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mente não está mais entre nós, mas nos

guiou com muito amor, doçura e sabedo-
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Resumo

Poucos graus de liberdade (dof) têm sua marca registrada na f́ısica de hádrons e nuclear,

mesmo antes da cromodinâmica quântica ser estabelecida, e ainda hoje são responsáveis

por guiar interpretações fenomenológicas de observáveis hadrônicos. O objetivo da tese é

buscar desenvolver um arcabouço relativ́ıstico onde os graus de liberdade supracitados po-

dem ser investigados fenomenologicamente, mantendo a consistência com o maior número

posśıvel de restrições f́ısicas no espaço Minkowski. Uma motivação intrigante e desafi-

adora para justificar tal esforço vem da análise da violação de carga-paridade (CPV) no

decaimento de três corpos do méson B, como ilustrado na tese. Em particular, o estudo

fenomenológico da CPV, utilizando apenas graus de liberdade hadrônicos, é elaborado

cuidadosamente para o decaimento do méson B, obtendo os seguintes resultados notáveis:

(i) um formalismo explicitamente invariante por CPT (carga, paridade e tempo) para

incluir as interações de estado final, que descrevem satisfatoriamente a CPV no espaço de

fase de três corpos nos canais acoplados de decaimento; ii) um método simples que prevê

uma supressão substancial da CPV em decaimentos de dois corpos envolvendo mésons

pseudoscalar e vetorial, que por sua vez é um resultado quantitativo a ser investigado em

futuras experiências planejadas nas várias fábricas de mésons B espalhadas por todo o

mundo. A necessidade de representar os vértices mesônicos nos diagramas de quarks e

glúons associados aos decaimentos do méson B abriram caminho para o estudo da equação

de Bethe-Salpeter para estados ligados. Um arcabouço teórico não-perturbativo é desen-

volvido para lidar com estados ligados de dois e três corpos. Primeiramente, a equação

para dois bósons é resolvida no espaço Minkowski por meio da representação integral de

Nakanishi e da projeção na frente de luz e, em seguida, o efeito do truncamento do kernel

de interação da equação Bethe-Salpeter é explorado, permitindo avaliar o impacto dos

diagramas cruzados em vários observáveis dinâmicos. A análise de tal efeito na presença

de graus de liberdade relacionados ao número de cores também é realizada, obtendo uma

justificativa convincente para o truncamento rainbow-ladder, amplamente adotado em in-

vestigações de sistemas que interagem pela força forte. Além disso, a equação de Faddeev-

Bethe-Salpeter para três bósons com interação de contato é resolvida, pela primeira vez,

nos espaços Euclideano e de Minkowski, sem depender de uma redução tridimensional

ou de qualquer ansatz para representar a amplitude de Bethe-Salpeter. A variação do
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comprimento de espalhamento de dois corpos permite encontrar um estado fundamental

borromeano, não encontrado em cálculos relativ́ısticos anteriores. Por fim, é feito um

desenvolvimento substancial incluindo-se graus de liberdade de spin. É investigado um

sistema de dois corpos composto por um férmion e uma part́ıcula escalar, bem como um

estado ligado férmion-antiférmion. Aplicações a vários observáveis dinâmicos são apre-

sentadas e discutidas, tendo em vista a posśıvel extensão do arcabouço relativ́ıstico e

na análise de decaimentos onde efeitos relativ́ısticos podem ter um papel relevante, como

acontece na violação carga-paridade nos decaimentos de três corpos do méson B estudados

na tese.



Abstract

Few-body degrees of freedom (dof) have their hallmark in hadron and nuclear physics,

even before quantum chromodynamics was established, and still today are used to guide

phenomenological interpretations of hadronic observables. The aim of the thesis is the

attempt to develop a relativistic framework where the aforementioned dof can be phe-

nomenologically investigated, still retaining as many general principles as possible and

living in Minkowski space. An appealing motivation for elaborating such an e↵ort is

given by the challenging analysis of the charge-parity violation (CPV) in the three-body

decay of the B meson, as illustrated in the thesis. In particular, the phenomenologi-

cal study of CPV, using only hadronic degrees of freedom, is carefully carried out in

the B decay, obtaining the remarkable outcomes of (i) an explicitly CPT invariance for-

malism for addressing final state interactions, which satisfactorily describes the CPV in

the three-body phase space of coupled decay channels; and (ii) a simple method which

predicts a substantial CPV suppression in two-body decays involving pseudoscalar and

vector mesons, that in turn is a quantitative outcome to be investigated in forthcoming

experiments planned at the several B-factories all over the world. The necessity of repre-

senting the meson vertexes in the quark-level diagrams paved the way to the study of the

