) read

G0
0 = 3

[(
ȧ

a

)2

+
ȧ

a

ξ̇

ξ

]
, (3.4)



CHAPTER 3. INDUCED EQUATION OF STATE FOR THE UNIVERSE EPOCHS
CONSTRAINED BY THE HUBBLE PARAMETER 28

G1
1 = G2

2 = G3
3 =

(
ȧ

a

)2

+ 2
ȧ

a

ξ̇

ξ
+ 2

ä

a
+

ξ̈

ξ
, (3.5)

G4
4 = 3

[(
ȧ

a

)2

+
ä

a

]
, (3.6)

where dots indicate time derivatives.

We simply identify the new terms in G0
0 and G1

1 due to the extra-dimensional scale

factor with the energy density ρ and with the pressure p, respectively. From the isotropy,

G2
2 = G3

3 and the new terms in these components are also identified with the pressure

p. We collect the terms that depend on the extra-dimensional scale factor ξ and its

derivatives ξ̇ and ξ̈, as described in (WESSON; et al., 1996). This mechanism yields to

ρ = − 3

8π

ȧ

a

ξ̇

ξ
, (3.7)

p =
1

4π

(
ȧ

a

ξ̇

ξ
+

1

2

ξ̈

ξ

)
. (3.8)

From G44 = 0 we also obtain the constraint equation(
ȧ

a

)2

+
ä

a
= 0. (3.9)

By solving Eq.(3.9), we have

a(t) = c1
√
t. (3.10)

Throughout the article, ci, with i = 1, 2, 3, ..., are constants.

It is worth to remark that Eq.(3.10) describes a radiation-dominated universe, since

in standard cosmology a ∼ t1/2 occurs exactly for such a stage of the universe evolution

(RYDEN, 2003). Remarkably, when Kaluza developed his extradimensional theory of grav-

ity, today called KK gravity, he intended to describe from GAB = 0 uniquely, both 4D

Einstein’s field equations with matter and Maxwell’s equations for electromagnetism, as

it can be checked in (OVERDUIN; WESSON, 1997).

We can substitute (3.10) in the G00 component of Eq.(3.1) for metric (3.3) and derive

the solution for ξ(t) in

ȧ

a
+

ξ̇

ξ
= 0, (3.11)
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resulting in

ξ(t) =
c2√
t
. (3.12)

It can be verified that Eqs.(3.10) and (3.12) are solutions of Eq.(3.1).

It is interesting to remark that the solution obtained for ξ(t) may indicate a compacti-

fication of the extra coordinate as time passes by. This can be clearly verified by deriving

the referred Hubble parameter Hl = ξ̇/ξ, which reads

Hl(t) = − 1

2 t
, (3.13)

and a negative Hubble parameter would indicate compactification rather than expansion

of the referred space.

Solutions (3.10) and (3.12) when substituted in (3.7) and (3.8) yield, respectively,

ρ(t) =
3

32π t2
, (3.14)

p(t) =
1

32π t2
. (3.15)

We can see from Eqs.(3.14) and (3.15) that ρ and p, in this model, have a quadratic

term on t in the denominator. Such a behaviour can also be seen in braneworld models

(SAHNI; SHTANOV, 2003; SZABÓ et al., 2007).

We can also note that, remarkably, by dividing (3.15) by (3.14), one has ω = p/ρ = 1/3,

which is the EoS parameter of a radiation-dominated universe (RYDEN, 2003). This result

can also be verified in the Friedmann-like equations (3.7)-(3.8).

3.3.2 Non-null cosmological constant models

In the following calculations, we take a step further, introducing a cosmological con-

stant associated with the fifth dimension in the formalism. We study the cases in which

it is positive and negative.

3.3.2.1 Case I: Λ > 0.

Let us now work with Eq.(3.2). By substituting metric (3.3) in (3.2), we can once again

collect the terms that depend on the extra dimension in the Einstein tensor components

and associate them with the matter content of the observable universe, by writing the
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FRLW 4D equations with an energy density ρ and pressure p given by:

ρ = − 3

8π

(
ȧ

a

ξ̇

ξ
+

Λ

3

)
, (3.16)

p =
1

8π

(
2
ȧ

a

ξ̇

ξ
+

ξ̈

ξ
+ Λ

)
. (3.17)

Also, by recalling that T44 = 0, we have

(
ȧ

a

)2

+
ä

a
= −Λ

3
. (3.18)

Eq.(3.18) can be solved for the scale factor, yielding

a(t) = c3

√√√√∣∣∣ sin(√2

3
Λ t

)∣∣∣ . (3.19)

The evolution of the scale factor (3.19) in time can be appreciated in Fig.4.3 below.
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FIGURE 3.1 – Evolution of the scale factor as a function of time in natural units, for c3 = Λ = 1.

By analysing Fig.4.3 we are led to conclude that a positive 5D cosmological constant

yields a cyclic or bouncing universe (STEINHARDT; TUROK, 2002)-(BARROW; GANGULY,

2017) in the present model.

In possession of Eq.(3.19), we can use the non-null components of Eq.(3.2) to write

ξ(t) = c4

∣∣ cos
(√

2
3
Λ t
) ∣∣√∣∣ sin(√2

3
Λ t
) ∣∣ . (3.20)
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In Fig.3.2 we plot ξ against time. From Fig.3.2, we can see that ξ completes each cycle

in the same time scale as a does, compactifying periodically. We can also see that, by

keeping in mind that a = 1 at present, the length scale of the extra dimension is minimum

today, which could justify the absence of shreds of evidence of extra dimensions in the

Large Hadron Collider (CHATRCHYAN; et al., 2012)-(DATTA; RAYCHAUDHURI, 2013).
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FIGURE 3.2 – Evolution of the extra-dimension scale factor as a function of time in natural units, for
c4 = Λ = 1.

From (3.19) and (3.20), we can write the explicit solutions for ρ(t) and p(t) as

ρ(t) =
Λ

16π
cot2

(√
2

3
Λ t

)
, (3.21)

p(t) =
Λ

48π

[
cot2

(√
2

3
Λ t

)
+ 4

]
. (3.22)

Although bouncing models have their importance specially because they evade the

Big-Bang singularity, we should discard the present model due to the impossibility of

predicting the late-time accelerated expansion regime of the universe (RIESS, 1998; PERL-

MUTTER et al., 1999) from Eq.(3.19).

3.3.2.2 Case II: Λ < 0.

Following the same approach of the previous section now for Λ < 0, we obtain the

scale factors as
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a(t) = c5

√√√√sinh

(√
2

3
|Λ| t

)
, (3.23)

ξ(t) = c6
cosh

(√
2
3
|Λ| t

)
√

sinh
(√

2
3
|Λ| t

) . (3.24)

The evolution of those scale factors can be appreciated in Figures 3.3-3.4 below.
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FIGURE 3.3 – Evolution of the scale factor as a function of time in natural units, for c5 = 1 and Λ = −1.
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FIGURE 3.4 – Evolution of the extra-dimension scale factor as a function of time in natural units, for
c6 = 1 and Λ = −1.

We can see from Fig.3.3 that a(t) assumes an exponential behavior as time grows,

which may be an indication of the recent cosmic acceleration (RIESS, 1998; PERLMUTTER

et al., 1999). This will be clarified in Fig.3.5 below.
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From Figure 3.4, we can see that the extra dimension is large for the primordial stages

of the universe (t ≪ 1). Then, it naturally suffers a process of compactification, assuming

its minimum value for t ∼ 1. After that, it maximizes its length scale once again.

