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TWO-BODY CORRELATIONS IN VAN DER WAALS

HETEROSTRUCTURES

Luiz Gustavo Mendonça Tenório
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Resumo

O paradigma central da teoria de muitos-corpos é que as simetrias e interações do sis-

tema levam ao surgimento de comportamento únicos. Do outro lado do espectro da f́ısica

teórica, temos a f́ısica de poucos-corpos onde o número de particulas interagentes é pe-

queno e a universalidade se encontra na independência de maiores detalhes da interações

do sistema. Tais caminhos, aparentemente distantes, se cruzam no contexto de gases

ultrafrios e, mais recentemente, no contexto da matéria condensada. Neste contexto, a

formação de estruturas compostas por elétrons e buracos gera sistemas proṕıcios para o

uso de técnicas da f́ısica de poucos corpos, ainda mais com o surgimento de materiais bidi-

mensionais e no estudo de como as propriedades f́ısicas desses materiais são maleáveis por

modificações no ambiente dielétrico e geométrico. Neste trabalho vamos estudar a f́ısica

de uma dessas estruturas compostas, o éxciton, no contexto de hetero e homoestruturas

de Van der Waals bidimensionais. Ainda, vamos discutir sobre o surgimento de isolantes

excitônicos devido ao alinhamento de bandas e éxcitons intercamadas fortemente ligados

em materiais bidimensionais. Finalmente, vamos discutir a f́ısica do exciton no fósforo

negro, que possui uma relação de dispersão anisotrópica.



Abstract

A central paradigm of the many-body theory is that the underlying symmetries alongside

the interactions that governs the many-particle system gives rise to emerging unique

behavior. On the other side of the physical theory coverage, we have the few-body physics,

where the number of interacting particles is low and universality lies in the independence of

the very details regarding interactions. These two seemingly distant paths have already

crossed in the context of ultracold gases and, more recently, also in condensed matter

theory. In the case of condensed matter, the formation of composite structures by electrons

and holes yields an interesting background to apply few-body techniques, even more so

with the discovery of two dimensional materials and how their physical properties are

tunable by environmental and geometric modifications. In this work we aim to study the

physics of one composite structure, the exciton, in the context of 2D Van der Waals hetero

and homostructures. Also, we will discuss about the rise of the excitonic insulators due

to band alignment and strongly bound interlayer excitons in bilayer materials. Finally,

we will discuss the excitonic physics of the Black Phosphorous, which has an anisotropic

dispersion relation.
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1 Introduction

The interaction between light and matter constitutes a fundamental aspect of physics,

encompassing a wide range of technological advancements such as LEDs, lasers, and var-

ious other devices. Light also plays a crucial role in the realm of life sciences. Notably,

the process of photosynthesis, which is responsible for vegetation producing oxygen and

sustaining the cycle of life on Earth, arises from the intricate interplay between light and

matter. The classical depiction of light based on Maxwell’s equations has served as a

source of inspiration for generations of physicists and engineers. Meanwhile, the quan-

tum formulation of light continues to drive significant scientific progress in areas like laser

physics, cold atoms, and numerous other branches of physics.

In the domain of condensed matter physics, the interaction between light and matter

assumes considerable significance and serves as a fundamental tool in many experimental

methodologies (MOLAS et al., 2021; WHITTOCK et al., 2022). With regard to multi-band

systems, wherein the electron gas exhibits a hierarchical coupling, correlated structures

comprising electrons and holes emerge within semiconducting materials (KIRA; KOCH,

2006). These correlations manifest in various forms, including excitons (electron-hole

pairs), trions (electron-electron-hole or electron-hole-hole triplets), and other compos-

ite particles. While previous investigations have explored these correlations, the advent

of two-dimensional (2D) semiconducting materials has unveiled the formation of exci-

tons possessing significantly larger binding energies than conventional semiconductors

(BERKELBACH et al., 2013; ZHANG et al., 2014; HE et al., 2014; YE et al., 2014; UGEDA et al.,

2014; CHAVES et al., 2021).

1.1 2D Materials

The proliferation of research on 2D materials represents one of the most dynamic fields

within condensed matter physics. This trajectory commenced with the mechanical ex-

foliation of graphene (GEIM; NOVOSELOV, 2007; NOVOSELOV et al., 2004), subsequently

followed by the discovery of other layered materials (GEIM; GRIGORIEVA, 2013). Dur-

ing the initial stages of this research area, the scientific community primarily focused
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on graphene until experimental studies involving monolayer MoS2 uncovered its unique

electronic and optical properties (UGEDA et al., 2014; LI et al., 2014). These investigations

highlighted the existence of tightly bound excitons and opened up avenues for optoelec-

tronic applications. The formation of such excitons hinges upon the interplay between

reduced dimensionality and dielectric screening, which yields a strong Coulomb interaction

(CHAVES et al., 2017; TENóRIO et al., 2023; QUINTELA et al., 2022). The layered nature of

this class of materials facilitates the manipulation of their physical properties through en-

ergy level renormalization induced by environmental changes, consequently affecting the

Coulomb interaction(KYLÄNPÄÄ; KOMSA, 2015; LAMOUNTAIN et al., 2018). This char-

acteristic enables bandgap engineering (CHAVES et al., 2020) and tunability of excitonic

spectra (TENóRIO et al., 2023).

By stacking different 2D materials, an additional degree of freedom emerges, leading

to the creation of van der Waals heterostructures (GEIM; GRIGORIEVA, 2013). Through

careful selection of materials, dielectric environments, and layer separations that result in

favorable band alignments, these heterostructures offer intriguing opportunities for tai-

loring excitonic spectra. Given the limitless number of possible material combinations,

dielectric environments, and layer arrangements, there is a strong motivation to system-

atically develop methods for computing the spectra of binding energies, understanding

the behavior of basic wave functions, and characterizing the gap renormalization induced

by varying environmental conditions. Consequently, undertaking a comprehensive inves-

tigation into these aspects of excitonic physics holds paramount importance.

1.1.1 Transition Metal Dichalcogenides

Initially discovered through exfoliation techniques in 2010 (GEIM; GRIGORIEVA, 2013;

MAK et al., 2010), transition metal dichalcogenides (TMDCs) swiftly garnered significant

attention due to their promising optical and electronic properties (MATSUDA, 2015; WANG

et al., 2017; MAK; SHAN, 2016). Figure 1.1, panels (a) and (b), illustrates the class of

TMDCs under consideration, which exhibit a trigonal prismatic structural phase. In the

lateral view, the A-B-A stacking pattern is evident, comprising two planes of chalcogens

and one atomic plane of a transition metal.

Panel (c) of the same figure displays the band structure of MoSe2, highlighting the

presence of a direct band gap at the K point. This particular region serves as the focal

point for analyzing the excitonic properties of TMDCs. Notably, the influence of spin-

orbit coupling on the band structure is prominently observed, a topic that will be explored

further in Chapter 4. From the perspective of few-body theory, this class of 2D materials

has garnered significant attention due to the remarkably large binding energies exhibited

by even four-particle complexes (MAK et al., 2013; BERKELBACH et al., 2013; YOU et al.,
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FIGURE 1.1 – (Color Online) Geometry and band structure of MoSe2. In (a) and (b) the top and side
views of the molecular geometry is presented. In (c) we show the band structure of MoSe2. The band
structure was calculated using density functional theory(HOHENBERG; KOHN, 1964; KOHN; SHAM, 1965).

2015). These pronounced binding energies in TMDCs have sparked considerable interest

and intrigue within the scientific community.

1.1.2 Black Phosphorous

The monolayer black phosphorus material represents one of the more stable allotropes

of phosphorus (see Fig. 1.2), exhibiting highly anisotropic properties that arise from its

distinctive puckered structure (AKHTAR et al., 2017; MOLAS et al., 2021). The unique

arrangement of atoms in black phosphorus gives rise to its remarkable electronic behavior

and optical characteristics.

Of particular interest is the phenomenon of band gap engineering that can be achieved

through the stacking of multiple layers of black phosphorus. By altering the number of

layers and the arrangement in a stack, it becomes possible to modulate the band gap of

the material. In the case of black phosphorus, the stacking of layers can effectively tune

the band gap from the range of approximately 1.5 eV to a significantly reduced range of

around 0.3 eV (CHAVES et al., 2017). This tunability of the band gap holds great promise

for various technological applications, enabling tailored electronic and optical properties in

black phosphorus-based devices. Figure 1.2 provides insightful information regarding the

band structure and geometric characteristics of the material under investigation. Examin-

ing panels (a), (b) and (c), it becomes evident that the crystalline structure of the material

exhibits two distinct planar directions, commonly referred to as zig-zag and armchair ori-

entations in the scientific literature(CHAVES et al., 2017). This structural anisotropy plays

a crucial role in influencing the light absorption properties of the material. Specifically,
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FIGURE 1.2 – (Color Online)Geometry and band structure of a black phosphorous monolayer. In (a),
(b) and (c) the molecular geometry of the system is presented. In (d) we present the band structure of
the monolayer black phosphorous. The band structure was calculated using density functional theory
(HOHENBERG; KOHN, 1964; KOHN; SHAM, 1965).

the symmetries of the wave functions associated with the valence and conduction bands

are affected by this anisotropy, leading to unique absorption characteristics (MOLAS et al.,

2021).

Panel (d) of Fig. 1.2 highlights another key feature of the system: it possesses a direct

band gap. This attribute makes the material particularly conducive to the generation

and study of excitons, which are bound electron-hole pairs. The presence of a direct

band gap facilitates the formation and stability of excitonic states in the material, due to

momentum conservation of direct transitions.

However, it is important to note that the anisotropy of the material poses challenges

when performing calculations and simulations. The lack of isotropy, arising from the

anisotropic nature of the material, introduces coupling between different angular momen-

tum channels. This coupling complicates the computational procedures and necessitates

careful consideration and handling of the anisotropy in theoretical calculations. Efforts

must be made to appropriately account for the anisotropic effects and incorporate them

into the calculations to obtain accurate and reliable results.

1.2 The Exciton

The interaction between light and the aforementioned materials gives rise to a mul-

titude of processes that possess distinct properties, which in turn enable various techno-

logical applications (KIM, 2023; DHANABALAN et al., 2017). When describing the optical
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properties of solids, there are several frameworks one can adopt. While valid results

can be obtained in the single-particle approximation through perturbation theory applied

to a single-particle Hamiltonian with an effective potential coupled to a vector poten-

tial (RöSSLER, 2009), a more comprehensive understanding of excited states is achieved

through a many-body treatment. Electronic interactions in solids give rise to a hier-

archical dependence between carriers, resulting in phenomena governed by two-particle

excitons, three-particle trions (KOKSAL et al., 2021; CHOI et al., 2018), and even more

complex structures involving six and eight particles (TUAN et al., 2022). This intricate

interplay of particles presents an intriguing context for studying few-body physics and

applying effective field theory methods (see e.g. (KIRA; KOCH, 2006; SHANKAR, 1997)).

At the core of condensed matter physics lies the concept of emergent phenomena,

popularized by Anderson (ANDERSON, 1972). It emphasizes that interacting systems in

the thermodynamic limit exhibit a set of phenomena that cannot be solely derived by

examining the individual components of the system in isolation. A notable example of

this is the behavior of electrons in semiconductors, where they can be treated as quasipar-

ticles with effective masses that are fractions of the electron mass(RöSSLER, 2009). This

approximation successfully captures important properties near high symmetry points in

the Brillouin zone (YU; CARDONA, 2010).

Now the exciton and the interaction that leads to its formation is discussed in phe-

nomenological terms. The underlying concepts that give rise to particular properties

in materials, which stem from the interactions among multiple particles are presented

next. The discussion is based on a set of references encompassing books and reviews by

Combescot (COMBESCOT; SHIAU, 2015; COMBESCOT et al., 2008), as well a seminal work

by Kira et al. (KIRA; KOCH, 2006).

1.2.1 Phenomenological Formulation of the Exciton

Consider a periodic lattice. As is known by the Bloch’s theorem(BLOCH, 1929), the

periodicity of the system gives rise to energy bands. For a semiconducting material in

the ground state, such bands may have either a complete filling or emptiness of electronic

states. To formulate a simpler picture, consider a system composed of two different

energy bands. Now, if one takes a electron from the band of the lowest energy, which

is completely filled, and toss it up to the other band, of higher energy, one has what is

called an excitation. Since the lower band, after tossing the electron to the higher band,

has N − 1 particles, it can be effectively described as a particle with positive charge and

mass, which is denoted as a ”hole”. Assign to the electron in the upper energy band and

the hole in the lower energy band plane waves. By doing so, by virtue of the particle

being charged, Coulomb processes start to become relevant, leading to a bound state of
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FIGURE 1.3 – (Color Online) Physical picture of the exciton formation. In (a) we show the ladder
diagram responsible for the exciton pair. In (b) we present a schematic view of the exciton pair in a two-
band system. The red and blue balls represents the electron and hole, respectively and the connecting
shade is the electron-hole bound state, the exciton.

pair of particles.

The bound-state formed by these Coulomb processes of the electron and hole excitation

is called the Exciton. Since each carrier should stay in its band, the dominant Coulomb

processes responsible for the formation of excitons and localization in the center-of-mass

frame are intraband Coulomb processes.

In a more precise fashion, let pe be the momentum of the excited electron in the higher

band (ie. conduction band) and ph be the momentum of the hole in the lower band (ie.

valence band). The physical picture of the electron-hole pair interacting with the Coulomb

force is encapsulated in Fig. 1.3. The interaction between this pair is represented by a

ladder diagram and the sum of all ladder diagrams leads to a correlated state, that can be

bound or not (see panel (a) of Fig. 1.3). The bound-state resulting from this sum of ladder

diagrams, for this kind of system with the Coulomb intraband processes is the Wannier

Exciton. The two-band point of view is shown in panel (b) of Fig. 1.3. Although one can

formulate a bound state equation from these considerations and the fact that the exciton

is a hydrogen-like system, the excitonic spectra arises naturally in the interacting electron

gas as a consequence of the hierarchical characteristics of the many-particle dynamics.

In order to probe its effects and derive equations that governs the time-evolution of the

polarization operator, an external electromagnetic field is introduced, yielding a set of

coupled integro-differential equations which will describe optical properties through the

linear response theory. Within appropriate approximations, this set of coupled equations

also allows the study of excitonic properties through its homogeneous equation, which is

also called Wannier equation. This equation will be the main subject of study for the

large part of this work.
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FIGURE 1.4 – (Color online) Schematic diagram of the electrostatic problem.

1.2.2 Electron-Hole Interaction

The exciton is formed by the screened Coulomb interaction between the carriers. Here,

the derivation of the effective interaction considering two planar layers with particular

polarization coefficients immersed in a dielectric media is presented in detail.

In order to derive the interaction potential for the chosen heterostructures, the Poisson

equation has to be solved considering three dielectric regions separated by two layers

located at z = 0 and z = −d, which separates the space into three regions (see Fig. 1.4 for

the electrostatic picture). Each layer has a polarization coefficient denoted by r1 and r2,

respectively. Each region has a dielectric media with a dielectric constants ϵi in units of

ϵ0. The Poisson equation is assembled by considering a charge Q1 at z = 0. The presence

of a charge at the uppermost layer will induce a charge density ρind(r⃗) due to polarization.

