
Dissertation presented to the Instituto Tecnológico de Aeronáutica, in

partial fulfillment of the requirements for the degree of Master of Science in

the Graduate Program of Physics, Field of Atomic and Molecular Physics.

Rodrigo Pires Ferreira

VARIATIONAL QUANTUM ALGORITHM FOR ORBIT

PROPAGATION WITH GRAVITATIONAL

PERTURBATIONS AND ATMOSPHERIC DRAG

Dissertation approved in its final version by signatories below:

Prof. Dr. André Jorge Carvalho Chaves

Advisor

Prof. Dr. Willer Gomes dos Santos

Co-advisor

Profa. Dra. Emı́lia Villani

Dean for Graduate Education and Research

Campo Montenegro
São José dos Campos, SP - Brazil

2023

Cataloging-in-Publication Data
Documentation and Information Division

Pires Ferreira, Rodrigo

Variational Quantum Algorithm for Orbit Propagation with Gravitational Perturbations and

Atmospheric Drag / Rodrigo Pires Ferreira.

São José dos Campos, 2023.

101f.

Dissertation of Master of Science – Course of Physics. Area of Atomic and Molecular Physics –
Instituto Tecnológico de Aeronáutica, 2023. Advisor: Prof. Dr. André Jorge Carvalho Chaves. Co-

advisor: Prof. Dr. Willer Gomes dos Santos.

1. Computação quântica. 2. Mecânica orbital. 3. Equações diferenciais. 4. Algoritmos. 5. Mecânica

quântica. 6. Perturbação orbital. 7. Astronomia. I. Instituto Tecnológico de Aeronáutica. II.Title.

BIBLIOGRAPHIC REFERENCE

PIRES FERREIRA, Rodrigo. Variational Quantum Algorithm for Orbit Propagation with

Gravitational Perturbations and Atmospheric Drag. 2023. 101f. Dissertation of Master of

Science in Physics – Instituto Tecnológico de Aeronáutica, São José dos Campos.

CESSION OF RIGHTS

AUTOR NAME: Rodrigo Pires Ferreira

PUBLICATION TITLE: Variational Quantum Algorithm for Orbit Propagation with Gravitational

Perturbations and Atmospheric Drag

PUBLICATION KIND/YEAR: Dissertation / 2023

It is granted to Instituto Tecnológico de Aeronáutica permission to reproduce copies of this

dissertation to only loan or sell copies for academic and scientific purposes. The author reserves

other publication rights and no part of this dissertation can be reproduced without his authorization.

Rodrigo Pires Ferreira

Rua Taperoá, 145, Cidade Monções

04.571-060 – São Paulo - SP

VARIATIONAL QUANTUM ALGORITHM FOR ORBIT

PROPAGATION WITH GRAVITATIONAL PERTURBATIONS

AND ATMOSPHERIC DRAG

 Rodrigo Pires Ferreira

Thesis Committee Composition:

Profª. Drª. Lara Kühl Teles Chairperson - ITA

Prof. Dr. André Jorge Carvalho Chaves Advisor - ITA

Prof. Dr. Willer Gomes dos Santos Co-advisor - ITA

Prof. Dr. Tobias Frederico Internal Member - ITA

Prof. Dr. Diego Rabelo da Costa External Member - UFC

ITA

To my family and friends.

Acknowledgments

These last few years have been a remarkable journey. I was lucky to meet many

people who made me grow in numerous ways. On that note, I want to thank my family

for their immense support throughout all these years. My mother and father created all

the conditions for me to thrive and pursue my boldest dreams. I cannot convey their

importance and how grateful I am for their love.

I am also thankful for my friends and girlfriend, who were always there for me when

I needed them. As a young researcher, it is challenging to address complex questions

on Quantum Computing. Their support was crucial, and I would really not get this far

without them.

Academically, I am grateful to have worked under Dr. André Chaves and Dr. Willer

Gomes. They are always available and happy to discuss any topic of our project. They

taught me many aspects of the scientific method, but more importantly, they enhanced

my critical thinking substantially. Their guidance and companionship were fundamental

during this work.

Finally, I am thankful to CAPES for funding this research for the past few years. I also

want to thank ITAEx for the financial support and for encouraging me to foster Quantum

Computing research at ITA.

“There are two possible outcomes:

if the result confirms the hypothesis, then you’ve made a measurement;

if the result is contrary to the hypothesis, then you’ve made a discovery.”

— Enrico Fermi

Resumo

Algoritmos Variacionais Quânticos (VQAs) são métodos h́ıbridos que usam otimizadores

clássicos e circuitos quânticos para resolver diferentes problemas de minimização. Devido

a similaridades com as redes neurais, esses circuitos podem ser chamados de redes neurais

quânticas, uma vez que são compostos por múltiplas camadas de portas lógicas quânticas

cujos parâmetros devem ser otimizados a fim de minimizar uma dada função de perda.

O objetivo deste trabalho é usar um VQA para resolver sistemas de equações diferen-

ciais acopladas que descrevem o movimento de um satélite na presença de perturbações

de órbita. Nós implementamos o VQA para propagar uma órbita com arrasto atmos-

férico e perturbação gravitacional considerando os efeitos do termo J2 no geopotencial –

segundo harmônico zonal da Terra usado para descrever a variação do potencial gravita-

cional devido à geometria oblata do planeta. Após resolver uma versão bi-dimensional

simplificada do problema, nós propagamos a órbita 3D e comparamos a solução via VQA

com a numérica. Finalmente, nós discutimos os desafios e oportunidades existentes neste

método e como melhorá-lo em trabalhos futuros.

Abstract

Variational quantum algorithms (VQAs) are hybrid methods that use classical optimiz-

ers and quantum circuits to solve different minimization problems. Due to similarities

with neural networks, these circuits might be called quantum neural networks, as they

are composed of many layers of quantum gates whose parameters must be optimized to

minimize a given loss function. This work’s objective is to use a VQA for solving systems

of coupled differential equations that describe the satellite’s motion in the presence of

orbit perturbations. We implement the VQA for propagating an orbit with atmospheric

drag and gravitational perturbation considering the effects of the J2 term – Earth’s second

zonal harmonic that’s used to describe the variation of the gravitational potential due to

the planet’s oblate geometry. After solving a simplified two-dimensional version of the

problem, we propagate the actual 3D orbit and compare the VQA solution to the numer-

ical one. Finally, we discuss the existing challenges and opportunities of this method and

how to improve it in future works.

List of Figures

FIGURE 2.1 – Bloch sphere (NIELSEN; CHUANG, 2002). 24

FIGURE 2.2 – General representation of each layer of the VQC (KILLORAN et al.,

2019a), composed of N input qumodes (q1, ..., qN), Gaussian gates

(U1, U2, S,D), and non-Gaussian gates (Φ). 31

FIGURE 2.3 – General representation of the VQC containing a parameter set Θ as

input, a loss function that compares its output to a given reference,

and a classical optimizer that updates Θ at each iteration. 32

FIGURE 3.1 – VQC used to solve the 2D orbit propagation with gravitational per-

turbation. It is composed of four qumodes (q0, ..., q3), each one as-

sociated to a displacement gate D followed by n layers, and a mea-

surement gate X applied to each qumode. 36

FIGURE 3.2 – Representation of the VQC layer for the 2D orbit propagation with

gravitational perturbation. It is composed of four qumodes (q0, ..., q3),

associated in pairs to beamsplitter gates BS, followed by Kerr gates

K applied to each qumode. 37

FIGURE 3.3 – VQC used to solve the 3D orbit propagation with perturbations.

It is composed of six qumodes (q0, ..., q5), each one associated to a

displacement gate D followed by n layers, and a measurement gate

X applied to each qumode. 40

FIGURE 3.4 – Representation of the VQC layer for the 3D orbit propagation with

perturbations. It is composed of six qumodes (q0, ..., q5), associated

in pairs to beamsplitter gates BS, followed by Kerr gates K applied

to each qumode. 40

LIST OF FIGURES x

FIGURE 3.5 – Diagram of the method that uses VQA and FDM for solving the

proposed system of coupled differential equations. It contains two

VQCs, each of which receives a parameter set (Θ1,Θ2) as an in-

put and aims to minimize a loss function (L1,L2) by updating the

corresponding parameter set iteratively via a classical optimizer. . . 45

FIGURE 4.1 – Numerical (continuous blue line) and VQA’s (dashed red line) com-

ponents (x(t), y(t)) of the 2D orbit propagation with gravitational

perturbation (effects of the J2 term) as a function of time. 49

FIGURE 4.2 – Numerical (continuous blue line) and VQA’s (dashed red line) 2D

orbits in the presence of the gravitational perturbation (effects of

the J2 term). 50

FIGURE 4.3 – Loss function versus the number of iterations for the 2D orbit propa-

gation with gravitational perturbation (effects of the J2 term). The

dotted lines mark the minimum and maximum values of the loss

function. 51

FIGURE 4.4 – Mean Relative Error per Cycle (MREC) of amplitudes as a func-

tion of the number of iterations for the 2D orbit propagation with

gravitational perturbation (effects of the J2 term). 52

FIGURE 4.5 – Mean Relative Error per Cycle (MREC) of phases as a function of

the number of iterations for the 2D orbit propagation with gravita-

tional perturbation (effects of the J2 term). 53

FIGURE 4.6 – Numerical (continuous blue line) and VQA’s (dashed red line) com-

ponents (x(t), y(t), z(t)) of the 3D orbit propagation with gravita-

tional perturbation (effects of the J2 term) as a function of time. . . 55

FIGURE 4.7 – Numerical (continuous blue line) and VQA’s (dashed red line) 3D

orbits in the presence of the gravitational perturbation (effects of

the J2 term). 56

FIGURE 4.8 – Loss function versus the number of iterations for the 3D orbit propa-

gation with gravitational perturbation (effects of the J2 term). The

dotted lines mark the minimum and maximum values of the loss

function. 57

FIGURE 4.9 – Mean Relative Error per Cycle (MREC) of amplitudes as a func-

tion of the number of iterations for the 3D orbit propagation with

gravitational perturbation (effects of the J2 term). 58

LIST OF FIGURES xi

FIGURE 4.10 –Mean Relative Error per Cycle (MREC) of phases as a function of

the number of iterations for the 3D orbit propagation with gravita-

tional perturbation (effects of the J2 term). 58

FIGURE 4.11 –Numerical (continuous blue line) and VQA’s (dashed red line) com-

ponents (x(t), y(t), z(t)) of the 3D orbit propagation with atmo-

spheric drag as a function of time. 61

FIGURE 4.12 –Numerical (continuous blue line) and VQA’s (dashed red line) 3D

orbits in the presence of atmospheric drag. 62

FIGURE 4.13 –Loss function versus the number of iterations for the 3D orbit prop-

agation with atmospheric drag. The dotted lines mark the minimum

and maximum values of the loss function. 63

FIGURE 4.14 –Mean Relative Error per Cycle (MREC) of amplitudes as a func-

tion of the number of iterations for the 3D orbit propagation with

atmospheric drag. 63

FIGURE 4.15 –Mean Relative Error per Cycle (MREC) of phases as a function of

the number of iterations for the 3D orbit propagation with atmo-

spheric drag. 64

FIGURE A.1 –Diagrams corresponding to the (a) inertial frame and (b) moving

frame (CURTIS, 2013). 68

FIGURE A.2 –Atmospheric density as a function of altitude (ATMOSPHERE, 1976). 71

FIGURE A.3 –Representation of Earth’s geometry (CURTIS, 2013). 72

FIGURE A.4 –Diagram representing the geocentric equatorial frame and the orbital

elements (CURTIS, 2013). 75

FIGURE A.5 –Perifocal frame representation (CURTIS, 2013). 76

List of Tables

TABLE 3.1 – SciPy’s ODEINT parameters. 44

TABLE 4.1 – Orbital parameters from the Example 10.2 (CURTIS, 2013). 47

TABLE 4.2 – Parameters used in the two-dimensional orbit propagation consider-

ing the effects of the J2 term. 48

TABLE 4.3 – Initial conditions used in the two-dimensional orbit propagation con-

sidering the effects of the J2 term. 48

TABLE 4.4 – Initial conditions used in the three-dimensional orbit propagation

considering the effects of the J2 term. 54

TABLE 4.5 – Orbital parameters from the Example 10.1 (CURTIS, 2013). 59

TABLE 4.6 – Parameters used in the three-dimensional orbit propagation consid-

ering atmospheric drag. 60

TABLE 4.7 – Initial conditions used in the three-dimensional orbit propagation

considering atmospheric drag. 60

TABLE A.1 – Earth’s zonal harmonics. 73

List of Abbreviations

BP Barren Plateau

CV Continuous-Variable

FDM Finite Difference Method

GA Genetic Algorithm

HEO High Earth Orbit

HHL Harrow-Hassidim-Lloyd

LDE Linear Differential Equation

LEO Low Earth Orbit

LSODE Livermore Solver for Ordinary Differential Equations

MEO Medium Earth Orbit

MREC Mean Relative Error per Cycle

NISQ Noisy Intermediate-Scale Quantum

NLDE Non-Linear Differential Equation

NN Neural Network

PSO Particle Swarm Optimization

QEC Quantum Error Correction

QNN Quantum Neural Network

VQA Variational Quantum Algorithm

VQC Variational Quantum Circuit

VQE Variational Quantum Eigensolver

List of Symbols

Quantum Computing and Variational Quantum Algorithms

α Amplitude related to the state |0⟩
β Amplitude related to the state |1⟩
|ψ⟩ Generic quantum state

θ Bloch sphere’s angle in the xy-plane

θb Bias vector’s free parameter

θW Weight matrix’s free parameter

Θ Parameter set

ϕ Bloch sphere’s angle relative to the z-axis

ϕf Nonlinear activation function

σk Pauli operator

ζ Global phase

a⃗ Answer to be determined by the neural network

b⃗ Bias vector

A(t) Time-dependent amplitude in the x-axis

B(t) Time-dependent amplitude in the y-axis

C(t) Time-dependent amplitude in the z-axis

C2D,GP Amplitudes’ 1st and 2nd derivatives terms neglected in the loss function L2D,GP

C3D,GP Amplitudes’ 1st and 2nd derivatives terms neglected in the loss function L3D,GP

C3D,AD Amplitudes’ 1st and 2nd derivatives terms neglected in the loss function L3D,AD

B Beamsplitter gate

D Displacement gate

EN Euclidean norm

H Hamiltonian

Lk Neural network’s k-th layer

kNum Numerical result

kVQC VQC’s result

K Kerr gate

L Loss function

LD Loss function corresponding to the differential equation

CHAPTER 0. LIST OF SYMBOLS xv

LI Loss function corresponding to the initial conditions

L2D,GP Loss function of the 2D orbit propagation with gravitational perturbation

L̃2D,GP Previous loss function without neglecting the amplitudes’ time derivatives

L3D,GP Loss function of the 3D orbit propagation with gravitational perturbation

L̃3D,GP Previous loss function without neglecting the amplitudes’ time derivatives

L3D,AD Loss function of the 3D orbit propagation with atmospheric drag

L̃3D,AD Previous loss function without neglecting the amplitudes’ time derivatives

M Symplectic matrix

p̂ Momentum operator

pi Probability of the i-th outcome

R Rotation gate

S Squeeze gate

x⃗ Input vector

y⃗ Output vector

v⃗ Generic vector

x̂ Position operator

X Quantum NOT gate

W Weight matrix

Orbital Mechanics

θTA True anomaly

µ Standard gravitational parameter

ρ Atmospheric density

ω Argument of the perigee

ω⃗E Earth’s angular velocity

Ω Right ascension of the ascending node

A Satellite’s frontal area

CD Drag coefficient

D⃗ Drag force

e Eccentricity

F⃗G Gravitational force

G Universal gravitational constant

h Specific angular momentum

i Inclination

Jk K-th zonal harmonic

M Central body’s mass

m Satellite’s mass

N Node line

CHAPTER 0. LIST OF SYMBOLS xvi

np Number of periods within the total simulation time

Pk K-th Legendre polynomial

p⃗ Net perturbative acceleration

pLG Perturbative acceleration due the lunar gravity

pRP Perturbative acceleration due the solar radiation pressure

R Earth’s equatorial radius

r⃗ Position vector

r⃗0 Initial position vector

ra Apogee radius

rp Perigee radius

v⃗ Velocity vector

v⃗atm Inertial velocity of the atmosphere at a specific point

v⃗rel Satellite’s relative velocity to the atmosphere

v⃗0 Initial velocity vector

x0 Position’s x-component at t = 0

ẋ0 Velocity’s x-component at t = 0

y0 Position’s y-component at t = 0

ẏ0 Velocity’s y-component at t = 0

z0 Position’s z-component at t = 0

ż0 Velocity’s z-component at t = 0

Contents

1 Introduction . 18

2 Literature Review . 22

2.1 Quantum Computing . 22

2.2 Variational Quantum Algorithms . 25

2.3 Barren Plateaus . 32

3 Orbit Propagation with Perturbations via Variational

Quantum Algorithm . 34

3.1 2D Case with Gravitational Perturbation 34

3.2 3D Case with Gravitational Perturbation 39

3.3 3D Case with Atmospheric Drag . 42

3.4 3D Orbit Propagation with Perturbations via Numerical Methods 43

3.5 Alternative Approaches . 44

4 Results . 47

4.1 2D Orbit Propagation with Gravitational Perturbation 47

4.2 3D Orbit Propagation with Gravitational Perturbation 54

4.3 3D Orbit Propagation with Atmospheric Drag 59

5 Conclusions . 66

Appendix A – Orbital Mechanics 68

Appendix B – Code . 78

Bibliography . 93

1 Introduction

Orbital Mechanics can be defined as the study of the motion of artificial bodies. Such

a broad field includes the analysis of orbital maneuvers (FEHSE, 2003), effects of pertur-

bations in non-controlled orbits (CHOBOTOV, 2002), and the cost of delta-v in orbital

maintenance (KÖNIGSMANN et al., 1996) – the change in velocity of a satellite to keep it in

its desired orbit. Among these problems, we are primarily interested in orbit propagation,

which is subject to different perturbations depending on the type of orbit.

For instance, the orbit altitude is a factor that might determine which perturbation

effects will be more or less important. In low Earth orbits (LEOs) – ranging from a few

hundred to 2,000 kilometers – the atmospheric drag is generally the most prominent effect

(PRIETO et al., 2014). Meanwhile, a medium Earth orbit (MEO), which goes from 2,000

to approximately 35,800 kilometers, is subject to multiple perturbations (e.g., Earth’s

oblateness, solar radiation pressure, atmospheric drag), and the prevailing one depends on

the specific altitude, inclination, and eccentricity of the orbit (JOHNSON, 2010). Finally, in

high Earth orbits (HEOs), defined by altitudes higher than 35,800 km, the lunar and solar

gravitational pulls are arguably the most crucial effects – although other perturbations

might be relevant as well (LARA et al., 2012).

Such highly complex satellite orbits require accurate simulations to guarantee they will

work properly and reduce costs. However, the classical orbital propagation model can be

computationally expensive – regarding memory and execution time – when we are trying

to simulate real systems (LUO; YANG, 2017). This is particularly true when our models

include all relevant orbit perturbations (e.g., atmospheric drag, solar radiation pressure,

Earth’s oblateness, third-body perturbation, and tide forces) and when it consider the

interaction between multiple satellites (satellite constellation) (CHOBOTOV, 2002).

On that note, it is necessary to investigate enhanced ways of simulating orbital prop-

agation scenarios, which involve solving differential equations accurately. In this disser-

tation, we will analyze if variational quantum algorithms (VQAs) – sometimes called

quantum neural networks (QNNs) (LIU et al., 2023) – are a feasible approach to this prob-

lem.

VQAs are algorithms based on quantum bits, also known as qubits. Analogous to

CHAPTER 1. INTRODUCTION 19

bits, qubits are the fundamental units of information in quantum computing (NIELSEN;

CHUANG, 2002). Unlike bits, however, qubits have unique properties – which we will

discuss throughout this dissertation – that allow them to perform some tasks in fewer steps

than their classical counterparts. This phenomenon is known as “quantum advantage”

(DEUTSCH; JOZSA, 1992).

David Deutsch and Richard Jozsa formally described the quantum advantage for the

first time in 1992 (DEUTSCH; JOZSA, 1992). Their algorithm showed how to classify

a specific set of binary functions with just one evaluation. From then on, researchers

demonstrated the quantum speed up in many situations (BENNETT et al., 1997; SIMON,

1997; SESHADREESAN et al., 2015), including the famous Shor’s algorithm, which factors

integers in polynomial time (SHOR, 1999). Since most of our current cryptography relies

on the intrinsic difficulty of factoring large numbers, Shor’s algorithm might threaten data

privacy when large-scale quantum computers are available in the future (GERJUOY, 2005).

It is worth noticing, however, that the current quantum hardware’s capabilities are

still orders of magnitude below the minimum requirement (millions of qubits) for factoring

large numbers via Shor’s algorithm (SAFFMAN, 2019). Today’s quantum computers are

usually called Noisy Intermediate-Scale Quantum (NISQ) devices (PRESKILL, 2018).