It is possible to derive a relation between the scale factors a(t) and ξ(t). Starting from

(3.4) and (3.6) for Λ < 0 we obtain the system of equations

ȧ

a

ξ̇

ξ
+

(
ȧ

a

)2

=
Λ

3
, (3.25)

ä

a
+

(
ȧ

a

)2

=
Λ

3
. (3.26)

Subtracting (25) from (26) leads to

ξ̇

ξ
=

ä

ȧ
, (3.27)

which yields to the relation

ξ = Kȧ, (3.28)

with constant K.

Therefore,

ξ

a
= KH =

c6
c5

√
6

|Λ|
H, (3.29)

where H = H(t) = ȧ
a

is the Hubble parameter.

The solutions for the induced matter content read

ρ(t) =
|Λ|
16π

coth2

(√
2

3
|Λ| t

)
, (3.30)

p(t) =
|Λ|
48π

[
coth2

(√
2

3
|Λ| t

)
− 4

]
(3.31)

The induced density can be rewritten as

ρ =
|Λ|
16π

(
c5
c6

ξ

a

)2

(3.32)

or

ρ =
3H2

8π
, (3.33)
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where

H(t) =

√
|Λ|
6

coth

(√
2

3
|Λ| t

)
. (3.34)

The Hubble parameter has its evolution in time shown in Figure 3.5. We see from

Fig.3.5 that the predicted Hubble parameter starts evolving as ∼ 1/t, which is, indeed,

expected from standard model predictions (RYDEN, 2003). After a period of time, H(t) ∼
constant. It is known that an exponential scale factor describes the cosmic acceleration.

From the definition of the Hubble parameter, an exponential scale factor yields a constant

Hubble parameter. In this way, the constant behavior that H(t) assumes for high values

of time is an indication of the recent cosmic acceleration.
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FIGURE 3.5 – Evolution of the Hubble parameter as a function of time in natural units, for Λ = −1.

3.4 Equation of state for the Universe evolution and decel-

eration parameter

In this section we investigate the solutions obtained in the previous section for the

negative 5D cosmological constant case. It is shown that the induced matter-energy

density and pressure can be related through a unique analytical EoS for the Universe

evolution (CHODOS et al., 1974; WEBER et al., 2007). We also derive, from the scale factor

solution, the deceleration parameter of the model.

3.4.1 Unified equation of state for the Universe evolution

Considering the case in which Λ < 0, the expressions for the density and pressure can

be written in a unified form as
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p = ω(t)ρ, (3.35)

where the EoS parameter can be written as

ω(t) = −1 +
4

3
sech2

(√
2

3
|Λ|t

)
. (3.36)

The evolution of the above EoS in time can be appreciated in Figure 6 below. From

Figure 6 it is possible to realize some interesting cosmological features predicted by the

model. One can note that for small values of time, ω ∼ 1/3. According to the standard

model, the primordial value of ω is true 1/3, as the primordial universe dynamics is

dominated by radiation, such that p = ρ/3 (RYDEN, 2003). As the universe expands

and cools down, it allows a pressureless matter to be formed. This stage represents

the matter-dominated stage of the universe, for which ω ∼ 0, which is also depicted

in Fig.3.6. Last, but definitely not least, Fig.3.6 indicates that for high values of time,

ω ∼ −1. According to recent observations on the cosmic microwave background radiation

temperature fluctuations, ω = −1.073+0.090
−0.089 (HINSHAW et al., 2013; AGHANIM; et. al., 2018).

This negative pressure fluid is responsible for the cosmic acceleration in the standard

model. Therefore, our present approach reveals a dominant negative pressure fluid for high

values of time. Remarkably, it has also predicted other stages of the universe evolution,

named radiation and matter-dominated eras, in a continuous and analytical form.
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FIGURE 3.6 – Evolution of the equation of state parameter as a function of time in natural units, for
Λ = −1.

It is important to show that the expression (35) for the density satisfies the continuity

equation in 4D. Starting from the continuity equation

ρ̇ + 3
ȧ

a
(ρ + p) = 0, (3.37)
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substituting (3.35) and integrating on both sides leads to

ρ(t) =
|Λ|
16π

[(
c5
a(t)

)4

+ 1

]
(3.38)

proving that the continuity equation in 4D is satisfied in our model. Note for a(t) << 1,

the energy density ρ ∝ a−4, denoting the radiation era.

3.4.2 The deceleration parameter

The deceleration parameter is defined as

q(t) = − ä a

ȧ2
, (3.39)

so that q > 0 indicates a decelerated expansion and q < 0 indicates an accelerated

expansion.

In the present model, it can be shown that

q = − ξ̇

ξ

a

ȧ
= −Hl

H
. (3.40)

Therefore, remarkably the deceleration factor in our model is the negative ratio between

the Hubble parameter of the extra-dimension scale factor and the Hubble parameter in

4D.

Explicitly, the deceleration parameter for Λ < 0 reads

q(t) = 1 − 2 tanh2

(√
2

3
|Λ| t

)
. (3.41)

3.5 Cosmological parameters as functions of redshift and

confrontation with observational data

To confront our solutions with observational data we should investigate the behavior

of the Hubble and other cosmological parameters in terms of the redshift rather than time.

We will concentrate our attention in the Λ < 0 case.

Taking into account the scale factor obtained in (3.23), the redshift can be written as

z(t) = −1 +
1

c5

√
sinh

(√
2
3
|Λ| t

) . (3.42)
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The Hubble parameter is then expressed in terms of redshift as

H(z) =

√
|Λ|
6

coth

[
arcsinh

[
1

c5(1 + z)

]2}
. (3.43)

The above equation relates the constant c5 of the 4D scale factor to the present value

of the Hubble constant as

H0 =

√
|Λ|
6

coth

[
arcsinh

(
1

c5

)2
]
. (3.44)

3.5.1 Observational constraints

Hubble parameter data as a function of redshift yields one of the most straightfor-

ward cosmological tests today. It consists of constraining the cosmological models with

values of the expansion rate as a function of redshift. It is even more interesting when

the Hubble parameter data come from estimates of differential ages of objects at high

redshifts, because it is inferred from astrophysical observations alone, not depending on

any background cosmological models (check References (STERN et al., 2010; LIMA et al., )).

The data we use here comes from the 51 H(z) data compilation from Magaña et al.

(MAGA et al., 2018). This compilation consists of 20 clustering (from Baryon Acoustic

Oscillations and Luminous Red Galaxies) and 31 differential age H(z) data.

We choose to work here only with the 31 differential age H(z) data1, because it does not

depend on any background cosmological model. The age estimates depend only on models

of the chemical evolution of objects at high redshifts. H(z) estimates from clustering like

Baryon Acoustic Oscillations usually assume a standard cosmological model to obtain the

data from surveys.

In all analyses here, we have written a χ2 function for parameters, with the likelihood

given by L ∝ e−χ2/2. The χ2 function for the H(z) data is given by the following:

χ2
H =

31∑
i=1

[Hobs,i −H(zi, s)]
2

σ2
Hi,obs

, (3.45)

where s is the parameter vector, which we choose to be s = (c5, H0). Λ can be related to

these parameters through Eq.(3.44).

In Figure 3.7 below, we can see the 31 H(z) data used here and the best H(z) fit we

have found by minimizing χ2
H .

1Marked as “DA” in Table 1 of Ref. (MAGA et al., 2018).
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FIGURE 3.7 – Hubble parameter as a function of redshift for the best fit parameters from the 31 H(z)
data (H0 = 72.2 km/s/Mpc, c5 = 0.60). It is shown a curve with H0 = 67.4 km/s/Mpc, in agreement
with Planck data (AGHANIM; et. al., 2018; ALAM et al., 2017) for the Hubble parameter and for a universe
age of 13.8 Gyr, that corresponds to c5 = 0.58. The blue region corresponds to a 2σ (95.4%) c.l. around
the best fit.