Therefore, the equation which one must solve is

−∇2ϕ(r⃗) =
1

ϵ0
ρ(r⃗) , (1.1)

where ϵ0 is the vacuum dielectric constant and the charge density ρ(r⃗) is,

−∇2ϕ (r⃗) =
1

ϵ0
(Q1δ (r⃗) + ρind(r⃗)) . (1.2)

The induced charge density term is,

ρind = σ1 δ(z = 0) + σ2 δ(z + d) − ∇⃗ · P⃗ , (1.3)
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where P⃗ is the medium polarization. Note that the induced charge densities, σ1 and

σ2, depend on the position in the respective layer, which is not explicit depicted for the

simplicity of our notation. By considering that the medium polarization is linear, the last

term is rewritten as

∇⃗ · P⃗ = ϵ0χi∇⃗ · E⃗ = −ϵ0χi∇2ϕ(r⃗) , (1.4)

where χi is the susceptibility of region i. Thus, we obtain the following partial differential

equation,

−∇2ϕ(r⃗) =
1

ϵ0
(Q1δ(r⃗) + σ1δ(z) + σ2δ(z + d) + ϵ0χi∇2ϕ(r⃗)). (1.5)

Next, apply a planar Fourier transform considering the (x, y) plane and rearrange the

equation, leading to, for z > 0 (which encompasses region I, see Fig. 1.4),

(1 + χ1)

(
q2 − ∂2

∂z2

)
Φ(q⃗, z) = 0, (1.6)

where q⃗ denotes the planar Fourier components. A possible solution for Eq. (1.6) is

Φ(q⃗, z) = Ae−qz + A′eqz, (1.7)

and by noting that in the limit of large z the potential should go to zero (due to the

electrostatic physical boundary conditions), the solution is rewritten as,

Φ(q⃗, z) = Ae−qz , z > 0. (1.8)

Using a similar procedure for regions II and III, one obtains, respectively

Φ(q⃗, z) = B sinh (qz) + C cosh (qz) , −d < z < 0 , (1.9)

Φ(q⃗, z) = Deqz , −d < z . (1.10)

The physical potential should be continuous and to implement that, first, rearrange

Eq. (1.5) and integrate it around each of the layers, and then, by continuity, a system of

equations is obtained. Rearranging Eq. (1.5), yields

−(1 + χi)∇2ϕ(r⃗) =
1

ϵ0
(Q1δ(r⃗) + σ1δ(z) + σ2δ(z + d)) , (1.11)

integrating around z = 0, after the planar Fourier transform in the (x, y) plane, in the
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limit of δ → 0+, one finds:

∫ +δ

−δ

dzϵi

(
q2 − ∂2

∂z2

)
Φ(q⃗, z) = −ϵ1

∂Φ(q⃗, z)

∂z

∣∣∣
z=δ

+ ϵ2
∂Φ(q⃗, z)

∂z

∣∣∣
z=−δ

=
Q1

ϵ0
+

Σ1

ϵ0
, (1.12)

where ϵi = 1+χi and Σ1 depends on the planar Fourier component q⃗. Next, by evaluating

the derivatives and taking the limit δ → 0+, one obtains:

ϵ1qA+ ϵ2qB =
Q1

ϵ0
+

Σ1

ϵ0
. (1.13)

The planar Fourier transform of σ1 is obtained using the in-plane polarization

σ1 = −∇⃗ · P⃗ |z=0 = −r1ϵ0∇2ϕ(r⃗)|z=0 , (1.14)

which leads to:

Σ1 = −r1ϵ0q2Φ(q⃗, z = 0) = −r1ϵ0q2A . (1.15)

We use Eq. (1.13) to write one of the equations to obtain the coefficients A ,B ,C and D.

By following the same reasoning above, but this time around z = −d, using expressions

(1.9), (1.10), (1.11), and also by taking the limit as δ → 0+ and noting that A = C, the

aforementioned system of equations is obtained,

(
ϵ1q + r1q

2
)
A+ ϵ2Bq =

Q1

ϵ0
,

−B sinh (qd) + A cosh (qd) = De−qd

ϵ2(B cosh(qd) − A sinh(qd)) = (ϵ3 + r2q)De
−qd , (1.16)

and using the third equation of (1.16),

De−qd = ϵ2
B cosh(qd) − A sinh(qd)

ϵ3 + r2q
, (1.17)

which in turn implies that only A and B are relevant. The solution of the system for A

and B results in,

A =
−Q1

qϵ0(ϵ1 + r1q + ϵ2G2(q))
,

B = G2(q)
Q1

qϵ0(ϵ1 + r1q + ϵ2G2(q))
, (1.18)
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FIGURE 1.5 – (Color online) (a) Comparison between different carrier-carrier potentials in momentum
space: RK (solid blue curve), Coulomb (dashed green curve with rhombus symbols), intralayer (dashed
orange curve with circular symbols), and interlayer (dashed red curve) interactions. The interlayer

[Eq. (1.21)] and the intralayer [Eq. (1.22)] potentials were calculated considering r1 = r2 = r = 44.68 Å

and d = 7.15 Å. When q is of the order of 1/r, the Coulomb potential deviates from the other three and
a negligible difference between the intralayer and the RK potentials is observed. The interlayer potential
shows a strong screening that is due to the term proportional to e−qd of Gj(q) in Eq. (1.19) when q ≈ 1/d.
(b) The relative difference between the intralayer and the RK potentials, which can be as high as 15%
the shorter the spacer width d

where

Gj(q) =
cosh(qd)(ϵ3 + rjq) + ϵ2 sinh(qd)

ϵ2 cosh(qd) + sinh(qd)(ϵ3 + rjq)
. (1.19)

The potential in momentum space is then given by

Φ(q⃗, z) =


Aeq(z+d)(cosh(qz) +G2(q) sinh(qz)) region III,

A(cosh(qz) −G2(q) sinh(qz)) region II,

Ae−qz region I,

(1.20)

and, the relevant interactions are the intralayer and interlayer ones, which are explicitly

written using equations (1.18), (1.19) and (1.20). By relabeling indices one writes that,

Vii(q) =
−e2

qϵ0 [ϵ1 + riq + ϵ2Gj(q)]
, (1.21)

Vi,j ̸=i(q) =
e2 [cosh(qd) −Gj(q) sinh(qd)]

qϵ0 [ε1 + riq + ε2Gj(q)]
. (1.22)

Vii(q) is the intralayer potential and Vi,j ̸=i(q) is the interlayer potential. The Gj(q) has
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the property that,

lim
d→∞

Gj(q) = lim
d→∞

eqd(ϵ3 + rjq) + ϵ2e
qd

ϵ2eqd + eqd(ϵ3 + rjq)
= 1, (1.23)

using this result in Eq. (1.21),

VRK(q) =
−e2

qϵ0 (ϵ1 + ϵ2) (1 + r̄1q)
, (1.24)

where r̄1 = r1/(ϵ1 + ϵ2). Eq. (1.24) is the Rytova-Keldysh (RK)(RYTOVA, 1965; Keldysh,

1979) potential in momentum space, which is compared to the derived potential and the

Coulomb potential in Fig. 1.5.

1.3 Objective and remarks

One of the primary goals of this research is to develop computationally efficient and

reliable methods for describing the two-body system composed of an electron and a hole,

which form an exciton. To achieve this goal, the necessary theoretical framework in which

the exciton arises within a many-body context and influences important optical properties

is established. Within this framework, one will encounter a key component known as the

Wannier equation, which plays a central role in this dissertation. Once the formalism is

developed and the Wannier equation is obtained, the solution methods are discussed in

detail in Chapter 3.

One method worth highlighting involves the expansion of the wave function and the

kernel of the Wannier equation as an infinite, truncated to a finite, series of Chebyshev

polynomials. This approach allows to analytically circumvent the infrared divergence

that typically arises in the context of Coulomb interactions. By constructing a properly

tailored solution scheme, the Wannier equation is solved for a wide range of scenarios

involving two-dimensional semiconducting heterostructures. This will enable to conduct

a systematic investigation of the excitonic spectra and its influence on the band gap of the

system through variations in the environment. A particular attention is drawn to the case

of the MoS2-WTe2 heterostructure, where the potential emergence of an excitonic-driven

insulating state is discussed at the end of Chapter 4.

Finally, the exciton in the context of monolayer and bilayer black phosphorous, a

material that exhibits spatial anisotropy, leading to the breakdown of rotational symmetry

and giving rise to a complex problem involving coupled integral equations is analyzed. The

unique properties which arise from the charge carrier direction-dependent masses and its

impacts in the wave function of the exciton are discussed in Chapter 5.



2 Semiconductor Bloch Equations

The quantum revolution that began in the early 20th century was driven by the pro-

found understanding of the interaction between light and matter, as elucidated by Planck’s

theory(PLANCK; MASIUS, 1914). In the current era, we are witnessing another quantum

revolution propelled by advancements in quantum computing and the relentless pursuit of

miniaturizing technology, a trend that is particularly evident in the realm of 2D materi-

als (NOVOSELOV et al., 2016). Here we will present the derivation for the equations which

are necessary to calculate the bandgap renormalization due to the change in the layer sep-

aration and dielectric media. For completeness we will also derive the equations which are

used to obtain the optical response, known as the Semiconductor Bloch Equations (KIRA;

KOCH, 2006).

To accurately describe the optical properties of 2D materials and highlight the role of

few-body correlations, it is crucial to develop a robust set of theoretical tools to investigate

the interaction between light and matter. In this work, we will adopt a formalism based

on an electron gas interacting through a Coulomb-type coupling, specifically, a screened

electrostatic interaction in a dieletric medium(RYTOVA, 1967; Keldysh, 1979).

Additionally, we will incorporate a term in the formalism to account for the influence

of an external electromagnetic pulse, which we will model as a field-dipole coupling. While

the concepts and techniques we will employ bear similarity to those found in standard

textbooks such as (HAUG; KOCH, 2004; KIRA; KOCH, 2011), we will focus primarily on the

unique properties exhibited by transition metal dichalcogenides (TMDCs), thus closely

following the developments presented in (CHAVES et al., 2017).

2.1 The Formulation of the Hamiltonian

The first ingredient in the Hamiltonian is a term that, for low energy excitation, cap-

tures the necessary physics with respect to the symmetries of the TMDC’s electronic

band structure (MATTHEISS, 1973) and the strong spin-orbit coupling (SOC) of this class

of materials, in a two-band, free carrier approximation. The Hamiltonian in k ·p approx-

imation, first introduced in (XIAO et al., 2012) and refined in (KORMÁNYOS et al., 2013;
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FIGURE 2.1 – (Color online) Illustration of band structure around the K point and SOC induced band
splitting. We see a crossing between spin bands for the WSe2 and no crossing for MoSe2.

KORMÁNYOS et al., 2015; KORMÁNYOS et al., 2014), has the form,

Ĥs,τ
0,i = ℏvF,iσ̂ · p̂i + ∆0

s,τσz =

(
∆0

sτ ℏvF,i (τpx − ipy)

ℏvF,i (τpx + ipy) −∆0
sτ

)
, (2.1)

where i is the layer index, s, τ (τ = ±1) are the spin and valley index, respectively. ∆0
s,τ

is the mass term for the Dirac equation, which is the bare ”bandgap”, p̂ = (τpx, py, 0),

σ are the Pauli matrices, and Î is the identity matrix. This free system can be exactly

diagonalized, with eigenvalues,

Esτ
p = ±

√
(ℏvF,i)2 p · p +

(
∆0

s,τ

)2
(2.2)

By introducing a index λ that has value −1 for the valence band and +1 for the conduction

band, the free carrier Hamiltonian in second quantization is

Ĥs,τ
0,i =

∑
p,λ

λEs,τ
p â†p,λ,s,τ (t) âp,λ,s,τ (t), (2.3)

where a†λ,p(aλ,p) are creation (annihilation) operators. The free carrier Hamiltonian cap-

tures the basic properties of the band structure and the SOC induced band splitting, as

it is illustrated in Fig. 2.1.

The next ingredient is the two-body interaction between the carriers, mediated by a
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central potential V (|r2 − r1|), which reads in second quantization as,

Hee = −e
2

∫
dr1

∫
dr2 ψ̂

†(r1, t)ψ̂
†(r2, t)V (|r2 − r1|) ψ̂(r2, t)ψ̂(r1, t). (2.4)

The field operator ψ̂ can be expanded using the solutions of Eq. (2.1),

ψ̂(r, t) =
1√
A

∑
pλsτ

ϕsτ
pλ âpλsτ (t) eip·r, (2.5)

where A is the area by which we quantize the plane wave momentum and âp,λ,s,τ is the

fermionic annihilation operator that obeys anti-commutation relations,

{âp,λ,s,τ , â†p′,λ′,s′,τ ′} = δp,p′δλ,λ′δs,s′δτ,τ ′ . (2.6)

The spinor ϕsτ
pλ, solution to (2.1) is,

ϕsτ
pλ =

√
Esτ

p + λ∆0
sτ

2Esτ
p

(
1

τpx−ipy
λEsτ

p −∆0
sτ
.

)
(2.7)

The electron-electron interaction is written using (2.7),

Ĥee =
−e
2A2

∑
sτ

∑
{pi,λi}

∫
dr1dr2

(
ϕsτ
p1λ1

)†
â†p1λ1sτ

(t) e−ip1·r1
(
ϕsτ
p2λ2

)†
â†p2λ2sτ

(t) e−ip2·r2

V (|r2 − r1|) ϕsτ
p3λ3

âp3λ3sτ (t) eip3·r2ϕs4τ
p4λ4

âp4λ4sτ (t)eip4·r1 , (2.8)

where {. . . } under the sum is indicating a sum over all indexes inside the curly brackets.

One can decompose the two-body interaction in terms of its Fourier expansion for the

exchanged momentum q,

Ĥee =
−e
2A3

∑
sτ,q ̸=0

∑
{pi,λi}

V (q)

∫
dr1
(
ϕsτ
p1λ1

)† (
ϕsτ
p4λ4

)
ei(p4−p1−q)·r1

×
∫
dr2
(
ϕsτ
p2λ2

)† (
ϕsτ
p3λ3

)
ei(p3−p2+q)·r2 â†p1λ1sτ

(t) â†p2λ2sτ
(t)âp3λ3sτ (t) âp4λ4sτ (t) , (2.9)

and by integrating the spatial coordinates, one finds that:

Ĥee =
−e
2A

∑
{pi,λi}

∑
q ̸=0,s,τ

V (q)
(
ϕsτ
p1λ1

)† (
ϕsτ
p4λ4

)
δp1,p4−q δp2,p3+q×

×
(
ϕsτ
p2λ2

)† (
ϕsτ
p3λ3

)
â†p1λ1sτ

(t)â†p2λ2sτ
(t)âp3λ3sτ (t)âp4λ4sτ (t), (2.10)
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finally, for simplicity, we relabel the indices and get:

Ĥee =
−e
2A

∑
s,τ,{λi}

∑
p,p′,q ̸=0

V (q)F{λi} (p,p′,q) â†p−q,λ1sτ
(t)â†p′+qλ2sτ

(t)âp′λ3sτ (t)âpλ4sτ (t),

(2.11)

where,

Fλ1λ4λ2λ3 (p,p′,q) =
(
ϕsτ
p+q,λ1

)† (
ϕsτ
pλ4

) (
ϕsτ
p′−q,λ2

)† (
ϕsτ
p′λ3

)
. (2.12)

Now, in order to probe the optical properties of this interacting electron gas, one must

incorporate a term that encapsulates the coupling of dipole moments formed due to the

polarization of the electron gas to an external light pulse, that is, a term of the form,

HI = −eE(t)x̂. (2.13)

Here we consider a time-dependent electric field polarized in the x̂ direction. Now, intro-

duce the polarization operator P(t),

P(t) =

∫
dr1ψ̂

†(r1, t) (−er1) ψ̂(r1, t). (2.14)

One can recast the polarization operator using the spinor solutions (2.7) of the free carrier

Hamiltonian,

P(t) =
1

A

∑
{pλsτ}

∫
dr1
(
ϕsτ
pλ

)†
e−ip′·r1 (−er1) eip·r1 ϕs′τ ′

p′λ′ â
†
pλsτ (t) âp′λ′s′τ ′(t). (2.15)

Consider in particular the spatial integral,∫
dr1
(
ϕsτ
pλ

)†
e−ip′·r1 (−er1) eip·r1 ϕs′τ ′

p′λ′ = ⟨p, λ, τ, s| r1 |p′, λ′, τ ′, s′⟩ , (2.16)

notice that, by using the fact that this state yields the eigenvalues (2.2),

⟨p, λ, τ, s| r1 |p′, λ′, τ ′, s′⟩ = ⟨p, λ, τ, s| r1 |p′, λ′, τ ′, s′⟩
λEs,τ

p − λ′Es′,τ ′

p′

λEs,τ
p − λ′Es′,τ ′

p′

(2.17)

by rearranging the eigenvalues of the numerator in terms of left-and-right applied Ĥ0,i, it

is obtained

⟨p, λ, τ, s| r1 |p′, λ′, τ ′, s′⟩ =
⟨p, λ, τ, s|

(
r1Ĥ0,i − Ĥ0,ir1

)
|p′, λ′, τ ′, s′⟩

λEs,τ
p − λ′Es′,τ ′

p′

, (2.18)
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therefore,

⟨p, λ, τ, s| r1 |p′, λ′, τ ′, s′⟩ =
⟨p, λ, τ, s|

[
r1, Ĥ0,i

]
|p′, λ′, τ ′, s′⟩

λEs,τ
p − λ′Es′,τ ′

p′

. (2.19)

Since the external field is polarized in the x̂ direction and the system electrically neutral,

the central object is the interband transitions (λ ̸= λ′),

⟨p, λ, τ, s| x̂ |p′,−λ, τ ′, s′⟩ =
⟨p, λ, τ, s|

[
x̂, Ĥ0,i

]
|p′, λ′, τ ′, s′⟩

λEs,τ
p − λ′Es′,τ ′

p′

. (2.20)

The calculation of the commutator is direct and the final expression for the polarization

operator is,

⟨p, λ, τ, s| x̂ |p′,−λ, τ ′, s′⟩ = δp,p′δτ,τ ′δs,s′
iτℏvf,i ⟨p, λ, τ, s|σ1 |p,−λ, τ, s⟩

2λEs,τ
p

(2.21)

= δp,p′δτ,τ ′δs,s′
iνs,τp,λ

2λEs,τ
p
, (2.22)

where, νs,τp,λ′ = τℏvf,i ⟨p, λ, τ, s|σ1 |p,−λ, τ, s⟩ is the matrix element considering a inter-

band transition. Combining Eqs. (2.21) and (2.15), we can write that:

P̂ (t) = −e
∑
psτ,λ

iνs,τp,λ

2λEs,τ
p

â†pλsτ (t) âp−λsτ (t) , (2.23)

where it is convenient to introduce the following density matrix operator,

ρ̂sτp,λ,λ′(t) = â†pλsτ (t)âpλ′sτ (t). (2.24)

Using the preceding discussion, the external field term is,

P̂ (t) = −e
∑
psτ,λ

iνs,τp,λ

2λEs,τ
p
ρ̂sτp,λ,−λ(t), (2.25)

ĤI = −eE(t)
∑
psτ,λ

iνs,τp,λ

2λEs,τ
p
ρ̂sτp,λ,−λ(t). (2.26)

The full Hamiltonian including the electron-electron interaction and the coupling to
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the external electric field is:

Ĥ =
∑
p,λ

λEλ,pâ
†
λ,p(t)âλ,p(t) − e

2A

∑
p,p′,q ̸=0

∑
s,τ,{λi}

V (q)F{λi} (p,p′,q)

× â†p−q,λ1sτ
(t) â†p′+qλ2sτ

(t) âp′λ3sτ (t) âpλ4s4τ (t) − e E(t)
∑
psτ,λ

iνs,τp,λ

2λEs,τ
p

ρ̂sτp,λ,−λ(t) (2.27)

The Hamiltonian given in (2.27) describes a interacting electron gas which has two

energy bands given by the λ index, that is interpret as the valence (−) and conduction(+)

bands. The interaction term creates a hierarchical dependence between particles and the

external field is a way to study the response of the system to this field in the form of the

polarization operator. The time evolution of the polarization operator give us the optical

response of the system.