Bethe-Salpeter equation for bound states. A non-perturbative framework was developed

to deal with two- and three-body bound states. Firstly, the two-boson equation is solved

in Minkowski space by means of the Nakanishi integral representation and light-front

projection, and then the e↵ect of truncating the interaction kernel of the Bethe-Salpeter

equation is explored, assessing the impact of the cross-ladder diagrams on several dynam-

ical observables. The evaluation of their e↵ect when color dof are present has been also

performed, obtaining a clear support for the rainbow-ladder truncation widely adopted in

the investigation of strongly interacting systems. Furthermore, the three-boson Faddeev-

Bethe-Salpeter equation with zero-range interaction is solved, for the first time, both

in Euclidean and Minkowski spaces, without relying on a three-dimensional reduction

or any ansatz for representing the Bethe-Salpeter amplitude. The variation of two-body

scattering length enables to find a Borromean ground state, missed in previous relativistic

calculations. Finally, a substantial improvement, has been achieved by including spin dof.

It has been investigated a system composed by a fermion and a scalar particle, as well
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as a fermion-antifermion bound state. Applications to several dynamical observables are

presented and discussed, in view of the possible extension of the relativistic framework,

whose development has contributions from this thesis, to the analysis of decays where the

relativistic e↵ects can play a relevant role, as it happens in the CPV three-body decays

of the B-meson.
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1 Introduction

The benchmark to investigate elementary particles and their interactions is the Stan-

dard Model (SM) of particle physics (TANABASHI et al., 2018). The outstanding knowl-

edge enclosed in such a fundamental theory has been the result of unprecedented e↵orts

from both theoretical and experimental sides. Quantum field theory defines the theo-

retical framework, giving the guidelines to construct physical models for understanding

experimental data. In the last decades several laboratories and research groups have been

settled around the world aiming for exploring the hadron structure and phenomena involv-

ing fundamental particles. Undoubtedly the European Organization for Nuclear Research

(CERN) is one of the most important experimental research centers, comprising the largest

and most powerful particle collider on Earth, the Large Hadron Collider (LHC) (LHC, ).

Seven detectors are there settled intending to test the Standard Model and its extensions.

Among those detectors, the one known as LHCb is a specialized b-physics experiment,

particularly in charge-parity (CP) violation in interactions of heavy particles containing

a bottom quark, known as B mesons. The noteworthy question under investigation is the

imbalance between matter and antimatter observed in the Universe. The CP symmetry

breaking mechanism is described within the Standard Model through the unitary matrix

introduced by Cabibbo, Kobayashi and Maskawa, the CKM matrix (CABIBBO, 1963).

The CKM matrix provides the strength of the quark-flavor change by means of weak in-

teractions and can be parameterized according to the number of quark generations. For

the SM the quark mixing matrix requires 4 independent parameters to be described, as

there are N = 3 quark generations, of which three are called quark mixing angles and

one is the CP-violating complex phase (WOLFENSTEIN, 1989). This complex phase is

expected to include the observed asymmetry in the Dalitz plot
1

of three-body charged B

meson decays, studied by the LHCb collaboration.

In 1964, the possibility of CP symmetry breaking had its first evidence for neutral kaons

oscillating into their antiparticles, in a work that honoured Val Logsdon Fitch and James

Cronin with the Nobel prize (CHRISTENSON et al., 1964). The CP symmetry breaking

puzzled the particle physics community back then, but later brought to the conclusion

that a third operation, time reversal T , would give a fundamental symmetry of physical

1The Dalitz plot is a visual representation of the phase space of a three body decay.
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laws, namely the conservation of CPT symmetry. The asymmetry seen in 1964 comes

from the fact that the K0 � K̄0
oscillation does not happen with the same probability

in both directions. The leading contributions to the neutral kaon oscillation amplitude

comes from the box diagrams involving the W±
bosons. On the other hand, the first

evidence for CP noninvariance in charged systems was pointed out by Bander, Silverman

and Soni (BANDER; SILVERMAN; SONI, 1979) (so-called BSS model), being based on

the interference between the tree and penguin Feynman quark-level diagrams. Although

this is the main mechanism used for performing calculations of CP asymmetry in B meson

decays, interferences at the hadronic level can contribute considerably to the asymmetry

distribution. One possibility, extensively explored in the literature (BEDIAGA et al.,

2009; BEDIAGA et al., 2012; BHATTACHARYA; GRONAU; ROSNER, 2013; CHENG;

CHUA, 2013; CHENG et al., 2013), is the interference between di↵erent intermediate

states that occupy the same kinematical region and have the same final states.