The “intermediate-scale” component of NISQ devices refers to their number of qubits,

which ranges from fifty to a few hundred (PRESKILL, 2018). Even though it is far away

from the million-qubit milestone, this scale is already an accomplishment, given that a

hundred-qubit device cannot be simulated even by the most powerful classical computers

(BOIXO et al., 2018). NISQ’s “noisy” characteristic means that we have limited control

over qubits, resulting in a cumulative noise that severely affects information processing

(PRESKILL, 2018). One can mitigate this problem via quantum error correction (QEC)

techniques (CHIAVERINI et al., 2004).

As for solving differential equations via quantum algorithms, there are a couple of

ways to address this challenge, such as the algorithm based on the truncated Taylor

series (XIN et al., 2020) and the HHL algorithm (HARROW et al., 2009). Linear differential

equations (LDEs) are easier to solve, considering quantum mechanics’ intrinsic linear

formulation (FEYNMAN et al., 1965). Therefore, there are some options to map linear

differential equations into quantum systems that can be simulated in a quantum computer

(MONTANARO; PALLISTER, 2016).

Conversely, solving nonlinear differential equations (NLDEs) is not as straightforward.

Although it is possible to linearize NLDEs into LDEs and then apply previously discussed

techniques, this process would be either computationally expensive or prone to substantial

approximation errors. Recent results (KILLORAN et al., 2019a; KYRIIENKO et al., 2021) have

demonstrated that VQAs are a promising approach to this question.

CHAPTER 1. INTRODUCTION 20

Based on the same principles of neural networks (NNs), VQAs can be applied to many

problems, including function fitting, image generation, and data classification (KILLORAN

et al., 2019a). In this case, the NNs’ hyperparameters correspond to angles that define the

quantum gates of the variational quantum circuit (VQC). Therefore, when such angles

change, the circuit’s output also changes. We then vary the angles (arguments) in order to

minimize the correspondent cost function, resulting in a more accurate solution (LUBASCH

et al., 2020; CEREZO et al., 2021a). The variational aspect of such algorithms is obtained via

a classical optimizer – thus, characterizing a hybrid method – which iteratively proposes

new values for the angles.

One of the most famous variational algorithms is the Variational Quantum Eigensolver

(VQE), which aims to find the approximate ground state and the corresponding wave

function of a given quantum system (PERUZZO et al., 2014). In this case, we encode the

Hamiltonian of the system in a parametrized quantum circuit. The measurement of this

circuit is the expectation value of the energy. Therefore, as we wish to determine the

ground state, i.e., the one with the lowest energy, we use a classical optimizer to update

the circuit parameters to reduce the value of its measurement (TILLY et al., 2022).

On that same note, there’s also the quantum annealing: an optimization algorithm

designed for finding the lowest energy configuration of a system (MORITA; NISHIMORI,

2008). Analogously to the VQE, we encode the problem via the system’s Hamiltonian,

which depends on several parameters (e.g., the strength of interaction between qubits and

an external magnetic field). We then evolve such parameters adiabatically and measure the

qubits to find the most likely solution corresponding to the lowest energy state (SANTORO;

TOSATTI, 2006). More than a method with many applications in quantum chemistry and

materials science, quantum annealing is also a promising quantum computing architecture

being developed by some research groups and companies (YARKONI et al., 2022).

Considering all these discussions, it is evident that there is room for improvement in

the simulation of a complete satellite’s orbital model, i.e., a system with all the orbit

perturbations. The computational requirements could be in the orders of hundreds of

terabytes of memory and quadrillions of floating-point operations per second (SAINI et al.,

2012). Even though multiple tools (NICHOLSON et al., 2010) were developed in the last

decades that allow us to perform orbit propagation more effectively (e.g., Orekit, NASA’s

GMAT and SPICE, Analytical Graphics’ STK, FreeFlyer), a complete satellite’s orbital

model remains a highly challenging problem that would benefit from new approaches.

To start addressing this question, we propose a proof-of-concept based on VQCs.

Specifically, the problem we want to solve is how to use VQCs for solving the nonlinear

differential equations of the orbital motion in the presence of gravitational perturbations

and atmospheric drag. The objective is to determine if a specific circuit architecture

combined with a given classical optimizer (Adam) can satisfactorily solve a particular set

CHAPTER 1. INTRODUCTION 21

of nonlinear differential equations – those that describe orbits with atmospheric drag and

gravitational perturbations.

To achieve this goal, we start the second chapter presenting a literature review of the

relevant subjects. We review the fundamentals of quantum computing (e.g., quantum

gates, different qubit representations) and discuss previous works on variational quantum

algorithms. The chapter ends with a brief discussion on barren plateaus and how they

affect the performance of VQAs.

Chapter three explains the method we used to solve the NLDEs. It contains all

details about the circuit’s parameters, cost functions, and precisely which equations and

conditions were analyzed. We start with a simplified two-dimensional model and then

expand the idea to the original orbit propagation problem in three dimensions. The fourth

chapter presents the obtained results, including a comparison with classical numerical

methods. All implementations were performed in quantum simulators executed locally in

a classical computer.

Finally, the last chapter contains the conclusions of this work, including the current

limitations and opportunities. We also comment on possible next steps that could be

taken to expand the capabilities of our method. In addition to that, Appendix A derives

and presents all the theoretical reasoning behind the nonlinear differential equations we

solve in this dissertation. Moreover, Appendix B has all the relevant Python code we used

throughout this work.

2 Literature Review

This chapter presents the necessary theoretical background to solve the terminal ren-

dezvous problem with orbit perturbations via VQCs. Firstly, we introduce the foundations

of quantum computing and perform a thorough review of works on VQAs developed up

until this moment. We then discuss barren plateaus, an important phenomenon that

affects VQAs’ performance and scalability.

2.1 Quantum Computing

Before exploring the previous works on VQAs, we must review some introductory

quantum computing concepts. The bit can be defined as the basic unit of information in

classical computation. According to the probability theory (AARONSON, 2013), we can

describe the bit as an object with a probability p of being 0 and 1 − p of being 1. This

happens because such a theory establishes that the norm of the probability vector {p0, p1}
must be one.

Therefore, if an event has n possible outcomes, we can write the following expression

regarding the probabilities:
n
∑

i=1

pi = 1, (2.1)

where pi is the probability of the i-th outcome (pi ≥ 0) and 0 ≤ i ≤ n.

Equation 2.1 is valid because the probability theory is based on the 1-norm, i.e., the

sum of the absolute values of the components of a given vector. From this core idea, we

can deduce the mathematical formulation of the qubit (AARONSON, 2013) – also known

as the quantum bit.

To achieve this goal, we must consider the Euclidean norm (2-norm), EN , which is

defined as

EN =
√

v21 + v22 + ...+ v2n (2.2)

for a given vector v⃗ = {v1, v2, ..., vn}.

Since we are still describing a bit – now in the Euclidean norm – the probability vector

CHAPTER 2. LITERATURE REVIEW 23

{p0, p1} must have a unitary norm. This means that we must have two squares that add

up to one. By taking p0 = |α|2 and p1 = |β|2, we have that

|α|2 + |β|2 = 1, (2.3)

where α and β can be positive, negative, or even complex numbers.

In quantum mechanics, such values are the amplitudes of the associated outcomes 0

and 1 (BAYM, 2018). On that note, one can represent any qubit via the Dirac (bra-ket)

notation (|.⟩) (KASIRAJAN, 2021), such that

|ψ⟩ = α|0⟩+ β|1⟩, (2.4)

where |ψ⟩ is a generic qubit written in the {|0⟩, |1⟩} basis. Each state |ψ⟩ is also called a

“statevector”, given its vectorial representation. For instance, |0⟩ and |1⟩ are given by:

|0⟩ =

1

0

|1⟩ =

0

1

. (2.5)

For specific purposes (e.g., geometric representation), it is helpful to rewrite Equation

2.4 in terms of real numbers. In this case, one may write that

|ψ⟩ = cos
θ

2
|0⟩+ eiφ sin

θ

2
|1⟩, (2.6)

where θ ∈ [0, 2π] and ϕ ∈ [0, 2π]. Therefore, when θ and ϕ vary in such intervals, we

obtain the qubit’s geometric locus (Bloch sphere) illustrated by Figure 2.1.

From Equations 2.4 and 2.6, one can notice that the relative phase between α and

β (also known as the local phase) determines the probabilities of different measurement

outcomes. Thus, if we apply a global phase ζ such that

|ψ′⟩ = eiζ |ψ⟩, (2.7)

it doesn’t affect any observable quantities because it changes the state uniformly. For that

reason, we say the global phase is irrelevant in the qubit representation, i.e., qubits that

differ only by a global phase represent the same quantum state.

The Bloch sphere allows us to see the qubit |ψ⟩ as a normalized vector (unitary norm)

in a complex Hilbert space that we can express in terms of any pair of orthonormal

vectors – also known as basis (NIELSEN; CHUANG, 2002). In addition to {|0⟩, |1⟩}, we also

CHAPTER 2. LITERATURE REVIEW 24

FIGURE 2.1 – Bloch sphere (NIELSEN; CHUANG, 2002).

commonly use other bases, such as {|+⟩, |−⟩} and {|i+⟩, |i−⟩}, given by:

|+⟩ = 1√
2
(|0⟩+ |1⟩)

|−⟩ = 1√
2
(|0⟩ − |1⟩)

, (2.8)

|i+⟩ = 1√
2
(|0⟩+ i|1⟩)

|i−⟩ = 1√
2
(|0⟩ − i|1⟩)

. (2.9)

Once we have established the qubit’s definition and main representations, we can

understand how to encode and process information with qubits. Analogously to bits, we

also start with an initial state and apply several logical gates to get to the next desired

state (AARONSON, 2013). For instance, when one applies the NOT gate to a bit, it flips

from 0 to 1 and vice-versa. The same rule is valid for qubits, i.e., the NOT quantum gate

(X) acts such that:

X|0⟩ = |1⟩, (2.10)

where, in this specific case, the NOT quantum gate X can be written as a 2× 2 matrix

X =

(

0 1

1 0

)

. (2.11)

Even though there are multiple use cases for qubit architectures (MARTIN-LOPEZ et

al., 2012; MOLL et al., 2016), certain aspects make it difficult to employ them for encoding

neural networks. The following subsection discusses such elements and introduces a new

CHAPTER 2. LITERATURE REVIEW 25

framework that better fits the neural networks model.

2.2 Variational Quantum Algorithms

Recent results have demonstrated that we can achieve a quantum advantage in some

machine learning algorithms (BIAMONTE et al., 2017), including those for data fitting

(WIEBE et al., 2012), Bayesian interference (WIEBE; GRANADE, 2015), and recommendation

systems (KERENIDIS; PRAKASH, 2016), for instance. Among these algorithms, we are

particularly interested in a set of techniques based on NNs, forming a new field called

deep learning (LECUN et al., 2015).

Broadly speaking, one of the main components that leverage deep learning methods’

capabilities is the fact that its fundamental computational units are continuous vectors

and tensors – rather than conventional bit registers in digital computing (KILLORAN et al.,

2019a). This alternative framework allows deep learning algorithms to improve state-of-

the-art performance in multiple tasks, such as speech recognition (KAMATH et al., 2019)

and object detection (ZHAO et al., 2019).

Although deep learning’s continuous computation has been traditionally implemented

in digital computers (LECUN, 2019), recent studies are frequently proposing new spe-

cialized hardware which is fundamentally analog (HAENSCH et al., 2018). On that note,

quantum hardware’s unique characteristics (e.g., superposition, entanglement, interfer-

ence) might also provide an advantage over digitally implemented NNs (KYRIIENKO et al.,

2021).

However, analogously to classical bit registers, digital quantum hardware (PARRA-

RODRIGUEZ et al., 2020) relies on qubits, which encode information in a discrete way

(KILLORAN et al., 2019a). This happens because each qubit measurement results in one of

two possible orthonormal states. Therefore, the qubit-based circuits we normally observe

in digital quantum computers may not be the best choice for solving continuous-valued

problems (BENEDETTI et al., 2018).

To address such problems, we shall focus on the continuous-variable (CV) framework

(KILLORAN et al., 2019a). As quantum information is fundamentally encoded in quantum

states of fields (e.g., electromagnetic fields), it should be natural to use such states –

instead of qubits – in quantum computing. This approach became progressively popular

and successful in recent years, as illustrated by many publications on photonic quantum

hardware (SLUSSARENKO; PRYDE, 2019; TAKEDA; FURUSAWA, 2019).

Summarily, the diffence between digital and CV quantum computing lies in the way

we encode and manipulate information using quantum systems (KENDON et al., 2010). As

CHAPTER 2. LITERATURE REVIEW 26

we have discussed, digital quantum computing is based on discrete two-level qubits and

can be physically implemented via superconducting circuits, trapped ions, and topological

systems (MOUNT et al., 2016). On the other hand, CV quantum computing uses quantum

systems with continuous variables that describe quantities (e.g., position and momentum)

of physical systems (GU et al., 2009). Photonic systems are currently the most promising

hardware approach towards practical CV quantum computing (BARTLETT; SANDERS,

2002; WU et al., 2020).

This dissertation uses the CV model to build VQCs, also known as quantum neural

networks (QNNs). To understand how this mapping works and the CV model’s advantage

over qubit-based digital quantum computing, we shall first introduce the fundamentals of

NNs. One should keep in mind that this is quite a broad and expanding field; thus, the

following overview’s purpose is to provide the necessary tools to comprehend the VQCs

we will use.

While we had multiple advances (REN et al., 2016; NIU et al., 2021) in deep learning

in the past few years, its fundamental structure is still based on feedforward NNs –

also known as multilayer perceptron (SVOZIL et al., 1997). Such networks consist of the

collection of multiple layers (which depend on the parameter set Θ) L1, ..., LN that map

an input x⃗ ∈ R
n to an output y⃗ ∈ R

n. Mathematically,

y⃗ = fθ(x⃗) = LN ◦ ... ◦ L1(x⃗), (2.12)

where the operation ◦ indicates that the output of a given layer is used as input for the

next one. In fact, the “deep” aspect of deep learning refers to the act of stacking several

layers together (KILLORAN et al., 2019a).

Each layer L in Equation 2.12 can be described as

L(x⃗) = ϕf (Wx⃗+ b⃗), (2.13)

where ϕf is the nonlinear activation function, W ∈ R
m×n is the weight matrix, and

b⃗ ∈ R
m is the bias vector. The free parameters θW and θb define W and b⃗, respectively –

demonstrating how each layer depends on the parameter set.

Ultimately, the goal is to use the neural network to solve a computational problem

that has an answer a⃗ ∈ R
n. To achieve this objective, we need to adjust the parameter

set Θ such that the output y⃗ gets progressively closer to a⃗. One measures the difference

between y⃗ and a⃗ via the loss function L – its mathematical definition depends on the

nature of the problem (WANG et al., 2020).

CHAPTER 2. LITERATURE REVIEW 27

Considering differential equations in the format:

dx⃗

dt
= g(x⃗, t), (2.14)

where g is a generic function, the NN’s loss function is defined as

L = LD + LI , (2.15)

where LD is the loss function relative to the differential equation itself and LI is the loss

function corresponding to the equation’s initial conditions.

We then proceed to define such loss functions as (LECUN et al., 2015)

LD =
N
∑

i=1

(⃗a(xi, t)− y⃗(xi, t))2, (2.16)

LI = (⃗a(x⃗, 0)− y⃗(x⃗, 0))2, (2.17)

where a⃗(xi, t) and y⃗(xi, t) correspond to the solution and the NN’s output at a given instant

t and position xi. It is worth noting that we have considered the space discretization of

N slots (x1, x2, ..., xN). As for the initial conditions’ loss function LI , we simply compute

the squared difference between the initial condition and the NN’s output at the initial

instant – in this case, t = 0.

Each parameter set (composed of θb and θW) determines the values of W and b, which

also defines the NN’s output. The loss function’s value depends directly on the parameter

set. Hence, one must choose the optimal parameters to minimize the loss function. We

can do this optimization process in multiple ways. One of the most famous approaches

is the stochastic gradient descent algorithm (BOTTOU et al., 1991), which proposes the

following iteration routine:

W j
new = W j − α dL

dW j

bjnew = bj − α dL
dbj

, (2.18)

where W j
new and bjnew are, respectively, the new weight matrix and bias vector in the j−th

layer, and α is an exponential decay factor that determines the contribution of the current

and previous gradients (BOTTOU, 2012).

In this dissertation, we will primarily use the Adaptive Moment Estimation (Adam)

optimizer (KINGMA; BA, 2014) already implemented in Python’s Numpy library. Adam is a

state-of-the-art optimization method that many deep learning researchers are widely using

(ZHANG, 2018). Fundamentally, Adam is a gradient descent algorithm with momentum,

i.e., it accelerates the gradient descent process by calculating an exponentially weighted

average of the gradients (KINGMA; BA, 2014) at each iteration.

CHAPTER 2. LITERATURE REVIEW 28

To run the algorithm, one must define a stepsize α, exponential decay rates β1 and

β2 for the moment estimates, the initial parameter set Θ0, the loss function f(θ), and

initialize the first and second moment estimates as m0 = 0 and v0 = 0, respectively.

Then, for each timestep t, we compute the parameter set Θt (until it converges within a

given interval), which is composed by parameters θt, and also calculate the quantities βt
1

and βt
2, which are simply the exponentiation of β1 and β2 to the power of t. We use the

following routine (KINGMA; BA, 2014):

t← t+ 1,

gt ← ∇θft(θt−1),

mt ← β1mt−1 + (1− β1)gt,
vt ← β2vt−1 + (1− β2)g2t ,
m̂t ← mt/(1− βt

1),

v̂t ← vt/(1− βt
2),

θt ← θt−1 − αm̂t/(
√
v̂t + ϵ),

(2.19)

where gt is the gradient at a given timestep t, m̂t and v̂t are, respectively, the bias-

corrected first and second moment estimate, and ϵ is a small positive constant. In most

deep learning problems, we tend to take values close to α = 0.001, ϵ = 10−8, β1 = 0.9,

and β2 = 0.999 (ZHANG, 2018). We chose such values not only because of their frequent

use in the literature, but also due to the fact that they represent a good balance between

speed and stability, i.e., our model won’t take too many iterations to converge and it also

won’t skip promising configurations (local minima) when exploring the parameter space.

Once we have covered the basics of NNs and optimization methods, we shall discuss

the CV approach to quantum computing and how we use it for creating VQCs that solve

differential equations. From the hardware perspective, although it is not the traditional

qubit-based digital quantum computing, there are many approaches to realize the CV

model, including optical systems (ANDERSEN et al., 2015) and ion traps (MEEKHOF et al.,

1996).

The CV model does not rely on qubits; instead, it uses quantum states of bosonic

modes (MICHAEL et al., 2016) – also known as qumodes – to store and process information.

Roughly speaking, the quantum mechanical definition of mode (FEYNMAN et al., 1965)

comes from the Fourier transform expansion of a free quantum field ϕ(x). Said expansion

contains the creation and annihilation operators we apply to the particle associated with

the field. If these operators commute, we have a boson – and the operatores correspond

to the bosonic modes. If they anti-commute, we have the ferminon as a particle and the

operators as fermionic modes.

CHAPTER 2. LITERATURE REVIEW 29

We will represent the qumode using the phase-space representation of quantum me-

chanics (GROENEWOLD; GROENEWOLD, 1946). In this formulation, we write the state

of a qumode as a vector (x, p) ∈ R
2, where x and p are, respectively, the position and

momentum of the corresponding particle (PFISTER, 2019). A system with N qumodes is

represented via (x⃗, p⃗) ∈ R
2N .

Just like qubits, one also applies quantum gates to change the states of qumodes. Re-

garding qumodes, however, there is an important classification of quantum gates: they are

either Gaussian or non-Gaussian (KILLORAN et al., 2019a). Gaussian gates are generally

easier to implement in CV quantum computers (LARSEN et al., 2021). Mathematically, a

Gaussian transformation is described as

(

x⃗

p⃗

)

→M

(

x⃗

p⃗

)

+

(

αr

αi

)

, (2.20)

in which M is a symplectic matrix, and αr and αi are the real and imaginary parts of

a complex displacement vector α⃗ ∈ C
N , respectively. Symplectic matrices (MACKEY;

MACKEY, 2003) are those that satisfy the relation

MTΩM = Ω, (2.21)

where

Ω =

(

0 I

−I 0

)

. (2.22)

We can apply many Gaussian transformations to change the states of qumodes. Through-

out this work, we will predominantly use the Displacement D(α), Rotation R(ϕ), and

Squeeze S(r) for single-mode operations. They are expressed by:

D(α)

(

x

p

)

→
(

x+ Re(α)

p+ Im(α)

)

, (2.23)

R(ϕ)

(

x

p

)

→
(

cosϕ sinϕ

− sinϕ cosϕ

)(

x

p

)

, (2.24)

S(r)

(

x

p

)

→
(

e−r 0

0 er

)(

x

p

)

, (2.25)

where α ∈ C, ϕ ∈ [0, 2π], and r ∈ R.