2.2 Equations of Motion

As it is explicit in Eq. (2.23), the time evolution of the polarization operator is directly

associated to the time evolution of the density matrix, which is the central theme of this

section.

The Heisenberg equation of motion is

−iℏ d
dt
⟨ρ̂sτp,λ,λ′(t)⟩ = ⟨

[
Ĥ0,i, ρ̂

sτ
p,λ,λ′(t)

]
⟩ + ⟨

[
Ĥee, ρ̂

sτ
p,λ,λ′(t)

]
⟩ + ⟨

[
ĤI , ρ̂

sτ
p,λ,λ′(t)

]
⟩ . (2.28)

One needs to calculate a series of commutators in Eq. (2.28), which couple the transition

probabilities to quadratic and quartic operator products of creatinon and annihilation

operators. In this section, the calculations of the commutators are detailed in what

follows.

First, we compute free Hamiltonian contribution:

[
Ĥ0,i, ρ̂

sτ
p′,λ′,λ′′(t)

]
=
∑

p,λ,s,τ

λEs,τ
p

[
â†p,λ,s,τ âp,λ,s,τ , â

†
p′λ′s′τ ′ âp′λ′′s′τ ′

]
=
∑

p,λ,s,τ

λEs,τ
p

(
â†p,λ,s,τ âp,λ,s,τ â

†
p′λ′s′τ ′ âp′λ′′s′τ ′ − â†p′λ′s′τ ′ âp′λ′′s′τ ′ â

†
p,λ,s,τ âp,λ,s,τ

)
=
∑

p,λ,s,τ

λEs,τ
p â†p,λ,s,τ

(
{âp,λ,s,τ , â†p′,λ′,s′,τ ′} − â†p′,λ′,s′,τ ′ âp,λ,s,τ

)
âp′λ′′s′τ ′−

−
∑

p,λ,s,τ

λEs,τ
p â†p′,λ′,s′,τ ′

(
{âp′,λ′′,s′,τ ′ , â

†
p,λ,s,τ} − â†p,λ,s,τ âp′,λ′′,s′,τ ′

)
âpλsτ (2.29)
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by employing the anti-commutation relation (2.6),

[
Ĥ0,i, ρ̂

sτ
p′,λ′,λ′′(t)

]
=
∑

p,λ,s,τ

λEs,τ
p â†p,λ,s,τ

(
δp,p′δλ,λ′δs,s′δτ,τ ′ − â†p′,λ′,s′,τ ′ âp,λ,s,τ

)
âp′λ′′s′τ ′−

−
∑

p,λ,s,τ

λEs,τ
p â†p′,λ′,s′,τ ′

(
δp,p′δλ,λ′′δs,s′δτ,τ ′ − â†p,λ,s,τ âp′,λ′′,s′,τ ′

)
âpλsτ

=
∑

p,λ,s,τ

λEs,τ
p â†p,λ,s,τ âp′λ′′s′τ ′δp,p′δλ,λ′δs,s′δτ,τ ′ −

∑
p,λ,s,τ

λEs,τ
p â†p′,λ′,s′,τ ′ âpλsτδp,p′δλ,λ′′δs,s′δτ,τ ′

= λ′Es,τ
p â†p,λ′,s,τ âpλ′′sτ − λ′′Es,τ

p â†p,λ′,s,τ âpλ′′sτ = (λ′ − λ′′)Es,τ
p â†p,λ′,s,τ âpλ′′sτ , (2.30)

where one can identify the last operator product as the density operator, which yields

directly the argument of the first term of (2.28),[
Ĥ0,i, ρ̂

sτ
p′,λ′,λ′′(t)

]
= (λ′ − λ′′)Es,τ

p ρ̂sτp,λ′,λ′′(t) . (2.31)

The contribution from electron-electron interaction commutator to Eq. (2.28) is ex-

plicitly written as:

[
Ĥee, ρ̂

sτ
p′′,λ,λ′(t)

]
=

−e
2A

∑
s,τ,s′,τ ′,{λi}

∑
p,p′,q ̸=0

V (q)F{λi} (p,p′,q)

× [â†p−q,λ1sτ
â†p′+qλ2sτ

âp′λ3sτ âpλ4sτ , â
†
p′′λ′s′τ ′ âp′′λ′′s′τ ′ ] . (2.32)

where the commutator is,

[â†p−q,λ1sτ1
â†p′+qλ2sτ

âp′λ3sτ âpλ4sτ , â
†
p′′λ′s′τ ′ âp′′λ′′s′τ ′ ] = â†p−q,λ1sτ

â†p′+qλ2sτ
âp′λ3sτ

× âpλ4sτ â
†
p′′λ′s′τ ′ âp′′λ′′s′τ ′ − â†p′′λ′s′τ ′ âp′′λ′′s′τ ′ â

†
p−q,λ1sτ

â†p′+qλ2sτ
âp′λ3sτ âpλ4sτ . (2.33)

Further manipulation and introducing the normal ordering (::), we write:

: â†p−q,λ1sτ
â†p′+qλ2sτ

âp′λ3sτ âpλ4sτ â
†
p′′λ′s′τ ′ âp′′λ′′s′τ ′ : =

=: â†p−q,λ1sτ
â†p′+qλ2sτ

âp′λ3sτ

(
{âpλ4sτ â

†
p′′λ′s′τ ′} − â†p′′λ′s′τ ′ âpλ4sτ

)
âp′′λ′′s′τ ′ :

= : â†p−q,λ1sτ
â†p′+qλ2sτ

âp′λ3sτ âp′′λ′′s′τ ′δp,p′′δλ4,λ′δs,s′δτ,τ ′ − â†p−q,λ1sτ
â†p′+qλ2sτ

× âp′λ3sτ â
†
p′′λ′s′τ ′ âpλ4sτ âp′′λ′′s′τ ′ :

= : −â†p−q,λ1sτ
â†p′+qλ2sτ

{âp′λ3sτ â
†
p′′λ′s′τ ′}âpλ4sτ âp′′λ′′s′τ ′

+ â†p−q,λ1sτ
â†p′+qλ2sτ

â†p′′λ′s′τ ′ âp′λ3sτ âpλ4sτ âp′′λ′′s′τ ′ : =

= â†p−q,λ1sτ
â†p′+qλ2sτ

âp′λ3sτ âp′′λ′′s′τ ′δp,p′′δλ4,λ′δs,s′δτ,τ ′ − â†p−q,λ1sτ
â†p′+qλ2sτ

× âpλ4sτ âp′′λ′′s′τ ′δp′,p′′δλ3,λ′δs,s′δτ,τ ′ + â†p−q,λ1sτ
â†p′+qλ2sτ

â†p′′λ′s′τ ′ âp′λ3sτ âpλ4sτ âp′′λ′′s′τ ′ .

(2.34)
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Following the same steps as above for the second term of the commutator of Eq. (2.33)

one finally arrives to:

[â†p−q,λ1sτ
â†p′+qλ2sτ

âp′λ3sτ âpλ4sτ , â
†
p′′λ′s′τ ′ âp′′λ′′s′τ ′ ] =

= â†p−q,λ1sτ
â†p′+qλ2sτ

âp′λ3sτ âp′′λ′′s′τ ′δp,p′′δλ4,λ′δs,s′δτ,τ ′ − â†p−q,λ1sτ
â†p′+qλ2sτ

×

× âpλ4sτ âp′′λ′′s′τ ′δp′,p′′δλ3,λ′δs,s′δτ,τ ′ − â†p′′,λ′s′τ ′ â
†
p′+q,λ2sτ

âp′λ3sτ âpλ4sτ×

× δp′′,p−qδλ′′,λ1δs′,sδτ ′,τ + â†p′′,λ′s′τ ′ â
†
p−q,λ1sτ

âp′λ3sτ âpλ4sτδp′′,p′+qδλ′′,λ2δs′,sδτ ′,τ , (2.35)

and then, the interaction term contribution is,

[
Ĥee, ρ̂

s′τ ′

p′′,λ′,λ′′(t)
]

=
−e
2A

∑
s,s′,τ,τ ′,{λi}

∑
p,p′,q ̸=0

V (q)F{λi} (p,p′,q)

× (â†p−q,λ1sτ
â†p′+qλ2sτ

âp′λ3sτ âp′′λ′′s′τ ′δp,p′′δλ4,λ′δs,s′δτ,τ ′ − â†p−q,λ1sτ
â†p′+qλ2sτ

× âpλ4sτ âp′′λ′′s′τ ′δp′,p′′δλ3,λ′δs,s′δτ,τ ′ − â†p′′,λ′s′τ ′ â
†
p′+q,λ2sτ

âp′λ3sτ âpλ4sτ

× δp′′,p−qδλ′′,λ1δs′,sδτ ′,τ + â†p′′,λ′s′τ ′ â
†
p−q,λ1sτ

âp′λ3sτ âpλ4sτδp′′,p′+qδλ′′,λ2δs′,sδτ ′,τ ) . (2.36)

The last term is the contribution from the external electrical field coupling to the Heisen-

berg equation of motion of the density:

[
ĤI , ρ̂

s′τ ′

p′,λ,λ′

]
= −eE(t)

∑
psτ,λ1

iνs,τp,λ1

2λ1E
s,τ
p

[
ρ̂sτp,λ1,−λ1

, ρ̂s
′τ ′

p′,λ,λ′

]
, (2.37)

this commutator is similar to the one elaborated for the free-particle Hamiltonian com-

mutator, thus we write that:[
ρ̂sτp,λ1,−λ1

, ρ̂s
′τ ′

p′,λ,λ′

]
= ρ̂sτp,λ1,λ′δ−λ1,λ + ρ̂sτp,λ′,−λ1

δλ1,λ′ , (2.38)

giving the following expression:

[
ĤI , ρ̂

sτ
p,λ,λ′

]
= eE(t)

(
iνs,τp,−λ

2λEs,τ
p
ρ̂sτp,−λ,λ′ +

iνs,τp,λ′

2λ1E
s,τ
p
ρ̂sτp,λ,−λ′

)
. (2.39)

Next, one has to calculate the expectation value of each term. Her note that there are

two distinct equations, for λ = λ′ in the Heisenberg equation yields the time evolution of

the intraband density, and for λ ̸= λ′, the interband transitions.

Let us compute the expectation value of each term in detail, then we can access the

physical interpretation of the contribution of each commutator to the transitions due to

the coupling to the external field. First, the non-interacting term is given by:

⟨
[
Ĥ0,i, ρ̂

sτ
p′,λ′,λ′′

]
⟩ = (λ′ − λ′′)Es,τ

p ⟨ρ̂sτp,λ′,λ′′⟩. (2.40)
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The expectation value of the above commutator for λ′ = λ′′ is 0, which is expected since

for intraband transitions the commutator of the free carrier with the density operator

should naturally commute. Now, for λ′ ̸= λ′′, we have the interband transition, since

λ′ = −λ′′ ≡ λ,

⟨
[
Ĥ0,i, ρ̂

sτ
p′,λ,−λ

]
⟩ = 2λEs,τ

p Psτ
pλ , (2.41)

where,

Psτ
pλ = ⟨ρ̂sτp,λ,−λ⟩ . (2.42)

Now we move forward to the commutator carrying the interaction with the external field,

⟨
[
ĤI , ρ̂

sτ
p,λ,λ′

]
⟩ = eE(t)

(
iνs,τp,−λ

2λEs,τ
p

⟨ρ̂sτp,−λ,λ′⟩ +
iνs,τp,λ′

2λ′Es,τ
p

⟨ρ̂sτp,λ,−λ′⟩
)
, (2.43)

once again, we consider two kinds of transitions, intraband for λ = λ′,

⟨
[
ĤI , ρ̂

sτ
p,λ,λ

]
⟩ = eE(t)

I
[
iνs,τp,λPsτ

pλ(t)
]

λEs,τ
p

, (2.44)

and for interband with λ ̸= λ′, we have,

⟨
[
ĤI , ρ̂

sτ
p,λ,−λ

]
⟩ = eE(t)

(
iνs,τp,−λ

2λEs,τ
p

⟨ρ̂sτp,−λ,−λ⟩ −
iνs,τp,λ′

2λEs,τ
p

⟨ρ̂sτp,λ,λ⟩
)
, (2.45)

which we can write as,

⟨
[
ĤI , ρ̂

sτ
p,λ,−λ

]
⟩ = eE(t)

iνs,τp,−λ

2λEs,τ
p

(
N s,τ

p−λ −N s,τ
pλ

)
, (2.46)

where,

N s,τ
pλ = ⟨ρ̂sτp,λ,λ⟩, (2.47)

is the expectation value of the electronic density.

2.3 Truncation of the Equations of Motion

In order to treat the contribution from the electron-electron interaction to the equa-

tion of motion, one must be careful. It can be directly seen from Eq. (2.36) that the

dynamics of the density operator, which is a two-particle operator, is coupled to four-

particle operators. This is due to the underlying hierarchy that arises from the Coulomb
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interaction. In general, a (N+1)-body operator dynamics is coupled to a (N+2)-body

operator, which implies a necessity for a decoupling scheme. Here, we will consider the

Cluster-Expansion approach in which one constructs a N -body quantity (which we will

denote by ⟨N⟩) in terms of a factorization of its correlation, that is, the single-particle

(singlet), the correlated pair (doublet), the three-particle cluster (triplet) up to the N

particle cluster, leading to a recursive reconstruction of the hierarchical organization of

interacting particles (HAUG; KOCH, 2004). Symbolically we can write,

⟨2⟩ = ⟨2⟩S + ∆⟨2⟩ (2.48)

⟨3⟩ = ⟨3⟩S + ⟨1⟩∆⟨2⟩ + ∆⟨3⟩ (2.49)

...

⟨N⟩ = ⟨N⟩S + ⟨N − 2⟩S ∆⟨2⟩ + ⟨N − 4⟩S ∆⟨2⟩∆⟨2⟩ · · · + ∆⟨N⟩ , (2.50)

where the subscript S denotes singlets and the ∆⟨K⟩ is the K-particle correlation.