To find the constraints over the free parameters, we have assumed flat priors for c5

and H0 and have sampled the posteriors with the so-called Affine Invariant Monte Carlo

Markov Chain Ensemble Sampler by (GOODMAN; WEARE, 2010), which was implemented

in Python language with the emcee software by (FOREMAN-MACKEY et al., 2013). In

order to plot all the constraints on each model, we have used the freely available software

getdist2, in its Python version.

The results of this analysis can be seen in Fig.3.8 and Table 3.1.

Parameter 95% limits
c5 0.600+0.061

−0.058

H0 72.2+5.3
−5.5

t0 12.59+0.69
−0.62

TABLE 3.1 – Mean value and 95% limits of the model parameters. In boldface are the free parameters
and t0 is a derived parameter. H0 is in units of km/s/Mpc and t0 in Gyr.

Substituting the central values for c5 and H0 shown in table 3.1, in Eq. (3.44) with some

algebra one finds the value for the 5D negative cosmological constant with a magnitude

as |Λ| = 2.907 10−35s−2. The magnitude of Λ, which has a geometrical origin coming

from the fifth dimension, is in good agreement with the experimental ΛCDM value Λ =

2.046 10−35s , as shown in (PERLMUTTER et al., 1999)

2getdist is part of the great Affine Invariant Monte Carlo Markov Chain Ensemble Sampler, COSMOMC
(LEWIS; BRIDLE, 2002).
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FIGURE 3.8 – Confidence contours from 31 H(z) data analysis of the free parameters of the model, c5
and H0. We also show the constraints over the total age, t0, which is a derived parameter (H0 is in
km/s/Mpc and t0 in Gyr). The contours correspond to 68% and 95% c.l..

3.5.2 Extra dimensional scale factor, deceleration, and equation of state

parameters as functions of redshift

In Fig. 3.9 we present the scale factor of the extra dimension as a function of redshift,

which can be written as

ξ(z) = c5 c6 (1 + z)

√
1 +

1

c45 (1 + z)4
. (3.46)

It is interesting to note that the extra-dimension scale factor has a free constant

c6, which is not fixed by the cosmological analysis. This happens because the extra

dimensional dependence of the cosmological parameters only appears through the fraction

ξ̇/ξ. This means that, in this model, even if the scale of the extra dimension is very

small, the cosmological effects would still be measurable. As a consequence, the extra

dimensional length scale can be arbitrarily small.
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FIGURE 3.9 – Evolution of the extra-dimension scale factor as a function of redshift in natural units, for
c5 = 0.60 and c6 = 1.

The deceleration parameter as a function of the redshift is given by

q(z) = 1 − 2

1 + c45 (1 + z)4
, (3.47)

whose behavior can be seen in Fig.3.10. We can see that the model gives an accelerated

expansion of the universe (q < 0) for the present epoch. Also, the obtained solution gives

a transition from a decelerated to an accelerated universe expansion (RIESS, 2001). Our

model prediction, z ∼ 0.66, is compatible with the results found in (FAROOQ; RATRA,

2013).

The analytical expression for the EoS parameter as a function of redshift is

ω(z) =
1

3

[
1 − 4

1 + c45(1 + z)4

]
, (3.48)

whose pattern is shown in Fig.3.11. It depicts the EoS parameter evolution for different

epochs of the universe. As expected by the standard cosmological model (TANABASHI et

al., 2018), for recent redshifts the parameter is < −1/3 (dark energy era), for past times

the EoS parameter presents a null value, which is compatible with the matter-dominated

phase and for larger values of z, is equal to 1/3 (radiation energy era).
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FIGURE 3.10 – Evolution of the universe deceleration parameter as a function of the redshift, for c5 =
0.60.
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FIGURE 3.11 – Evolution of the EoS parameter as a function of the redshift in natural units, for c5 = 0.60.



4 Wormholes in energy-momentum

conserved f (R, T ) Gravity

Wormholes are shortcuts in the topology of space-time that connect two distant re-

gions in the universe. The wormholes theory was proposed for the first time by Einstein

and Rosen in 1935 when they established a solution based on the Schwarzschild metric,

that describes bridges between two different areas of space-time modeled with Einstein’s

General Relativity vacuum field equations. In this work, Einstein and Rosen showed that

only a few coordinate systems describe two asymptotically flat regions of the Schwarzschild

space-time maximally extended, and the event horizon of a black hole is the key ingre-

dient of bridge construction (EINSTEIN; ROSEN, 1935). After a period of about 27 years

of numbness in the area, in 1962, Wheeler and Fuller published a paper showing that the

Einstein-Rosen bridges were unstable and that they would collapse instantly as soon as

they are formed, preventing even light from being able to cross them (FULLER; WHEELER,

1962).

The revival of the theory occurred in 1988 with Morris and Thorne (MORRIS; THORNE,

1988) when they found a metric for a “traversable” wormhole, i.e. a wormhole whose

matter inside keeps its throat open. Solutions of the Einstein’s field equations for humanly

traversable wormholes, as shown by Morris and Thorne violate the null energy condition.

By solving its field equations, we find that the throats of wormholes must be filled with

exotic matter.

In any case, the fluid that permeates the inner of a wormhole must be anisotropic, as

in the case of many stars configurations, i.e. with an energy-momentum tensor that, in

addition to the energy density in its temporal component, also has radial pressure and

tangential pressure, where the latter corresponds to its angular components.

In particular, the laws of General Relativity (GR) combined with the laws of quantum

field theory tell us how to construct a wormhole and what kind of matter is needed to hold

it open, so that things can pass through it (BLÁZQUEZ-SALCEDO et al., 2021)-(KONOPLYA;

ZHIDENKO, 2022)

Anyhow, some alternative theories of gravity have been capable of describing non-
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exotic matter in the wormhole interior, such as the f(R) theory (SOTIRIOU; FARAONI,

2010), with R being the Ricci scalar, Gauss-Bonnet theory (MEHDIZADEH et al., 2015)

and Kaluza-Klein gravity (LEON, 2010), among others.

An extension of the f(R) theories of gravity was proposed by Harko and collabo-

rators by further inserting a dependence on the trace of the energy-momentum tensor

T , denoting the f(R, T ) gravity (HARKO et al., 2011). Since then, the theory has been

successfully tested in many areas (SHARIF; NAWAZISH, 2019; ELIZALDE; KHURSHUDYAN,

2019; TRETYAKOV, 2018; SHARIF; ZUBAIR, 2012; MORAES et al., 2018; CARVALHO et al.,

2017; LIN et al., 2017; SHAIKH, 2018).

In the present article, starting from the metric of a static wormhole, we will calculate

the field equations using the f(R, T ) formalism, as doing in (HARKO et al., 2013; MORAES;

SAHOO, 2018; LOBO; OLIVEIRA, 2009; PAVLOVIC; SOSSICH, 2015; VISSER; WORMHOLES,

1995; SHARIF; NAWAZISH, 2019). However, in our approach we impose the conservation

of energy-momentum tensor. In previous works, this assumption also was adopted. For

example in (CARVALHO et al., 2020), the conservation of the energy-momentum tensor was

assumed. Starting from an f(R, T ) in the form f(R, T ) = R+2h(T ), this generic function

of the energy tensor momentum trace (h(T )), takes on a specific form. This form satisfies

the conservation of energy-momentum tensor. In (CARVALHO et al., 2020) the authors use

the energy-momentum conservation in f(R, T ) formalism to solve the TOV equation for

strange stars, using linear equations of state (EoS).