We will also use a two-mode Gaussian gate known as Beamsplitter (BS(θ), θ ∈ [0, 2π]),

which we can perceive as a rotation between two qumodes. To simplify the notation, we

CHAPTER 2. LITERATURE REVIEW 30

shall call it B(θ). Mathematically, we have:

B(θ)

x1

x2

p1

p2

→

cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 cos θ − sin θ

0 0 sin θ cos θ

x1

x2

p1

p2

. (2.26)

Additionally, we commonly use non-Gaussian gates when creating VQCs. In this

dissertation, we will use the Kerr gate (K(ϕ)), given by

K(ϕ)

(

x̂

p̂

)

→
(

x̂ coshϕ− ip̂ sinhϕ
p̂ coshϕ+ ix̂ sinhϕ

)

, (2.27)

in which the operators x̂ and p̂ are given respectively by

x̂ =

∫ ∞

−∞
x|x⟩⟨x|dx, (2.28)

p̂ =

∫ ∞

−∞
p|p⟩⟨p|dp. (2.29)

Once we have defined the quantum gates we will use in VQCs, we can understand

their connection with classical NNs. Comparing Equations 2.13 and 2.20, one deduces

that the symplectic matrix M acts like the weight matrix W and the displacement vector

α⃗ corresponds to the bias vector b⃗. Analogously, the weight and bias parameters are

equivalent to the gates’ arguments. Therefore, the goal is to optimize the parameter set

Θj = {θ1j, θ2j, ..., θNj} – for each j layer containing N gates – such that it minimizes the

loss function described by Equations 2.15 to 2.17.

It is possible to demonstrate the universality of VQCs (KILLORAN et al., 2019a), i.e.,

we can parametrize every transformation using a combination of gates such as:

L = U1 ◦ S ◦ U2 ◦ D ◦ Φ, (2.30)

where L is a layer, U1 and U2 are generic N -modes transformations containing rotation

or beamsplitter transformations, S and D are the collective squeeze and displacement

operators. Additionally, Φ is the combination of some non-Gaussian gates – they could

be the cubic gates or Kerr, for instance.

Since we are dealing with N qumodes, the mathematical representation of those col-

CHAPTER 2. LITERATURE REVIEW 31

lective gates is

Ui = Ui(θ⃗, ϕ⃗)
D = D(α1)⊗ ...⊗D(αN)

S = S(r1)⊗ ...⊗ S(rN)
Φ = ϕ(λ1)⊗ ...⊗ ϕ(λN)

, (2.31)

in which θ⃗ and ϕ⃗ are vectors of arguments and ⊗ represents the tensor product. Figure 2.2

illustrates the graphical representation of such VQC’s layer. Combining multiple layers –

followed by measurement at the end – constitutes the VQC itself. The VQC’s output is

the result of such a measurement.

FIGURE 2.2 – General representation of each layer of the VQC (KILLORAN et al.,
2019a), composed of N input qumodes (q1, ..., qN), Gaussian gates (U1, U2, S,D), and
non-Gaussian gates (Φ).

Considering the description of VQCs, one can understand why they are also called

“hybrid approaches” (CEREZO et al., 2021a). They are made of classical (gradient opti-

mizer) and quantum (circuit) components that work together to solve a specific problem.

Figure 2.3 is a general scheme of how VQCs operate: given a parameter set Θ that acts as

the VQC’s input, the circuit’s output feeds a loss function that computes how distant is

the output compared to a given reference. Considering this difference between the VQC’s

output and the reference, a classical optimizer updates the parameter set Θ aiming to

minimize the loss function, which translates to a more accurate model.

As the quantum analog of NNs – highly successful in classical machine learning – VQAs

have emerged as promising methods to be implemented in today’s NISQ devices (CEREZO

et al., 2021a). Additionally, VQAs’ flexible framework and universality allow them to be

CHAPTER 2. LITERATURE REVIEW 32

FIGURE 2.3 – General representation of the VQC containing a parameter set Θ as input,
a loss function that compares its output to a given reference, and a classical optimizer
that updates Θ at each iteration.

used in various problems, including (but not limited to) dynamical simulations (YAO et al.,

2021), combinatorial optimization (AMARO et al., 2022), and quantum metrology (KOCZOR

et al., 2020).

Even though such VQAs’ characteristics are undeniably positive, some challenges must

be addressed to leverage VQAs’ applications. In this work, we are primarily interested

in barren plateaus (BPs), their impact on VQAs’ performance, and how to mitigate their

effects.

2.3 Barren Plateaus

As previously discussed, we aim to vary the gates’ parameters via Adam optimizer

to minimize the loss function L. Although this is a valid method, it is well-known that

the proposed VQC architecture is limited in terms of the reduction of L (CEREZO et al.,

2021b). The process eventually reaches a “barren plateau” (MCCLEAN et al., 2018), in

which the loss function does not decrease substantially even if we update the parameter

set in many more iterations.

Formally, the barren plateau is a phenomenon where the optimizer’s gradients vanish

exponentially as a function of the circuit’s depth (CEREZO et al., 2021b). The depth of the

circuit (ROMERO et al., 2017) depends directly on its number of layers. Thus, a shallow

circuit (few layers) will tend to have its loss function’s landscape filled with peaks and

valleys. Conversely, circuits with more layers – also known as deep circuits – will have

landscapes progressively flatter (WANG et al., 2021).

Such problems directly result from how we define the loss function in each situation,

CHAPTER 2. LITERATURE REVIEW 33

which may be challenging (CEREZO et al., 2021b). Some cases, such as the Variational

Quantum Eigensolver (VQE), are relatively straightforward. VQE aims to find the ground

state of a given HamiltonianH (WANG et al., 2019). Therefore, we write it as a combination

of Pauli operators σk:

H =
∑

k

akσk, (2.32)

where ak are complex coefficients. Since we’re trying to determine the Hamiltonian’s

ground state, the loss function L at a given trial state |ψ⟩ corresponds directly to:

L = ⟨ψ|H|ψ⟩, (2.33)

which is equivalent to the energy of the system for a given Hamiltonian. Therefore,

minimizing the value of this expression implies determining the Hamiltonian’s ground

state.

The VQE, however, is the most basic example of VQA (WANG et al., 2019). This

means that other VQA’s use cases are often associated with less obvious loss functions.

Applications like quantum error correction (XU et al., 2021), quantum metrology (KOCZOR

et al., 2020), solving linear systems (PAN et al., 2014), and differential equations (LUBASCH

et al., 2020) are not directly connected to a physical Hamiltonian – making it harder to

propose an appropriate loss function.

There are a few ways to mitigate the BP effects when training our VQCs. One approach

is to use structured initial guesses for the parameters (MCCLEAN et al., 2018) – rather than

randomly assigned values – based on some characteristics of the problem. Another possible

idea is to perform classical training beforehand and then use this setting’s learning as input

to the VQC (BENGIO et al., 2006). A recent method proposes local loss functions, i.e.,

based on some observables of the circuit as opposed to the measurement of all qumodes

(CEREZO et al., 2021b).

Although not the main interest of this dissertation, it is crucial to acknowledge the

existence of barren plateaus and analyze their impact on the performance of our models.

In particular, we apply some discussed techniques (e.g., structured initial guesses and

local loss functions) to our loss functions, aiming to mitigate the BP effects. Just like

they substantially contributed to the “winter of deep neural networks” (HOCHREITER et

al., 2001), BPs might affect the overall success and adoption of VQCs if we do not address

this issue adequately.

3 Orbit Propagation with Perturbations

via Variational Quantum Algorithm

The present chapter discusses the specific problems and their respective solutions pro-

posed by this dissertation. We start by explaining the simplified two-dimensional (2D)

version of the orbit propagation problem considering the effects of the J2 term and how

to solve it via VQA. We then apply the same principle to the three-dimensional (3D)

orbit propagation considering the J2 term and atmospheric drag individually. The J2

term is the Earth’s second zonal harmonic, and it is used to describe the variation of

the gravitational potential due to the planet’s oblateness. Both phenomena (gravitational

perturbation and atmospheric drag) are explained in greater detail in Appendix A. We

also describe a numerical solution based on SciPy’s ODEINT integrator. Finally, we dis-

cuss alternative ways for solving such problems. Appendix A contains the demonstrations

of every NLDE and Appendix B has all the Python codes referring to the VQA and

numerical implementation.

3.1 2D Case with Gravitational Perturbation

Before performing the 3D orbit propagation in the presence of atmospheric drag (Equa-

tion A.14) or gravitational perturbation (Equation A.27), it is convenient to analyze a

simplified version of such problems. Thus, if we are able to model and solve this simpler

case, we can extrapolate the same ideas to the original problem.

As a simplified version of the orbit propagation, we adopt the 2D case of the grav-

itational perturbation problem. We formulate this situation by considering a satellite

confined to the XY -plane while orbiting the Earth. Mathematically, this situation is

expressed in the geocentric equatorial frame (CURTIS, 2013) by:

ẍ = −µ x

(x2 + y2)3/2
− 3

2
J2µR

2 x

(x2 + y2)5/2
, (3.1)

CHAPTER 3. ORBIT PROPAGATION WITH PERTURBATIONS VIA
VARIATIONAL QUANTUM ALGORITHM 35

ÿ = −µ y

(x2 + y2)3/2
− 3

2
J2µR

2 y

(x2 + y2)5/2
, (3.2)

where µ is the standard gravitational parameter, R is the Earth’s equatorial radius, and

J2 is the Earth’s second zonal harmonic. We derive these expressions in Appendix A,

culminating in Equation A.27 (with the assumption that z = ż = z̈ = 0).

To solve the system defined by Equations 3.1 and 3.2, one should consider particular

characteristics of the problem, hoping to simplify the solution via VQA. We shall apply

the Ansatz method (LINKS et al., 2003) – widely used in many problems in Physics and

Mathematics.

Derived from the German language, ansatz can be defined as an educated guess or

assumption we make to solve a problem – such a guess must be verified afterwards (FOCK,

1930). In Mathematics, a famous example of the Ansatz method is assuming an expo-

nential function as the solution of a homogeneous linear differential equation (GUNER;

BEKIR, 2018). Another renowned case of the Ansatz approach is the Ritz method (“trial

wavefunction”), which proposes a wavefunction as close as possible to the actual solution

(MÜLLER; ZEINHOFER, 2022) of boundary value problems.

Since we are dealing with closed orbits, our ansatz is that their projections onto each

axis are periodic functions of time. Therefore, we can write that:

x(t) = A(t) cos(ωt+ α), (3.3)

y(t) = B(t) cos(ωt+ β), (3.4)

where A(t) and B(t) are time-dependent amplitudes, ω is the angular frequency of the

satellite, α and β are initial phases.

Using this Ansatz, our problem is translated into finding the coefficients A(t), B(t)

and the initial phases α, β via VQA. The present formulation substantially reduces the

possibilities of solutions – which should, ideally, lead to an accurate VQA output in fewer

iterations.

The next step is to create the VQC to encode such variables and solve the 2D prob-

lem. First of all, we will provide a high-level overview of the circuit followed by detailed

discussions of its layer and loss function. We use the standard procedure proposed by the

literature (KILLORAN et al., 2019a), i.e., each variable is encoded into a single qumode

(wire) – as illustrated by Figure 3.1 – which is initialized in the vacuum state.

We then apply a displacement gate D to each wire with random arguments α0, α1, α2,

and α3. These transformations make each qumode go from the vacuum to a new quantum

state. After that, we apply n layers – which we will define later – and finally measure the

qumodes in the position quadrature observable x̂ represented by the X symbol. Math-

CHAPTER 3. ORBIT PROPAGATION WITH PERTURBATIONS VIA
VARIATIONAL QUANTUM ALGORITHM 36

FIGURE 3.1 – VQC used to solve the 2D orbit propagation with gravitational perturba-
tion. It is composed of four qumodes (q0, ..., q3), each one associated to a displacement
gate D followed by n layers, and a measurement gate X applied to each qumode.

ematically, this measurement corresponds to the mean displacement in the phase space

along the x-axis.

One should realize that we start with random arguments for the displacement gates

and the layers. At each iteration, the Adam optimizer updates the arguments of all gates,

intending to minimize the loss function. The next step involves proposing a layer and

defining the loss function that best represents the problem.

There are numerous possibilities for choosing a VQC layer. As discussed in Chapter

2, Equations 2.30 and 2.31 constitute a universal model that can parametrize every trans-

formation. In principle, one could use the layer proposed by Figure 2.2 to propagate the

orbit in the presence of any perturbations. However, it is essential to acknowledge that

using more quantum gates implies optimizing more parameters. Therefore, the Adam

optimizer would likely require more iterations to minimize the loss function successfully.

As a result, we shall use the universal layer from Figure 2.2 as a baseline and remove

some unnecessary gates. The idea is to represent the Equations 3.3 and 3.4 using as few

gates as possible. As we know, there is a connection between the motions in different axes

– clearly expressed by the coupled differential Equations 3.1 and 3.2. Thus, we should

have a quantum gate that connects the qumodes encoding corresponding variables, i.e.,

A(t) with B(t) and α with β. For this purpose, we use a beamsplitter BS(θ).

Additionally, considering the nonlinear aspect of the coupled differential equations, it is

convenient to add a non-Gaussian gate to our layer as well. Following similar layer designs

from the literature (KILLORAN et al., 2019a), we employ the Kerr gate to achieve this

goal. In principle, we do not need to use a squeezing or a rotation gate once they perform

transformations that are not crucial for solving our problem. The strictly necessary gates

CHAPTER 3. ORBIT PROPAGATION WITH PERTURBATIONS VIA
VARIATIONAL QUANTUM ALGORITHM 37

are those that: promote a shift from the vacuum state (D(α)), connect equivalent variables

(BS(θ)), and introduce non-Gaussian behavior (K(ϕ)).

Taking that into account, we build our VQC with displacement gates at the beginning,

followed by layers and the final measurement (Figure 3.1). The layer comprises beamsplit-

ters connecting corresponding qumodes (q0 with q1 and q2 with q3) and a non-Gaussian

gate (Kerr) at each wire, as represented in Figure 3.2.

FIGURE 3.2 – Representation of the VQC layer for the 2D orbit propagation with grav-
itational perturbation. It is composed of four qumodes (q0, ..., q3), associated in pairs to
beamsplitter gates BS, followed by Kerr gates K applied to each qumode.

Once we have defined the layer and the circuit, we proceed to design the loss function

L. Using the same principles from Equation 2.15, we consider two components. The first

one refers to the initial conditions LI . On the other hand, the second component (LD) is

about the differential equation itself. We will mathematically define both parts.

Since we need to solve second-order coupled differential equations, LI involves differ-

ences in each axis’ initial position and velocity. The problem has the following satellite’s

inputs: x0, y0, ẋ0, ẏ0, and T (orbit’s period). To compute the differences, we must first

evaluate our ansatz ’s estimation for initial position and velocity. The initial position is

easily obtained by setting t = 0 in Equations 3.3 and 3.4. This leads to the loss functions:

Lx0 = (x0 − (A(0) cosα))2

Ly0 = (y0 − (B(0) cos β))2
. (3.5)

As for the initial velocities in x and y-axis, one must differentiate the ansatz ’s x(t)

and y(t) (with respect to the time) from Equations 3.3 and 3.4 and set t = 0. As an

CHAPTER 3. ORBIT PROPAGATION WITH PERTURBATIONS VIA
VARIATIONAL QUANTUM ALGORITHM 38

approximation, if we neglect the derivatives of A(t) and B(t), it follows that

Lvx0 = (ẋ0 − (−ωA(0) sinα))2

Lvy0 = (ẏ0 − (−ωB(0) sin β))2
. (3.6)

Even though the accelerations in the x and y-axis are unknown, we can still compute

the differences between their predicted value and the ansatz ’s output. This segment

corresponds to the LD loss function. To calculate it, we use the problem’s definition from

Equations 3.1 and 3.2 as a benchmark. We obtain the ansatz ’s corresponding acceleration

by differentiating x(t) and y(t) in time twice, and neglecting the derivatives of A(t) and

B(t). Therefore,

Lax,2D =

[(

−µ x

(x2 + y2)3/2
− 3

2
J2µR

2 x

(x2 + y2)5/2

)

− (−ω2A(t) cos(ωt+ α))

]2

, (3.7)

Lay,2D =

[(

−µ y

(x2 + y2)3/2
− 3

2
J2µR

2 y

(x2 + y2)5/2

)

− (−ω2B(t) cos(ωt+ β))

]2

, (3.8)

where x and y are given by Equation 3.3 and 3.4 at a given time t.

With all those components, the loss function of the 2D orbit propagation with gravi-

tational perturbation L2D,GP is given by

L2D,GP =
√

Lx0 + Ly0 + Lvx0 + Lvy0 + Lax,2D + Lay,2D. (3.9)

It is worth noticing that in all analyzed cases (2D and 3D), the loss function’s compo-

nents that correspond to the acceleration (Lax,2D and Lay,2D) are calculated in the entire

simulation period, i.e., from t = 0 to t = 12.

As the ansatz ’s outputs (x(t) and y(t) from Equations 3.3 and 3.4) depend on the

VQC’s parameters, it is evident how they determine the value of the loss function L2D,GP .

We then start the solution process with random parameters and use the Adam optimizer’s

routine (Equation 2.19) to generate new parameter sets that minimize the loss function

at each iteration.

Moreover, it is also necessary to investigate the impacts of neglecting the derivatives

of A(t) and B(t). If we compute such amplitudes numerically, we can also estimate their

first and second derivatives via finite differences, i.e.,

dA(t)

dt
=
A(t+ hA)− A(t− hA)

2hA
, (3.10)

d2A(t)

dt2
=
A(t+ hA)− 2A(t) + A(t− hA)

h2A
, (3.11)

CHAPTER 3. ORBIT PROPAGATION WITH PERTURBATIONS VIA
VARIATIONAL QUANTUM ALGORITHM 39

dB(t)

dt
=
B(t+ hB)− B(t− hB)

2hB
, (3.12)

d2B(t)

dt2
=
B(t+ hB)− 2B(t) + B(t− hB)

h2B
, (3.13)

where hA and hB are infinitesimal intervals (hA → 0 and hB → 0).

By using such approximations and recalculating the loss functions’ components that

correspond to velocity and acceleration (Equations 3.6, 3.7, and 3.8), we can estimate the

contribution of the first and second derivatives we neglected in the the loss function as a

whole (Equation 3.9). This analysis will allow us to understand whether neglecting such

derivatives severely impacts our model’s accuracy or not. We denote as L̃2D,GP the new

estimated loss function where no derivatives have been neglected. Thus,

L̃2D,GP =
√

L2
2D,GP + C2D,GP , (3.14)

where C2D,GP is the expression (for the 2D case with gravitational perturbation) that

contains all the first and second derivatives terms that should be in the loss function if

we haven’t neglected them.

3.2 3D Case with Gravitational Perturbation

Analogously to the 2D case from the previous section, we apply the Ansatz method for

performing the 3D orbit propagation with gravitational perturbation. However, instead

of solving the simplified version (Equations 3.1 and 3.2), we will use VQA to solve the

three-dimensional problem represented by:

ẍ = −µx/r3 + (3/2)J2µ(R
2/r4)(x/r)(5z2/r2 − 1)

ÿ = −µy/r3 + (3/2)J2µ(R
2/r4)(y/r)(5z2/r2 − 1)

z̈ = −µz/r3 + (3/2)J2µ(R
2/r4)(z/r)(5z2/r2 − 3)

, (3.15)

which is derived in Appendix A, Equation A.27.

To accomplish this goal, we will once again use the fact that we are modeling a closed

orbit. In addition to Equation 3.3 (x-axis) and 3.4 (y-axis), we can also write for the

z-axis:

z(t) = C(t) cos(ωt+ γ). (3.16)

Representing this problem in a quantum circuit involves adding an extra qumode (wire)

for the amplitude C(t) and for the initial phase γ. Figure 3.3 illustrates the VQC we have

designed for propagating orbits in the presence of gravitational perturbation, considering

CHAPTER 3. ORBIT PROPAGATION WITH PERTURBATIONS VIA
VARIATIONAL QUANTUM ALGORITHM 40

the J2 effects.

FIGURE 3.3 – VQC used to solve the 3D orbit propagation with perturbations. It is
composed of six qumodes (q0, ..., q5), each one associated to a displacement gateD followed
by n layers, and a measurement gate X applied to each qumode.

Once we have established a broad overview of the VQC that solves the three-dimensional

problem, we can define its layer and loss function. Similarly to the 2D case, the layer shall

contain a connection between the amplitudes (via beamsplitter) and non-Gaussian com-

ponent via the Kerr gate. Figure 3.4 shows one possibility for achieving this objective.

FIGURE 3.4 – Representation of the VQC layer for the 3D orbit propagation with per-
turbations. It is composed of six qumodes (q0, ..., q5), associated in pairs to beamsplitter
gates BS, followed by Kerr gates K applied to each qumode.

CHAPTER 3. ORBIT PROPAGATION WITH PERTURBATIONS VIA
VARIATIONAL QUANTUM ALGORITHM 41

As for the loss function, we use the same idea as the 2D case. This time, however,

the inputs regarding the satellite’s motion are the initial position (x0, y0, z0) and velocity

(ẋ0, ẏ0, ż0). Hence, the loss functions’ components relative to the initial position are:

Lx0 = (x0 − (A(0) cosα))2

Ly0 = (y0 − (B(0) cos β))2

Lz0 = (z0 − (C(0) cos γ))2

. (3.17)

Analogously to Equation 3.6, we also neglect the derivatives of A(t), B(t), and C(t)

to obtain the following:

Lvx0 = (ẋ0 − (−ωA(0) sinα))2

Lvy0 = (ẏ0 − (−ωB(0) sin β))2

Lvz0 = (ż0 − (−ωC(0) sin γ))2
. (3.18)

Finally, the part corresponding to the differential equation itself can be obtained using

the same idea behind Equations 3.7 and 3.8. This case involves the z-axis as well, which

leads to the following:

Lax,GP =

[(

−µ x
r3

+
3

2
J2µR

2 x

r5

(

5
z2

r2
− 1

))

− (−ω2A(t) cos(ωt+ α))

]2

, (3.19)

Lay,GP =

[(

−µ y
r3

+
3

2
J2µR

2 y

r5

(

5
z2

r2
− 1

))

− (−ω2B(t) cos(ωt+ β))

]2

, (3.20)

Laz,GP =

[(

−µ z
r3

+
3

2
J2µR

2 z

r5

(

5
z2

r2
− 3

))

− (−ω2C(t) cos(ωt+ γ))

]2

, (3.21)

where x, y, z are given by Equations 3.3, 3.4, and 3.16, respectively, and r =
√

x2 + y2 + z2.