An example of the cluster factorization is the Hartree-Fock decomposition, obtained

from

⟨â†1â
†
2â3â4⟩ = ⟨â†1â4⟩⟨â

†
2â3⟩ − ⟨â†1â3⟩⟨â

†
2â4⟩ + ∆⟨â†1â

†
2â3â4⟩ , (2.51)

when the higher correlations are disregarded, arriving to the Hartree-Fock mean-field

approximation:

⟨â†1â
†
2â3â4⟩ ≈ ⟨â†1â4⟩⟨â

†
2â3⟩ − ⟨â†1â3⟩⟨â

†
2â4⟩ . (2.52)

In our case, this decomposition corresponds to evaluate the four-body expectation values

as products of inter-band transition probabilities Ps,τ
pλ (for λ ̸= λ′) and the electronic dis-

tribution N s,τ
pλ (for λ = λ′). By momentum conservation, a generic two-body expectation

value is written as,

⟨a†k,λ,s,τak′,λ′,s,τ ⟩ = ρs,τk,λ,λ′δk,k′ , (2.53)

and if we apply the above mentioned decomposition to the expectation value of Eq. (2.36),

invoke the parity symmetry in momentum space and relabel indices, we can write down

the interaction term as,

⟨[Hee, ρ
s′,τ ′

p′′,λ′,λ′′ ]⟩ = − e

2A

∑
λ1,λ2,λ3

∑
q ̸=0

V (q)ρsτp′′−q,λ2,λ3

(
Fλ′,λ3,λ1,λ2 (p′′ − q,p′′,q) ρs,τp′′λ1,λ′′

−Fλ2,λ3λ1,λ′′ (p′′,p′′ − q,q) ρsτp′′,λ′,λ1

)
. (2.54)
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Finally, if we add to the above commutator for λ′ ̸= λ′′ the commutators given in

Eqs. (2.46) and (2.41), we get that:

−iℏ
∂Ps,τ

p,λ

∂t
=
(
2λEsτ

p + λΣsτ
p,λ + Ws,τ

p,λ

)
Psτ

pλ

+

(
−eE(t)

iνs,τp,−λ

2λEs,τ
p

+ Bs,τ
p,λ + Ds,τ

p,λ

)(
N s,τ

pλ −N s,τ
p−λ

)
(2.55)

on the other hand, if we sum Eq. (2.54) for λ = λ′ = λ′′ and Eq. (2.44), we find that:

−ℏ
∂N s,τ

p,λ

∂t
= 2I

[(
−eE(t)

iνs,τp,−λ

2λEs,τ
p

+ Bs,τ
p,λ + Ds,τ

p,λ

)
Ps,τ

p,λ

]
, (2.56)

where the terms in the equations are given by:

2λEsτ
p = 2λ

√
(ℏvf,ip)2 + (∆0

s,τ )2 , (2.57)

Σs,τ
p,λ =

λe

A

∑
q

V (q)
(
N s,τ

(p−q)λ −N s,τ
(p−q)−λ

) (
F s,τ
−λλλ−λ(p,p− q) − F s,τ

λλλλ(p,p− q)
)
,

(2.58)

Ws,τ
p,λ =

e

A

∑
q,λ′

V (|p− q|)Ps,τ
qλ′

(
F s,τ
−λ−λ′λ′−λ(p,q) − F s,τ

λ−λ′λ′λ(p,q)
)
, (2.59)

Ωs,τ
p,λ = −eE(t)

iνs,τp,−λ

2λEs,τ
p

+ Bs,τ
p,λ , (2.60)

Bs,τ
p,λ =

e

A

∑
q

V (|p− q|)
(
Ps,τ

q,λF
s,τ
−λ−λλλ (p,q) + Ps,τ

q,−λF
s,τ
−λλ−λλ (p,q)

)
(2.61)

Ds,τ
p,λ =

e

A

∑
q,λ′

V (q)N s,τ
p−q,λ′F

s,τ
−λλ′λ′λ (p,p− q) . (2.62)

Although not explicitly written, all terms in Eqs. (2.55) and (2.56) are time-dependent.

In the next section, we will give a description and discuss each term that provides the

dynamical content of Eqs. (2.55) and (2.56) in physical terms.

2.4 Interpretation of the Dynamics

Having derived Eqs. (2.55) and (2.56), which are our main motivation to explore few-

body correlations in condensed matter physics, let us discuss the physical significance of

each term defining the dynamical content of the truncated equations of motion.

First, consider Eq. (2.55) for the inter-band transition probability Ps,τ
p,λ. In the right

hand side of Eq. (2.55) there is a term that accompanies the transition probability (first

line of Eq. (2.55)) and a other term that couples its evolution with the band occupation
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density (second line of Eq. (2.55)). Let us focus on the term that accompanies the tran-

sition probability. 2λEsτ
p , Eq. (2.57), is the transition energy of the two-band system and

Σs,τ
p,λ, Eq. (2.58), gives a correction to such transition energy by considering the effects

of the media, which arises from the truncated hierarchy of interacting carriers, that is,

a renormalization of the transition energy. The third term of Eq. (2.55), given by Ws,τ
p,λ,

Eq. (2.59), breaks linearity by making the evolution of the transition probability propor-

tional to a quadratic term containing the product of transition probabilities Ps,τ
qλ′ Psτ

pλ.

The second part of Eq. (2.55) tells us how the field mediates the coupling of the tran-

sition probabilities and the net band occupation density through the following quantities:

Ωs,τ
p,λ, Eq. (2.60), has a term that governs the time-evolution of the fluctuation of the

population density due to the external light pulse, which is called the Rabi Frequency.

If we make V (q) → 0, we will have a common result from the two-level system which

is that the fluctuation of the population density is proportional to the dipole operator

(which in this case governs the velocity of the transitions, so it is common to call it the

velocity operator) multiplied by the external field. When the interaction is turned on, the

formation of electron-hole pairs induces a renormalization to the Rabi Frequency which is

accounted by Bs,τ
p,λ, given by Eq. (2.61). Finally, Ds,τ

p,λ, Eq. (2.62), introduces a non-linear

contribution to the density, which accounts for the fluctuation in density induced by the

formation of excitons.

The central idea of these last calculations is that the interacting system formed by

the electron gas in two-band approximation subjected to an external electromagnetic field

leads to the formation of correlated pairs, which affects the optical properties, governed by

the transition probability and the occupation density. Therefore, studying these correlated

pairs of electron and holes (excitons) gives us a better understanding of the underlying

structure of optical properties of the material. Before we move forward with the derivation

of the equations that govern the formation of excitons and the polarization of the system,

we need to deepen our discussion on the density equation.

When we have a interacting quantum many-body system subjected to a external per-

turbation, we push the system out of equilibrium, and depending on the intensity of the

external perturbation, one can drive the system into a phase transition. Since we are

concerned with properties described in thermodynamic equilibrium, we can consider an

equilibrium distribution for the system. In the particular case where the non-linearity in

the density is neglected, it becomes the Fermi-Dirac distribution,

N s,τ
p,λ =

1

1 + eβ(λE
s,τ
p −EF )

. (2.63)
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2.5 The Wannier Equation

Having derived the equations of motion for the transition probabilities (and therefore,

the polarization operator) we are ready to study the excitonic states. Starting with the

equation that governs the transition probabilities, (2.55), neglecting the nonlinear terms,

considering zero temperature in which all electrons occupy the valence band, we have a

charge neutrality which reads
(
N s,τ

pλ −N s,τ
p−λ

)
= −1 , so we write that:

(
iℏ
∂

∂t
+ 2λEsτ

p + λΣsτ
p,λ

)
Ps,τ

p,λ =

(
−eE(t)

iνs,τp,−λ

2λEs,τ
p

+ Bs,τ
p,λ

)
, (2.64)

where we also consider that in the linear regime (where we can neglect the non-linear effects

in both the density and transition probabilities), the electric field is a harmonic field with

constant amplitude and the linear response of the system to this field (encapsulated by

the transition probability) should also be harmonic,

E(t) = E0eiωt (2.65)

Ps,τ
p,λ(t) = Ps,τ

p,λ(ω)eiωt. (2.66)

Taking the harmonic mode, we can write Eq. (2.64) in the time-independent form,

(
ℏω −

(
2λEsτ

p + λΣsτ
p,λ

))
Ps,τ

p,λ(ω) =

(
eE0

νs,τp,−λ

2iλEs,τ
p

+ Bs,τ
p,λ(ω)

)
, (2.67)

which is an integral equation for the transition probability of the system in the linear

regime subjected to an external field. The solution of the time independent equation yields

the frequency mode of the polarization operator and consequently the optical conductivity

and absorbance coefficient.

The other equation that we can also solve is the homogeneous one, which is equivalent

to consider only resonant terms in Eq. (2.67):

(
ℏω −

(
2Esτ

p + Σsτ
p,+

))
Ps,τ

p,+(ω) =
e

A

∑
q

V (|p− q|)F s,τ
−−++ (p,q)Ps,τ

q,+(ω) , (2.68)

which is an eigenvalue equation that can be put into a more familiar form by considering

a partial-wave expansion of the transition probability,

Ps,τ
k,+(ω) =

∑
n,ℓ

ψs,τ
n,ℓ(k)ei ℓ θ, (2.69)

where ℓ is the angular momentum and n is the principal quantum number, ψs,τ
n,ℓ(k) is the

bound-state wave-function of an electron and a hole. By taking the continuum limit of
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the homogeneous equation, (2.68), we arrive at (while also by renaming the kernel),

(
ℏω −

(
2Esτ

p + Σsτ
p,+

))∑
n,ℓ

ψs,τ
n,ℓ(p)e

i ℓ θ =
∑
n,ℓ

∫
dq

4π2
K (p,q)ψs,τ

n,ℓ(q)e
i ℓ θ, (2.70)

which is known as the Bethe-Salpeter Equation for the exciton, can be simplified using

the orthogonality of the partial-wave expansion:

(
E − Es,τ

p

)
ψs,τ
n,ℓ(p) =

∫ ∞

0

dq

(2π)
Ks,τ

ℓ (p, q)ψs,τ
n,ℓ(q) , (2.71)

where Es,τ
p is the renormalized transition energy Es,τ

p = 2Esτ
p + Σsτ

p,+ and E is the exciton

energy and Ks,τ
ℓ (p, q) is the decomposed kernel,

Ks,τ
ℓ (p, q) =

∫
dθ

2π
eiℓθK (p,q) . (2.72)

As we can see from the theoretical development, given a Hamiltonian that governs the

carrier dynamics, we have a particular kernel due to the different form factors entering

in K(p,q) that arise from the diagonalization of the free Hamiltonian, Eq. (2.1). In this

case, the form factors come from the spinor solutions of the gapped Dirac equation.

Now, we will introduce approximations that leads to the celebrated Wannier equation,

which is the focal point of this work. First, we approximate the transition energy as

parabolic near the minimum, governed by an effective electron-hole reduced mass,

Es,τ
p ≈ Eg +

ℏ2p2

2µ
, (2.73)

where µ is the effective mass and Eg is the band gap of the system. For a parabolic

dispersion relation, the structure factors (2.12) are reduced to unity and the quantity

E − Eg is the binding energy Eb of the exciton, therefore, the equation is,

Eb ψ
s,τ
n,ℓ(p) =

ℏ2p2

2µ
ψs,τ
n,ℓ(p) +

∫ ∞

0

dq

(2π)
Ks,τ

ℓ (p, q)ψs,τ
n,ℓ(q) . (2.74)

This is the Wannier equation for the binding energy and wave-function of the exciton in

2D. Both equations (2.71) and (2.74) can be used to calculate useful response functions,

using Elliot’s Formula, and express the details of the two-body bound state(CHAVES et al.,

2017). There are simpler constructions of the physical description of the exciton, treating

the problem as a problem analogous to the hydrogen atom (YU; CARDONA, 2010) but one

of the objectives of this chapter is to present the emerging few-body correlations from the

many-body theory, reinforcing the interface with few-body physics, which at a first glance

seems far apart.



3 Numerical Analysis of the Wannier

Equation

As we saw in the last chapter, the equation governing the electron-hole bound state in

momentum space is an integral equation. In general, given a differential equation, there

are different ways to find an associated integral equation, such as using Fourier Transform

or Green’s functions methods.

In simple terms, an integral equation is a form of equation such that undetermined

function appears under the integral (MASUJIMA, 2009). There are several types of integral

equations, here we will focus on Fredholm type equations, such as,

ϕ(x) = f(x) + λ

∫ b

a

K(x, y)ϕ(y)dy, (3.1)

where x ∈ [a, b]. This is called a Fredholm equation of the second kind, while,

f(x) =

∫ b

a

K(x, y)ϕ(y)dy, (3.2)

is of the first kind. The function K is the Kernel of the integral equation, ϕ(x) is the

function to be determined. We call the equation homogeneous if f(x) = 0, otherwise it is

said to be inhomogeneous.

In our particular case, we have the Wannier equation,

Epψ(p) +

∫
d2p′

(2π)2
V (p− p′)ψ(p′) = Eψ(p), (3.3)

which is an homogeneous Fredholm equation of the second kind. This is easier to see by

recasting it in the following form,

ψ(p) = λ

∫
d2p′

(2π)2
V (p− p′)

E − Ep

ψ(p′) = λ

∫
dp′K(p,p′)ψ(p′). (3.4)
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3.1 Partial-Wave Decomposition Approach

Integral equations are usually computationally demanding to solve and there are dif-

ferent schemes in order to reduce such difficulties.

Considering we are dealing with two particles interacting via a central potential, we

can introduce the following partial-wave expansion for the potential and the wave function

as a way to explore the symmetry of our problem(ADHIKARI, 1986),

V (p,p′) =
∑
ℓ

Vℓ(p, p
′) cos(ℓθ′) ⇐⇒ Vℓ(p, p

′) =
1

2π

∫ 2π

0

cos(ℓθ′)V (p,p′) (3.5)

ψ(p) =
∑
ℓ

ϕℓ(p) cos(ℓθ), (3.6)

one can also notice that we are considering p ∥ x axis, therefore, θ′ is the angle between

p′ and p. Substituting the expansion back into 3.3, we arrive at,

Ep

∑
ℓ

ϕℓ(p) cos(ℓθ) +
∑
ℓ′,ℓ′′

∫
d2p′

(2π)2
Vℓ′′(p, p

′) cos(ℓ′′θ′)ϕ′
ℓ(p

′) cos(ℓ′θ′) = E
∑
ℓ

ϕℓ(p) cos(ℓθ)

(3.7)

using the orthogonality of the cosine function, the angle variable in second term can be

analytically integrated out, yielding,

Ep

∑
ℓ

ϕℓ(p) cos(ℓθ) +
∑
ℓ′,ℓ′′

∫
d2p′

(2π)2
Vℓ′′(p, p

′)ϕ′
ℓ(p

′)(2π)δℓ′,ℓ′′ = E
∑
ℓ

ϕℓ(p) cos(ℓθ), (3.8)

we can multiply both sides by cos(ℓ′θ)/2π and integrate, arriving at,

Epϕℓ(p) +
1

(2π)

∫ ∞

0

dp′p′Vℓ(p, p
′)ϕℓ(p

′) = Eϕℓ(p). (3.9)

Now, we are handling a much simpler problem, with only one dimension. There are multi-

ple avenues to tackle this equation, and here, we will employ two different approaches, the

first one being the Chebyshev-Chawla-Kumar(GOLBERG, 2013) method, which consists

of a finite decomposition of the kernel and a infinite decomposition of the wave func-

tion in terms of the Chebyshev polynomials, the second one being a direct solution by a

Gauss-Legendre quadrature(STOER; BULIRSCH, 1980).
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3.1.1 Chebyshev-Chawla-Kumar Method

3.1.1.1 Revision of Chebyshev Polynomials

First let us introduce the Chebyshev Polynomials as an Sturm-Liouville problem. We

call the following a Sturm-Liouville boundary value problem(MASUJIMA, 2009). Given an

ordinary differential equation defined on a interval a ≤ x ≤ b with the generic form,

d

dx

(
p(x)

dy

dx

)
+ (q(x) + λr(x)) y(x) = 0, (3.10)

and boundary conditions as, a1y(a) + a2y
′(a) = 0

b1y(b) + b2y
′(b) = 0

, (3.11)

with p(x) > 0, q(x) and a weight function r(x) > 0 as given functions, a1, a2, b1 and b2

are real numbers, while λ is an undetermined parameter.