We assume a well-known ansatz for the shape function b(r) in the wormhole metric

and obtain the density expression as a function of the radius r. We then investigate which

form of h(T ) satisfies the energy-momentum conservation, and investigate if the energy

conditions can be satisfied, looking for the presence of usual matter in the throat of the

wormhole.

It is interesting to quote that although so far wormholes have not been detected, at-

tempts to do so have been constantly proposed, as one can check, for instance in (SHAIKH,

2018)-(NANDI et al., 2017).

This chapter is organized as follows: in Section 4.1, we present the f(R, T ) theory

and the energy-momentum tensor conservation equation. In Section 4.2 we present the

wormhole metric and asymmetric energy-momentum tensor. Section 4.3 details the en-

ergy conditions that must be obeyed for the wormhole to be traversable. The results to

combine the energy-momentum conserved f(R, T ) gravity with linear Equations of State

(EoS) for the radial and tangential pressures, and the choice for the shape function b(r),

are presented in section 4.4. In section 4.5 is shown the non-exotic conditions for the

wormhole to be traversable. Section 4.6 is dedicated to showing that our results are a

particular case of the results of a previous work (MORAES; SAHOO, 2017) in which a more
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general shape function is presented to construct a wormhole but in the non-conservative

f(R, T ) framework. We show, in fact, that this general shape function conserves the

f(R, T ) energy-momentum tensor, when linear Equations of State (EoS) for the radial

and tangential pressures are considered, implying that these pressures are proportional.

The derivation of the covariant derivative of the energy-momentum tensor is shown in

detail in Appendix A.

4.1 The f (R, T ) theory and the energy-momentum tensor

conservation

As described in (HARKO et al., 2011), the action for f(R, T ) gravitational theory reads

S =

∫ [
f(R, T )

16π
+ Lm

]√
−gd4x, (4.1)

with g being the determinant of the metric, f(R, T ) a function of the argument, expressed

in terms of the Ricci curvature scalar R and the trace of the energy-momentum tensor T .

In our case, the matter lagrangian are Lm = ρ, with ρ being the density.

Varying this action with respect to the metric components gµν , we obtain the general

form of the field equations (HARKO et al., 2011) given by

fR(R, T )Rµν −
1

2
f(R, T )gµν + (gµν −∇µ∇ν) fR(R, T ) = 8πTµν + fT (R, T ) (Tµν − ρgµν) ,

(4.2)

where fR(R, T ) = ∂f/∂R, and fT (R, T ) = ∂f/∂T .

The general expression for the covariant derivative of the energy-momentum tensor,

as expressed in (HARKO et al., 2011) is given by

∇µTµν =
fT (R, T )

8π − fT (R, T )

[
(Tµν + ρgµν)∇µlnfT (R, T ) + ∇µρgµν −

1

2
gµν∇µT

]
. (4.3)

As can be seen, the covariant derivative of the energy-momentum tensor, unlike in

Einstein’s general relativity, is not null. This indicates the non-conservation of energy

and can be interpreted as the creation or destruction of matter. But, if we impose this

conservation, i.e., ∇µTµν = 0, we find a form to the function f(R, T ) = h(T ) that satisfies

this condition, avoiding the freedom to choose any function, as it is the case in f(R, T )

gravity. A summarized derivation of Eq. (4.3) obtained from the field equations (4.2) is

´resented in Appendix A, at the end of this thesis.
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4.2 Wormhole metric and energy-momentum tensor

The static traversable wormholes, as shown by Morris and Thorne in (MORRIS; THORNE,

1988) , in Einstein’s General Relativity context, violate the weak, strong, and dominant

energy conditions, i.e., somewhere near the throat of the wormhole, someone must be

able to encounter some negative energy density. Assuming that this traversable wormhole

are time-independent, non-rotating, and spherically symmetric bridges, in Schwarzschild

coordinates, without loss of generality, the spacetime metric of the wormhole has the form

ds2 = e2φ(r)dt2 −

[
1

1 − b(r)
r

]
dr2 − r2

[
dθ2 + sin2θdϕ2

]
, (4.4)

where φ(r) is the redshift function, b(r) is the shape function and r = r0 is the throat

of the wormhole, i.e., the minimum value that r can assume. By comparison with the

Schwarzschild metric, this implies that the mass of the wormhole can be given by b =

2GM , assuming the same mass (positive) in the two mouths of the wormhole. In order for

the spacetime geometry to tend to the appropriate flat limit, i.e. lim
r→∞

φ(r) = φ0, where φ0

is constant. That is, this limit must exist and be finite, then the redshift function tends

to the appropriate flat limit. There is no a priori requirement that φ−(∞) = φ+(∞).

This would only imply that time would pass differently in the two regions, or universes,

connected by the wormhole. So for simplicity, we adopt the equality φ−(∞) = φ+(∞) =

φ(r) = 0. This assumption implies zero tidal force in the wormhole as seen by stationary

observers (VISSER; WORMHOLES, 1995; MORRIS; THORNE, 1988).

The energy-momentum tensor is given by

T µ
ν = diag (ρ,−pr,−pt,−pt) , (4.5)

with ρ being the density and pr and pt being the radial and tangential pressures, respec-

tively. Then the wormhole is filled by an anisotropic fluid such as

Tµν = (ρ + pt)uµµν + ptgµν + (pr−pt)xµxν (4.6)

where xµis the space-like direction vector orthogonal to the 4-velocity uµ.

4.3 Energy Conditions

We investigate in this section the existence of traversable wormholes in this conserva-

tive construction that can be traversable, i.e, wormholes that obey the classical energy

conditions.
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As mentioned in Introduction, Wormholes in General Relativity lead to a violation of

causality with the mathematical prediction of the occurrence of exotic matter inside them,

i.e., matter that violates the energy conditions as described in (MORRIS; THORNE, 1988)

and (VISSER; WORMHOLES, 1995). Fundamentally, they are described as the following:

• The strong energy condition (SEC) says that gravity should be always attractive, or

in terms of energy-momentum tensor it reads ρ + Σjpj ≥ 0, ∀j.

• The dominant energy condition (DEC) is an indication that the energy density

measured by any observer should be non-negative, which leads to ρ ≥ |pj|, ∀j.

• The weak energy condition (WEC) shows that the energy density measured by any

observer should be always non-negative, i.e., ρ ≥ 0 and ρ + pj ≥ 0, ∀j.

• The null energy condition (NEC) is usually a minimum requirement from SEC and

WEC, i.e. ρ + pj ≥ 0, ∀j. It is possible, however, scenarios where pr or pt do not obey

the NEC, and yet the WEC is partially satisfied (TAYDE et al., 2022; HASSAN et al., 2022;

MANDAL et al., 2020).

4.4 Wormhole Field Equations with linear EoS, and ansatz

for b(r)

In our specific case for wormholes, pj can be the radial and tangential pressures, pr

and pt. So, in the following, considering an ansatz for the shape function b(r), we will

investigate the null Energy Condition mentioned above. After that, we will check the

others with a help of an EoS.

Let us assume the general form f(R, T ) = R + h(T ), with h(T ) being a function that

depend only on the trace of the energy-momentum tensor. In this way, if h(T ) = 0 we

recover the Einstein-Hilbert action for general relativity (Eq. (4.1)). Then the derivatives

are given by fR(R, T ) = 1, and fT (R, T ) = hT .