Once we have calculated the components of the loss function for the gravitational

perturbation problem, we can compute it as

L3D,GP =
√

Lx0 + Ly0 + Lz0 + Lvx0 + Lvy0 + Lvz0 + Lax,GP + Lay,GP + Laz,GP . (3.22)

Similarly to our analysis in the 2D case with gravitational perturbation, we are inter-

ested in checking whether ignoring the first and second derivatives of the amplitudes has

a substantial impact in our model’s output. Thus, in addition to the derivatives of A(t)

and B(t) given by Equation 3.10 to 3.13, we can also write for C(t) that:

dC(t)

dt
=
C(t+ hC)− C(t− hC)

2hC
, (3.23)

CHAPTER 3. ORBIT PROPAGATION WITH PERTURBATIONS VIA
VARIATIONAL QUANTUM ALGORITHM 42

d2C(t)

dt2
=
C(t+ hC)− 2C(t) + C(t− hC)

h2C
, (3.24)

where hC is an infinitesimal interval (hC → 0). In this case, the estimated loss function

in which we haven’t neglected the derivatives is represented by L̃3D,GP . Considering that

C3D,GP is the collection of first and second derivatives terms that should be in the loss

function (if not neglected), we can then write that:

L̃3D,GP =
√

L2
3D,GP + C3D,GP . (3.25)

3.3 3D Case with Atmospheric Drag

To propagate the 3D orbit in the presence of atmospheric drag, we use the same

principles of the previous problem (gravitational perturbation considering J2 effects). We

can make that assumption because this case also involves the closed orbit of a satellite

around the Earth. The problem we want to solve is mathematically described in the

geocentric equatorial frame by the following system:

ẍ = −µx/r3 − (1/2)ρvrelB(ẋ+ yωE)

ÿ = −µy/r3 − (1/2)ρvrelB(ẏ − xωE)

z̈ = −µz/r3 − (1/2)ρvrelBż

, (3.26)

in which ρ is the atmospheric density, v⃗rel is the satellite’s relative velocity to the atmo-

sphere, ωE is the value of Earth’s angular velocity, and B = CDA/m (CD is the drag

coefficient, A and m are the satellite’s frontal area and mass, respectively). We derived

Equation 3.26 in Appendix A, obtaining the Equation A.14.

Instead of solving the system in Equation A.14 directly, we calculate the variables

A(t), B(t), C(t), α, β, γ from Equations 3.3, 3.4, and 3.16. As a result, we shall apply the

VQC presented in Figure 3.3 with the layer from Figure 3.4. As for the loss function,

the components relative to the initial conditions are identical to the previous section, i.e.,

we need to take into account Equations 3.17 and 3.18. The main difference is the loss

function’s part that corresponds to the acceleration vector ¨⃗r = {ẍ, ÿ, z̈}.

Computing this component of the loss function uses the same principles of Equations

3.20, 3.21, and 3.22. However, the benchmark value (against which we will compare the

ansatz’s output) is given by Equation A.14. Once again, by neglecting the derivatives of

A(t), B(t), and C(t), we can write that:

Lax,AD =

[(

−µ x
r3
− 1

2
ρvrelB(ẋ+ yωE)

)

− (−ω2A(t) cos(ωt+ α))

]2

, (3.27)

CHAPTER 3. ORBIT PROPAGATION WITH PERTURBATIONS VIA
VARIATIONAL QUANTUM ALGORITHM 43

Lay,AD =

[(

−µ y
r3
− 1

2
ρvrelB(ẏ − xωE)

)

− (−ω2B(t) cos(ωt+ β))

]2

, (3.28)

Laz,AD =

[(

−µ z
r3
− 1

2
ρvrelBż

)

− (−ω2C(t) cos(ωt+ γ))

]2

, (3.29)

where r and vrel are given by Equation A.15 and the subscript “AD” refers to atmospheric

drag.

Hence, the total loss function for the 3D orbit propagation with atmospheric drag via

VQA is given by

L3D,AD =
√

Lx0 + Ly0 + Lz0 + Lvx0 + Lvy0 + Lvz0 + Lax,AD + Lay,AD + Laz,AD. (3.30)

Once again, we repeat the same analysis as before via Equations 3.10, 3.11, 3.12, 3.13,

3.23, and 3.24. The objective is to estimate the impact of our approximations in the

loss function as a whole. Similarly to previous cases, we denote the new estimated loss

function as L̃3D,AD. Therefore,

L̃3D,AD =
√

L2
3D,AD + C3D,AD, (3.31)

where C3D,AD contains all first and second derivative terms that would be in the loss

function expression if we haven’t neglected them beforehand.

3.4 3D Orbit Propagation with Perturbations via Numeri-

cal Methods

After solving the orbit propagation problem with gravitational perturbation and at-

mospheric drag via VQA, we need to verify our solution’s accuracy. As the systems

described by Equations 3.15 and 3.26 cannot be solved analytically, we will use their

numerical solution as a benchmark.

We use Python’s open-source library SciPy (VIRTANEN et al., 2020), which is vastly

used in many scientific projects worldwide. It provides numerous mathematical algorithms

for optimization, integration, differential equations, and many more. In particular, we will

use SciPy’s ODEINT – an integrator based on FORTRAN’s Livermore Solver for Ordinary

Differential Equations (LSODE) library (RADHAKRISHNAN; HINDMARSH, 1993).

Alongside the parameter values and initial conditions (described in Chapter 4) for each

problem, we also define some aspects of the integrator. The total simulation time is 12

hours (i.e., we simulate the satellite’s motion between t0 = 0 and t = 12 hours), which

is discretized in 1200 points. Moreover, we define the “atol” and “rtol” parameters that

CHAPTER 3. ORBIT PROPAGATION WITH PERTURBATIONS VIA
VARIATIONAL QUANTUM ALGORITHM 44

determine the error control performed by the solver. Table 3.1 summarizes the integrator

parameters.

Integrator Parameters Value

Simulation Time 12
Number of Points 1200

atol 10−8

rtol 10−6

TABLE 3.1 – SciPy’s ODEINT parameters.

3.5 Alternative Approaches

As previously discussed, we chose the Ansatz method because it substantially reduces

the possible solutions that can be explored by the optimizer. Instead of fitting the solution

by considering infinite possibilities, the optimizer only needs to fit some pre-determined

parameters. Therefore, the optimizer should be able to reduce the loss function and

achieve a reasonable solution in fewer iterations.

Nevertheless, we should acknowledge the existence of other approaches and comment

on their advantages and shortcomings. One possibility is to linearize the equations and

solve them via a quantum algorithm based on the corresponding truncated Taylor series

(XIN et al., 2020; FERREIRA, 2022). Although this approach makes it easier to solve simple

nonlinear differential equations, the linearization process is not straightforward for systems

with coupled equations. On top of that, the solution’s accuracy increases with the order

of the truncated Taylor series. This means that one would need to write the expansion in

multiple terms to obtain a valid approximation – which would not simplify the problem.

Another idea is to do the orbit propagation by combining VQA and the Finite Differ-

ence Method (FDM) (HEINRICH, 1987). We shall consider a sample problem to explain

this approach in greater detail. Let us assume that we wish to solve the following system

of coupled differential equations:

dx/dt = −y
dy/dt = x

, (3.32)

knowing that x(0) = 0 and y(0) = 1. We want to solve it for x(t) and y(t).

The analytical solution is

x(t) = − sin t

y(t) = cos t
, (3.33)

CHAPTER 3. ORBIT PROPAGATION WITH PERTURBATIONS VIA
VARIATIONAL QUANTUM ALGORITHM 45

which we will adopt as a benchmark to analyze the accuracy of our solution. To solve

this example via VQA with FDM, we build two VQCs: the first one, VQC1(t), encodes

x(t), while VQC2(t) encodes y(t). Each circuit has its own loss function called L1 and

L2, respectively, which should be minimized by updating their parameter set Θ1 and Θ2.

Figure 3.5 represents a high-level diagram that solves this problem.

FIGURE 3.5 – Diagram of the method that uses VQA and FDM for solving the proposed
system of coupled differential equations. It contains two VQCs, each of which receives
a parameter set (Θ1,Θ2) as an input and aims to minimize a loss function (L1,L2) by
updating the corresponding parameter set iteratively via a classical optimizer.

As indicated in Figure 3.5, the parameter set defines the gates of its respective VQC.

In this case, as we seek to have VQC1(t) = x(t) and VQC2(t) = y(t), L1 should involve

the difference between VQC’1(t) and −VQC2(t), while L2 compares VQC1(t) to VQC’2(t).

As a consequence, when the optimizer updates Θ1 and Θ2 such that both loss functions

tend to zero, we would have x′(t) → −y(t) and y′(t) → x(t), which are the conditions

imposed by the system (Equation 3.32). Therefore, this construction allows us – at least

in principle – to solve the proposed system of coupled differential equations.

The FDM component of this solution consists of defining the differentiation proce-

dure (d/dt) from Figure 3.5 as finite differences. Since we are dealing with a first-order

differentiation with respect to time, we can use the following approximations:

VQC′
1(t) =

VQC1(t+ h1)− VQC1(t− h1)
2h1

, (3.34)

CHAPTER 3. ORBIT PROPAGATION WITH PERTURBATIONS VIA
VARIATIONAL QUANTUM ALGORITHM 46

VQC′
2(t) =

VQC2(t+ h2)− VQC2(t− h2)
2h2

, (3.35)

where h1 and h2 are arbitrarily small numbers called step sizes. It is worth noticing that

we could also use higher-order approximations if we want to reduce the truncation error.

In particular, the first-order’s error is proportional to the step size, i.e., O(h).

Even though this approach is correct in principle, further tests revealed that it requires

a high amount of iterations to minimize the loss function effectively. Due to the fact that

one loss function depends on the other, the optimization process is not as straightforward

(AMES et al., 1997) as in the Ansatz approach. Additionally, a complex system of coupled

equations – such as the ones we are solving in this dissertation – would enhance all these

limitations and make it unfeasible to use this technique.

4 Results

This chapter presents the results we obtain when performing the orbit propagation

in the presence of perturbations via VQA and numerical integrator. We start showing

the results for the two-dimensional case of the gravitational perturbation problem. We

then discuss the 3D orbit propagation in the presence of the effects of the J2 term and

the atmospheric drag. Each discussion includes a comparison with the corresponding

numerical solution.

4.1 2D Orbit Propagation with Gravitational Perturbation

We start applying our method to a simplified 2D version of the gravitational pertur-

bation problem. We choose Example 10.2 (CURTIS, 2013) as a baseline. It states that, at

time t = 0, there is a satellite orbiting Earth with some known orbital parameters: perigee

radius (rp), apogee radius (ra), right ascension of the ascending node (Ω), inclination (i),

argument of the perigee (ω), and true anomaly (θTA). Table 4.1 contains such parameters.

Parameter Value Unit

rp 6678 km
ra 9940 km
Ω 45 degree
i 28 degree
ω 30 degree
θTA 40 degree

TABLE 4.1 – Orbital parameters from the Example 10.2 (CURTIS, 2013).

Using the Appendix A procedure, we can obtain the initial position and velocity

vector, i.e., r⃗0 = (x0, y0, z0) and v⃗0 = (ẋ0, ẏ0, ż0). In our adapted 2D version, we set

z = ż = z̈ = 0 for the entire orbit propagation process. Tables 4.2 and 4.3 present the

remaining parameters and initial conditions, respectively.

We perform all simulations in a development environment with an Intel(R) Celeron(R)

N4000 CPU 1.10GHz processor and 4GB RAM. We run the VQA simulation in Penny-

Lane, a software framework in Python for differentiable quantum computing, designed

CHAPTER 4. RESULTS 48

Parameter Value Unit

µ 398,600 km³/s²
J2 1.08263× 10−3 –
R 6378 km
T 2 h

Simulation Time 12 h

TABLE 4.2 – Parameters used in the two-dimensional orbit propagation considering the
effects of the J2 term.

Condition Value Unit

x0 -2384.46 km
y0 5729.01 km
ẋ0 -7.36138 km/s
ẏ0 -2.98997 km/s

TABLE 4.3 – Initial conditions used in the two-dimensional orbit propagation considering
the effects of the J2 term.

and distributed by the Canadian company Xanadu (BERGHOLM et al., 2018). PennyLane

substantially facilitates the training of VQCs, and for that reason, it has been used in

multiple projects (KWAK et al., 2021; DELGADO et al., 2021; KONAR et al., 2023). In all

cases, we also compare both classical solution’s and VQA’s running times in this specific

hardware.

PennyLane provides multiple backends for running the quantum circuit. We chose the

StrawberryFields simulator (KILLORAN et al., 2019b) due to its specific design for photonic

quantum computing – which matches the continuous-variable formalism of this work, as

explained in Chapter 2. Each simulation involves 5000 iterations with a 0.01 learning

rate and 4 layers. We use this configuration in all problems (2D and 3D gravitational

perturbation and 3D atmospheric drag), and we chose it based on data from literature

(KILLORAN et al., 2019a) and toy models inspired by these problems.

Having established the technical specifications, we shall proceed to the analysis of

the results. Firstly, we plot ODEINT’s numerical results together with VQA’s outputs.

Figure 4.1 demonstrates a satisfactory fit between the VQA model and the numerical

solution in both the x and y-axis. An alternative analysis involves comparing both orbits

(generated numerically and via VQA) in the XY plane, considering the total simulation

period of 12 hours (Figure 4.2). We use the parameters associated with the lowest loss

function – i.e., not necessarily the last iteration’s parameters – to plot these results.

Figures 4.1 and 4.2 suggest the satellite’s orbit is a Medium-Earth Orbit (MEO), given

the altitude – more details are provided in the Appendix A. Additionally, one should note

that the VQA results were obtained after 5000 iterations and by using the parameters

CHAPTER 4. RESULTS 49

FIGURE 4.1 – Numerical (continuous blue line) and VQA’s (dashed red line) components
(x(t), y(t)) of the 2D orbit propagation with gravitational perturbation (effects of the J2
term) as a function of time.

associated with the lowest loss function. The numerical approach took 328 milliseconds,

while the VQA solution took 2 hours, 55 minutes and 53 seconds. It is worth mentioning

that this running time difference is mainly due to the fact that we executed the VQA in

a classical simulator, and not in a quantum device.

Additionally, it is interesting to understand how the model’s convergence depends

on the number of iterations (Figure 4.3). As expected, generally speaking, our model

becomes more accurate as we increase the number of iterations. Graphically, this means

that the loss function tends to decrease as we perform more iterations (Figure 4.3), going

from L2D,GP = 1.655 × 105 to L2D,GP = 1.452 × 102 at the minimum value. Although

this is the general trend, the loss function might eventually grow from one iteration to

another. Such a phenomenon happens because the gradient-based algorithm does not

know a priori which trajectory in the parameter landscape will lead to the minimization

of the loss function.

Moreover, one could argue whether the approximation that the derivatives of A(t) and

B(t) being small enough to be neglected was actually valid or not. We can address this

CHAPTER 4. RESULTS 50

FIGURE 4.2 – Numerical (continuous blue line) and VQA’s (dashed red line) 2D orbits
in the presence of the gravitational perturbation (effects of the J2 term).

question by computing the loss function variation had we not neglected such terms – as

indicated in Equation 3.14. After performing those calculations, we estimate that the loss

function considering such derivatives would be L̃2D,GP = 1.436×102 at its minimum value.

Given the loss function’s reduction of roughly 1.12%, we can say that our approximation

was valid in this case.

Figure 4.3 illustrates that our method can consistently reduce the loss function up to

approximately 1000 iterations. From this point until around 3700 iterations, the VQA

reaches a barren plateau in which the loss function remains roughly the same. We can

explain the subsequent behavior (from 3700 onward) as the Adam optimizer exploring the

parameter landscape in regions near the previous local minimum. As the optimizer tries

these neighborhoods, the loss function increases and decreases abruptly.

Adam optimizer eventually finds a region associated with a lower loss function –

marked with the inferior dashed line in Figure 4.3. In the last iterations, the optimizer

appears to be stuck around some local minima in the parameter landscape, as indicated

by the loss function’s oscillation between fixed points. Such behavior suggests that the

CHAPTER 4. RESULTS 51

FIGURE 4.3 – Loss function versus the number of iterations for the 2D orbit propaga-
tion with gravitational perturbation (effects of the J2 term). The dotted lines mark the
minimum and maximum values of the loss function.

Adam optimizer might not be the best option for obtaining a highly-accurate solution.

In future works, we should instead consider optimizers that explore multiple pathways

in the parameter space simultaneously, such as the Particle Swarm Optimization (PSO)

(KENNEDY; EBERHART, 1995). The advantage of PSO over Adam is that it uses a group

of particles to explore the search space. Each particle represents a potential solution and

moves through the search space to find the optimal solution (CLERC, 2010). This trait

maintains a balance between exploration – searching for new regions – and exploitation –

focusing on promising areas – which is crucial for avoiding premature convergence to local

optima (SHANKAR et al., 2016). Another possibility would be genetic algorithms (GAs),

as they keep a population of possible solutions exploring the search space throughout the

entire process (WRIGHT, 1991). Mechanisms like crossover and mutation allow GAs to

avoid local optima and find the best solution globally (SRINIVAS; PATNAIK, 1994).

In addition to the loss function in terms of the iterations, we should also analyze the

behavior of our model’s core components, i.e., amplitude and initial phase. Since our

ansatz is based on determining these features for each axis (x(t) and y(t)), it is crucial to

comprehend how the results of amplitude and phase evolve as a function of the number

of iterations.

Achieving this goal involves creating a metric that reflects the proximity between the

numerical and VQC’s solution as a function of amplitude or phase. Thus, we introduce

CHAPTER 4. RESULTS 52

the mean relative error per cycle (which we will abbreviate as “MREC”), defined as:

MREC(k) =
1

np

∣

∣

∣

∣

kNum − kVQC

kNum

∣

∣

∣

∣

, (4.1)

where k is the feature we are analyzing (amplitude or phase), np is the number of periods

within the total simulation time (12 hours), and kNum and kVQC are the numerical and

VQC’s results for that feature, respectively.

FIGURE 4.4 – Mean Relative Error per Cycle (MREC) of amplitudes as a function of the
number of iterations for the 2D orbit propagation with gravitational perturbation (effects
of the J2 term).

We are interested in understanding how the MREC of amplitude and phase change over

the simulation process – as illustrated in Figures 4.4 and 4.5. For the sake of simplicity,

we adopt the following notation:

Ax = A

Ay = B

ϕx = α

ϕy = β

, (4.2)

for amplitudes and phases, respectively.

As expected, the curves of MREC(Ax),MREC(Ay),MREC(ϕx), and MREC(ϕy) have

similar behavior when compared to the loss function. This conformity is essential be-

cause MREC converging to zero implies that our model’s accuracy is increasing, which is

associated with a decreasing loss function.

CHAPTER 4. RESULTS 53

FIGURE 4.5 – Mean Relative Error per Cycle (MREC) of phases as a function of the
number of iterations for the 2D orbit propagation with gravitational perturbation (effects
of the J2 term).

For that reason, the MREC curves intuitively should have a decreasing trend within

the first iterations, followed by a plateau up until the 3700th repetition – as we can attest

in Figures 4.4 and 4.5. In particular, we can observe that the curves of MREC(Ax) and

MREC(ϕx) have abrupt variations within the initial 500 iterations before reaching the

plateau state. Even though the value of MREC(ϕx) increases afterward, VQA’s output

as a whole becomes more accurate.

Moreover, we can also explain the sudden drop in the MREC(ϕx) curve. That hap-

pened because the optimizer found a specific set of parameters that produced that effect.

However, as we update the parameters at each iteration, the MREC value might increase

in the following iterations. Indeed, the lowest values of MREC(ϕx) and MREC(ϕy) are

2.007×10−5 and 2.086×10−3, respectively. On the other hand, at the end of the iterations,

their results are MREC(ϕx) = 1.217× 10−2 and MREC(ϕy) = 0.1067.

Immediately after the 3700th iteration, as the Adam optimizer starts to explore other

regions aiming for another minimum, we naturally observe sudden variations in MREC

curves, which stabilize around a given value in the last iterations. In particular, for the

amplitudes, these values are MREC(Ax) = 3.527× 10−3 and MREC(Ay) = 1.100× 10−2.

Additionally, the minima are MREC(Ax) = 1.474× 10−3 and MREC(Ay) = 2.653× 10−3.