There are several important differential equations that satisfy these conditions, such

as Bessel, Hermite and Laguerre equations(COURANT; HILBERT, 1989). Here we present

the Chebyshev Polynomial as a solution for the following form of the Sturm-Liouville

problem. Set a = −1 and b = 1. Let p(x) =
√

1 − x2, q(x) = 0 and r(x) =
√

1 − x2
−1

with the characteristic value as λ = n2, that is,

d

dx

(√
1 − x2

dy

dx

)
+

n2

√
1 − x2

y(x) = 0, (3.12)

which is the Chebyshev differential equation. The functions,

Tn(x) = cos(n arccosx), (3.13)

for n ∈ N, are called the Chebyshev polynomials of the first kind and one of the solutions

of the Chebyshev differential equation. A few of the nice properties of this polynomial set

is that, one can derive the following recursive relations,

T0(x) = 1 (3.14)

T1(x) = x (3.15)

Tn+1(x) = 2xTn(x) − Tn−1(x) (3.16)

Tm(x)Tn(x) =
1

2

(
Tm+n(x) + T|m−n|

)
, (3.17)

by substituting x = cos(θ) and using trigonometric relations for the sum and product of
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angles. Also, they form a orthogonal set under the following weighted inner product,

∫ 1

−1

dx
Tn(x)Tm(x)√

1 − x2
=


0, m ̸= n

π, m = n = 0

π
2
, m = n = 1, 2, 3, . . .

(3.18)

.

3.1.1.2 Solution method

With the properties of Chebychev polynomials in mind, we will now develop the

Chebyhev-Chawla-Kumar method. Let us return to Eq. (3.9). The first step is to in-

troduce a conformal map, taking the half-line to the unity interval,

u =
ξp− 1

ξp+ 1
, (3.19)

where ξ is a scaling parameter and u ∈ [−1, 1]. By calculating the Jacobian for the change

of coordinates and substituting into the partial-wave Wannier equation (3.9),

Euϕℓ(u) +
1

ξ2π

∫ 1

−1

du′ (1 + u′)Vℓ(u, u
′)ϕℓ(u

′)

(1 − u′)3
= Eϕℓ(u). (3.20)

Now we expand the wave function in terms of the Chebyshev Polynomials,

ϕℓ(u) = f(u)
N∑
n

cn,ℓTn(u), (3.21)

substituting in (3.20) yields,

Euf(u)
N∑
n

cn,ℓTn(u) +
1

ξ2π

N∑
n

cn,ℓ

∫ 1

−1

du′ (1 + u′)Vℓ(u, u
′)f(u′)Tn(u′)(u− u′)

(1 − u′)3(u− u′)
=

= Euf(u)
N∑
n

cn,ℓTn(u) +
1

ξ2

N∑
n

cn,ℓ

∫ 1

−1

du′Kℓ(u, u
′)Tn(u′)

u− u′
= Ef(u)

N∑
n

cn,ℓTn(u),

(3.22)

where we introduced the kernel,

Kℓ(u, u
′) =

(1 + u′)Vℓ(u, u
′)f(u′)(u− u′)

(1 − u′)3
. (3.23)

By doing the preceding scheme, we have shown that the initial Fredholm problem can be

converted into a Cauchy singular integral equation problem (GOLBERG, 2013), with the
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singularity in u = u′. We will now analytically remove this singularity by considering the

following Chawla-Kumar Finite Decomposition of the kernel,

Kℓ(u, u
′) ≈

M∑
j=0

bj,ℓ(u)Tj(u
′), (3.24)

where we can use the orthonormality to obtain an expressions for the coefficients bj,ℓ,

Kℓ(u, u
′)Tk(u′) =

M∑
j=0

bj,ℓ(u)Tj(u
′)Tk(u′), (3.25)

which we can use the orthogonality relations (3.18) to obtain,

∫ 1

−1

Kℓ(u, u
′)Tk(u′)√

1 − x2
=

M∑
j=0

bj,ℓ(u)

∫ 1

−1

Tj(u
′)Tk(u′)√
1 − x2

(3.26)

=
M∑
j=0

bj,ℓ(u)
(π

2
δj,k + πδj,0

)
(3.27)

=⇒ bk,ℓ =
2

π(1 + δk,0)

∫ 1

−1

Kℓ(u, u
′)Tk(u′)√

1 − x2
. (3.28)

Therefore, we have:

Euf(u)
∑
n

cn,ℓTn(u) +
1

ξ2

∑
n,j

cn,ℓbj,ℓ(u)

∫ 1

−1

du′Tj(u
′)Tn(u′)

u− u′
= Ef(u)

∑
n

cn,ℓTn(u),

(3.29)

now, we focus on the integral,

Ij,n(u) =

∫ 1

−1

du′
Tj(u

′)Tn(u′)

u− u′
. (3.30)

By applying the product formula for the Chebyshev polynomials, we get,

Ij,n(u) =

∫ 1

−1

du′
Tj(u

′)Tn(u′)

u− u′
=

1

2

(∫ 1

−1

du′
Tj+n(u′)

u− u′
+

∫ 1

−1

du′
T|j−n|(u

′)

u− u′

)
. (3.31)

Since there is a recursive formula for the Chebyshev polynomials, we only need to calculate

orders zero and one. We begin with order 0, which can have a value assigned using the

Cauchy Principal Value,∫ 1

−1

du′
T0(u

′)

u− u′
=

∫ 1

−1

du′
1

u− u′
= lim

ϵ+→0

[∫ a−ϵ

−1

du′

u− u′
+

∫ 1

a+ϵ

du′

u− u′

]
= ln

∣∣∣∣1 + u

1 − u

∣∣∣∣, (3.32)
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for order 1, ∫ 1

−1

du′
T1(u

′)

u− u′
=

∫ 1

−1

du′
u′

u− u′
(3.33)

= lim
ϵ+→0

[∫ a−ϵ

−1

du′
u′

u− u′
+

∫ 1

a+ϵ

du′
u′

u− u′

]
(3.34)

= −2 + u ln

∣∣∣∣1 + u

1 − u

∣∣∣∣ , (3.35)

and therefore, successive orders can be obtained in terms of the Cauchy’s Principal Values

generated using the recursive relations for Chebyshev Polynomials given in Eqs. (3.16) and

(3.17). We are now able to write,

λi(u) =

∫ 1

−1

du′
Ti(u

′)

u− u′
, (3.36)

that obeys the following relations,

λ0(u) = ln

∣∣∣∣1 + u

1 − u

∣∣∣∣ (3.37)

λ1(u) = −2 + uλ0(u) (3.38)

λk+1(u) − 2uλk(u) + λk−1(u) = 2
(1 + cos(kπ))

k2 − 1
(3.39)

where in the last expression, k ≥ 2. Using Eqs (3.38), (3.39) and the product for-

mula (3.17) in equation (3.30), one obtains:

Ij,n(u) =

∫ 1

−1

du′
Tj(u

′)Tn(u′)

u− u′
=

1

2

(
λj+n(u) + λ|j−n|(u)

)
, (3.40)

which allows to write:

Euf(u)
∑
n

cn,ℓTn(u) +
1

2ξ2

∑
n,j

cn,ℓbj,ℓ(u)
(
λj+n(u) + λ|j−n|(u)

)
= Ef(u)

∑
n

cn,ℓTn(u) ,

(3.41)

that represents a generalized eigenvalue problem for which we choose for ui, namely the

zeros of the Chebyshev polynomial of order n+ 1.

In figure 3.1, we can see the convergence of the Chebyhev-Chawla-Kumar method,

where N = M for different angular mesh points. There different avenues to improve

convergence such as a more detailed investigation of the scaling parameter ξ and the
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FIGURE 3.1 – (Color online) Graphical convergence table for the Chebyhev-Chawla-Kumar method using
the Rytova-Keldysh potential (1.24).

weight function f(u). In particular, we can use

f(u) =
1 − u3

1 + u
, (3.42)

which in our tests showed the better behavior. Suppose we have solved our integral equa-

tion for the exciton wave function. Now we can obtain the wave function in configuration

space using the Fourier transform

ψn,ℓ(r) =

∫
d2p eip·rψℓ(p)e

iℓϕ′
. (3.43)

By implementing the angular integration, we have that

ψn,ℓ(r, ϕ) =
2

ξ2
eiℓϕ

∑
n

cn,ℓ

∫ 1

−1

du
1 + u

(1 − u)3

× Jℓ

(
r

ξ

1 + u

1 − u

)
f(u)Tn(u), (3.44)

with Jℓ being the Bessel function of order ℓ. To understand the assumed procedure, let

us exemplify with the calculation of the following quantity F (q) of interest

⟨F ⟩ =

∫
dqqF (q)ψn1(q)...ψnN

(q). (3.45)
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To do this, first, we write the above equation in terms of u

⟨F ⟩ =

∫
duF (q(u))

[
1 + u

(1 − u)3
f(u)

]nN

×
∑

j1...jnN

cn1
j1
Tj1(u)...cnN

jnN
TjnN

(u). (3.46)

The next step is to write the integrand of Eq. (3.46) in terms of a single Chebyshev

expansion

F (q(u))

[
(1 − u)3

1 + u

]nN−1

×
∑

j1...jnN

cn1
j1
Tj1(u)...cnN

jnN
TjnN

(u)

=
∑
k

bkTk(u). (3.47)

Now use the orthogonality of the polynomials, similarly as we showed in equation (3.30).

After that, we can use the Clenshaw-Curtis method to obtain

⟨F ⟩ =
∞∑
k=0

2b2k
1 − (2k)2

. (3.48)

3.1.2 Quadrature Solution

Here we will present a different approach to the solution of the Wannier Equation with

Partial-Wave decomposition. We can recast (3.9) with the hyperbolic conformal mapping

as,

ϕℓ(u) =
1

ξ2π

∫ 1

−1

du′
(1 + u′)Vℓ(u, u

′)ϕℓ(u
′)

(1 − u′)3 (E − Eu)
. (3.49)

We can rewrite the integral in terms of the Gauss-Legendre quadrature(STOER; BU-

LIRSCH, 1980), that is,

∫ 1

−1

f(x)dx ≈
N∑
i=1

ωif(xi), (3.50)

where xi are the roots of the n-th Legendre polynomial and ωi are the quadrature weights,

ωi =
2

(1 − xi)2 (P ′
n(xi))

2 . (3.51)
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Using this procedure we have,

ϕℓ(u) =
1

ξ2π

N∑
j=1

ωi

(1 + u′j)Vℓ(u, u
′
j)ϕℓ(u

′
j)

(1 − u′j)
3 (E − Eu)

, (3.52)

where we have an equation for each u ∈ [−1, 1],

ϕℓ(ui) =
1

ξ2π

N∑
j=1

ωi

(1 + u′j)Vℓ(ui, u
′
j)ϕℓ(u

′
j)

(1 − u′j)
3 (E − Eui

)
. (3.53)

We can recast this problem as a matrix problem by introducing the vector quantity ϕ⃗ =

[ϕ(u1), ϕ(u2), . . . , ϕ(un)]T ,

ϕ⃗ = M(E)ϕ⃗, (3.54)

where,

Mi,j(E) =
1

ξ2π

(1 + u′j)Vℓ(ui, u
′
j)ϕℓ(u

′
j)

(1 − u′j)
3 (E − Eui

)
. (3.55)

The procedure here is to search for an energy E that solves for the unit eigenvalue. The

matrix equation (3.54) only admits non-trivial solutions when,

det (I −M(E)) = 0. (3.56)

3.1.3 Comparison

Here we will consider the system subject to the Rytova-Keldysh potential (1.24),

rewritten here for convenience,

VRK(q) = − 1

4π2

(
2πe2

4πϵ0q (1 + 2r0q)

)
, (3.57)

as our testing potential, which is the monolayer limit (which is obtained by taking the

interlayer separation to infinity, d → ∞) of equation (??) derived in the first chapter.

Here we will consider r0 = 26.87Å, and the exciton reduced mass as µ = 0.25m0 where

m0 is the free electron mass. These parameters simulate the exciton in a MoS2 monolayer.

In 3.1.3 we present a small but enlightening comparison. Notice that both values agrees

very well. In fig 3.2 we compare the wave functions for the S-wave in different states,

where we also see good agreement.
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TABLE 3.1 – The convergence of exciton ground state binding energy as a function of the number
of radial momenta mesh points Np, obtained with RK potential for the MoS2 from the Gauss-Legendre
quadrature method. The number of angular mesh points is 61. The exciton binding energy of −753.1meV
for Np → ∞ is obtained with a quadratic extrapolation, while the Chebyshev Method yields a binding
energy of −753.0meV for N =M = 600 and Nθ = 320, where N is the number of mesh points for the u
variable, M is the number of terms in the finite decomposition and Nθ is the number of mesh points for
the angular quadrature which stems from the partial-wave decomposition.

Np Eb (meV)
300 −788.3
400 −778.8
500 −773.3
600 −769.5
700 −768.2
800 −765.4
900 −764.1
1000 −762.9
Np → ∞ −753.1

FIGURE 3.2 – (Color online) Comparison between the Gauss-Legendre quadrature method (with 1000
radial mesh points and 61 angular mesh points) and the Chebyshev method (N =M = 600 andNθ = 320)
for different states of the MoS2 exciton using the RK potential. ψi(p) is the i-th excited state for the
S-wave.
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3.2 2D Gauss-Legendre Quadrature

In this short section we discuss the possibility of considering the full problem and

writing down a two dimensional quadrature scheme. This is the method we will apply in

the case of the phosphorene. We begin with,

ψ(p) = λ

∫
d2p′

(2π)2
V (p− p′)

E − Ep

ψ(p′). (3.58)

We can write down a quadrature scheme for the 2D problem, with the hyperbolic confor-

mal mapping for the radial part and a linear mapping for the angle variables, θ′ = (1+x)π,

where x are Gauss-Legendre nodes,

ψ(p, θ) = λ
∑
i,j

ωiωj

(4π)

(1 + u′i)V (p, u′i, xj)

(1 − u′i)
3 (E − Ep)

ψ(u′i, θ
′
j). (3.59)

This class of methods have a much higher computational complexity and generally much

more computationally intensive compared to the other methods. However, when one

tackles more complex problems, involving three particles or more, having a good grasp of

such techniques is of great aid. We will leave further discussion of this method to later as

it is the method we employed to solve systems with no rotational invariance.

3.3 Variational Methods

As a final topic in this chapter, we introduce one last method that we will use to

corroborate our results: the Variational Methods.

This class of methods rest upon the foundations laid down by the Variational Principle

of Quantum Mechanics, which states that, for a trial wave function
∣∣0̃〉 we can calculate

the following expectation value of a given Hamiltonian Ĥ,

Ẽ =

〈
0̃
∣∣ Ĥ ∣∣0̃〉〈
0̃
∣∣0̃〉 , (3.60)

which in turn can give an upper bound to the true value of the de facto ground state

energy, E0, of the Hamiltonian Ĥ, that is,〈
0̃
∣∣ Ĥ ∣∣0̃〉〈
0̃
∣∣0̃〉 ≥ E0. (3.61)

With thevariational principle we can make reasonable estimates concerning the ground

state properties of the Hamiltonian. In our case, the exciton problem can be thought as a
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two-body problem, similar to the hydrogen atom, that for the relative coordinates reads

in position representation as,

Ĥ =
ℏ2

2µ
∇2 + V (r), (3.62)

where µ is the reduced mass of the system, which in our case is formulated in the effective-

mass approximation,

1

µ
=

1

me

+
1

mh

, (3.63)

such that me (mh) is the electron (hole) effective mass.

There are a multitude of approaches for the construction of a basis that gives us good

estimates of the ground-state energy, here we will present one approach, the Generating

Coordinate Method (PIZA et al., 1977; WONG, 1970; GRIFFIN; WHEELER, 1957), which was

conceived in nuclear physics to describe collective modes.