Imposing the conservation of the energy-momentum tensor in f(R, T ) gravity, the

left-side of Eq. (4.3) is equal to zero, and since fT (R, T ) = hT , we obtain the equation

[
(Tµν + ρgµν)∇νln(hT ) + ∇νρgµν −

1

2
gµν∇µT

]
= 0, (4.7)

which in its mixed form is written as

[
(T µ

ν + ρδµν )∇νln(hT ) + ∇ν

(
ρ− 1

2
T

)
δµν

]
= 0. (4.8)
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Then, to find an expression for h(T ) that satisfies Eq. (4.8) considering the trace of

the energy-momentum tensor as T = ρ−pr−2pt, Eq. (4.8) can be rewritten for µ = ν = r

as

[
(pr + ρ)

∂

∂r
ln (hT ) +

1

2

∂

∂r
(ρ + pr + 2pt)

]
= 0, (4.9)

We need to solve this differential equation to find the expression for hT and h(T ) that

satisfies this Eq (4.9). A viable way to solve this equation, and find h(T ) is to choose an

equation of state relating the energy density to the radial and tangential pressures.

In this work, we consider linear equations of state with the energy density for the

between pressures

pr = βρ, (4.10)

pt = γρ, (4.11)

with β and γ being constants. With this choice, the conservation Eq. (4.9) becomes

ρ (1 + β)
∂

∂r
[ln(hT )] +

1

2

∂

∂r
[ρ (1 + β + 2γ)] = 0 (4.12)

From this conservation equation (4.12), since T is a linear function in ρ, we can rewrite

it as follow

[
∂

∂T
ln(hT ) +

1

T

(1 + β + 2γ)

2(1 + β)

]
∂T

∂r
= 0, (4.13)

which leads to

T
1

hT

∂hT

∂T
= −(1 + β + 2γ)

2(1 + β)
. (4.14)

Then,

T
∂hT

∂T
= αhT , (4.15)

where

−(1 + β + 2γ)

2(1 + β)
= α = constant. (4.16)
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The solution of the Eq. (4.15) is

hT = λTα, (4.17)

and by integrating the previous equation we find

h(T ) =
λ

α + 1
Tα+1, (4.18)

i.e, a power law expression in the trace of the energy-momentum T.

Hence, the general function f(R, T ) = R + h(T ) that satisfies the conservation law of

T µν , given by Eq. (4.3), for a linear EoS with asymmetry ∆, linear with ρ, i.e., pr = βρ,

pt = γρ (∆ = pt − pr = (γ − β)ρ), is given by

h(T ) =
λT ( 1+β−2γ

2(1+β) )[
1+β−2γ
2(1+β)

] . (4.19)

The field equations given in their general form by Eq. (4.2) can be expressed in their

mixed form by

Gµ
ν = 8πT µ

ν +
1

2
h(T )δµν + hT (T ) (T µ

ν − ρδµν ) . (4.20)

Then, the non-null components of this field equation (4.23) are given by

b’

r2
= 8πρ +

1

2
h(T ), (4.21)

b

r3
= −8πpr +

1

2
h(T ) − hT (T ) [pr + ρ] , (4.22)

1

2r2

(
b
′ − b

r

)
= −8πpt +

1

2
h(T ) − hT (R, T ) [pt + ρ] . (4.23)

The ansatz for the shape function is defined as in (ELIZALDE; KHURSHUDYAN, 2019)

b(r) = r0

(ro
r

)
, (4.24)

with constant r0 being the throat of the wormhole. The derivative of this shape function

in respect to r are given by b′ = −b(r)/r

This shape function obeys the conditions explained in (LOBO; OLIVEIRA, 2009; PAVLOVIC;
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SOSSICH, 2015; VISSER; WORMHOLES, 1995), as follow

b(r) < r, (4.25)

1 − b(r)

r
≥ 0, (4.26)

b
′
(r) <

b(r)

r
, (4.27)

lim
r→∞

b(r)

r
= 0. (4.28)

Using the field equations with b(r) defined by Eq.(4.24) we obtain that pt = −ρ, so

γ = −1. (4.29)

Using the EoS (4.10) and (4.11), the pressure asymmetry ∆ can be written as

∆ = pt − pr = (−1 − β)ρ (4.30)

Again, using the field equations (4.21), (4.22) and (4.23) it is possible to show that

the pressure asymmetry can be written as:

∆(r) = − (1 + β) ρ =
2b
r3

8π + fT (R, T )
. (4.31)

Thus, with Eq. (4.20) for the energy density with b(r) given by Eq.(4.23), we arrive

at

1 + β

2
=

(
1 + f(R,T )

16πρ

)
(

1 + fT (R,T )
8π

) . (4.32)

Since the left-hand side of Eq.(4.32) is a constant, we conclude that

fT =
f(R, T )

2ρ
, (4.33)

and
1 + β

2
= 1, (4.34)
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so

β = 1. (4.35)

Since the trace is T = 2ρ, and f(R, T ) = R + h(T ), Eq.(4.33) implies that

hT (T ) =
h(T )

T
, (4.36)

which solution is h(T ) = λT .

In fact, using Eq.(4.19) with β = 1, and γ = −1 we obtain exactly the same solution

and, as a consequence hT (T ) = λ is a constant. Thus, we have proved that the only

expression for f(R, T ) that obeys the conservation of the energy-momentum tensor, with

linear dependence in ρ for the radial and tangential pressure, is a function linear in the

trace T of the energy-momentum.

4.5 Non-exotic conditions for the wormhole to be traversable

Summarizing the results, for the solution β = 1, and γ = −1, and then f(R, T )linearwithT, wehave

pr = ρ, (4.37)

pt = −ρ, (4.38)

T = 2ρ = −∆(r). (4.39)

Then, substituting this results in the field equation (4.21) lead to an expression for

the energy density given by

ρ(r) =
−r2o

(8π + λ) r4
. (4.40)

(ρ + pr) = 2ρ =
−2r20

(8π + λ) r4
, (4.41)

(ρ + pt) = 0. (4.42)

Then, in Eq. (4.40), for ρ(r) ≥ 0 ⇒ λ < −8π,, i.e, the Dominant Energy Condition

(DEC) can be respected at the wormhole’s throat (r = r0), . In this condition, λ < −8π,
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the Null Energy Condition (NEC) also can be respected, as can be seen in Eqs.(4.41) and

(4.42). It is important to stress that in GR where λ = 0 the energy density is negative

and all the energy conditions are violated.

2 3 4 5
r

0.01

0.02

0.03

0.04

0.05

0.06

ρ

FIGURE 4.1 – The energy density versus r for r0 = 1 and λ = −30.

FIGURE 4.2 – The energy density ρ profile with r0 = 1 to 2, r = 1 to 4 and λ = −30.

So, for these solutions, as seen in Figures (4.1), (4.2), and (4.3), in the limit λ < −8π,

the Null Energy Condition (NEC), are also respected, no need to fill the wormhole with

exotic matter, i.e, pr = ρ, as we found above in the Eq. (4.40). As we already dis-

cussed, using only General Relativity framework, as in the Morris-Thorne work (MORRIS;

THORNE, 1988), they found that −pr > ρ, leading to the exotic matter solution as the
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FIGURE 4.3 – The null energy condition (NEC) is obeyed for r0 = 1 and λ = −30.

condition to maintain the throat of the wormhole opened. Finally, the Strong Energy

Condition (SEC) are still obeyed for linear conservative f(R, T ) model:

Strong energy condition (SEC), is also obeyed for λ < −8π, with the solutions given

by Eqs. (4.40) and (4.41)

ρ +
∑
j

pj = ρ + pr + pt = ρ > 0, (4.43)

4.6 General form for shape function as the solution of the

field equations

With the linear function f(R, T ) = R + λT , the field equations (4.24), (4.25), and

(4.26) admits general solutions to ρ, pr and pt, given by

ρ =
b′

(8π + λ) r2
, (4.44)

pr = − b

(8π + λ) r3
, (4.45)

pt =
b− b′r

(8π + λ) 2r3
, (4.46)

as was also found in (MORAES; SAHOO, 2017). In this article, the authors present the mod-

eling of wormholes in the f(R, T )theoryinitsmostgeneralform,withoutconsideringtheconservationoftheenergy−
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momentumtensor.