Based on those results, we can attest that the VQA model does not provide a sat-

isfactory approximation to the numerical solution of the problem under the analyzed

CHAPTER 4. RESULTS 54

conditions. As indicated in Figure 4.2, there are some points in the orbit in which the de-

viation between the numerical and VQA’s solution is up to 200 kilometers, approximately.

Even though the altitude tolerance error highly depends on the mission requirements (JR,

2017), an error of 200 kilometers for a MEO satellite is considered too elevated, even for

less strict missions (WERTZ et al., 2011).

Moreover, there is no evidence that performing more iterations would result in better

results. Although there is a general trend that the model gets more accurate with the

iterations, the classical optimizer appears to be stuck in a local minimum from the 3700th

iteration onward. As we cannot guarantee that the Adam optimizer will eventually find

a new minimum, we conclude that the proposed combination of circuit architecture and

optimizer is not able to solve the problem considering practical tolerance errors. One

should notice, however, that alternative optimizers, such as PSO and GA, or circuit

architectures could potentially lead to better solutions.

4.2 3D Orbit Propagation with Gravitational Perturbation

Once we have analyzed the 2D case, we can move on to the orbit propagation with

gravitational perturbations considering the J2 term effects. We use the same development

environment, framework (PennyLane), and backend simulator (StraberryFields) presented

in section 4.1.

Once again, we will solve the Example 10.2 (CURTIS, 2013) – described in section 4.1.

The parameters are present in Tables 4.1 and 4.2. Using the formulas from the Appendix

A, we can determine the initial conditions (position and velocity at t = 0), as we can see

in Table 4.4.

Condition Value Unit

x0 -2384.46 km
y0 5729.01 km
z0 3050.46 km
ẋ0 -7.36138 km/s
ẏ0 -2.98997 km/s
ż0 1.64354 km/s

TABLE 4.4 – Initial conditions used in the three-dimensional orbit propagation consider-
ing the effects of the J2 term.

Like the previous problem, we plot the numerical and the VQC’s solution together.

As shown in Figure 4.6, we analyze the match of our model compared to the numerical

solution considering the curves of x(t), y(t) and z(t). Moreover, Figure 4.7 illustrates the

trajectory obtained after the total simulation time. Similarly to the 2D problem, we save

CHAPTER 4. RESULTS 55

the parameters that correspond to the lowest loss function and use them in our VQC to

obtain these results. As for the running time, in this case, we had 344 milliseconds for

the numerical solution and 3 hours, 34 minutes and 57 seconds for the VQA, which can

be attributed to our classical simulator backend once again.

FIGURE 4.6 – Numerical (continuous blue line) and VQA’s (dashed red line) components
(x(t), y(t), z(t)) of the 3D orbit propagation with gravitational perturbation (effects of the
J2 term) as a function of time.

As we can see from Figures 4.6 and 4.7, there is not a reasonable fit between the

numerical output and the VQA’s solution. We can visually attest that the proximity

between the models is greater on the y-axis; for the x and z-axis, however, there is room

for improvement, especially in the extremes (local maxima in x(t) and minima in z(t)).

Such differences generate orbits that are relatively close to each other in some points, but

have higher disparities in other positions, as illustrated in Figure 4.7.

Analogously to our previous analysis, it is vital to comprehend the evolution of the

loss function in terms of the number of iterations. Therefore, it is evident in Figure 4.8

that the loss function starts at a high value (L3D,GP = 3.541× 105), abruptly falls within

the first 1000 iterations, and then decreases at a slower pace from this point up until

CHAPTER 4. RESULTS 56

FIGURE 4.7 – Numerical (continuous blue line) and VQA’s (dashed red line) 3D orbits
in the presence of the gravitational perturbation (effects of the J2 term).

the end of the simulation, reaching L3D,GP = 4.838 × 102. The analysis of the impact of

neglecting the derivatives of amplitudes A(t), B(t), and C(t) represented in Equation 3.25

reveals that L̃3D,GP = 4.598 × 102, which corresponds to a 4.96% reduction in terms of

the lowest loss function. Hence, neglecting those derivatives was a valid approach indeed.

Unlike the 2D problem, however, this case has not exhibited a barren plateau in 5000

iterations. Rather, the loss function slowly decreases during the process, indicating that

the Adam optimizer is exploring the parameter landscape and converging at least to a

local minimum.

Additionally, we should comment on a sudden loss function’s oscillation around the

400th iteration. Similar to what we have discussed in the 2D case, we can understand this

event as the Adam trying different directions around a given point to minimize the loss

CHAPTER 4. RESULTS 57

FIGURE 4.8 – Loss function versus the number of iterations for the 3D orbit propaga-
tion with gravitational perturbation (effects of the J2 term). The dotted lines mark the
minimum and maximum values of the loss function.

function. Eventually, the optimizer finds the best path that will decrease the loss function

according to the calculations expressed in Equation 2.19.

Since we have analyzed the behavior of the loss function in terms of the number of

iterations, we can proceed to investigate how our ansatz’s features (amplitude and phase)

evolve throughout the simulation process. We adopt the same notation expressed in

Equation 4.2 with an additional definition that Az = C and ϕz = γ. The results are

presented in Figures 4.9 and 4.10.

As indicated by Figure 4.9, the values of MREC for Ax, Ay, and Az reach values as low

as 9.157 × 10−4, 6.286 × 10−5, and 5.869 × 10−2, respectively. At the end of the process,

the MREC curves of amplitudes converge to the following values: MREC(Ax) = 0.2868,

MREC(Ay) = 6.955×10−2, and MREC(Az) = 5.939×10−2. As for the phases, the MREC

curves reach 1.251 × 10−2, 6.670 × 10−4, and 0.2423 for ϕx, ϕy, and ϕz, respectively, as

their lowest values. After 5000 iterations, they converge to MREC(ϕx) = 1.337 × 10−2,

MREC(ϕy) = 1.998× 10−2, and MREC(ϕz) = 0.2481.

We shall discuss the reason why the MREC curves in the 3D problem do not converge

to values as low as in the two-dimensional case. The former situation has more parameters

than the latter, resulting in a parameter landscape with more dimensions. Therefore, the

optimizer needs to update more variables to minimize the loss function. As a consequence,

5000 iterations are not sufficient to find the correct parameters’ values that will reduce

all MREC values to match the results from the 2D problem. We can extend the same

argument to the loss function comparison between the two and three-dimensional cases.

CHAPTER 4. RESULTS 58

FIGURE 4.9 – Mean Relative Error per Cycle (MREC) of amplitudes as a function of the
number of iterations for the 3D orbit propagation with gravitational perturbation (effects
of the J2 term).

FIGURE 4.10 – Mean Relative Error per Cycle (MREC) of phases as a function of the
number of iterations for the 3D orbit propagation with gravitational perturbation (effects
of the J2 term).

We can verify that applying the VQA model to the 3D orbit propagation with grav-

itational perturbation has not provided satisfactory results – the deviation illustrated in

CHAPTER 4. RESULTS 59

Figure 4.7 (hundreds of kilometers) is greater than the acceptable for missions in MEO

(WERTZ et al., 2011). Over the iterations, Ay, Az, ϕx, ϕy and ϕz became progressively more

accurate (although in a low slope), while Ax remained virtually the same. This behavior

suggests the Adam optimizer was continuously exploring regions that minimize all the

variables of our model except for Ax.

As a consequence, the loss function also decreases at a slow pace throughout the

process. Yet, 5000 iterations were insufficient to reduce the loss function to a magnitude

similar to the two-dimensional problem. As we need more parameters to model the 3D

scenario, the optimizer requires more iterations to adjust all these values in a specific

way to minimize the loss function. Considering the loss function’s decreasing behavior, it

might be possible to obtain more accurate solutions through more iterations in this case.

Other strategies include replacing the Adam optimizer with PSO or GA, or modeling the

problem with fewer parameters – which would reduce the search space the optimizer has

to explore.

4.3 3D Orbit Propagation with Atmospheric Drag

In this case, we will solve Example 10.1 from the same source (CURTIS, 2013). It

describes a small spherical satellite (mass m = 100 kilograms and diameter D = 1 meter)

revolving around the Earth in a closed orbit with atmospheric drag, which is extensively

discussed in the Appendix A. Tables 4.5 and 4.6 contain the parameters of the problem.

Analogously to the sections 4.1 and 4.2, we apply the formulas from the Appendix A to

obtain the satellite’s initial position and velocity (Table 4.7).

Parameter Value Unit

rp 6593 km
ra 7317 km
Ω 340 degree
i 65.1 degree
ω 58 degree
θTA 332 degree

TABLE 4.5 – Orbital parameters from the Example 10.1 (CURTIS, 2013).

As the previous cases, we solve this problem using the same development environment

used in sections 4.1 and 4.2, PennyLane and StrawberryFields. We start by plotting

the orbit’s components in function of time (x(t), y(t), and z(t)) in a comparison between

the VQA and the numerical approach. The following step is to plot the full orbit –

considering the total simulation time of 12 hours – in a three-dimensional plot, considering

both solutions as well (Figures 4.11 and 4.12). As for the running time, in this case, the

CHAPTER 4. RESULTS 60

Parameter Value Unit

µ 398,600 km³/s²
ρ 10−11 kg/m³

ωE 72.9211× 10−6 rad/h
CD 2.2 –
A 0.25π m²

m 100 kg
T 96.207 min

Simulation Time 12 h

TABLE 4.6 – Parameters used in the three-dimensional orbit propagation considering
atmospheric drag.

Condition Value Unit

x0 5873.40 km
y0 -658.522 km
z0 3007.49 km
ẋ0 -2.89641 km/s
ẏ0 4.94010 km/s
ż0 6.14446 km/s

TABLE 4.7 – Initial conditions used in the three-dimensional orbit propagation consider-
ing atmospheric drag.

numerical solution took 336 milliseconds, while the VQA solution took 3 hours, 4 minutes

and 28 seconds for the VQA due to its classical simulator backend.

As we can visually attest, the specific VQA we used model does not constitute a

reasonable approximation to the numerical solution – given the hundreds of kilometers

of deviation in Figures 4.11 and 4.12. Even though the period of the motion is visually

the same in both approaches, the VQA method seems to overestimate the amplitude –

especially in the x and z-axis. Consequently, when we analyze the full orbit, we observe

the numerical output contained within the VQA result. Despite this amplitude difference,

there is a region where both orbits coincide in Figure 4.12.

To complement our analysis, we shall consider the plot of the loss function versus the

number of iterations. As indicated by Figure 4.13, there is a general decreasing trend of

the loss function over the course of 5000 iterations, going from L3D,AD = 2.540 × 105 to

L3D,AD = 8.328×102. This problem does not present any evident barren plateau behavior,

but it has some slow variations between the 800th and the 2200th iteration and from the

2800th iteration onward. As for the idea of neglecting the derivatives of the amplitudes

(A(t), B(t), and C(t)) conveyed by Equation 3.31, we obtain that L̃3D,AD = 8.259× 102,

corresponding to a 0.8% loss function reduction, approximately. Therefore, neglecting

such derivatives was a valid approximation in this case as well.

CHAPTER 4. RESULTS 61

FIGURE 4.11 – Numerical (continuous blue line) and VQA’s (dashed red line) components
(x(t), y(t), z(t)) of the 3D orbit propagation with atmospheric drag as a function of time.

In addition to the previous comments, it is important to notice the rapid decrease

of the loss function within the initial 800 iterations and between the 2200th and 2800th

repetition. The latter case also presents a sudden oscillation that suggests that the Adam

optimizer was exploring adjacent regions in a local minimum in the parameter landscape.

Eventually, the optimizer chooses a direction associated with a steady and slow decrease

of the loss function, as observed in the last portion of the Figure 4.13.

Finally, we investigate how the amplitude and phase estimates evolve throughout

the simulation process (Figures 4.14 and 4.15). As expected, the MREC curves of the

amplitudes have a general decreasing trend along the iterations. However, in all three

axes, we see a sudden drop followed by an increase and slow decrease of their respective

MREC values. We can explain such behavior by observing that the optimizer updates

all parameters at each iteration. Therefore, it might find a particular value that reduces

a given MREC abruptly; but since it keeps looking for new regions in the parameter

landscape, the MREC will tend to grow again before it resumes its decreasing behavior.

CHAPTER 4. RESULTS 62

FIGURE 4.12 – Numerical (continuous blue line) and VQA’s (dashed red line) 3D orbits
in the presence of atmospheric drag.

Quantitatively, the lowest values these curves assume during the simulation process are

MREC(Ax) = 1.332× 10−3, MREC(Ay) = 3.102× 10−4, and MREC(Az) = 6.124× 10−4.

Considering the previous discussion, we know these values are not the same as those

obtained at the end of the simulation. After 5000 iterations, the MREC curves converge

to 0.1217, 0.2308, and 0.1612 (for Ax, Ay, and Az, respectively).

As for the MREC curves of the phases (Figure 4.15), we mainly observe a decreasing

trend in MREC(ϕx) and MREC(ϕy). In both cases, we have a sudden decrease around

the 2500th iteration, followed by a slow reduction – coinciding with the loss function plot.

This suggests that the parameters explored by the optimizer at that moment reduced

MREC(ϕx), MREC(ϕy), and the loss function simultaneously. Moreover, there are some

fluctuations in MREC(ϕy) within the first 1000 iterations, which we might connect to the

CHAPTER 4. RESULTS 63

FIGURE 4.13 – Loss function versus the number of iterations for the 3D orbit propagation
with atmospheric drag. The dotted lines mark the minimum and maximum values of the
loss function.

FIGURE 4.14 – Mean Relative Error per Cycle (MREC) of amplitudes as a function of
the number of iterations for the 3D orbit propagation with atmospheric drag.

loss function decreasing during the same period.

Conversely, MREC(ϕz) does not present a clear decreasing trend. Instead, it has a

relatively constant behavior except for a few abrupt reductions at the 200th and 2500th

iterations, approximately. This observation indicates that the optimizer was unable to

CHAPTER 4. RESULTS 64

FIGURE 4.15 – Mean Relative Error per Cycle (MREC) of phases as a function of the
number of iterations for the 3D orbit propagation with atmospheric drag.

consistently find parameters values that culminated in more accurate predictions of ϕz.

Although Adam optimizer could sporadically locate some points that produced a better

solution – represented by the two valleys in MREC(ϕz) plot – it probably needs more

iterations to achieve a steady MREC reduction, as observed in MREC(ϕx) and MREC(ϕy).

Given those reasons, one should expect the value obtained at the end of the 5000 iter-

ations to be relatively closer to the lowest value in the case of MREC(ϕx) and MREC(ϕy).

Indeed, such lowest values are MREC(ϕx) = 1.591×10−4 and MREC(ϕy) = 3.028×10−5,

and these MREC cuvers converge to 4.777 × 10−2 and 1.004 × 10−2 at the end of the

process. On the other hand, MREC(ϕz) gets as low as 6.722 × 10−6 and converges to

9.065× 10−2 after 5000 iterations.

We can draw some insights about this solution similar to section 4.2. In this case,

the components Ax, Az, ϕx, and ϕy became more accurate at a slow pace throughout the

iterations; Ay and ϕz, on the other hand, remained stable during the entire process. We

can deduce that the Adam optimizer was probably exploring a region with progressively

lower values of Ax, Az, ϕx, and ϕy while stagnating in Ay and ϕz.

As for the loss function, it decreases in a slight slope over 5000 iterations – not enough

to obtain amplitudes and phases that would generate accurate solutions, as we can see in

Figures 4.11 and 4.12. Again, in this case, the error in the order of hundreds of kilometers

is superior to the acceptable in the literature for MEO missions (WERTZ et al., 2011).

Since the loss function continues in a decreasing trend around the 5000th iteration, it is

CHAPTER 4. RESULTS 65

possible to achieve more accurate results via more iterations. We could also try different

optimizers (e.g., PSO, GA) or represent the problem with fewer parameters.

5 Conclusions

This dissertation presented a hybrid method – partially quantum, partially classical

– for performing orbit propagation of an artificial satellite around the Earth with per-

turbations. After explaining the fundamentals of Quantum Computing (in particular,

Variational Quantum Algorithms), we defined the problem and derived the equations

that describe the satellite motion considering the effects of the J2 term and atmospheric

drag in Appendix A.

We then described the underlying methodology of doing orbit propagation with per-

turbations via VQA. Our core idea relies on the fact that all problems refer to closed

orbits, which have periodic projections in all axes. We use that principle to propose an

Ansatz that the solution must be defined by a given amplitude and initial phase. Since

the satellite’s period is an input of the problem (obtained via direct observation), we only

need to find the amplitude and phase for each axis to solve the problem.

The strategy is to start with a simplified version of the orbit propagation and then

apply the same idea to the real problems we are aiming to solve. We started by solving the

two-dimensional version of the gravitational perturbation problem, considering the effects

of the J2 term. The following steps were about using the same method for performing

the actual 3D orbit propagation with J2 effects and atmospheric drag separately. We also

solve those three problems numerically in order to have an accuracy benchmark for the

VQA solution.

After defining the problems and methodology, we proceeded to analyze the obtained

results. In summary, the 2D orbit propagation with the effects of the J2 term (section

4.1) constitutes a reasonable proof-of-concept. Even though it doesn’t solve the problem

within the acceptable tolerance errors, it could still be a valid method for less strict

situations. The loss function was substantially reduced, but there was also a noticeable

barren plateau, indicating the Adam optimizer got stuck in a local minimum for many

iterations. Thus, in this case, there is no evidence that more iterations would produce

better VQA’s outputs.

Regarding the three-dimensional orbit propagation with the effects of the J2 term or

atmospheric drag (section 4.2 and 4.3, respectively), the loss function has not converged

CHAPTER 5. CONCLUSIONS 67

to values as low as in the 2D case due to more parameters to be optimized in the 3D

situation. The analysis of the amplitudes and phases showed that, although most of

these variables were slowly converging to the target value, some were still stagnant (Ax in

section 4.2, Ay and ϕz in section 4.3). Such behavior illustrates a limitation in the Adam

optimizer’s performance: as a gradient-descent algorithm, it explores only one region at

a time, which might lead it to focus on a region that doesn’t minimize all parameters

involved. It is worth noticing that we haven’t observed barren plateaus in the 3D cases.

Moreover, the loss function’s behavior in Figures 4.8 and 4.13 suggests more iterations

could improve the solution’s accuracy – although marginally, given its small slope.

Based on these results, we cannot prove if VQCs can satisfactorily perform orbit prop-

agation with perturbations. In particular, we demonstrated that our specific combination

of circuit architecture and classical optimizer is not able to do so. Nevertheless, there

might be circuit architectures and optimizers (e.g., PSO, GA) that could lead to orbit

propagation with acceptable altitude fluctuations.

Therefore, there are a couple of ways to address those issues and to plan possible

future directions of this work. The first idea is to use a different classical optimizer –

preferentially PSO and GAs – for reasons explained in Chapter 4, section 4.1. By doing

so, we could explore the parameter landscape (search space) more effectively, avoiding

local minima and keep searching for the best solution globally. This approach could

drastically reduce the number of iterations spent on barren plateaus.

Additional ideas may include performing more iterations. The loss function generally

decreases with the increase in the number of iterations. Therefore, in principle, we could

obtain more accurate solutions if we allow more than 5000 repetitions. However, one

should be aware of the potential barren plateaus that might appear, as well as the feasi-

bility of this approach, i.e., a solution that requires hundreds of thousands of iterations

will hardly have any practical value.

One could also model the problem with fewer parameters. This approach is highly

promising because the convergence of the Adam optimizer depends directly on the number

of parameters that we have in our VQC – thus explaining why the 2D model converges

faster than the 3D one. The main difficulty is to find a way to build a circuit with fewer

gates such that it represents all possible solutions without losing generality. Unless we

have additional information about the problem, this task seems highly challenging.

Lastly, we should acknowledge that, as of 2023, quantum information is a vibrant field

that is filled with new results and promising methods that are published at an accelerated

pace. We hope this dissertation will inspire students to expand this use case of VQA

and investigate further applications of quantum algorithms in applied and fundamental

sciences.

Appendix A - Orbital Mechanics

In this Appendix, we proceed to derive the nonlinear differential equations that de-

scribe closed orbits with atmospheric drag and gravitational perturbations. We start by

defining the inertial frame as the cartesian coordinate system XY Z, in which the origin

O may move with constant velocity relative to the fixed stars, but the axes do not rotate.

In this case, such a frame is also known as the geocentric equatorial frame (CURTIS, 2013).

Additionally, the moving frame of reference xyz is such that the origin O can rotate

and translate freely. This frame is usually attached to a moving physical object – in this

work, to an artificial satellite around the Earth in a closed orbit.

FIGURE A.1 – Diagrams corresponding to the (a) inertial frame and (b) moving frame
(CURTIS, 2013).

According to Newton’s law of gravitation, the motion of a body under the influence

of a central gravity field is mathematically described as (FEHSE, 2003):

F⃗G(r⃗) = −G
Mm

r2
r⃗

r
= −µmr⃗

r3
, (A.1)

where F⃗G is the gravitational force, G is the universal gravitational constant (G = 6, 67×
10−11 Nm²/kg²), M is the mass of the central body, m is the spacecraft’s mass, r⃗ is the

APPENDIX A. ORBITAL MECHANICS 69

radius vector (r⃗ = xî+yĵ+zk̂), and µ is the standard gravitational parameter (µ = GM).