3.3.1 Generating Coordinate Method

Here we consider the following wave function as a guess for the variational estimate,

ψν
ℓ (r, θ) = Aνe

iℓθrℓ
N∑
i=1

e−αir. (3.64)

This estimate yields two fundamental properties of hydrogen-like systems, the angular mo-

mentum barrier for finite angular momenta, encapsulated in rℓ and the radial exponential

decay for large distances, encapsulated by e−αr. The set of values {α} is distributed in a

logarithm grid Ω dictated by the term Γ,

Ω =
lnα

Γ
. (3.65)

Here, we see a couple of details. There are two distinct parameters that governs the

basis set, Ω and Γ. The choice of parameters depends on the basis function (PIZA et al.,

1977). First, let us find an expression for Aν by using the normalization condition,∫
dr (ψν

ℓ )∗ ψν
ℓ = 2π|Aν |2

∫
drr2|ℓ|+1e−αir =

2π|Aν |2Γ(2|ℓ| + 2)

α
2|ℓ|+2
i

= 1, (3.66)
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solving for |Aν | yields,

|Aν | =

√
α
2|ℓ|+2
i

2πΓ (2|ℓ| + 2)
. (3.67)

Also, we need to calculate the overlap integral,∫
dr
(
ψν′

ℓ

)∗
ψν
ℓ = 2πAνAν′

∫
drr2|ℓ|+1e−(αi+αj)r =

(αiαj)
|ℓ|+1

(αi + αj)2|ℓ|+2
(3.68)

Now, we need to calculate the matrix elements in Eq. (3.60). First, we being with the

kinetic energy,

⟨ψµ
ℓ |T |ψν

ℓ ⟩ =

∫
dr
(
ψν′

ℓ

)∗ −ℏ2

2µ
∇2ψν

ℓ = − ℏ2

2µ

∫
dr
(
ψν′

ℓ

)∗( ∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)
ψν
ℓ ,

(3.69)

this integral has an analytical expression,

⟨ψµ
ℓ |T |ψν

ℓ ⟩ =
ℏ2 (αiαj)

|ℓ|+2

2µ̄(αi + αj)2|ℓ|+2
. (3.70)

For a general potential V (r), there is no analytical expression. In general, we can write

down, for a spherically symmetric system, the matrix element:

⟨ψµ
ℓ |V |ψν

ℓ ⟩ =
(αiαj)

|ℓ|+1

Γ (2|ℓ| + 2)

∫
drr2|ℓ|+1V (r)e−(αi+αj)r, (3.71)

and, in particular, for the Coulomb Potential V (r) = −ℏcαr−1.

⟨ψµ
ℓ |V |ψν

ℓ ⟩ = −2παℏcAνAν′

∫
drr2|ℓ|e−(αi+αj)r = −αℏc(αiαj)

|ℓ|+1

(αi + αj)
2|ℓ|+1

. (3.72)

Here, we take Γ = 5 and set the interval [−2, 2]. The number of points by which we

subdivide the interval is obtained by trial and error, which some references agrees on

N = 48 (QUINTELA; PERES, 2020). By choosing this set of parameters and grid, we arrive

at a binding energy of Eb = 752 meV, which shows a good agreement with our Chebyshev

results.

3.4 Final Remarks

Here we have discussed some numerical methods in order to solve with the two-body

problem. These methods can be extended to more complex systems through different
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schemes, such as the Faddeev Equations (for an example of the Faddeev Equations ap-

plied to 2D materials, see (MOHSENI et al., 2023)), or the Gaussian Expansion Method,

championed by Hiyama (HIYAMA, 2012; KAMIMURA, 1988). Since we are aiming to study

more complex few-body complexes in 2D materials in the future, having a good basis in

integral and Variational methods proves to be a good platform to start with while also

laying foundations for the derivation of the results in the following chapters.



4 Tunable Properties of Excitons in

Double Monolayer Semiconductor

Heterostructures

Given the variety of possible heterostructures, it is interesting to understand the en-

gineering obtained by the formation stacked materials as well as the other tunable pa-

rameters (dielectric screening and layer separation). This combination of materials and

environmental modifications leads to a large number of combinations of interlayer and

intralayer excitons.

The first application of the formalism developed above is a systematic study of both

intralayer and interlayer exciton and its mutability with respect to the changes in the

interlayer distance and in the dielectric environment(TENóRIO et al., 2023). Here we solve

the following Wannier equation,

Epψ(p) +

∫
dp′

(2π)2
V (p− p′)ψ(p′) = Eψ(p), (4.1)

using the Chebyshev-Chawla-Kumar Method discussed in 3.1.1. This development is sig-

nificantly computationally cheaper compared to other first-principle methods and monte-

carlos approaches.

We investigate two semiconductor monolayers separated by a spacer with width d and

dielectric constant ϵ2. The substrate (z < −d) and superstrate (z > 0) have dielectric

constants ϵ3 and ϵ1, respectively, as depicted in Fig. 4.1(a). Here, we consider different

TMDs semiconductors represented by the symbol MX2, where M is a metal [molybde-

num (Mo) or tungsten (W )] and X is a chalcogenide [selenium (Se) or sulfur (S)]. Homo

and heterostructures are formed by taking the same or different TMDs in the double-

layer system, respectively. In Fig. 4.1(b), we depict the energy gap values for the four

investigated TMDs here. Note that the resulting heterobilayers lead to a type II band

alignment(ZHANG et al., 2016), that strongly favors the formation of interlayer excitons

(LATINI et al., 2017). To correctly predict the exciton energies, determined as the differ-
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FIGURE 4.1 – (Color online) (a) Schematic illustration of the double layered TMDs, separated by a spacer
of dielectric constant ϵ2 (−d ≤ z ≤ 0) and width d, immersed in two materials of dielectric constants
ϵ1 (z > 0) and ϵ3 (z < −d). This structure sustains both intralayer and interlayer excitons. (b) Band
alignment as measured from the vacuum between the four TMDs considered in this work. The bandgap
energies and their alignments were obtained from DFT calculations in Ref. (ZHANG et al., 2016).

ence between the bandgap and the magnitude of the exciton binding energy, we consider

the effects of the dielectric geometry on the carrier-carrier interaction as the solution of

the corresponding Poisson equation derived in the first chapter. We use the Wannier

equation in the effective mass approximation to calculate the exciton energy, which was

proven to coincide with a microscopic model (HAVE et al., 2019). For the bandgap, we

use the exchange self-energy(CHAVES et al., 2017) within the continuum model, which was

developed in detail in chapter 2, equation (2.58).

4.1 Bandgap Engineering

The quasiparticle band structure of 2D materials depends on the dielectric environ-

ment (CHAVES et al., 2020). To account for this dependence, we employ the Semiconduc-

tor Bloch Equations(SBE) developed in the chapter 2 for the heterostructure depicted

in Fig. 4.1(a). We neglect the tunneling between the MX2 layers due to the presence

of a dielectric spacer between them. In order to take into account the corrections to

the bandgap, we employed the procedure derived in Ref. (CHAVES et al., 2017) and dis-

cusseed in chapter 2, by considering the aforementioned gapped Dirac equation(2.1), the

electron-electron interaction(2.4), and a dipole coupling with light2.46. It is well-known
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FIGURE 4.2 – (Color online) Schematic illustration of the lowest conduction (CB) and valence (VB)
bands of monolayer TMDs in the vicinity of the K (red curves) and K ′ (blue curves) points, emphasizing
the band splitting due to SOC and spin flipping for each band in the opposite valley due to the inversion
symmetry. The up (red) and down (blue) arrows stand for spin-up and spin-down states. SOCCB

(SOCVB) corresponds to the energetic split of the conduction (valence) band.

that TMDs have a strong spin-orbit coupling (SOC) originating from the d orbitals of the

metal atoms and, consequently, it induces a spin splitting of bands in monolayer,(LIU et

al., 2015) as illustrated in Fig. 4.2. In the continuum limit, (2.58) is written as,

Σj
sτ (k) =

∫
dq

4π2
Vjj(q)nsτ (k− q)

4ℏ2v2Fk · q + (∆0
s,τ )2

4Esτ
jkE

sτ
jq

, (4.2)

from which we can calculate the dressed bandgap as

∆j
sτ = ∆j

sτ,0 + Σj
sτ (k = 0), (4.3)

where ∆j
s,τ denotes the energy difference between the conduction and valence bands with

the same s and τ indexes for each layer j at theK point, the intralayer potential Vjj is given

by Eq. (1.21), nsτ is the valence electronic density, and Esτ
jk is the eigenvalue of the massive

2D Dirac Hamiltonian. The intralayer interaction depends on the dielectric environment

through the spacer width d, the dielectric constants ϵi, and the monolayer screening

lengths ri. As our goal is to study the dependence of the exciton properties on the system

geometry, we fit the monolayers screening length r0 to reproduce the experimental exciton

energy of the suspended monolayer for each MX2.

The fitting procedure is we take the experimental values for the exciton energy in

suspended samples(KLOTS et al., 2014; XIE et al., 2021; HARATS et al., 2020; ASLAN et al.,
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TABLE 4.1 – Effective masses, screening factor r0, and the bandgap(ZHANG et al., 2016) of each material.
The masses are obtained from Ref. (KORMÁNYOS et al., 2015) and the screening factors are obtained via
a fitting procedure. The screening factors in the fifth column are from ref. (PEDERSEN, 2016), while the
experimentally obtained binding energies for each row are, respectively (KLOTS et al., 2014; XIE et al.,
2021; HARATS et al., 2020; ASLAN et al., 2021)

Materials me mh r0 r0 ∆K(eV) Eb(meV)

MoS2 0.47 0.54 27.04Å 23.45Å 2.71 −753.0

MoSe2 0.58 0.6 35.34Å 26.13Å 2.37 −711.7

WS2 0.27 0.36 20.85Å 16.59Å 2.91 −900.0

WSe2 0.29 0.36 21.80 Å 20.09Å 2.57 −890.0

2021), the band gap calculated in ref. (ZHANG et al., 2016) and the spin-orbit coupling

splitting from (KORMÁNYOS et al., 2015), and solve the Wannier equation for each mono-

layer TMDC with the rytova-keldysh potential, fitting the screening length r0. After

obtaining the r0, we use it as a input for the dressed bandgap and solve for the bare band

gap which gives the transition energy calculated in ref. (ZHANG et al., 2016). With the r0

and ∆j
sτ,0 we can evaluate the change in the band gap for each layer configuration and

dielectric environment, which the exchange self-energy takes in account. The obtained

values are presented in Table 4.2.

With the fitted values of r0 and ∆0
sτ , we can solve Eq. (4.2) for different geometric

setups and study the dependence of the ∆j
sτ , i.e. the spin/valley dependent transition

energy at the K point. In Fig. 4.3(a), we show that the mutual electrostatic screen-

ing between two monolayers can decrease the value of ∆j
sτ by 50 meV as the interlayer

separation decreases to 7.15 Å. In Fig. 4.3(b), we show the dependence of ∆j
sτ on the

spacer dielectric constant. The huge renormalization of the bandgap due to the electron-

electron interaction (UGEDA et al., 2014) is weakened by the spacer dielectric screening,

and as the dielectric constant is increased, the transition energy approaches the bare value

∆sτ,0. In Figs. 4.3(a) and 4.3(b) it was assumed the MoS2/MoSe2 heterostructure, how-

ever qualitatively similar results are expected for the other different TMD layer compound

combinations.

With the formalism and procedures established, we can dive into the results and see

how the excitonic spectra and wave function is tunable.

4.2 Results

Figures 4.4(a) and 4.4(b) show the binding energy of the intralayer A excitons, which

are formed when the electron-hole pair lies on the MoS2 layer, as a function of the sepa-

ration distance (spacer width) d and the dielectric constant of the spacer ϵm, respectively.
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FIGURE 4.3 – (Color online) K − K transition energies of both spins for MoS2 at the MoS2/MoSe2
heterostructure with respect to the changes (a) in the interlayer separation d in a suspended sample with
ϵ1 = ϵ2 = ϵ3 = 1, and (b) in the spacer dielectric constant ϵ2 with a fixed interlayer distance d = 7.15

Å and external dielectric constants ϵ1 = ϵ3 = 1. Cyan and red curves correspond to up
(
∆MoS2

↑,τ

)
and

down
(
∆MoS2

↓,τ

)
spin results, respectively. The solid lines in (a) represent a monolayer limit (d → ∞) of

the MoS2.

TABLE 4.2 – Ab initio bandgaps (ZHANG et al., 2016), Fermi velocity (KORMÁNYOS et al., 2015) and
calculated bare bandgaps using Eq. (4.3) and the fit r0’s given in Table 4.1 for the four investigated
TMDs and different combinations of spin and valley indexes.

Materials ∆↑ (eV) ∆↓ (eV) vF (eV · Å) ∆0
↑(eV) ∆0

↓(eV)

MoS2 2.71 2.85 2.76 1.29 1.39
MoSe2 2.37 2.55 2.53 1.18 1.32
WS2 2.96 3.30 3.34 1.35 1.61
WSe2 2.63 3.01 3.17 1.14 1.40

Results for three different layer compounds in the heterostructure formation are shown:

(red solid curve) MoS2 − MoSe2, (green dashed curve) MoS2 − WSe2, and (blue dotted

curve) MoS2 − WS2. As a consequence of the fact that MoSe2 has the larger r0 value

(see Table 4.1) of the four investigated TMD layers, it was already expected that it would

screen more effectively the electron-hole interaction by the charge-image effect. As verified
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FIGURE 4.4 – (Color online) Binding energies (EB) of the intralayer A excitons, referred to as an electron-
hole pair lying in the MoS2 layer, by taking different layer compounds in the TMD heterostructure
formation. Red solid, green dashed, and blue dotted curves correspond to MoS2 −MoSe2, MoS2 −WSe2,
and MoS2 − WS2 double-layers, respectively. Panels (a) and (b) show the dependence of EB on the
separation distance of the layers d, by assuming ϵ1 = ϵ2 = ϵm = 1, and on the dielectric constant
ϵm, by assuming a fixed interlayer distance of d = 41 Å and dielectric constants of the substrate and
superstrate as ϵ1 = ϵ2 = 1, respectively. An enlargement as an inset in panel (b) emphasizes the small
energetic difference between the binding energies for the MoS2 − MoSe2 heterojunction and the other
two, MoS2 −WSe2 and MoS2 −WS2, double-layers.

in Fig. 4.4(a), it lowers the exciton binding energy by almost 20 meV, whereas the WSe2

and WS2 cases present almost identical binding energies due to their very similar r0 values.

From Fig. 4.4(b), one notices that the intralayer A exciton binding energies are strongly

affected by the spacer’s dielectric constant ϵm changes, exhibiting an energetic variation

on the order of 300 meV when ϵm varies from 1 to 4. Qualitatively similar results were

reported in the TMD monolayer case in Refs. (KYLäNPää; KOMSA, 2015; CHAVES et al.,

2020), being physically understood by the spatial localization of the interlayer A exciton

depicted in Fig. 4.4 that lies only in one of the layers of the double-layer TMD system.

Moreover, a small energetic difference of the order of a few meV is noted in Fig. 4.4(b)

for the binding energies of the intralayer A excitons in the MoS2 when one compares the

different investigated heterostructures. It is emphasized by the enlargement shown as an

inset of Fig. 4.4(b). It reveals structural independence in the heterostructure formation

on the binding energy as a function of the dielectric constant, i.e. ϵm changes similarly

affect the binding energies regardless of the adjacent TMD layer of the MoS2-formed

heterostructure.

Let us now focus on the interlayer exciton. When stacking different TMD monolayers,

the corresponding Dirac K points in the reciprocal space of each TMD monolayer will not

coincide, and the distance between the respective K points of each layer depends both
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FIGURE 4.5 – (Color online) Binding energies (EB) of the interlayer excitons in the MoSe2 layer by
taking different layer compounds in the TMD heterostructure formation. Red solid and cyan dashed
curves correspond to MoSe2 − WS2 and WS2 − MoSe2, respectively, with the interlayer exciton being
formed by the electron (hole) of the first (second) referred compound. Panels (a) and (b) show the
dependence of EB on the separation distance of the layers d, by assuming ϵ1 = ϵ2 = ϵm = 1, and on
the dielectric constant ϵm, by assuming a fixed interlayer distance of d = 41 Å and dielectric constants
of the substrate and superstrate as ϵ1 = ϵ2 = 1, respectively. An enlargement as an inset in panel (b)
emphasizes the energetic difference between the binding energies for the MoSe2−WS2 and WS2−MoSe2
double-layers.

on the relative rotation of the crystallography orientation and the mismatch of the lattice

parameters of each layer. Here, within the effective mass approximation, we are ignoring

both effects. Considering only the uppermost valence band and the lowest conduction

band of each layer, there are two different kinds of interlayer excitons for the type II

band alignment case (see Fig. 4.1): (i) the lowest conduction band between the two 2D

materials hosting the electron, whereas the hole is hosted in the valence band of the

adjacent layer that possesses the highest energy, and (ii) the opposite formation, i.e the

highest conduction band between the TMD monolayers hosting the electron, whereas the

hole is hosted in the valence band of the adjacent layer that possesses the lowest energy.

If the corresponding exciton binding energy has a magnitude smaller than the conduction

band offset, this will result in an excitonic resonance, as the exciton energy lies inside the

conduction band.