Assuming a relation between pressures as pt = npr, with n being an arbitrary constant,

substituting it on Eqs (4.45) and (4.46), they found that the shape function which is the

solution of the field equation can be written as

b(r) = Ar1+2n, (4.47)

with A being an integration constant.

Note that for n = −1, and A = r0 we recover the more particular case for shape

function assumed as given by Eq.(4.24) which was used in this thesis to deduce the energy

density and wormhole pressures in the conserved f(R, T ) extended gravity model.

Considering Eq.(4.47), the factor n must be negative to satisfy the preliminary condi-

tions to b(r) shown in Eqs. (4.25)-(4.28).

For any value of n, deriving Eq. (4.47) with respect to r, substituting and combining

in the Eqs. (4.44), (4.45), and (4.46), the radial and tangential pressure pr = βρ and

pt = γρ, respectively, can be written with β and γ as a function of n, as

β = − 1

1 + 2n
, (4.48)

γ = − n

1 + 2n
, (4.49)

where pt = npr with n = γ
β
. The trace of the energy-momentum tensor is

T = ρ− pr − 2pt =

(
1 +

1

1 + 2n
+

2n

1 + 2n

)
ρ, (4.50)

Thus,

T = 2ρ, (4.51)

does not depend on n and is exactly the expression we obtained before for n = −1.

Taking in account the Eq.(4.8) of the conservation of the energy-momentum tensor we

have [
(T µ

ν + ρδµν )∇νln(hT ) + ∇ν

(
ρ− 1

2
T

)
δµν

]
= 0. (4.52)

and for T = 2ρ, it is clear that h(T ) = λT and hT = λ is the solution of the above

equation. Thus, f(R, T ) = R+λT is the unique form for wormholes in energy-momentum

conservative f(R, T ) theory, for radial and tangential pressures depending linearly in the



CHAPTER 4. WORMHOLES IN ENERGY-MOMENTUM CONSERVED f(R, T )
GRAVITY 54

energy density ρ, with the general solution to b(r) for traversable wormholes expressed by

Eq. (4.47), with n < 0.



5 Conclusions

Extended gravity models appear in the literature with the purpose of evading GR

problems. This thesis presented two different forms to treat gravitation, namely Space-

Time-Matter Model and conservative f(R, T )gravity and used each one of them to get,

first, a complete cosmological scenario, and second to construct traversable wormholes

without the need to be filled with exotic matter.

In this thesis, there are two unprecedented works in the literature, to which we apply

two extended theories of gravitation. With the first described from Section 3, the Space-

Time-Matter model, we investigate the evolution of the universe in which the emergence

of matter is a purely geometric manifestation on the 4D surface contained in a fifth-

dimensional manifold with associated vacuum energy.

The other work, which composes this thesis, in Section 4, shows the possibility of

the existence of traversable wormholes without the need to be filled with exotic matter,

from a model in which there is a function with a linear dependence with the trace of the

energy-momentum tensor.

The imposition of conservation of the energy-momentum tensor for the theory f(R, T )

gave rise to a linear function with the energy-momentum tensor trace, with a region in

which the energy conditions are respected.

Considering only a general 5D FLRW metric with scale factors acting in the usual

three space coordinates and the extra spatial coordinate, and a five-dimensional Einstein

equation with a negative 5D bulk cosmological constant, we have obtained analytical

solutions for the scale factors involving square roots of hyperbolic functions of the time,

as well as an induced EoS for the universe evolution capable of describing the different

epochs of the universe in a continuous and analytical form.

We have collected the extra-dimensional dependent terms in the 5D Einstein tensor

and “moved” them to the rhs of the field equations to play the role of an induced energy-

momentum tensor. (SCIAMA, 1953; LIU; MASHHOON, 1995).

From a quite general approach we have obtained some cosmological features partic-

ularly interesting. We have shown in Section 3.3.1 that general KK models with a null
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cosmological constant are restricted to a radiation-dominated universe - which evolves as

a ∼ t1/2. We have shown that the extra-dimension scale factor yields a negative Hubble

parameter for the extra coordinate, i.e., the extra coordinate length (naturally) compact-

ifies.

In Section 3.3.2.1, we have inserted a positive 5D cosmological constant in the field

equations. The approach has led to a cyclic or bouncing universe, i.e., a universe that

goes from a collapsing era to an expanding era without displaying the singularity that

standard model carries. Bouncing cosmological models are well-known alternatives to

inflation and also provide the cosmological perturbations we see today. For a deeper

understanding of bouncing cosmological models, besides (STEINHARDT; TUROK, 2002)-

(BATTEFELD; PETER, 2015), we refer the reader to (BRANDENBERGER; PETER, 2017).

In Section 3.3.2.2, we considered Λ < 0. It is interesting to remark here that usu-

ally braneworld models contain negative bulk cosmological constant as a consequence of

the appearance of terms ∼
√
−Λ in their Friedmann-like equations (IDA, 2000; BAJC;

GABADADZE, 2000).

Our negative cosmological constant model has shown to be able to uniquely describe

the radiation, matter, and dark energy eras of the universe evolution in a continuous and

analytic form, which can be seen, for instance in Fig. 3.6.

This is a quite non-trivial result. Cosmological models able to describe from a single

analytic EoS the whole history of the Universe’s evolution are rarely obtained in the

literature (MORAES; SANTOS, 2016; LIMA et al., 2013b). References (MORAES; SANTOS,

2016; LIMA et al., 2013b) show cosmological scenarios obtained from f(R, T ϕ) gravity, with

R being the Ricci scalar and T ϕ the trace of the energy-momentum tensor of a scalar field

ϕ, and decaying vacuum models, respectively. This interesting feature is a consequence

of the remarkable hyperbolic solution obtained here for the scale factor. While we have

obtained such a feature from the model, some other approaches use this solution as a

prior ansatz (CHAWLA et al., 2012)-(NAGPAL et al., 2019). This kind of hyperbolic solution

is also found in the flat ΛCDM concordance model, by neglecting radiation (WEINBERG,

1989)-(PIATTELLA, 2018). However, in this case, the time dependence of the scale factor

is a(t) ∼ [sinh(t)]2/3, departing from the a(t) ∼ [sinh(t)]1/2 solution found here. Our

solution for small values of time where sinh(t) ∼ t incorporates the correct limit of the

radiation era, namely a(t)
1
2 .

Furthermore, from our solutions given by Eqs.(3.30) and (3.31) it is clear that ρ →
constant for high values of time and p = −ρ. Moreover, from Eq.(3.34), the Hubble

parameter is constant H =
√

|Λ|
6

which is also in agreement with ΛCDM model in the

dark energy era. Here, the constant value for ρ reads |Λ|/16π, while in standard model it

is Λ4/8π, which implies that |Λ| = 2Λ4 in this epoch of the Universe. This divergence in
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the values of the 4D and 5D cosmological constants may be an indication that if measured

in 5D, the cosmological constant will have a greater value. This is somehow similar to

what was presented in (MCWILLIAMS, 2010), that shows that the very existence of a 5D

bulk in the Randall-Sundrum braneworld setup implies in an enhancement in the Hawking

radiation emitted by black holes.