On the other hand, we can also write that

F⃗G(r⃗) = mr⃗. (A.2)

Comparing Equations A.1 and A.2, we deduce that

¨⃗r = −µ r⃗
r3
. (A.3)

We derived Equation A.3 assuming there are only those two objects in space (the

Earth and a satellite around it) and the only interaction between them is due to their

symmetric gravitational fields. Thus, any additional effect is considered an orbit pertur-

bation, which may include the gravitational interaction with other bodies, atmospheric

drag, solar radiation pressure, propulsive thrust, and effects of an oblate central body

(CURTIS, 2013).

To represent such cases, we add a vector p⃗ to the right side of Equation A.3:

¨⃗r = −µ r⃗
r3

+ p⃗, (A.4)

where p⃗ is the net perturbative acceleration considering all sources of orbit perturbation.

Generally, the perturbative acceleration p is significantly lower than the gravitational

one (a0 = µ/r2). For instance, at 1,000 km altitude, the relative magnitudes of the

perturbative accelerations due the lunar gravity (pLG), and solar radiation pressure (pRP)

are approximately (FORTESCUE et al., 2011):

pLG = 10−7a0

pRP = 10−9a0
. (A.5)

One possible exception to this trend is the atmospheric drag – it can easily deorbit

satellites below 100 km of altitude. Nonetheless, its effects decrease rapidly and become

negligible above 1,000 km, reaching pdrag ≈ 10−10a0 (CURTIS, 2013).

We shall now derive the expression for the atmospheric drag’s perturbative accelera-

tion (CHOBOTOV, 2002). Starting with the spacecraft’s relative velocity (relative to the

atmosphere) v⃗rel, we have that:

v⃗rel = v⃗ − v⃗atm, (A.6)

where v⃗ is the spacecraft’s inertial velocity and v⃗atm is the inertial velocity of the atmo-

sphere at that specific point.

APPENDIX A. ORBITAL MECHANICS 70

Supposing that the atmosphere rotates with the Earth with angular velocity ω⃗E, we

can also write that

v⃗atm = ω⃗E × r⃗, (A.7)

where v⃗rel can be expressed in terms of its unitary vector v̂rel:

v⃗rel = vrelv̂rel. (A.8)

In this context, the drag force D⃗ can be written as

D⃗ = −Dv̂rel, (A.9)

where the magnitude D depends on the atmospheric density ρ, the spacecraft’s frontal

area A, and the drag coefficient CD, such that

D =
1

2
ρv2relCDA. (A.10)

Therefore, given a spacecraft with mass m, the atmospheric drag’s perturbing accel-

eration p⃗ is given by p⃗ = D⃗/m, i.e.,

p⃗ = −1

2
ρvrel

(

CDA

m

)

v⃗rel. (A.11)

By substituting Equation A.11 into Equation A.4, and taking B = CDA/m, we obtain

the NLDE that describes the orbital motion of an artificial satellite around the Earth in

the ECI frame under the effects of atmospheric drag (CHOBOTOV, 2002):

¨⃗r = −µ r⃗
r3
− 1

2
ρvrelBv⃗rel. (A.12)

If we define the velocity vector as v⃗ = {vx, vy, vz} = {ẋ, ẏ, ż}, the relative velocity v⃗rel

from Equation A.6 can be written as (CHOBOTOV, 2002):

v⃗rel = v⃗ − ω⃗E × r⃗ = (ẋ+ yωE)̂i+ (ẏ − xωE)ĵ + żk̂, (A.13)

where ω⃗E = ωE k̂. Therefore, we can expand Equation A.12 as the following system of

coupled equations in x, y and z:

ẍ = −µx/r3 − (1/2)ρvrelB(ẋ+ yωE)

ÿ = −µy/r3 − (1/2)ρvrelB(ẏ − xωE)

z̈ = −µz/r3 − (1/2)ρvrelBż

, (A.14)

APPENDIX A. ORBITAL MECHANICS 71

in which r and vrel are given by:

r =
√

x2 + y2 + z2

vrel =
√

(ẋ+ yωE)2 + (ẏ − xωE)2 + ż2
. (A.15)

FIGURE A.2 – Atmospheric density as a function of altitude (ATMOSPHERE, 1976).

It is crucial to realize that the acceleration vector (Equation A.14) depends directly on

the atmospheric density ρ. However, ρ itself is also a function of multiple factors, including

the z-component. As represented by Figure A.2, the density substantially decreases as we

increase the altitude. This work will assume a circular orbit with constant atmospheric

density for simplicity.

In addition to the atmospheric drag, gravitational perturbations might also affect the

orbit severely. This kind of perturbation derives from Earth’s asymmetric mass distri-

bution (CHOBOTOV, 2002). A perfect sphere would produce the following gravitational

potential energy (per unit mass)

V (r) = −µ
r

(A.16)

for a given point at a distance r outside of the sphere.

Like any other celestial body, the Earth is not a perfect sphere. Instead, it is an

irregularly shaped ellipsoid (JEKELI, 1981), as illustrated by Figure A.3. This figure uses

a spherical coordinate system with the origin O coinciding with the planet’s center of

mass. Moreover, the z-axis is the axis of rotational symmetry. Using such definitions, we

APPENDIX A. ORBITAL MECHANICS 72

can compute the polar angle ϕ as

ϕ = arctan

(

√

x2 + y2

z

)

. (A.17)

FIGURE A.3 – Representation of Earth’s geometry (CURTIS, 2013).

We can determine the corresponding gravitational perturbation by acknowledging the

Earth’s asymmetric shape. Since the gravitational field is rotationally symmetric, it does

not depend on the azimuth angle θ. Thus, we correct Equation A.16 by adding the

gravitational perturbation term f(r, ϕ) due to the planet’s oblateness:

V (r) = −µ
r
+ f(r, ϕ). (A.18)

We can expand the perturbation f(r, ϕ) as the infinite series (BATTIN, 1999)

f(r, ϕ) =
µ

r

∞
∑

k=2

Jk

(

R

r

)k

Pk(cosϕ), (A.19)

where R is the Earth’s equatorial radius, Jk is the k-th zonal harmonic, and Pk is the k-th

Legendre polynomial.

Zonal harmonics are dimensionless values that can be measured from observations of

satellites around a given planet. Since the coordinate system’s center coincides with the

planet’s center of mass, we have that J1 = 0. Table A.1 contains Earth’s zonal harmonics

APPENDIX A. ORBITAL MECHANICS 73

from J2 to J7 (VALLADO; MCCLAIN, 2007).

Zonal Harmonic Value

J2 1.08263× 10−3

J3 −2.53266× 10−6

J4 −1.61963× 10−6

J5 −2.27298× 10−7

J6 5.40676× 10−7

J7 3.52364× 10−7

TABLE A.1 – Earth’s zonal harmonics.

From J8 and beyond, the zonal harmonics become more than three orders of magnitude

smaller than J2 (VALLADO; MCCLAIN, 2007). Therefore, the J2 effects are predominant in

this specific set of zonal harmonics. For this reason, we can approximate (CURTIS, 2013)

the infinite series from Equation 2.20 to a single term when k = 2:

f(r, ϕ) =
µ

r
J2

(

R

r

)2

P2(cosϕ). (A.20)

To compute Legendre polynomials, we use Rodrigues’ formula (MCCARTHY et al., 1993)

Pk(x) =
1

2kk!

dk

dxk
(x2 − 1)k, (A.21)

with k = 2, to obtain

P2(x) =
1

2
(3x2 − 1). (A.22)

Substituting Equation A.22 in Equation A.20, we derive the formula of perturbation

corresponding to the J2 effects, i.e.,

f(r, ϕ) =
µ

r

J2
2

(

R

r

)2

(3 cos2 ϕ− 1). (A.23)

We then use Equation A.23 to compute the net perturbative acceleration vector p⃗ from

Equation A.4. Such a vector is simply the negative gradient of f(r, ϕ):

p⃗ = −∇f = −∂f
∂x
î− ∂f

∂y
ĵ − ∂f

∂z
k̂. (A.24)

Using the chain rule, we have that:

∂f

∂x
=
∂f

∂r

∂r

∂x
+
∂f

∂ϕ

∂ϕ

∂x
, (A.25)

and analogous expressions for y and z.

APPENDIX A. ORBITAL MECHANICS 74

Calculating the partial derivatives from Equation A.25, we show that Equation A.24

becomes

p⃗ =
3

2

J2µR
2

r4

[

x

r

(

5
z2

r2
− 1

)

î+
y

r

(

5
z2

r2
− 1

)

ĵ +
z

r

(

5
z2

r2
− 3

)

k̂

]

. (A.26)

Therefore, the total acceleration (from Equation A.4) can be obtained by solving the

following system of coupled differential equations:

ẍ = −µx/r3 + (3/2)J2µ(R
2/r4)(x/r)(5z2/r2 − 1)

ÿ = −µy/r3 + (3/2)J2µ(R
2/r4)(y/r)(5z2/r2 − 1)

z̈ = −µz/r3 + (3/2)J2µ(R
2/r4)(z/r)(5z2/r2 − 3)

. (A.27)

One should note that to obtain the differential equations that represent orbit propa-

gation with both gravitational perturbations and atmospheric drag simultaneously, it is

necessary to sum both perturbing acceleration vectors p⃗ from Equations A.11 and A.26.

Thus, once we have the resulting perturbing vector, we substitute it in Equation A.4 and

can write the acceleration in three components x(t), y(t), and z(t).

Additionally, we should mention one practical aspect of orbit propagation models.

Equations A.14 and A.27 represent systems of second-order NLDEs, implying that one

needs to know the initial conditions (position and velocity at a time instant) to solve

such systems. Nonetheless, in practical terms, we gather different data types from the

satellite’s motion around the Earth.

The following discussion assumes the general case, i.e., a satellite that describes an

elliptic orbit (eccentricity e) around the Earth. Through observations, we can measure the

orbit’s perigee (rp) and apogee radius (ra) – the shortest and longest distance to Earth,

respectively.

We then define the first Euler angle. It is called the right ascension of the right node

(Ω), which is the angle between the positive X axis and the node line N , which is defined

by the intersection of the orbital plane with the equatorial plane (XY). The second Euler

angle is the inclination i, which we measure between the positive Z-axis and the normal

to the plane of the orbit.

The third angle of Euler is the argument of perigee (ω), which we define as the angle

between the node line vector N⃗ and the eccentricity vector e⃗, measured in the plane of

the orbit. Finally, the true anomaly θTA is located between the satellite’s position vector

and the eccentricity vector. Figure A.4 is a graphic representation of these geometric

relations.

Lastly, we define angular momentum h as the product between the satellite-Earth

APPENDIX A. ORBITAL MECHANICS 75

FIGURE A.4 – Diagram representing the geocentric equatorial frame and the orbital
elements (CURTIS, 2013).

distance (r) and the radial component of velocity v⊥. Mathematically, we can write that:

h = rv⊥. (A.28)

By doing so, we have discussed the six orbital elements (CHOBOTOV, 2002), i.e., spe-

cific angular momentum (h), inclination (i), right ascension of the ascending node (Ω),

eccentricity (e), the argument of perigee (ω), and true anomaly (θTA). As for the prob-

lems discussed in this dissertation, these are the inputs we use to determine the initial

conditions of the NLDEs we wish to solve.

To obtain the initial conditions from the orbital elements, we must first define the

perifocal frame in the context of an artificial satellite orbiting the Earth. The perifocal

frame (CHOBOTOV, 2002) is a Cartesian coordinate system centered at the focus of the

orbit (in this case, the Earth), and its plane (represented by xy) coincides with the plane

of the orbit. Its x axis is directed from the Earth to the perigee (periapsis), and the y

axis is located at 90◦ true anomaly to the x axis. Finally, the z axis is normal to the

plane of the orbit and has the same direction as the specific angular momentum vector

h⃗. As illustrated in Figure A.5, the unit vectors of the x, y, and z axes are p̂, q̂, and ŵ,

respectively.

Once we have defined the perifocal frame, we proceed to derivate the algebraic relations

APPENDIX A. ORBITAL MECHANICS 76

FIGURE A.5 – Perifocal frame representation (CURTIS, 2013).

that compute the orbit’s initial conditions as a function of the orbital elements. The first

step is to write the position (r⃗x) and velocity (v⃗x) vectors in the perifocal frame. It is

possible to demonstrate (CURTIS, 2013) that such vectors are given by:

r⃗x =
h2

µ

1

1 + e cos θTA

cos θTA

sin θTA

0

, (A.29)

v⃗x =
h

µ

− sin θTA

e+ cos θTA

0

. (A.30)

After obtaining the position and velocity in the perifocal frame, we use a transfor-

mation matrix QxX that maps vectors from the perifocal to the geocentric equatorial

coordinates. The transformation matrix is given by:

QxX =

Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

, (A.31)

APPENDIX A. ORBITAL MECHANICS 77

where

Q11 = − sinΩ cos i sinω + cosΩ cosω

Q12 = cosΩ cos i sinω + sinΩ cosω

Q13 = sin i sinω

Q21 = − sinΩ cos i cosω − cosΩ sinω

Q22 = cosΩ cos i cosω − sinΩ sinω

Q23 = sin i cosω

Q31 = sinΩ sin i

Q32 = − cosΩ sin i

Q33 = cos i

. (A.32)

We then obtain the position (r⃗) and velocity (v⃗) vectors in the geocentric equato-

rial frame by multiplying the transformation matrix and the corresponding vector in the

perifocal coordinates. Mathematically,

r⃗ = QxX r⃗x, (A.33)

v⃗ = QxX v⃗x. (A.34)

Therefore, given the orbital elements at a time instant t0, we can compute the satellite’s

position and velocity at that specific time. That information corresponds to the initial

conditions that we need to solve the systems of NLDEs expressed in Equations A.14 and

A.27.

Appendix B - Code

The following code shows the necessary packages that one needs to install in order to

run the algorithms that we mention in this work.

python -m pip install -U pip

python -m pip install -U matplotlib

pip install numpy

pip install scipy

pip install pennylane --upgrade

Our first implementation is designed for solving the 2D gravitational perturbation

problem.

#declaring packages and libraries

import pennylane as qml

import matplotlib.pyplot as plt

from pennylane import numpy as np

from pennylane.optimize import AdamOptimizer

#selecting the backend device

dev_fock = qml.device("strawberryfields.fock", wires=4, cutoff_dim=10)

#defining the VQC layer

def layer(v):

qml.Beamsplitter(v[4], np.pi/2, wires=[0,1])

qml.Kerr(v[5], wires=0)

qml.Kerr(v[6], wires=1)

qml.Beamsplitter(v[7], np.pi/2, wires=[2,3])

qml.Kerr(v[8], wires=2)

qml.Kerr(v[9], wires=3)

APPENDIX B. CODE 79

@qml.qnode(dev_fock, diff_method="parameter-shift")

def quantum_neural_net(var, x):

Encode input x into a quantum state

qml.Displacement(v[0], 0.0, wires=0) #A

qml.Displacement(v[1], 0.0, wires=1) #B

qml.Displacement(v[2], 0.0, wires=2) #alpha

qml.Displacement(v[3], 0.0, wires=3) #beta

"layer" subcircuits

for v in var:

layer(v)

return [qml.expval(qml.X(0)), qml.expval(qml.X(1)), qml.expval(qml.X(2)),

qml.expval(qml.X(3))]

#generating random quantum gates arguments

np.random.seed(0)

num_layers = 4

var_init = np.random.randn(num_layers, 10, requires_grad=True)

var = var_init

Parameter values

mu = 398600*3600**2

J2 = 1082.63*10**(-6)

R = 6378 #km

w = 4.79632466196915 #rad/h

Initial conditions

x0 = -2384.46 #km

vx0 = -7.36138*3600 #km/h

y0 = 5729.01 #km

vy0 = -2.98997*3600 #km/h

r0 = np.sqrt(x0**2 + y0**2) #km

#defining the variables: x(t) = A*cos(w*t+phi); y(t) = B*cos(w*t+theta)

def A(var, t):

return x0*quantum_neural_net(var,t)[0]

def B(var, t):

return y0*quantum_neural_net(var,t)[1]

APPENDIX B. CODE 80

def phi(var, t):

return quantum_neural_net(var,t)[2]

def theta(var,t):

return quantum_neural_net(var,t)[3]

def loss(var):

#setting the corresponding loss functions to 0

L = 0

L0x = 0

L0y = 0

L1x = 0

L1y = 0

L2x = 0

L2y = 0

L0x = (x0 - (A(var,0)*np.cos(phi(var,0))))**2

L0y = (y0 - (B(var,0)*np.cos(theta(var,0))))**2

L1x = (vx0 - (-A(var,0)*w*np.sin(phi(var,0))))**2

L1y = (vy0 - (-B(var,0)*w*np.sin(theta(var,0))))**2

#performing the simulation for a total time of 12 hours

for t in np.linspace(0, 12, 120):

x = A(var,t)*np.cos(w*t + phi(var,t))

y = B(var,t)*np.cos(w*t + theta(var,t))

r = np.sqrt(x**2 + y**2)

L2x = ((-mu*x/r**3 - 1.5*J2*mu*x*R**2/r**5) - (-A(var,t)*np.cos(w*t +

phi(var,t))*w**2))**2

L2y = ((-mu*y/r**3 - 1.5*J2*mu*y*R**2/r**5) - (-B(var,t)*np.cos(w*t +

theta(var,t))*w**2))**2

L = np.sqrt(L0x+L0y+L1x+L1y+L2x+L2y)

return L

for it in range(5000):

opt = AdamOptimizer(0.01, beta1=0.9, beta2=0.999)

var_min = var_init

loss_min = 10**15

APPENDIX B. CODE 81

var, _loss = opt.step_and_cost(loss, var)

if _loss < loss_min:

loss_min = _loss #saving the lowest loss function

var_min = var #saving the corresponding parameters

print("Iter: {:5d} | Loss: {:0.7f}".format(it, _loss))

The following code solves 3D gravitational perturbation problem via VQC.

import pennylane as qml

import matplotlib.pyplot as plt

from pennylane import numpy as np

from pennylane.optimize import AdamOptimizer

dev_fock = qml.device("strawberryfields.fock", wires=6, cutoff_dim=10)

def layer(v):

qml.Beamsplitter(v[6], np.pi/2, wires=[0,1])

qml.Beamsplitter(v[7], np.pi/2, wires=[1,2])

qml.Kerr(v[8], wires=0)

qml.Kerr(v[9], wires=1)

qml.Kerr(v[10], wires=2)

qml.Beamsplitter(v[11], np.pi/2, wires=[3,4])

qml.Beamsplitter(v[12], np.pi/2, wires=[4,5])

qml.Kerr(v[13], wires=3)

qml.Kerr(v[14], wires=4)

qml.Kerr(v[15], wires=5)

@qml.qnode(dev_fock, diff_method="parameter-shift")

def quantum_neural_net(var, x):

Encode input x into a quantum state

qml.Displacement(v[0], 0.0, wires=0) #A

qml.Displacement(v[1], 0.0, wires=1) #B

qml.Displacement(v[2], 0.0, wires=2) #C

qml.Displacement(v[3], 0.0, wires=3) #alpha

qml.Displacement(v[4], 0.0, wires=4) #beta

qml.Displacement(v[5], 0.0, wires=5) #gamma

"layer" subcircuits

for v in var:

layer(v)

APPENDIX B. CODE 82

return [qml.expval(qml.X(0)), qml.expval(qml.X(1)), qml.expval(qml.X(2)),

qml.expval(qml.X(3)), qml.expval(qml.X(4)), qml.expval(qml.X(5))]

np.random.seed(0)

num_layers = 4

var_init = np.random.randn(num_layers, 16, requires_grad=True)

var = var_init

Parameter values

mu = 398600*3600**2 #km^3/h^2

J2 = 1082.63*10**(-6)

R = 6378 #km

w = np.pi #rad/h

Initial conditions

x0 = -2384.46 #km

vx0 = -7.36138*3600 #km/h

y0 = 5729.01 #km

vy0 = -2.98997*3600 #km/h

z0 = 3050.46 #km

vz0 = 1.64354*3600 #km/h

r0 = np.sqrt(x0**2 + y0**2 + z0**2) #km

#defining the variables: x(t) = A*cos(w*t+phi); y(t) = B*cos(w*t+theta); z(t)

= C*cos(w*t+psi)

def A(var, t):

return x0*quantum_neural_net(var,t)[0]

def B(var, t):

return y0*quantum_neural_net(var,t)[1]

def C(var, t):

return z0*quantum_neural_net(var,t)[2]

def phi(var, t):

return quantum_neural_net(var,t)[3]

def theta(var,t):

return quantum_neural_net(var,t)[4]

APPENDIX B. CODE 83

def psi(var, t):

return quantum_neural_net(var,t)[5]

def loss(var):

#setting the corresponding loss functions to 0

L = 0

L0x = 0

L0y = 0

L0z = 0

L1x = 0

L1y = 0

L1z = 0

L2x = 0

L2y = 0

L2z = 0

#change this stuff

L0x = (x0 - (A(var,0)*np.cos(phi(var,0))))**2

L0y = (y0 - (B(var,0)*np.cos(theta(var,0))))**2

L0z = (z0 - (C(var,0)*np.cos(psi(var,0))))**2

L1x = (vx0 - (-A(var,0)*w*np.sin(phi(var,0))))**2

L1y = (vy0 - (-B(var,0)*w*np.sin(theta(var,0))))**2

L1z = (vz0 - (-C(var,0)*w*np.sin(psi(var,0))))**2

for t in np.linspace(0, 12, 120):

x = A(var,t)*np.cos(w*t + phi(var,t))

y = B(var,t)*np.cos(w*t + theta(var,t))

z = C(var,t)*np.cos(w*t + psi(var,t))

r = np.sqrt(x**2 + y**2 + z**2)