Results for these two mentioned kinds of interlayer excitons in double-layer heterostruc-

tures composed by MoSe2 and WS2 compounds are shown in Fig. 4.5. The solid red

(dashed cyan) curve corresponds to the interlayer exciton formed by an electron (hole)

from the MoSe2 (WS2) and a hole from the WS2 (MoSe2). Both interlayer exciton config-

urations show a binding energy increase when the layer separation d decreases, attaining

values of almost 400 meV for shorter distances of the order of 10 Å [see Fig. 4.5(a)]. Such
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behavior is easily understood by the electrostatic interaction nature of the electron-hole

attraction, which is enhanced the shorter the interlayer distance. One also observes in

Fig. 4.5(a) that the energetic difference of the binding energies for the two configurations

of interlayer excitons, i.e. |EMoSe2−WS2
b −EWS2−MoSe2

b |, increases when the interlayer

distance decreases. Knowing that the interlayer interaction depends on the layer sepa-

ration and the screening parameters r0 of heterostructures’ compounds, and in addition

to that, here we are switching the layers where the electron and hole are positioned, one

can link this energetic difference |EMoSe2−WS2
b −EWS2−MoSe2

b | in view of the interlayer

exciton formation and the consequent overall strength switching of the role of the electro-

static interaction at each layer. Note that the electrostatic interaction of an electron-hole

pair separated by a dielectric media has its amplitude modulated by the electrostatic

screening of the layers damped by the separation between them. Thus, by exchanging

the configuration of the electron-hole layer location, one leads to dampening/enhancing

the screening of the adjacent layer owing to the layer separation and consequently to an

energetic difference in the binding energy of the exciton. A similar feature is observed in

the case that we fixed the layer separation and vary the dielectric constants of the envi-

ronment. This is present in Fig. 4.5(b). Note that the interlayer exciton binding energy

exhibits the same tendency as the intralayer one [see Fig. 4.4(b)] as a function of the

spacer dielectric constant ϵm, except for the increased energetic distancing between the

two MoSe2 − WS2 and WS2 − MoSe2 cases when ϵm assumes high values, as emphasized

in the inset of Fig. 4.5(b).

In what follows, we study the exciton energy, which is defined by

Eexc = Ec − Ev − |Eb|, (4.4)

where |Eb| is the magnitude of the exciton binding energy, Ec the bottom of the con-

duction band, and Ev the top of the valence band associated with the electron and hole,

respectively, that contributes to the exciton formation. For a bright exciton, this value

also corresponds to the energy of the photon that creates the electron-hole bound-state.

From now on, for an MX2-M
′X′

2 heterostructure, we define the interlayer exciton IX1 as

the bound-state of the electron from the lowest conduction band of the first material and

the hole from the highest valence band of the second material and IX2, as the opposite. In

Fig. 4.7, we show the evolution of the exciton energies, both intralayer and interlayer, and

the bottom value of the conduction band as a function of [Fig. 4.7(a)] the interlayer spacing

and [Fig. 4.7(b)] the dielectric constant of the spacer. It is worth mentioning that we use

as a reference energy level the top of the valence band, considering the band alignment of

Ref. (ZHANG et al., 2016). One can see in Fig. 4.7(a) that the intralayer exciton energies

(solid blue and yellow curves for WSe2 and MoSe2, respectively) are very robust with

respect to the layer separation due to the simultaneous changes of the bandgap and the
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FIGURE 4.6 – (Color online) Exciton energy dependency on (a) the layer separation and (b) the dielectric
media ϵm for the MoS2-MoSe2 heterostructure. IXi denotes the i-th interlayer exciton, such that IX1

(IX2) is formed by the electron from the lowest conduction band of the first (second) material and the
hole from the highest valence band of the second (first) material with result represented by the solid red
(dashed cyan) curve. Solid blue and yellow curves correspond to the intralayer excitons for MoSe2 and
MoS2 cases, respectively. (a) All dielectric constants are held fixed with the value of 1, and (b) the layer

separation is fixed to d = 41 Å. The shaded gray region corresponds to the continuum. An enlargement
around small layer separation is shown as an inset of panel (a).

exciton binding energy, which cancel each other out, keeping the energies of the intralayer

exciton unaltered. As the interlayer separation d increases, the value of each intralayer

exciton energy converges to the suspended monolayer value minus the band alignment

energy. For the interlayer exciton (see solid red and dashed cyan curves for IX1 and

IX2, respectively), we have that the exciton energy increases due to the weakening of the

binding energy, which arises from the sensitivity of the interlayer interaction with respect

to the layer separation. For instance, notice in Fig. 4.7(a) that the interlayer exciton IX1

energy (dashed cyan curve) increases 0.15 eV for d = 50 Å. By Fig. 4.7(b), one observes

that the intralayer exciton energy is more sensitive to changes in the dielectric media. By

increasing the dielectric constant of the space ϵm, the screening is enhanced and, therefore,

weakening the Coulomb interaction. Although the interlayer exciton binding energy varies

less with respect to the dielectric screening, the gap correction is more acute, leading to

a larger fluctuation of the interlayer exciton energy.

Similarly to Fig. 4.7, in Fig. 4.6 we present results for the exciton energy for (a)

different layer separations and (b) dielectric media of the spacer, but now for the MoS2-

MoSe2 heterostructure. By comparing Figs.4.7 and 4.6, one observes a similar overall

behavior for the interlayer and intralayer excitons, owing to the screened interaction and

the geometrical disposition of the heterostructure, showing qualitative physical trends

that are independent of the TMD layers composition. Unlike the MoSe2-WSe2 case [see
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FIGURE 4.7 – (Color online) Exciton energy dependency on (a) the layer separation and (b) the dielectric
media ϵm for the MoSe2-WSe2 heterostructure. IXi denotes the i-th interlayer exciton, such that IX1

(IX2) is formed by the electron from the lowest conduction band of the first (second) material and the
hole from the highest valence band of the second (first) material with result represented by the solid red
(dashed cyan) curve. Solid blue and yellow curves correspond to the intralayer excitons for WSe2 and
MoSe2 cases, respectively. (a) All dielectric constants are held fixed with the value of 1, and (b) the layer

separation is fixed to d = 41 Å. The shaded gray region corresponds to the continuum.

Fig. 4.7(a)], for the MoS2-MoSe2 case, the lowest exciton energy for small layer separation

is the interlayer IX1, as emphasized in the inset of Fig. 4.6(a). As seen in Fig. 4.6(b), the

dielectric media allows tuning both interlayer and intralayer exciton states, lowering their

frequencies as larger the dielectric constant, exhibiting a more pronounced effect on the

interlayer case.

Finally, we explore the spatial distribution of the exciton wave function. In Fig-

ures 4.8(a,b) and 4.8(c,d) show color maps of the intralayer and interlayer exciton wave

functions by varying (a,c) the interlayer distance d and (b,d) the dielectric constant ϵm

of the spacer. Figure 4.8(a) depicts no pronounced change in the spatial distribution

of the intralayer exciton wave function when changing the interlayer distance. This can

be linked to the energetic negligible changes in the binding energy as shown by the very

small energetic scale variation in Fig. 4.4(a). On the other hand, as already expected, since

by changing the dielectric constant the electron-hole interaction should vary, Fig. 4.8(b)

shows different spatial distributions of the intralayer exciton wave function when varying

the dielectric constant of the spacer. The higher ϵm value the lower the electron-hole

interaction and consequently the binding energy value becomes smaller [see Fig. 4.4(b)]

and thus the exciton wave function spreads more, i.e. increasing the exciton size. Fig-

ures 4.8(c,d) demonstrate that the interlayer exciton wave function is much more sensitive

to changes in the layer separation Fig. 4.8(c) than the intralayer case Fig. 4.8(a). This is

to be expected because the Coulomb interaction for interlayer exciton gets weaker with
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FIGURE 4.8 – (Color online) (a,b) Intralayer and (c,d) interlayer exciton wave function for the MoS2-
MoSe2 heterostructure as a function of (a,c) the layer separation and (b,d) the dielectric constant. The
dielectric constants are held fixed at 1 for panels (a) and (c), whereas the value for the interlayer distance

is fixed of d = 41 Å in panels (b) and (d).

the increase of the layer separation, leading to spreading out the in-plane wave function.

From Figs. 4.8(c,d), one notices that the wave function covers a larger spatial region

for the interlayer case compared to the intralayer case Figs. 4.8(a,b), for both cases of

changing the layer separation (being up to 35 Å in panel (c)) and the interlayer dielectric

constant (being up to 50 Å in panel (d)).

4.2.1 Excitonic-Based Insulating Phase in Bilayer MoS2-WTe2

The idea of a excitonic insulator dates back to the late 60s (KOHN, 1967; JÉROME et

al., 1967), which was found following an analogy to the BCS theory. Although, one central

difference with the ordinary BCS theory is the absence of off-diagonal long-range order

while still maintaining a diagonal long-range order (JÉROME et al., 1967), which stems

from the crystalline structure and the Coulomb interaction, which affects the behavior

of the two-particle density matrix. Although the excitonic insulator was a theoretical
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curiosity from the late sixties, recently, the theme drew a large attention due to the rise

of two-dimensional materials which have shown evidence for such phase (JIA et al., 2022;

ROSSNAGEL et al., 2002; BOK et al., 2021). This phase of matter is particularly interesting,

it happens that the formation of excitons is more natural with respect to free electrons in

the conduction band, leading to an exciton condensation and, therefore, to an insulating

phase.

FIGURE 4.9 – (Color online) Band alignment of MoS2-WTe2 bilayer. Here, the interlayer quasiparticle
bandgap is the diference of the conduction band energy of MoS2 and the valence band energy of WTe2,
Eg = 0.49eV. The values were taken from (ZHANG et al., 2016).

The formation of heterostructures bound by van der Waals interaction leads to a

additional degree of freedom for the engineering of excitonic states (GEIM; GRIGORIEVA,

2013; LI et al., 2016; TENóRIO et al., 2023), which can be used as a platform to study

this novel quantum phase of matter. In particular, by analyzing the band alignment

of such structures, as we can see in Fig. 4.9, the quasiparticle bandgap for the interlayer

exciton, that is, one electron in MoS2 and a hole in WSe2, has the quasiparticle bandgap of

Eg = 0.49 eV, which raises the question: is there a possible hetero-bilayer configuration, for

a given environment and dielectric medium, in which the binding energy of the interlayer

exciton is of the order or greater than the quasiparticle bandgap?

We aim to answer this question by using the general methodology discussed so far.

First, we need the screening parameter in order to calculate the binding energies. The

screening parameter for WTe2 can be estimated using the same fitting procedure for the

bare bandgap, but reverse engineering to fit the screening length. Doing so, we found the
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TABLE 4.3 – Effective masses, screening factor r0, and the band gap of each material. The masses are
from (KORMÁNYOS et al., 2015) and ∆K from (ZHANG et al., 2016). The screening factors, r0, for WTe2
are obtained from Eq. (4.2).

Materials me mh r0(Å) ∆K(eV)
MoS2 0.47 0.54 27.04 2.71
WTe2 0.25 0.32 51.12 1.93

FIGURE 4.10 – (Color online) Band gap evolution with respect to the dielectric media and layer separa-
tion.

results presented in Table 4.3. Our values of r0 agree quite well with the universal scaling

relations derived in Ref. (JIANG et al., 2017). Once we have determined the parameters

of the potential, we can calculate the exciton energy and check the layer separation and

dielectric media for which the exciton binding energy is larger than the band gap.

First, we present the gap evolution with respect to the dielectric media and layer

separation in Fig. 4.10. As we can see, the interlayer transition gap (Eg = EMoS2
c −EWTe2

v )

is fairly narrow and of the order of the excitonic spectra we have already reported for the

interlayer case. Now we present in Fig. 4.11 the exciton energy, EX = Eg − |Eb|, for

the system under investigation. As it can be seen from the figure, we can fine tune the

exciton energy, allowing for excitonic insulating phases for several configurations. The

zero energy of the exciton implies that the binding energy is equal to the band gap of

the system. In this case, the formation of correlated electron-hole pairs is energetically

favored with respect to the creation of conducting electrons, leading to an insulating state

which is driven by the excitonic formation.
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FIGURE 4.11 – (Color Online) The exciton energy for each interlayer separation and dielectric media.
The blue region is where the binding energy is greater than the band gap while the red region is where
the binding energy is smaller than the band gap. The solid black line is the phase boundary, where the
binding energy and bandgap are equal. In each panel, we set a particular dielectric substrate, a) ϵ1 = 1,
b) ϵ1 = 2, c) ϵ1 = 3 and d) ϵ1 = 4.

4.3 Conclusions

In summary, we have presented a theoretical framework based on an appropriate ex-

pansion of the excitonic wave function in terms of Chebyshev polynomials to solve the exci-

tonic Wannier equation for double-layer heterostructures. These double-layers are formed

by different TMDs separated by a dielectric spacer. The employed method showed a fast

convergence and numerical reliability with a computationally cheap scheme, owing to the

recursive relations of the Chebyshev polynomials and the Chawla-Kumar decomposition

that allowed us to integrate out the infrared divergence of the electron-hole interaction.

Based on the mentioned theoretical approach, we explored the excitonic spectrum

for intralayer and interlayer exciton configurations and its tunability through dielectric

engineering, which arises from the screened Coulomb interaction. We found a robustness

of the intralayer state with respect to the layer separation, while the interlayer exciton

energy increases due to the binding energy sensitivity to layer separation. By changing

the dielectric media, the intralayer exciton energy decreases, although not as sharply as

the interlayer exciton one, which has the weakest binding for a large dielectric constant.

Moreover, we have also obtained corrections to the bandgap using the semiconductor

Bloch equations formalism, which enabled us to understand how to layer separation and

dielectric media affect the exciton energy. Our findings showed that even the energetic

ordering relative to the intralayer and interlayer excitons can be modified by changes in

the layer separation and in the dielectric constant of the spacer. Therefore, by dielectric
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engineering of the surrounding environment, we showed that the excitonic properties in

double-layer van der Waals materials can be driven, enabling a bandgap control that suits

different technological applications.

Also, as discussed in Figs. 4.10 and 4.11, we can engineer a configuration in which

the exciton binding energy is larger than the gap, leading to a phase where it is more

energetically favorable to form correlated electron-hole pairs than free electrons in the

conduction band, leading to an insulating state.

We hope that our theoretical approach and results based on Chebyshev’s polynomial

expansion for Wannier excitonic complexes will prove useful for the exploration of opto-

electronics properties in different van der Waals materials with a layer-by-layer stacking

and surrounding environment controlling, and moreover being a simple and efficient tool

for explaining cutting edge experiments in double layer 2D semiconductors, such as non-

linear optical susceptibilities.



5 Excitons in Black Phosphorous

While transition metal dichalcogenides form a large class of materials with interesting

excitonic properties, there are other candidates for optoelectronical applications, such as

the monolayer black phosphorous(AKHTAR et al., 2017). Here we will solve the Wannier

Equation for this system, taking in account the anisotropy in the carrier dispersion relation

and discuss its effects on the exciton structure.

5.1 The Hamiltonian

In order to tackle the problem, we will consider an effective mass theory. In the case

of the black phosphorous, as we can see from geometrical point of view, two orthogonal

directions have different atomic placements. In one direction, we have atoms in a zigzag

form, and in other direction, we have atoms in a armchair form. This leads to formulate

the effective mass as direction dependent, with the Hamiltonian of the following form:

H = − ℏ2

2mx
e

∂2

∂xe
− ℏ2

2my
e

∂2

∂ye
− ℏ2

2mx
h

∂2

∂xh
− ℏ2

2my
h

∂2

∂xh
+ V (re, rh) . (5.1)

The common prescription is to solve the energy eigenvalue equation with Jacobi co-

ordinates, which separates out the center of mass coordinate. Let r⃗e = (xe, ye) and

R⃗h = (xh.yh) be the positions of the electron and the hole, respectively. Consider the

following center of mass coordinate,

x̄ =
mx

exe +mx
hxh

mx
e +mx

h

(5.2)

ȳ =
my

eye +my
hyh

my
e +my

h

. (5.3)

Let r⃗rel = r⃗e − R⃗h be the relative position vector, then,

xrel = xe − xh =⇒ xe = xrel + xh ; xh = xe − xrel (5.4)

yrel = ye − yh =⇒ ye = yrel + yh ; yh = ye − yrel, (5.5)
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now we can write down the electron and hole coordinates in terms of both the center of

mass and a mass-deformed relative position. For the electron we have,

x̄ =
1

mx
e +mx

h

(mx
exe +mx

h(xe − xrel)) =⇒ xe = x̄+
mx

h

mx
e +mx

h

xrel, (5.6)

ȳ =
1

my
e +my

h

(my
eye +my

h(ye − yrel)) =⇒ ye = ȳ +
my

h

my
e +my

yrel, (5.7)

and for the hole,

x̄ =
1

mx
e +mx

h

(mx
e(xrel + xh) +mx

hxh)) =⇒ xh = x̄− mx
e

mx
e +mx

h

xrel, (5.8)

ȳ =
1

my
e +my

h

(my
e(yrel + yh) +my

hyh) =⇒ yh = ȳ −
me

y

my
e +my

h

yrel. (5.9)

Now we will apply the chain rule. Starting with the x direction, we redefine Mx = mx
e +mx

h

and My = my
e +my

h,

∂

∂xe
=
∂xrel
∂xe

∂

∂xrel
+
∂x̄

∂xe

∂

∂x̄
=

∂

∂xrel
+
mx

e

Mx

∂

∂x̄
(5.10)

∂

∂xh
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∂xrel
∂xh

∂
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∂x̄

∂xh

∂

∂x̄
= − ∂
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h
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∂

∂x̄
, (5.11)

for the second order derivative,

∂2

∂x2e
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∂xe

(
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, (5.12)

now for the hole,
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∂x2h
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analogously for the y coordinate,
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for the y hole coordinate
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Finally, we can write down the kinetic energy for each coordinate, for x,
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Now, for the y direction,
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∂ȳ2

)
− ℏ2

2my
h

(
∂2

∂y2rel
− 2

my
h

My
+ (

my
h

My
)2
∂2

∂ȳ2
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where we defined a anisotropic mass for each direction, µx =
mx

e+mx
h

mx
hm

x
e

and, µy =
my

e+my
h

my
hm

y
e

,

leading to the following Hamiltonian, in which we discard the center of mass coordinate

since its is a trivial part,

H =
p2x

2µx

+
p2y

2µy

+ V (rrel). (5.18)

Having the Hamiltonian, we can proceed to write down the Wannier equation in integral

form for the problem.