Our model satisfactorily fits the observational data for the experimental measurement

of the Hubble parameter, as shown in Section 3.5. The adopted method resulted in

H0 = 72.2+5.3
−5.5 km/s/Mpc, which is in agreement with the most recent estimate from local

observations, H0 = 74.03±1.42 km/s/Mpc (RIESS et al., 2019) and also in agreement with

the Planck collaboration estimate, H0 = 67.4 ± 0.5 km/s/Mpc (AGHANIM; et. al., 2018),

in the context of flat ΛCDM cosmology. As a derived parameter, we have obtained the

total age of the Universe as t0 = 12.59+0.69
−0.62 Gyr, which is in agreement with most of the

age estimates today. Jimenez et al. (JIMENEZ et al., 2019), for instance, have obtained a

weighted average of t0 = 13.0± 0.4 Gyr from 22 globular clusters (O’MALLEY et al., 2017),

which is in agreement with our superior limit (t0 = 13.28 Gyr at 95% c.l.). Our result

is also in agreement with estimates of absolute ages of very-low-metallicity stars, in the

range of 13.0 – 13.535 Gyr, as explained in (JIMENEZ et al., 2019) and references therein.

In Section 4, is presented a static traversable wormhole within the f(R, T ) theory in

its conservative form, i.e., assuming the conservation of the energy-momentum tensor. For

the conservation equation to be satisfied, using linear EoS for the radial and tangential

pressures (pr and pt) inside the wormhole, we find a f(R, T ) linear in the trace of the

energy-momentum tensor. In this way, pr has the highest pressure value possible (stiffest

fluid) and pt = −1, which suggests a dark matter halo surrounding the wormhole, some-

thing to be investigated in future work. Then, one obtained for pr the casual limit, i.e,

the sound speed in the wormhole interior is given by

dpr
dρ

= 1 = c, (5.1)

where c is the speed of light. We found a fluid that is not exotic in the same way as

obtained in a recent similar wormhole work in linear f(R, T) gravity (ROSA; KULL, 2022).

In this article, the authors analyzed traversable wormhole solutions in the linear form

of f (R, T ) = R + λT gravity satisfying the energy conditions, but without taking into

account the energy-momentum tensor conservation. As we know in its original model,

the theory of gravitation f(R, T ) does not conserve the energy-momentum tensor, which

is very far from Einstein’s general relativity, in which the conservation of the energy-

momentum tensor is a fundamental condition. The novelty of our work is to assume

conservation of the energy-momentum tensor, thus being in greater agreement with reality.

Unlike a Morris-Thorne wormhole, in which the exoticism of the matter is shown
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with pr < −ρ, using General Relativity, we find pr = ρ, denoting an ultra-relativistic

(non-exotic) matter and whose radial pressure is positive,

As we have mentioned in the previous sections all the conditions for the shape function

b(r), established for the present traversable wormholes, are respected by the ansatz that

we adopted (see Eqs. (4.25 to 4.28)). Furthermore, we have assumed the redshift function

is a constant set to zero (φ = 0), implying in null tidal gravitational forces through the

wormhole.

It is important to remark that obtaining wormhole solutions satisfying the WEC is not

a trivial task. Here, the extra degrees of freedom provided by f(R, T ) gravity formalism

allowed the material solutions to obey WEC. Thus, the wormhole can is filled by non-

exotic matter, recalling that Morris and Thorne defined“exotic matter”as matter violating

WEC. In our case, we find a wormhole that obeys all the energy conditions when λ < −8π.

We also show that a shape function in the form expressed by b(r) = Ar1+2n , with A being

a constant. is the general case of the conserved f(R, T ) theory, with a function f(R, T )

linear in T . In this case, it is possible to have different values for the proportional radial

and tangential pressures, pt = npr linear in the energy density, and not only the case we

investigated with n = −1.

Among the future perspectives that may derive from this work, we can highlight the

idea of further analyzing the evolution of the cosmological parameters related to the extra

scale factor ξ(t).

An analysis can also be made for the possible influence of a dust term in our cosmo-

logical model, in order to improve the concordance with the observations.

We can also try to better constrain the constant c5 considering more cosmological data

sets, and also by the actual values of the equation of state parameter ω and deceleration

q. Furthermore, we can consider a fifth-dimension cosmological constant that depends on

time.

For the wormholes in the conserved f(R, T ) we can investigate the energy condi-

tions for the most general form of the shape function. Finally, verify the possibility of

traversable wormholes with more general f(R, T ) functions, which are non-linear in T ,

and still conserve the energy-momentum tensor.
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law on thick branes with poincaré symmetry. General Relativity and Gravitation,
Springer, v. 46, n. 1, p. 1–26, 2014.
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f(R, T ) gravity. Florianópolis, Brazil: Invited talk presented at the XIV International
Workshop on Hadron Physics, 2018.

MORAES, P. H. R. S.; SANTOS, J. R. L. A complete cosmological scenario from
f(r, tΦ) gravity theory. Eur. Phys, v. 76, 2016.

MORRIS, M. S.; THORNE, K. S. Wormholes in spacetime and their use for interstellar
travel: A tool for teaching general relativity. American Journal of Physics, American
Association of Physics Teachers, v. 56, n. 5, p. 395–412, 1988.

NAGPAL, R.; SINGH, J.; BEESHAM, A.; SHABANI, H. Cosmological aspects of a
hyperbolic solution in f (r, t) gravity. Annals of Physics, Elsevier, v. 405, p. 234–255,
2019.

NAKAMURA, T.; CHIBA, T. Determining the equation of state of the expanding
universe: Inverse problem in cosmology. Monthly Notices of the Royal Astronomical
Society, Blackwell Science Ltd Oxford, UK, v. 306, n. 3, p. 696–700, 1999.

NANDI, K. K.; IZMAILOV, R. N.; YANBEKOV, A. A.; SHAYAKHMETOV, A. A.
Ring-down gravitational waves and lensing observables: How far can a wormhole mimic
those of a black hole? Phys. Rev. D, American Physical Society, v. 95, p. 104011, May
2017. Available at: https://link.aps.org/doi/10.1103/PhysRevD.95.104011.

O’MALLEY, E. M.; GILLIGAN, C.; CHABOYER, B. Absolute ages and distances of 22
gcs using monte carlo main-sequence fitting. Astrophys. J., v. 838, p. 162, 2017.

OVERDUIN, J.; EVERETT, R.; WESSON, P. Constraints on kaluza–klein gravity from
gravity probe b. General Relativity and Gravitation, Springer, v. 45, n. 9, p.
1723–1731, 2013.

OVERDUIN, J. M.; WESSON, P. S. Kaluza-klein gravity. Phys. Rep, v. 283, p. 303,
1997.

PAVLOVIC, P.; SOSSICH, M. Wormholes in viable f(r) modified theories of gravity
and weak energy condition. The European Physical Journal C, Springer, v. 75, n. 3,
p. 1–8, 2015.

PERLMUTTER, S.; ALDERING, G. et al. Measurements of ω and λ from 42
high-redshift supernovae. The Astrophysical Journal, IOP Publishing, v. 517, n. 2,
p. 565, 1999.

PETRIELLO, F. J. Kaluza-klein effects on higgs physics in universal extra dimensions.
Journal of High Energy Physics, IOP Publishing, v. 2002, n. 05, p. 003, 2002.