L2x = (((-mu*x)/(r**3.0) - (1.5*J2*mu*(R**2)/r**4.0)*(x/r)*(5*(z/r)**2

- 1)) - (-x*w**2))**2

L2y = (((-mu*y)/(r**3.0) - (1.5*J2*mu*(R**2)/r**4.0)*(y/r)*(5*(z/r)**2

- 1)) - (-y*w**2))**2

L2z = (((-mu*z)/(r**3.0) - (1.5*J2*mu*(R**2)/r**4.0)*(z/r)*(5*(z/r)**2

APPENDIX B. CODE 84

- 3)) - (-z*w**2))**2

L = np.sqrt(L0x+L0y+L0z+L1x+L1y+L1z+L2x+L2y+L2z)

return L

%%time

opt = AdamOptimizer(0.01, beta1=0.9, beta2=0.999)

var_min = var_init

loss_min = 10**15

for it in range(5000):

var, _loss = opt.step_and_cost(loss, var)

if _loss < loss_min:

loss_min = _loss

var_min = var

print("Iter: {:5d} | Loss: {:0.7f} | A: {:0.7f} | B: {:0.7f} | C:

{:0.7f}".format(it, _loss, A(var,0), B(var,0), C(var,0)))

The next code solves 3D atmospheric drag problem via VQC.

import pennylane as qml

import matplotlib.pyplot as plt

from pennylane import numpy as np

from pennylane.optimize import AdamOptimizer

dev_fock = qml.device("strawberryfields.fock", wires=6, cutoff_dim=10)

def layer(v):

qml.Beamsplitter(v[6], np.pi/2, wires=[0,1])

qml.Beamsplitter(v[7], np.pi/2, wires=[1,2])

qml.Kerr(v[8], wires=0)

qml.Kerr(v[9], wires=1)

qml.Kerr(v[10], wires=2)

qml.Beamsplitter(v[11], np.pi/2, wires=[3,4])

qml.Beamsplitter(v[12], np.pi/2, wires=[4,5])

qml.Kerr(v[13], wires=3)

qml.Kerr(v[14], wires=4)

qml.Kerr(v[15], wires=5)

APPENDIX B. CODE 85

@qml.qnode(dev_fock, diff_method="parameter-shift")

def quantum_neural_net(var, x):

Encode input x into a quantum state

qml.Displacement(v[0], 0.0, wires=0) #A

qml.Displacement(v[1], 0.0, wires=1) #B

qml.Displacement(v[2], 0.0, wires=2) #C

qml.Displacement(v[3], 0.0, wires=3) #alpha

qml.Displacement(v[4], 0.0, wires=4) #beta

qml.Displacement(v[5], 0.0, wires=5) #gamma

"layer" subcircuits

for v in var:

layer(v)

return [qml.expval(qml.X(0)), qml.expval(qml.X(1)), qml.expval(qml.X(2)),

qml.expval(qml.X(3)), qml.expval(qml.X(4)), qml.expval(qml.X(5))]

np.random.seed(0)

num_layers = 4

var_init = np.random.randn(num_layers, 16, requires_grad=True)

var = var_init

Parameter values

mu = 398600*3600**2 #km^3/h^2

J2 = 1082.63*10**(-6)

R = 6378 #km

w = np.pi #rad/h

Initial conditions

x0 = -2384.46 #km

vx0 = -7.36138*3600 #km/h

y0 = 5729.01 #km

vy0 = -2.98997*3600 #km/h

z0 = 3050.46 #km

vz0 = 1.64354*3600 #km/h

#defining the variables: x(t) = A*cos(w*t+phi); y(t) = B*cos(w*t+theta); z(t)

= C*cos(w*t+psi)

def A(var, t):

return x0*quantum_neural_net(var,t)[0]

APPENDIX B. CODE 86

def B(var, t):

return y0*quantum_neural_net(var,t)[1]

def C(var, t):

return z0*quantum_neural_net(var,t)[2]

def phi(var, t):

return quantum_neural_net(var,t)[3]

def theta(var,t):

return quantum_neural_net(var,t)[4]

def psi(var, t):

return quantum_neural_net(var,t)[5]

def loss(var):

#setting the corresponding loss functions to 0

L = 0

L0x = 0

L0y = 0

L0z = 0

L1x = 0

L1y = 0

L1z = 0

L2x = 0

L2y = 0

L2z = 0

L0x = (x0 - (A(var,0)*np.cos(phi(var,0))))**2

L0y = (y0 - (B(var,0)*np.cos(theta(var,0))))**2

L0z = (z0 - (C(var,0)*np.cos(psi(var,0))))**2

L1x = (vx0 - (-A(var,0)*w*np.sin(phi(var,0))))**2

L1y = (vy0 - (-B(var,0)*w*np.sin(theta(var,0))))**2

L1z = (vz0 - (-C(var,0)*w*np.sin(psi(var,0))))**2

APPENDIX B. CODE 87

for t in np.linspace(0, 12, 120):

x = A(var,t)*np.cos(w*t + phi(var,t))

y = B(var,t)*np.cos(w*t + theta(var,t))

z = C(var,t)*np.cos(w*t + psi(var,t))

r = np.sqrt(x**2 + y**2 + z**2)

L2x = (((-mu*x)/(r**3.0) - (1.5*J2*mu*(R**2)/r**4.0)*(x/r)*(5*(z/r)**2

- 1)) - (-x*w**2))**2

L2y = (((-mu*y)/(r**3.0) - (1.5*J2*mu*(R**2)/r**4.0)*(y/r)*(5*(z/r)**2

- 1)) - (-y*w**2))**2

L2z = (((-mu*z)/(r**3.0) - (1.5*J2*mu*(R**2)/r**4.0)*(z/r)*(5*(z/r)**2

- 3)) - (-z*w**2))**2

L = np.sqrt(L0x+L0y+L0z+L1x+L1y+L1z+L2x+L2y+L2z)

return L

%%time

opt = AdamOptimizer(0.01, beta1=0.9, beta2=0.999)

var_min = var_init

loss_min = 10**15

for it in range(5000):

var, _loss = opt.step_and_cost(loss, var)

if _loss < loss_min:

loss_min = _loss

var_min = var

print("Iter: {:5d} | Loss: {:0.7f} | A: {:0.7f} | B: {:0.7f} | C:

{:0.7f}".format(it, _loss, A(var,0), B(var,0), C(var,0)))

The following codes are the numerical solutions of the orbit propagation in the presence

of perturbations. The first one is the numerical solution (via SciPy’s ODEINT) of the 3D

gravitational perturbation problem. The code solves and plots the solutions x(t), y(t), z(t)

as a function of time.

import scipy as sp

import numpy as np

from scipy.integrate import odeint

APPENDIX B. CODE 88

def vectorfield(var, t, p):

"""

Defines the differential equations for the coupled spring-mass system.

Arguments:

var : vector of the state variables:

var = [x, vx, y, vy, z, vz]

t : time

p : vector of the parameters:

p = [mu, k, w]

"""

x, vx, y, vy, z, vz = var

mu, J2, R = p

r = np.sqrt(x**2 + y**2 + z**2)

Create f = (x’,vx’,y’,vy’,z’,vz’):

f = [vx,

(-mu*x)/(r**3.0) - (1.5*J2*mu*(R**2)/r**4.0)*(x/r)*(5*(z/r)**2 - 1),

vy,

(-mu*y)/(r**3.0) - (1.5*J2*mu*(R**2)/r**4.0)*(y/r)*(5*(z/r)**2 - 1),

vz,

(-mu*z)/(r**3.0) - (1.5*J2*mu*(R**2)/r**4.0)*(z/r)*(5*(z/r)**2 - 3)]

return f

Parameter values

mu = 398600*3600**2 #km^3/s^2

J2 = 1082.63*10**(-6)

R = 6378 #km

Initial conditions

x0 = -2384.46 #km

vx0 = -7.36138*3600 #km/h

y0 = 5729.01 #km

vy0 = -2.98997*3600 #km/h

z0 = 3050.46 #km

vz0 = 1.64354*3600 #km/h

ODE solver parameters

abserr = 1.0e-8

relerr = 1.0e-6

APPENDIX B. CODE 89

days = 1

stoptime = 12.0

numpoints = 1200

Create the time samples for the output of the ODE solver.

I use a large number of points, only because I want to make

a plot of the solution that looks nice.

t = [stoptime * float(i) / (numpoints - 1) for i in range(numpoints)]

Pack up the parameters and initial conditions:

p = [mu, J2, R]

w0 = [x0, vx0, y0, vy0, z0, vz0]

Call the ODE solver.

wsol = odeint(vectorfield, w0, t, args=(p,),

atol=abserr, rtol=relerr)

f = open("3D_J2_real.txt", "w")

for t1, w1 in zip(t, wsol):

f.write(’{} {} {} {} {} {} {}’.format(t1, w1[0], w1[1], w1[2], w1[3],

w1[4], w1[5]))

f.write("\n")

f.close()

from numpy import loadtxt

import pylab

from pylab import figure, plot, xlabel, ylabel, grid, legend, title, savefig

from matplotlib.font_manager import FontProperties

t, x, vx, y, vy, z, vz = loadtxt(’3D_J2_real.txt’, unpack=True)

th = t/(3600)

figure(1, figsize=(6, 4.5))

xlabel(’Time (hours)’)

ylabel(’Position (km)’)

grid(True)

#hold(True)

lw = 1

APPENDIX B. CODE 90

plot(t, x, ’b’, linewidth=lw)

plot(t, y, ’g’, linewidth=lw)

plot(t, z, ’r’, linewidth=lw)

legend((r’x’, r’y’, r’z’), prop=FontProperties(size=16))

title(’Components of Relative Motion with J2 Effects’)

savefig(’3D_J2_real.png’, dpi=100)

Lastly, the next code is the numerical solution of the orbit propagation with atmo-

spheric drag. The code solves and plots the solutions x(t), y(t), z(t) as a function of time.

import scipy as sp

import numpy as np

from scipy.integrate import odeint

def vectorfield(var, t, p):

"""

Defines the differential equations for the coupled spring-mass system.

Arguments:

var : vector of the state variables:

var = [x, vx, y, vy]

t : time

p : vector of the parameters:

p = [mu, B, w, rho]

"""

x, vx, y, vy, z, vz = var

mu, B, w, rho = p

r = np.sqrt(x**2 + y**2 + z**2)

vt = np.sqrt((vx + w*y)**2 + (vy - w*x)**2 + vz**2)

Create f = (x’,vx’,y’,vy’):

f = [vx,

(-mu*x)/(r**3) - 0.5*rho*B*(vx + w*y)*vt,

vy,

(-mu*y)/(r**3) - 0.5*rho*B*(vy - w*x)*vt,

vz,

(-mu*z)/(r**3) - 0.5*rho*B*vz*vt]

return f

APPENDIX B. CODE 91

Parameter values

mu = 398600*3600**2 #km^3/s^2

rho = (10**(-13))*10**9 #kg/km^3 #use anything from 10**(-14) to 10**(-7)

kg/m^3 -- 10**(-13) is the average value (Ex10.1 Curtis)

w = 72.9211*10**(-6)*3600 #rad/h

Cd = 2.2

A = 10**(-6)*np.pi*(0.5)**2 #km^2

m = 100 #kg

B = Cd*A/m

Initial conditions

x0 = 5873.40 #km

vx0 = -2.89641*3600 #km/h

y0 = -658.522 #km

vy0 = 4.94010*3600 #km/h

z0 = 3007.49 #km

vz0 = 6.14446*3600 #km/h

ODE solver parameters

abserr = 1.0e-8

relerr = 1.0e-6

days = 1

stoptime = 24.0

numpoints = 2400

Create the time samples for the output of the ODE solver.

I use a large number of points, only because I want to make

a plot of the solution that looks nice.

t = [stoptime * float(i) / (numpoints - 1) for i in range(numpoints)]

Pack up the parameters and initial conditions:

p = [mu, B, w, rho]

w0 = [x0, vx0, y0, vy0, z0, vz0]

Call the ODE solver.

wsol = odeint(vectorfield, w0, t, args=(p,),

atol=abserr, rtol=relerr)

f = open("3D_AD_real.txt", "w")

for t1, w1 in zip(t, wsol):

f.write(’{} {} {} {} {} {} {}’.format(t1, w1[0], w1[1], w1[2], w1[3],

APPENDIX B. CODE 92

w1[4], w1[5]))

f.write("\n")

f.close()

from numpy import loadtxt

import pylab

from pylab import figure, plot, xlabel, ylabel, grid, legend, title, savefig

from matplotlib.font_manager import FontProperties

t, x, vx, y, vy, z, vz = loadtxt(’3D_AD_real.txt’, unpack=True)

figure(1, figsize=(6, 4.5))

xlabel(’Time (hours)’)

ylabel(’Position (km)’)

grid(True)

#hold(True)

lw = 1

plot(t, x, ’r’, linewidth=lw)

plot(t, y, ’g’, linewidth=lw)

plot(t, z, ’b’, linewidth=lw)

legend((r’x’, r’y’, r’z’), prop=FontProperties(size=16))

title(’Components of Relative Motion with Atm Drag’)

savefig(’3D_AD_real.png’, dpi=100)

Bibliography

AARONSON, S. Quantum computing since Democritus. [S.l.]: Cambridge University
Press, 2013.

AMARO, D.; MODICA, C.; ROSENKRANZ, M.; FIORENTINI, M.; BENEDETTI, M.;
LUBASCH, M. Filtering variational quantum algorithms for combinatorial optimization.
Quantum Science and Technology, IOP Publishing, v. 7, n. 1, p. 015021, 2022.

AMES, A. E.; MATTUCCI, N.; MACDONALD, S.; SZONYI, G.; HAWKINS, D. M.
Quality loss functions for optimization across multiple response surfaces. Journal of
Quality technology, Taylor & Francis, v. 29, n. 3, p. 339–346, 1997.

ANDERSEN, U. L.; NEERGAARD-NIELSEN, J. S.; LOOCK, P. V.; FURUSAWA, A.
Hybrid discrete-and continuous-variable quantum information. Nature Physics, Nature
Publishing Group UK London, v. 11, n. 9, p. 713–719, 2015.

ATMOSPHERE, U. S. US standard atmosphere. [S.l.]: National Oceanic and
Atmospheric Administration, 1976.

BARTLETT, S. D.; SANDERS, B. C. Universal continuous-variable quantum
computation: Requirement of optical nonlinearity for photon counting. Physical Review
A, APS, v. 65, n. 4, p. 042304, 2002.

BATTIN, R. H. An introduction to the mathematics and methods of astrodynamics.
[S.l.]: Aiaa, 1999.

BAYM, G. Lectures on quantum mechanics. [S.l.]: CRC Press, 2018.

BENEDETTI, M.; REALPE-GÓMEZ, J.; PERDOMO-ORTIZ, A. Quantum-assisted
helmholtz machines: A quantum–classical deep learning framework for industrial
datasets in near-term devices. Quantum Science and Technology, IOP Publishing, v. 3,
n. 3, p. 034007, 2018.

BENGIO, Y.; LAMBLIN, P.; POPOVICI, D.; LAROCHELLE, H. Greedy layer-wise
training of deep networks. Advances in neural information processing systems, v. 19,
2006.

BENNETT, C. H.; BERNSTEIN, E.; BRASSARD, G.; VAZIRANI, U. Strengths and
weaknesses of quantum computing. SIAM journal on Computing, SIAM, v. 26, n. 5, p.
1510–1523, 1997.

BIBLIOGRAPHY 94

BERGHOLM, V.; IZAAC, J.; SCHULD, M.; GOGOLIN, C.; AHMED, S.; AJITH, V.;
ALAM, M. S.; ALONSO-LINAJE, G.; AKASHNARAYANAN, B.; ASADI, A. et al.
Pennylane: Automatic differentiation of hybrid quantum-classical computations. arXiv
preprint arXiv:1811.04968, 2018.

BIAMONTE, J.; WITTEK, P.; PANCOTTI, N.; REBENTROST, P.; WIEBE, N.;
LLOYD, S. Quantum machine learning. Nature, Nature Publishing Group UK London,
v. 549, n. 7671, p. 195–202, 2017.

BOIXO, S.; ISAKOV, S. V.; SMELYANSKIY, V. N.; BABBUSH, R.; DING, N.;
JIANG, Z.; BREMNER, M. J.; MARTINIS, J. M.; NEVEN, H. Characterizing quantum
supremacy in near-term devices. Nature Physics, Nature Publishing Group, v. 14, n. 6,
p. 595–600, 2018.

BOTTOU, L. Stochastic gradient descent tricks. Neural Networks: Tricks of the Trade:
Second Edition, Springer, p. 421–436, 2012.

BOTTOU, L. et al. Stochastic gradient learning in neural networks. Proceedings of
Neuro-Nımes, Nimes, v. 91, n. 8, p. 12, 1991.

CEREZO, M.; ARRASMITH, A.; BABBUSH, R.; BENJAMIN, S. C.; ENDO, S.;
FUJII, K.; MCCLEAN, J. R.; MITARAI, K.; YUAN, X.; CINCIO, L. et al. Variational
quantum algorithms. Nature Reviews Physics, Nature Publishing Group, v. 3, n. 9, p.
625–644, 2021.

CEREZO, M.; SONE, A.; VOLKOFF, T.; CINCIO, L.; COLES, P. J. Cost function
dependent barren plateaus in shallow parametrized quantum circuits. Nature
communications, Nature Publishing Group UK London, v. 12, n. 1, p. 1791, 2021.

CHIAVERINI, J.; LEIBFRIED, D.; SCHAETZ, T.; BARRETT, M. D.; BLAKESTAD,
R.; BRITTON, J.; ITANO, W. M.; JOST, J. D.; KNILL, E.; LANGER, C. et al.
Realization of quantum error correction. Nature, Nature Publishing Group, v. 432,
n. 7017, p. 602–605, 2004.

CHOBOTOV, V. A. Orbital mechanics. [S.l.]: Aiaa, 2002.

CLERC, M. Particle swarm optimization. [S.l.]: John Wiley & Sons, 2010.

CURTIS, H. Orbital mechanics for engineering students. [S.l.]:
Butterworth-Heinemann, 2013.

DELGADO, A.; ARRAZOLA, J. M.; JAHANGIRI, S.; NIU, Z.; IZAAC, J.; ROBERTS,
C.; KILLORAN, N. Variational quantum algorithm for molecular geometry
optimization. Physical Review A, APS, v. 104, n. 5, p. 052402, 2021.

DEUTSCH, D.; JOZSA, R. Rapid solution of problems by quantum computation.
Proceedings of the Royal Society of London. Series A: Mathematical and Physical
Sciences, The Royal Society London, v. 439, n. 1907, p. 553–558, 1992.

FEHSE, W. Automated rendezvous and docking of spacecraft. [S.l.]: Cambridge
university press, 2003.

BIBLIOGRAPHY 95

FERREIRA, R. P. Quantum algorithm based on the truncated taylor series for solving
linearized equations of the relative motion. Final paper (Undergraduation study),
Instituto Tecnológico de Aeronáutica, p. 58, 2022.

FEYNMAN, R. P.; LEIGHTON, R. B.; SANDS, M. The feynman lectures on physics;
vol. i. American Journal of Physics, American Association of Physics Teachers, v. 33,
n. 9, p. 750–752, 1965.

FOCK, V. Näherungsmethode zur lösung des quantenmechanischen
mehrkörperproblems. Zeitschrift für Physik, Springer, v. 61, p. 126–148, 1930.

FORTESCUE, P.; SWINERD, G.; STARK, J. Spacecraft systems engineering. [S.l.]:
John Wiley & Sons, 2011.

GERJUOY, E. Shor’s factoring algorithm and modern cryptography. an illustration of
the capabilities inherent in quantum computers. American journal of physics, American
Association of Physics Teachers, v. 73, n. 6, p. 521–540, 2005.

GROENEWOLD, H. J.; GROENEWOLD, H. J. On the principles of elementary
quantum mechanics. [S.l.]: Springer, 1946.

GU, M.; WEEDBROOK, C.; MENICUCCI, N. C.; RALPH, T. C.; LOOCK, P. van.
Quantum computing with continuous-variable clusters. Physical Review A, APS, v. 79,
n. 6, p. 062318, 2009.

GUNER, O.; BEKIR, A. Solving nonlinear space-time fractional differential equations
via ansatz method. Computational methods for differential equations, University of
Tabriz, v. 6, n. 1, p. 1–11, 2018.

HAENSCH, W.; GOKMEN, T.; PURI, R. The next generation of deep learning
hardware: Analog computing. Proceedings of the IEEE, IEEE, v. 107, n. 1, p. 108–122,
2018.

HARROW, A. W.; HASSIDIM, A.; LLOYD, S. Quantum algorithm for linear systems
of equations. Physical review letters, APS, v. 103, n. 15, p. 150502, 2009.

HEINRICH, B. Finite difference methods on irregular networks. [S.l.]: Springer, 1987.