5.2 Wannier Equation

As it is visible from (5.18), the introduction of the anisotropy breaks the rotational

symmetry of the Hamiltonian. Let us first take the Fourier Transform of the Schrodinger

eigenvalue problem,

F
{[

p2x
2µx

+
p2y

2µy

+ V (r⃗rel)

]
ψ(r⃗)

}
= EF{ψ(r⃗)} =⇒ (5.19)[

ℏ2q2x
2µx

+
ℏ2q2y
2µy

]
ψ̃(q⃗) + Ṽ (q⃗) ∗ ψ̃(q⃗) = Eψ̃(q⃗), (5.20)

where the ∗ symbol is the convolution operator. We will move the anisotropy into the

interaction potential to preserve the form of the free-particle Green’s function by intro-

ducing the following change of coordinates,qx(q̄, θ) = q̄
√

µx

2µ̄me
cos(θ)

qy(q̄, θ) = q̄
√

µy

2µ̄me
sin(θ)

, (5.21)

This coordinate system can be related to the usual polar coordinates (q, ϕ) by,

q2 = q2x + q2y =
q̄2

2µ̄me

[
µx cos2(θ) + µy sin2(θ)

]
, (5.22)

qy
qx

= tanϕ =

√
µy

µx

tan θ =⇒ θ = arctan

(√
µx

µy

tanϕ

)
. (5.23)

With these new coordinates we can write down,

ℏ2q̄2

4µ̄me

ψ̃(q̄, θ) + Ṽ (q̄, θ) ∗ ψ̃(q̄, θ) = Eψ̃(q̄, θ). (5.24)

The convolution integral can also be written in terms of the new set of coordinates by

considering the Jacobian of the new system of coordinates with respect to a change from
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the usual polar coordinates, (q, ϕ) → (q̄, θ),

∂(qx, qy)

∂(q̄, θ)
=

√ µx

2µ̄me
cos(θ) −q

√
µx

2µ̄me
sin(θ)√

µy

2µ̄me
sin(θ) q

√
µy

2µ̄me
cos(θ)

 , (5.25)

which the determinant yields the following intgration measure,

d⃗̄q =

√
µxµy

2µ̄me

q̄dq̄dθ. (5.26)

Finally, the problem can be explicitly written as,

ℏ2q̄21
4µ̄me

ψ(q̄1, θ1) +
1

(2π)2

√
µxµy

2µ̄me

∫
R̄2

q̄2dq̄2dθ2V (q̄1, θ1, q̄2, θ2)ψ(q̄2, θ2) = Eψ(q̄1, θ1). (5.27)

In order to solve this integral equation, there are a multitude of ways. One can do a

partial-wave expansion of the potential into two quantum numbers and the wave-function

into one quantum number which will lead into a infinitely coupled set of integral equations,

where the coupling comes from the angular momentum channels and one can introduce a

angular momentum cuttoff to obtain binding energy estimates. The other form of solution,

which we will use here, is to consider a 2-D Gauss-Legendre quadrature using a conformal

mapping.

First, let us write down the integral equation for the wave function,

ψ(q̄1, θ1) =

√
µxµy

8π2µ̄me

∫
R̄2

dq̄2dθ2
q̄2V (q̄1, θ1, q̄2, θ2)ψ(q̄2, θ2)

E − ℏ2q̄21
4µ̄me

. (5.28)

Now, introduce a conformal mapping for the radial momentum coordinate and a linear

mapping for the angular coordinate,

q̄2 =

√
2µ̄me

(µx − µy) cos2(θ2) + µy

q2 =

√
2µ̄me

(µx − µy) cos2(θ2) + µy

(
1 + x

1 − x

)
(5.29)

θ2 = arctan

(
µx

µy

tan (ϕ2)

)
= arctan

(
µx

µy

tan
(
π(1 + xθ)

))
(5.30)

which leads to the following measures,

dq̄2 =

√
2µ̄me

(µx − µy) cos2(θ2) + µy

(
2

(1 − x)2

)
dx (5.31)

dθ2 =
π sec2

(
π(1 + xθ)

)
µy

µx
+ tan2(π(1 + xθ))

dxθ. (5.32)
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Parameter Value
me

x 0.18m0

me
y 1.23m0

mh
x 0.13m0

mh
y ≈ 1000m0

r0 25.76 Å
µx 0.075m0

µy 1.23m0

TABLE 5.1 – Table of parameters used in this Chapter for the black phosphorous from Ref. (RODIN et

al., 2014). m0 is the free electron mass. Notice the large value of mh
y , which the it is reference claimed to

be due to the flatness of the band in which the effective mass was calculated.

N Ebind (eV)
20 −0.694 eV
40 −0.731 eV
60 −0.787 eV
80 −0.745 eV
100 −0.744 eV
120 −0.747 eV

TABLE 5.2 – Converge check. Results for the exciton binding energy in a single layer of black phosphorous
(parameters from Table 5.1) as a function of the number of mesh points, N , for both angular and radial
variables. The grid is non-uniform, having N/2 for [−1,−0.9], N/4 for [−0.9,−0.8] and N/4 for [-0.8, 1].

With these set of changes, the integral problem becomes,

ψ(q̄1, θ̄1) =

√
µxµy

2π

∫
dxdxθ

(1 + x) sec2(π(1 + xθ))G0(E)V ψ(x, xθ)

((µx − µy) cos2(θ(xθ)) + µy)
(

µy

µx
+ tan2(π(1 + xθ))

)
(1 − x)3

,

(5.33)

where G0(E) =
(
E − ℏ2q̄21

4µ̄me

)−1

is the free-particle Green’s Function. This is the equation

we have to solve and the methodological steps in order to solve this equation has already

been presented in chapter 3.

5.3 Binding Energy and Wave-Functions

Here we present our results for the exciton in the monolayer phosphorene. First, in

Table 5.2 we show the convergence of the method developed above for the Rytova-Keldysh

potential. For large number of mesh points we see a small fluctuation around −0.747 eV,

which agrees very well with the literature (RODIN et al., 2014; CHAVES et al., 2017). The

parameters used for the calculations were taken from (RODIN et al., 2014) and presented

in Table 5.1. In Fig. 5.1, we show the ground state exciton binding energy for different

layer and dielectric media configurations. We see the general trend reported in Chapter



CHAPTER 5. EXCITONS IN BLACK PHOSPHOROUS 78

FIGURE 5.1 – (Color Online) Binding energy of the intralayer and interlayer exciton for different dielectric

media (ϵm in ϵ0 units) and separation distance (d in Å units) in the black phosphorous homo-bilayer. In
the right panels, we have the substrate and upper dielectric media with ϵm = 1 and the in the left panels
the interlayer distance is fixed at d = 10Å. The parameters are given in Table 5.1.

4, in which the separation increase tends the intralayer binding energy to the monolayer

limit, given by the Rytova-Keldysh potential, while bringing the interlayer exciton binding

energy to zero. In the case of the dielectric screening, we see a similar effect, which weakens

the potential and, therefore, also the exciton binding.

One of the most interesting properties of the system is the anisotropy, which can be

explicity seen by considering the root mean square value of the radius in each direction,

and can be interpreted as a ”directional” Bohr Radius,

Rx =
√

⟨x2⟩, (5.34)

Ry =
√

⟨y2⟩, (5.35)
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FIGURE 5.2 – (Color Online) Probability density of the ground state of the exciton for both intralayer

and interlayer potential. In this case, the parameters are d = 10 Å, ϵ1 = ϵm = ϵ3 = 1. The mass
and screening parameters are given in table 5.1. The ratio of the directional radii, Rx/Ry, is practically
constant independent of the system configuration, as one can see in table 5.3.

where,

⟨x2⟩ =

∫
drx2|ψ(r)|, (5.36)

⟨y2⟩ =

∫
dry2|ψ(r)|. (5.37)

What we found in terms of the ratio Rx/Ry is a very robust quantity with respect

to the change in the dielectric environment. The interesting part is that, independent of

the potential, if one changes the intermediate dielectric media and interlayer distance, the

ratio is a practically constant, being 2.01, independent of the layer configuration.

In Fig. 5.2, we show the probability density of the intralayer and interlayer exciton

state. The intralayer state is more compact with respect to the interlayer one, which is not

surprising, as the reduced masses are such that µy/µx = 16.4 (see table 5.1), which tends

to squeeze the state along y-axis with respect to the x-axis. Furthermore, the interlayer

exciton probability density distribution is more extended owing to the smaller binding
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Intralayer Interlayer

Rx 8.701Å 10.870 Å

Ry 4.324Å 5.401Å
Rx

Ry
2.012 2.012

TABLE 5.3 – Direction Bohr radius, given in Eqs. (5.34). Here we consider an interlayer distance of

d = 10Å, and dielectric media composed of ϵ1 = ϵm = ϵ3 = 1. The interlayer, and intralayer potentials
are given in Eqs. (1.21) (1.22)

with respect to the interlayer one (cf. Fig. 5.1).

5.4 Conclusion

In this chapter, we have developed a generic momentum space formalism to deal

with two particles with constant anisotropic mass distributions. As we could see in the

preceding discussion, we were able to derive an integral equation for the description of

the exciton, leading to well convergent calculation. We explored a number of different

configurations of the aligned double layer of black phosphorous by changing the inter-

layer dieletric, as well as the separation distance and study the response of the exciton

binding energy. Some general features found in the exciton binding in the phosphorene

bilayer qualitatively follows the findings obtained for the double layer dichalcogenides

heterostructure studied in Chapter 4, with separation and interlayer dieletric constant.

The asymmetry in the exciton probability density is kept for both interlayer and intralayer

cases and the ratio of the radii along the x and y axis is Rx/Ry = 2.01 practically indepen-

dent on the interlayer dieletric and separation distance and determined by the imbalance

of the reduced masses µy/µx = 16.4 in the y and x directions.



6 Conclusion and Perspectives

6.1 A Short Summary

In this dissertation we have presented the interplay between many-body and few-

body systems through an analysis of the electron gas in a two-band approximation, and

focus of the exciton properties on double layers of semiconductor heterostrutures of dical-

chogenides and black phosphorous. We have prepared, in Chapter 2, the formalism for the

Semiconductor Bloch equations equations in order to probe the important linear response

to light of the systems to be used in future applications. We have also discussed physically

the dynamical content of each term entering in these time-dependent equations. Then, in

Chapter 3 we have developed the tools to solve numerically the central equation for the

excitons, namely the Wannier equation. These numerical tools were described details in

the chapter, namely, the quadrature scheme using Gauss-Legendre points, the Chebyshev

Chawla-Kumar method, and a variational approach based on the Generating Coordinate

Method, which was briefly discussed.

In Chapter 4, we have shown how the configuration of a bilayer heterostructure, that

is, two distinct layers stacked on top of each other, built in a dielectric environment,

renormalizes the band gap and affects the wave function and binding energy of the system

in question. Also, we have introduced a fitting procedure to capture parameters by self-

consistently solving for bare band gap and calculate the exchange self-energy correction,

with this procedure, allied with the an analysis of the band alignment of MoS2 - WTe2,

we have proposed a possible candidate for a excitonically driven insulating state, in which

the binding energy of the exciton is larger than the gap.

In Chapter 5, we have presented a solution to the Wannier exciton equation in the case

of the phosphorene homobilayer by introducing a change of coordinates in momentum

space to account for the rotational anisotropy in the dispersion relation of the charge

carriers. We have explored the effects of variation of the interlayer dieletric and separation

in the binding and structure of the intra- and interlayer excitons, exposing the anisotropy

of the exciton probability density and aspect ratio.
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6.2 Future Perspetives

We intend to develop a scheme to treat Moiré systems with anisotropy, considering

a relative rotation between the layers, which due to the non-separability of the relative

and center of mass coordinates may led to the appearance of possible confining modes of

excitons or trions, even for non-interacting particles. Following the study done in Chapter

5, we intend to solve the Moiré problem considering all coordinates, namely the relative

and center of mass ones, which should lead, due to the mixing of these coordinates to

coupled integral equations. Then, we will start to investigate trions and higher correlations

in the phosphorene and TMDCs. As we add more particles to the few-body correlations,

the computational challenge increases. One approach is to consider separable potentials.

The construction of such potentials is a fundamental step so we can have a cost effective

method in order to explore each possibility with respect to the materials and carrier

arrangements. For the trion problem in anisotropic materials, some preliminary work in

the analytical form of the kinetic energy operator has been made, such as deriving the

effective Hamiltonia for three-body problem (an interested reader can read the Appendix

A). On the many-body theory front, we plan to investigate the effects of trions in optical

properties deriving a similar scheme to the Semiconductor Bloch equations but for a trion

polarization operator.

The derivation of the effective Hamiltonian for the trion in the phosphorene is rather

similar the exciton case, in particular, a good physical image is an interaction of an ex-

citon with a electron. We hope to treat this problem using two distinct approaches.

First, we will apply the Gaussian Expansion Method (KAMIMURA, 1988; HIYAMA, 2012)

in real space. Then, we will study using the Faddeev equations, similarly to the refer-

ence (MOHSENI et al., 2023). With this final construction, we end the current work with

our future challenges. We wish also to study higher correlations like the biexcitons and

understand its effects on many properties of 2D materials.

Our main future direction is to establish a bridge between two seemingly distant areas,

namely condensed matter problems with its intrinsically many-body nature and few-body

correlations, making use of the different numerical approaches to the problems mentioned

in this dissertation. In retrospect, theoretical tools should not lie in boxes placed in distant

shelves and efforts have to be done in building connections between disciplines, as well as

also reinforcing cooperation. Scientific advance is necessarily a worldwide enterprise and

profit from crossing the borders of different fields to push the knowledge even further.
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Appendix A - Three-Body Hamiltonian

for the phosphorene

We present, in what follows, the derivation of the kinetic part of the three-body Hamil-

tonian that is the key construction to study the trion in anisotropic systems, such as the

phosphorene. Let r⃗e, r⃗h and r⃗e′ be the position of the electron, hole and the second elec-

tron. We choose to work in the center of mass system, and the relevant coordinates are

the relative e-h distances and the relative coordinate of the e′ with respect to the center

of mass of the e-h pair.

Now, let us write down the coordinates of the center of mass,

x̄ =
mx

exe +mx
exe′ +mx

hxh
M̄x

(A.1)

ȳ =
my

eye +my
eye′ +my

hyh
M̄y

(A.2)

xrel = xe − xh (A.3)

yrel = ye − yh (A.4)

x′ = xe′ −
mx

exe +mx
hxh

Mx
(A.5)

y′ = ye′ −
my

eye +my
eye′

My
(A.6)

where M̄ i = 2mi
e+m

i
h and M i = mi

e+m
i
h. The procedure is analogous but more laborious.

In short, we note that, for each coordinate ξ for the particle i,
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using this expression we can work out all the components of the kinetic energy,
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for now, I will make ℏ = 1. Now, lets group them up in directions. Starting with x,
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for the y component,
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Finally, the kinetic energy term is momentum space is,
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