PIATTELLA, O. Lecture notes in cosmology. [S.l.]: Springer, 2018.

PRASETYO, I.; HUSIN, I.; QAULI, A.; RAMADHAN, H. S.; SULAKSONO, A.
Neutron stars in the braneworld within the eddington-inspired born-infeld gravity.
Journal of Cosmology and Astroparticle Physics, IOP Publishing, v. 2018, n. 01,
p. 027, 2018.



BIBLIOGRAPHY 66

RANI, S.; JAWAD, A. Cosmological implications of dgp braneworld via well-known
holographic dark energy models. International Journal of Modern Physics D, World
Scientific, v. 25, n. 14, p. 1650102, 2016.

REDDY, D.; LAKSHMI, G. V. Kaluza-klein dark energy model in brans-dicke theory of
gravitation. Astrophysics and Space Science, Springer, v. 357, n. 1, p. 1–5, 2015.

RIESS, A. G. Observational evidence from supernovae for an accelerating universe and a
cosmological constant. Astron. J., v. 116, p. 1009, 1998.

RIESS, A. G. The farthest known supernova: support for an accelerating universe and a
glimpse of the epoch of deceleration. Astrophys. J., v. 560, p. 49, 2001.

RIESS, A. G.; CASERTANO, S.; YUAN, W.; MACRI, L. M.; SCOLNIC, D. Large
magellanic cloud cepheid standards provide a 1 foundation for the determination of the
hubble constant and stronger evidence for physics beyond λcdm. Astrophys. J., v. 876,
2019.

ROSA, J. L.; KULL, P. M. Non-exotic traversable wormhole solutions in linear f\left (r,
t\right) gravity.arXiv preprint arXiv:2209.12701, 2022.

RYDEN, B. Introduction To Cosmology. San Francisco, USA: Addison Wesley, 2003.

RYDEN, B. Introduction to cosmology. [S.l.]: Cambridge University Press, 2017.

SAHNI, V.; SHTANOV, Y. Braneworld models of dark energy. JCAP, v. 11, p. 014,
2003.

SAHNI, V.; SHTANOV, Y.; VIZNYUK, A. Cosmic mimicry: Is ΛCDM a braneworld in
disguise? Journal of Cosmology and Astroparticle Physics, IOP Publishing, v. 2005,
n. 12, p. 005, 2005.

SAMI, M. et al. Aspects of scalar field dynamics in gauss-bonnet brane worlds. Phys.
Rev, v. 70, 2004.

SANTOS, S. dos; CARVALHO, G.; MORAES, P.; LENZI, C.; MALHEIRO, M. A
conservative energy-momentum tensor in the f (r, t) gravity and its implications for the
phenomenology of neutron stars. The European Physical Journal Plus, Springer, v. 134,
n. 8, p. 1–8, 2019.

SCIAMA, D. W. On the origin of inertia. Mon, v. 113, 1953.

SEAHRA, S. S.; WESSON, P. S. The structure of the big bang from higher-dimensional
embeddings. Class, v. 19, 2002.

SENGUPTA, S. Gravity theory with a dark extra dimension. Physical Review D, APS,
v. 101, n. 10, p. 104040, 2020.

SHAIKH, R. Shadows of rotating wormholes. Physical Review D, APS, v. 98, n. 2, p.
024044, 2018.

SHARIF, M.; KHANUM, F. Kaluza–klein cosmology with modified holographic dark
energy. General Relativity and Gravitation, Springer, v. 43, n. 10, p. 2885–2894, 2011.



BIBLIOGRAPHY 67

SHARIF, M.; NAWAZISH, I. Viable wormhole solutions and noether symmetry in f (r,
t) gravity. Annals of Physics, Elsevier, v. 400, p. 37–63, 2019.

SHARIF, M.; ZUBAIR, M. Thermodynamics in f (r, t) theory of gravity. Journal of
Cosmology and Astroparticle Physics, IOP Publishing, v. 2012, n. 03, p. 028, 2012.

SOTIRIOU, T. P.; FARAONI, V. f (r) theories of gravity. Reviews of Modern Physics,
APS, v. 82, n. 1, p. 451, 2010.

STEINHARDT, P. J.; TUROK, N. Cosmic evolution in a cyclic universe. Phys. Rev,
v. 65, 2002.

STERN, D.; JIMENEZ, R.; VERDE, L.; KAMIONKOWSKI, M.; STANFORD, S. A.
Cosmic chronometers: Constraining the equation of state of dark energy. i: H(z)
measurements. JCAP, v. 1002, p. 008, 2010.

SUNDRUM, R. Compactification for a three-brane universe. Phys. Rev, v. 59, 1999.
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Appendix A - Covariant Derivative of

Tµν in f (R, T ) gravity

For the work in Chapter 4, we use the conservative version of the f(R, T ) theory. Then

we use the covariant derivative equation of energy-momentum tensor on f(R, T ) gravity

as one see in (BARRIENTOS; RUBILAR, 2014)

To deduce the covariant derivative expression for the energy-momentum tensor in Eq.

(4.3), we use the following mathematical identity

(∇ν −∇ν)ϕ ≡ Rµν∇µϕ, (A.1)

which is valid for any field ϕ. In our case, the field can be substituted by f(R, T ).

Applying the covariant derivative in the left side of field equation (Eq. (4.2)), and use

this identity above.

∇µ

[
fR(R, T )Rµν −

1

2
f(R, T )gµν + (gµν −∇µ∇ν) fR(R, T )

]
(A.2)

= (∇µfR(R, T ))Rµν + fR(R, T )∇µRµν −
1

2
∇µf(R, T )gµν + ∇µ (gµν −∇µ∇ν) fR(R, T )

(A.3)

= ∇µRµν −
1

2
∇µf(R, T )gµν + (Rµν∇µfR(R, T )) . (A.4)

Assuming since the begining that fR(R, T ) = 1, then ∇µ(fR(R, T )) = 0, and ∇µgµν =

0, as in general relativity framework.

Finally, using the covariant derivative of f(R, T ) in general form, given by

∇µf(R, T ) = fR(R, T )∇µR + fT (R, T )∇µT, (A.5)
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where fR(R, T )=1.

Then we have the final expression for the covariant derivative of Eq. (4.2) left side

∇µ

[
fR(R, T )Rµν −

1

2
f(R, T )gµν + (gµν −∇µ∇ν) fR(R, T )

]

= ∇µRµν −
1

2
∇µRgµν −

1

2
gµνfT (R, T )∇µT

= −1

2
gµνfT (R, T )∇µT. (A.6)

In the last step above we apply the Bianchi identity for the Einstein tensor,

∇µ

(
Rµν −

1

2
Rgµν

)
= ∇µGµν = 0. (A.7)

This non-vanishing term on the lhs covariant derivative of field equations plays an

essential role in f(R, T ) gravity.

Then we can write the covariant derivative of field equation (4.2) as

∇µ [8πTµν − fT (R, T )Tµν − fT (R, T )ρgµν ] +
1

2
gµνfT (R, T )∇µT = 0. (A.8)

Isolating ∇µTµν , and apllying the ∇µ operator in the other terms results

∇µTµν =
fT (R, T )

8π − fT (R, T )

[
(Tµν + ρgµν)∇µlnfT (R, T ) + ∇µρgµν −

1

2
gµν∇µT

]
. (A.9)



FOLHA DE REGISTRO DO DOCUMENTO
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8. PALAVRAS-CHAVE SUGERIDAS PELO AUTOR:

Cosmology; Cosmological Constant; Gravity

9. PALAVRAS-CHAVE RESULTANTES DE INDEXAÇÃO:
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