Another alternative involves inelastic final state rescattering, which couples di↵erent

decay channels and distribute CP violation (CPV) among them (WOLFENSTEIN, 1991;

BIGI; SANDA, 2009; MARSHAK; RIAZUDDIN; RYAN, 1969; BRANCO; LAVOURA;

SILVA, 1999; BEDIAGA; FREDERICO; LOURENÇO, 2014). Therefore, besides the

quark-level mechanism manifested by means of the BSS model, it becomes necessary to

extend the description by considering final state interactions among the mesons in the

final state of the decay process. The latter is also called ”compound” contribution to CP

violation (ATWOOD; SONI, 1998). With the aforementioned ideas in mind, Wolfenstein

proposed, in 1991, a CP violation formalism based on unitarity and CPT constraint,

including the e↵ect from final state interactions (WOLFENSTEIN, 1991). CPT invariance

in this context means the equality between particle and its charge conjugate lifetimes, and,

therefore, when partial decay widths of charge conjugate channels are di↵erent, some other

decay channels must have an equal total amount of CPV, but with opposite sign. In this

way the sum of the partial decay widths results in identical total widths for the particle

and its antiparticle, ensuring that CPT is not violated. This constraint, although very

fundamental, is not explicitly taken into account by the majority of the CPV calculations

in the literature, under the argument that multiple decay channels, with various numbers

of final mesons, would need to be considered to verify the CPT constraint for a given

decaying particle.

Based on Wolfenstein’s approach, a phenomenological model was developed in Ref. (BE-

DIAGA; FREDERICO; LOURENÇO, 2014) to take into account the e↵ect from final state

interactions by including the ⇡⇡ ! KK inelastic scattering amplitude. The limited ex-

perimental data available back then was analyzed for the decays B± ! K±K+K�
and

B± ! K±⇡+⇡�
, as the two channels have a significant part of their CP distribution

located in an area where hadronic channels are strongly coupled. The dependence on
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the quark-level tree and penguin amplitudes, responsible for the so-called short distance

contribution to CPV, was reduced to a final overall normalization to be fixed by the exper-

imental data. Despite of the simplified model, a remarkable evidence for the connection

between the CPV in the two considered channels was seen, supporting the statement that

CPT is a practical constraint that must be explicitly taken into account in every calcu-

lation. It is worth to mention that the approach proposed in Ref. (BEDIAGA; FRED-

ERICO; LOURENÇO, 2014) was developed for a three-body decay amplitude where two

particles interact while the third one is free.

The PhD thesis research started by exploring the CP violation in the B meson decay

into three light mesons aiming to further develop the model of Ref. (BEDIAGA; FRED-

ERICO; LOURENÇO, 2014) by encompassing more of the dynamics observed through

the experimental data. For this purpose, the studied decays were the charged chan-

nels ⇡±⇡+⇡�
, ⇡±K+K�

, K±K+K�
and K±⇡+⇡�

of the B±
meson. The CPV in those

channels was measured with great accuracy for their entire phase spaces by LHCb collab-

oration (AAIJ et al., 2014). The three types of interference mechanisms mainly known

as CPV sources in charmless three-body charged B decays are: 1) the BSS model at

quark-gluon level; 2) the interference between two final states with di↵erent weak phases

coupled by final state interactions, which is constrained by CPT invariance (WOLFEN-

STEIN, 1991); and 3) the interference between resonances that share the same phase space

region (BEDIAGA et al., 2009; BEDIAGA et al., 2012; BHATTACHARYA; GRONAU;