HOCHREITER, S.; BENGIO, Y.; FRASCONI, P.; SCHMIDHUBER, J. et al. Gradient
flow in recurrent nets: the difficulty of learning long-term dependencies. [S.l.]: A field
guide to dynamical recurrent neural networks. IEEE Press In, 2001.

JEKELI, C. The downward continuation to the earth’s surface of truncated spherical
and ellipsoidal harmonic series of the gravity and height anomalies. [S.l.]: The Ohio
State University, 1981.

JOHNSON, N. L. Medium earth orbits: is there a need for a third protected region? In:
61st International Astronautical Congress. [S.l.: s.n.], 2010.

JR, L. J. I. Satellite communications systems engineering: atmospheric effects,
satellite link design and system performance. [S.l.]: John Wiley & Sons, 2017.

KAMATH, U.; LIU, J.; WHITAKER, J. Deep learning for NLP and speech
recognition. [S.l.]: Springer, 2019.

BIBLIOGRAPHY 96

KASIRAJAN, V. Dirac’s bra-ket notation and hermitian operators. In: Fundamentals of
Quantum Computing: Theory and Practice. [S.l.]: Springer, 2021. p. 35–73.

KENDON, V. M.; NEMOTO, K.; MUNRO, W. J. Quantum analogue computing.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, The Royal Society Publishing, v. 368, n. 1924, p. 3609–3620,
2010.

KENNEDY, J.; EBERHART, R. Particle swarm optimization. In: IEEE. Proceedings of
ICNN’95-international conference on neural networks. [S.l.], 1995. v. 4, p. 1942–1948.

KERENIDIS, I.; PRAKASH, A. Quantum recommendation systems. arXiv preprint
arXiv:1603.08675, 2016.

KILLORAN, N.; BROMLEY, T. R.; ARRAZOLA, J. M.; SCHULD, M.; QUESADA,
N.; LLOYD, S. Continuous-variable quantum neural networks. Physical Review
Research, APS, v. 1, n. 3, p. 033063, 2019.

KILLORAN, N.; IZAAC, J.; QUESADA, N.; BERGHOLM, V.; AMY, M.;
WEEDBROOK, C. Strawberry fields: A software platform for photonic quantum
computing. Quantum, Verein zur Förderung des Open Access Publizierens in den
Quantenwissenschaften, v. 3, p. 129, 2019.

KINGMA, D. P.; BA, J. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

KOCZOR, B.; ENDO, S.; JONES, T.; MATSUZAKI, Y.; BENJAMIN, S. C.
Variational-state quantum metrology. New Journal of Physics, IOP Publishing, v. 22,
n. 8, p. 083038, 2020.

KONAR, D.; SARMA, A. D.; BHANDARY, S.; BHATTACHARYYA, S.; CANGI, A.;
AGGARWAL, V. A shallow hybrid classical–quantum spiking feedforward neural
network for noise-robust image classification. Applied Soft Computing, Elsevier, v. 136,
p. 110099, 2023.

KÖNIGSMANN, H. J.; COLLINS, J. T.; DAWSON, S.; WERTZ, J. R. Autonomous
orbit maintenance system. Acta Astronautica, Elsevier, v. 39, n. 9-12, p. 977–985, 1996.

KWAK, Y.; YUN, W. J.; JUNG, S.; KIM, J.-K.; KIM, J. Introduction to quantum
reinforcement learning: Theory and pennylane-based implementation. In: IEEE. 2021
International Conference on Information and Communication Technology
Convergence (ICTC). [S.l.], 2021. p. 416–420.

KYRIIENKO, O.; PAINE, A. E.; ELFVING, V. E. Solving nonlinear differential
equations with differentiable quantum circuits. Physical Review A, APS, v. 103, n. 5, p.
052416, 2021.

LARA, M.; SAN-JUAN, J. F.; LÓPEZ, L. M.; CEFOLA, P. J. On the third-body
perturbations of high-altitude orbits. Celestial Mechanics and Dynamical Astronomy,
Springer, v. 113, p. 435–452, 2012.

BIBLIOGRAPHY 97

LARSEN, M. V.; GUO, X.; BREUM, C. R.; NEERGAARD-NIELSEN, J. S.;
ANDERSEN, U. L. Deterministic multi-mode gates on a scalable photonic quantum
computing platform. Nature Physics, Nature Publishing Group UK London, v. 17, n. 9,
p. 1018–1023, 2021.

LECUN, Y. 1.1 deep learning hardware: past, present, and future. In: IEEE. 2019 IEEE
International Solid-State Circuits Conference-(ISSCC). [S.l.], 2019. p. 12–19.

LECUN, Y.; BENGIO, Y.; HINTON, G. Deep learning. nature, Nature Publishing
Group UK London, v. 521, n. 7553, p. 436–444, 2015.

LINKS, J.; ZHOU, H.-Q.; MCKENZIE, R. H.; GOULD, M. D. Algebraic bethe ansatz
method for the exact calculation of energy spectra and form factors: applications to
models of bose–einstein condensates and metallic nanograins. Journal of Physics A:
Mathematical and General, IOP Publishing, v. 36, n. 19, p. R63, 2003.

LIU, J.; NAJAFI, K.; SHARMA, K.; TACCHINO, F.; JIANG, L.; MEZZACAPO, A.
Analytic theory for the dynamics of wide quantum neural networks. Physical Review
Letters, APS, v. 130, n. 15, p. 150601, 2023.

LUBASCH, M.; JOO, J.; MOINIER, P.; KIFFNER, M.; JAKSCH, D. Variational
quantum algorithms for nonlinear problems. Physical Review A, APS, v. 101, n. 1, p.
010301, 2020.

LUO, Y.-z.; YANG, Z. A review of uncertainty propagation in orbital mechanics.
Progress in Aerospace Sciences, Elsevier, v. 89, p. 23–39, 2017.

MACKEY, D. S.; MACKEY, N. On the determinant of symplectic matrices. [S.l.]:
Manchester Centre for Computational Mathematics Manchester, England, 2003.

MARTIN-LOPEZ, E.; LAING, A.; LAWSON, T.; ALVAREZ, R.; ZHOU, X.-Q.;
O’BRIEN, J. L. Experimental realization of shor’s quantum factoring algorithm using
qubit recycling. Nature photonics, Nature Publishing Group UK London, v. 6, n. 11, p.
773–776, 2012.

MCCARTHY, P.; SAYRE, J.; SHAWYER, B. Generalized legendre polynomials.
Journal of mathematical analysis and applications, Elsevier, v. 177, n. 2, p. 530–537,
1993.

MCCLEAN, J. R.; BOIXO, S.; SMELYANSKIY, V. N.; BABBUSH, R.; NEVEN, H.
Barren plateaus in quantum neural network training landscapes. Nature
communications, Nature Publishing Group UK London, v. 9, n. 1, p. 4812, 2018.

MEEKHOF, D.; MONROE, C.; KING, B.; ITANO, W. M.; WINELAND, D. J.
Generation of nonclassical motional states of a trapped atom. Physical review letters,
APS, v. 76, n. 11, p. 1796, 1996.

MICHAEL, M. H.; SILVERI, M.; BRIERLEY, R.; ALBERT, V. V.; SALMILEHTO, J.;
JIANG, L.; GIRVIN, S. M. New class of quantum error-correcting codes for a bosonic
mode. Physical Review X, APS, v. 6, n. 3, p. 031006, 2016.

BIBLIOGRAPHY 98

MOLL, N.; FUHRER, A.; STAAR, P.; TAVERNELLI, I. Optimizing qubit resources for
quantum chemistry simulations in second quantization on a quantum computer. Journal
of Physics A: Mathematical and Theoretical, IOP Publishing, v. 49, n. 29, p. 295301,
2016.

MONTANARO, A.; PALLISTER, S. Quantum algorithms and the finite element
method. Physical Review A, APS, v. 93, n. 3, p. 032324, 2016.

MORITA, S.; NISHIMORI, H. Mathematical foundation of quantum annealing. Journal
of Mathematical Physics, American Institute of Physics, v. 49, n. 12, p. 125210, 2008.

MOUNT, E.; GAULTNEY, D.; VRIJSEN, G.; ADAMS, M.; BAEK, S.-Y.; HUDEK, K.;
ISABELLA, L.; CRAIN, S.; RYNBACH, A. van; MAUNZ, P. et al. Scalable digital
hardware for a trapped ion quantum computer. Quantum Information Processing,
Springer, v. 15, p. 5281–5298, 2016.

MÜLLER, J.; ZEINHOFER, M. Error estimates for the deep ritz method with
boundary penalty. In: PMLR. Mathematical and Scientific Machine Learning. [S.l.],
2022. p. 215–230.

NICHOLSON, A.; SLOJKOWSKI, S.; LONG, A.; BECKMAN, M.; LAMB, R. Nasa
gsfc lunar reconnaissance orbiter (lro) orbit estimation and prediction. In: SpaceOps
2010 Conference Delivering on the Dream Hosted by NASA Marshall Space Flight
Center and Organized by AIAA. [S.l.: s.n.], 2010. p. 2328.

NIELSEN, M. A.; CHUANG, I. Quantum computation and quantum information.
[S.l.]: American Association of Physics Teachers, 2002.

NIU, Z.; ZHONG, G.; YU, H. A review on the attention mechanism of deep learning.
Neurocomputing, Elsevier, v. 452, p. 48–62, 2021.

PAN, J.; CAO, Y.; YAO, X.; LI, Z.; JU, C.; CHEN, H.; PENG, X.; KAIS, S.; DU, J.
Experimental realization of quantum algorithm for solving linear systems of equations.
Physical Review A, APS, v. 89, n. 2, p. 022313, 2014.

PARRA-RODRIGUEZ, A.; LOUGOVSKI, P.; LAMATA, L.; SOLANO, E.; SANZ, M.
Digital-analog quantum computation. Physical Review A, APS, v. 101, n. 2, p. 022305,
2020.

PERUZZO, A.; MCCLEAN, J.; SHADBOLT, P.; YUNG, M.-H.; ZHOU, X.-Q.; LOVE,
P. J.; ASPURU-GUZIK, A.; O’BRIEN, J. L. A variational eigenvalue solver on a
photonic quantum processor. Nature communications, Nature Publishing Group UK
London, v. 5, n. 1, p. 4213, 2014.

PFISTER, O. Continuous-variable quantum computing in the quantum optical
frequency comb. Journal of Physics B: Atomic, Molecular and Optical Physics, IOP
Publishing, v. 53, n. 1, p. 012001, 2019.

PRESKILL, J. Quantum computing in the nisq era and beyond. Quantum, Verein zur
Förderung des Open Access Publizierens in den Quantenwissenschaften, v. 2, p. 79,
2018.

BIBLIOGRAPHY 99

PRIETO, D. M.; GRAZIANO, B. P.; ROBERTS, P. C. Spacecraft drag modelling.
Progress in Aerospace Sciences, Elsevier, v. 64, p. 56–65, 2014.

RADHAKRISHNAN, K.; HINDMARSH, A. C. Description and use of LSODE, the
Livermore solver for ordinary differential equations. [S.l.], 1993.

REN, S.; HE, K.; GIRSHICK, R.; ZHANG, X.; SUN, J. Object detection networks on
convolutional feature maps. IEEE transactions on pattern analysis and machine
intelligence, IEEE, v. 39, n. 7, p. 1476–1481, 2016.

ROMERO, J.; OLSON, J. P.; ASPURU-GUZIK, A. Quantum autoencoders for efficient
compression of quantum data. Quantum Science and Technology, IOP Publishing, v. 2,
n. 4, p. 045001, 2017.

SAFFMAN, M. Quantum computing with neutral atoms. National Science Review,
Oxford University Press, v. 6, n. 1, p. 24–25, 2019.

SAINI, S.; RAPPLEYE, J.; CHANG, J.; BARKER, D.; MEHROTRA, P.; BISWAS, R.
I/o performance characterization of lustre and nasa applications on pleiades. In: IEEE.
2012 19th International Conference on High Performance Computing. [S.l.], 2012. p.
1–10.

SANTORO, G. E.; TOSATTI, E. Optimization using quantum mechanics: quantum
annealing through adiabatic evolution. Journal of Physics A: Mathematical and
General, IOP Publishing, v. 39, n. 36, p. R393, 2006.

SESHADREESAN, K. P.; OLSON, J. P.; MOTES, K. R.; ROHDE, P. P.; DOWLING,
J. P. Boson sampling with displaced single-photon fock states versus single-photon-added
coherent states: The quantum-classical divide and computational-complexity transitions
in linear optics. Physical Review A, APS, v. 91, n. 2, p. 022334, 2015.

SHANKAR, T.; SHANMUGAVEL, S.; RAJESH, A. Hybrid hsa and pso algorithm for
energy efficient cluster head selection in wireless sensor networks. Swarm and
Evolutionary Computation, Elsevier, v. 30, p. 1–10, 2016.

SHOR, P. W. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM review, SIAM, v. 41, n. 2, p. 303–332, 1999.

SIMON, D. R. On the power of quantum computation. SIAM journal on computing,
SIAM, v. 26, n. 5, p. 1474–1483, 1997.

SLUSSARENKO, S.; PRYDE, G. J. Photonic quantum information processing: A
concise review. Applied Physics Reviews, AIP Publishing LLC, v. 6, n. 4, p. 041303,
2019.

SRINIVAS, M.; PATNAIK, L. M. Adaptive probabilities of crossover and mutation in
genetic algorithms. IEEE Transactions on Systems, Man, and Cybernetics, IEEE,
v. 24, n. 4, p. 656–667, 1994.

SVOZIL, D.; KVASNICKA, V.; POSPICHAL, J. Introduction to multi-layer
feed-forward neural networks. Chemometrics and intelligent laboratory systems,
Elsevier, v. 39, n. 1, p. 43–62, 1997.

BIBLIOGRAPHY 100

TAKEDA, S.; FURUSAWA, A. Toward large-scale fault-tolerant universal photonic
quantum computing. APL Photonics, AIP Publishing LLCAIP Publishing, v. 4, n. 6, p.
060902, 2019.

TILLY, J.; CHEN, H.; CAO, S.; PICOZZI, D.; SETIA, K.; LI, Y.; GRANT, E.;
WOSSNIG, L.; RUNGGER, I.; BOOTH, G. H. et al. The variational quantum
eigensolver: a review of methods and best practices. Physics Reports, Elsevier, v. 986,
p. 1–128, 2022.

VALLADO, D.; MCCLAIN, W. Fundamentals of astrodynamics and applications, 2004.
Space Technology Library, Microcosm Press & Kluwer Academic Publishers, p. 792,
2007.

VIRTANEN, P.; GOMMERS, R.; OLIPHANT, T. E.; HABERLAND, M.; REDDY, T.;
COURNAPEAU, D.; BUROVSKI, E.; PETERSON, P.; WECKESSER, W.; BRIGHT,
J. et al. Scipy 1.0: fundamental algorithms for scientific computing in python. Nature
methods, Nature Publishing Group, v. 17, n. 3, p. 261–272, 2020.

WANG, D.; HIGGOTT, O.; BRIERLEY, S. Accelerated variational quantum
eigensolver. Physical review letters, APS, v. 122, n. 14, p. 140504, 2019.

WANG, Q.; MA, Y.; ZHAO, K.; TIAN, Y. A comprehensive survey of loss functions in
machine learning. Annals of Data Science, Springer, p. 1–26, 2020.

WANG, S.; FONTANA, E.; CEREZO, M.; SHARMA, K.; SONE, A.; CINCIO, L.;
COLES, P. J. Noise-induced barren plateaus in variational quantum algorithms. Nature
communications, Nature Publishing Group UK London, v. 12, n. 1, p. 6961, 2021.

WERTZ, J. R.; EVERETT, D. F.; PUSCHELL, J. J. Space mission engineering: the
new smad. (No Title), 2011.

WIEBE, N.; BRAUN, D.; LLOYD, S. Quantum algorithm for data fitting. Physical
review letters, APS, v. 109, n. 5, p. 050505, 2012.

WIEBE, N.; GRANADE, C. Can small quantum systems learn? arXiv preprint
arXiv:1512.03145, 2015.

WRIGHT, A. H. Genetic algorithms for real parameter optimization. In: Foundations of
genetic algorithms. [S.l.]: Elsevier, 1991. v. 1, p. 205–218.

WU, B.-H.; ALEXANDER, R. N.; LIU, S.; ZHANG, Z. Quantum computing with
multidimensional continuous-variable cluster states in a scalable photonic platform.
Physical Review Research, APS, v. 2, n. 2, p. 023138, 2020.

XIN, T.; WEI, S.; CUI, J.; XIAO, J.; ARRAZOLA, I.; LAMATA, L.; KONG, X.; LU,
D.; SOLANO, E.; LONG, G. Quantum algorithm for solving linear differential equations:
Theory and experiment. Physical Review A, APS, v. 101, n. 3, p. 032307, 2020.

XU, X.; BENJAMIN, S. C.; YUAN, X. Variational circuit compiler for quantum error
correction. Physical Review Applied, APS, v. 15, n. 3, p. 034068, 2021.

YAO, Y.-X.; GOMES, N.; ZHANG, F.; WANG, C.-Z.; HO, K.-M.; IADECOLA, T.;
ORTH, P. P. Adaptive variational quantum dynamics simulations. PRX Quantum,
APS, v. 2, n. 3, p. 030307, 2021.

BIBLIOGRAPHY 101

YARKONI, S.; RAPONI, E.; BÄCK, T.; SCHMITT, S. Quantum annealing for industry
applications: Introduction and review. Reports on Progress in Physics, IOP Publishing,
2022.

ZHANG, Z. Improved adam optimizer for deep neural networks. In: IEEE. 2018
IEEE/ACM 26th international symposium on quality of service (IWQoS). [S.l.], 2018.
p. 1–2.

ZHAO, Z.-Q.; ZHENG, P.; XU, S.-t.; WU, X. Object detection with deep learning: A
review. IEEE transactions on neural networks and learning systems, IEEE, v. 30,
n. 11, p. 3212–3232, 2019.

FOLHA DE REGISTRO DO DOCUMENTO

1. CLASSIFICAÇÃO/TIPO 2. DATA 3. DOCUMENTO N 4. N DE PÁGINAS

DM 24 de julho de 2023 DCTA/ITA/DM-045/2023 101

5. TÍTULO E SUBTÍTULO:

Variational Quantum Algorithm for Orbit Propagation with Gravitational Perturbations and Atmospheric Drag

6. AUTOR(ES):

Rodrigo Pires Ferreira

7. INSTITUIÇÃO(ÕES)/ÓRGAO(S) INTERNO(S)/DIVISÃO(ÕES):

Instituto Tecnológico de Aeronáutica – ITA

8. PALAVRAS-CHAVE SUGERIDAS PELO AUTOR:

Quantum Computing; Orbital Mechanics; Quantum Algorithms; Differential Equations

9. PALAVRAS-CHAVE RESULTANTES DE INDEXAÇÃO:

Computação quântica; Mecânica orbital; Equações diferenciais; Algoritmos; Mecânica quântica; Perturbação
orbital; Astronomia.
10. APRESENTAÇÃO: (X) Nacional () Internacional

ITA, São José dos Campos. Programa de Pós-Graduação em F́ısica. Área de F́ısica Atômica e Molecular.
Orientador: Prof. Dr. André Jorge Carvalho Chaves. Co-orientador: Prof. Dr. Willer Gomes dos Santos.
Defesa em 12/07/2023. Publicado em 2023.
11. RESUMO:

Variational quantum algorithms (VQAs) are hybrid methods that use classical optimizers and quantum circuits
to solve different minimization problems. Due to similarities with neural networks, these circuits might be called
quantum neural networks, as they are composed of many layers of quantum gates whose parameters must be
optimized to minimize a given loss function. This work’s objective is to use a VQA for solving systems of coupled
differential equations that describe the satellite’s motion in the presence of orbit perturbations. We implement
the VQA for propagating an orbit with atmospheric drag and gravitational perturbation considering the effects of
the J2 term – Earth’s second zonal harmonic that’s used to describe the variation of the gravitational potential
due to the planet’s oblate geometry. After solving a simplified two-dimensional version of the problem, we
propagate the actual 3D orbit and compare the VQA solution to the numerical one. Finally, we discuss the
existing challenges and opportunities of this method and how to improve it in future works.

12. GRAU DE SIGILO:

(X) OSTENSIVO () RESERVADO () SECRETO

	Cataloging-in-Publication
	Thesis Committee Composition:
	Dedication
	Acknowledgments
	Epigraph
	Resumo
	Abstract
	List of Figures
	List of Tables
	Contents
	1 Introduction
	2 Literature Review
	2.1 Quantum Computing
	2.2 Variational Quantum Algorithms
	2.3 Barren Plateaus

	3 Orbit Propagation with Perturbations via Variational Quantum Algorithm
	3.1 2D Case with Gravitational Perturbation
	3.2 3D Case with Gravitational Perturbation
	3.3 3D Case with Atmospheric Drag
	3.4 3D Orbit Propagation with Perturbations via Numerical Methods
	3.5 Alternative Approaches

	4 Results
	4.1 2D Orbit Propagation with Gravitational Perturbation
	4.2 3D Orbit Propagation with Gravitational Perturbation
	4.3 3D Orbit Propagation with Atmospheric Drag

	5 Conclusions
	A Orbital Mechanics
	B Code
	Bibliography
	Folha de Registro do Documento