ROSNER, 2013; CHENG; CHUA, 2013; WANG et al., 2015). In the PhD research, the

main two-body resonant structures below the KK threshold seen experimentally were in-

cluded, namely through the M⇢ and Mf0(980) channels (M = K, ⇡), and keeping the final

state interaction coupling in the ⇡⇡ and KK channels. The partonic decay amplitudes
2

are represented with a slightly more elaborated parametrization than in Ref. (BEDI-

AGA; FREDERICO; LOURENÇO, 2014), but are still far from representing their full

complexity. All the possible interferences are included in the amplitude, with each term

of the CPV formula having an overall parameter to be fixed by fitting the experimen-

tal data. The whole region below two-body invariant masses of 1.6 GeV is taken into

account (NOGUEIRA et al., 2015), exploring beyond the phase space area previously

considered. Another important advance made in this thesis is the analysis of the two

extra channels ⇡±⇡+⇡�
and K±K+⇡�

, with di↵erent sources of CPV in their phase space

consistently explained within the model (NOGUEIRA et al., 2015; Alvarenga Nogueira et

al., 2016; NOGUEIRA et al., 2016; NOGUEIRA et al., 2016). Moreover, it was published

in Ref. (NOGUEIRA et al., 2016) a remarkable consequence of the CPT invariant model:

the suppression of the CPV in two-body B decays involving a pseudoscalar P meson and

a vector V one. A simple experimental method was then proposed for extracting the

2The partonic amplitudes are the quark-level diagrams that enter through the BSS mechanism.
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CPV in the B ! PV decays from the three-body phase space, without resorting to a full

amplitude analysis. By performing toy Monte Carlo simulations, it was shown that the

method indeed corroborates the aforementioned suppression.

The CPV model discussed so far only includes two-body interactions in the three-body

decay amplitude and developing a framework to investigate the rescattering involving

all the final state mesons is essential. For that reason, the decay amplitude was then

formulated in a fully three-body context (NOGUEIRA; FREDERICO; LOURENÇO,

2017), based on the Faddeev decomposition of the three-body inhomogeneous Bethe-

Salpeter equation (BSE) (SALPETER; BETHE, 1951) on the light-front (LF) (BROD-

SKY; PAULI; PINSKY, 1998; CARBONELL et al., 1998). The decay amplitude of the

B+ ! K�⇡+⇡+
process is built and the integral equation is perturbatively solved, with

the K⇡ T-matrix parametrization fixed through the experimental scattering data. This

model still needs to be consistently merged with CPV model of Ref. (NOGUEIRA et al.,

2015), namely by keeping CPT invariance. Nevertheless, the robust three-body framework

in which the model is based has several branches to be explored, presenting a promising

approach for phenomenological applications.

A fundamental limitation of the above mentioned approaches is the lack of a proper

partonic description. As discussed, the decay amplitudes involving quarks and gluons

as degrees of freedom (dof) were merely parametrized, with its relevant information be-

ing fitted to experimental data, without any microscopic characterization of the partonic

process. For describing fully the content of the decay amplitudes, it is necessary to also

evaluate the microscopic decay amplitudes, where the CKM weak phase resides, by tak-

ing into account the quark and gluon degrees of freedom. These partonic amplitudes

govern the formation of the mesons in the decay channel, including possible intermediate

resonances, therefore call for the knowledge of mesonic bound state amplitudes. Ap-

propriately addressing these amplitudes in an already complicated formalism is highly

non-trivial, since it requires a whole new path of complications in the non-perturbative

context.

In quantum field theory the covariant homogeneous Bethe-Salpeter equation (BSE) (SALPETER;

BETHE, 1951) (GELL-MANN; LOW, 1951) is one of the most well-accepted tools to deal

with bound states in the non-perturbative domain. This is a singular four-dimensional in-

tegral equation for bound states in Minkowski space. For several decades after its proposal,

in 1951, the main practice to avoid its singular nature was relying on the Wick-rotation

(k0 ! ik4) (WICK, 1954), leading to an equation in Euclidean space. Considering that

the dynamical observables are defined in Minkowski space, one needs to explicitly take

into account the contributions that arise from poles/cuts (branch points) in the complex-

momentum plane. This structure is challenging to be taken into account in the leading

approaches available in the literature, e.g. lattice quantum chromodynamics (QCD) and
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Dyson-Schwinger equation (DSE) approach (ROBERTS; WILLIAMS, 1994), as in most

cases they have Euclidean-based formulations. As an illustration of such sensitivity, within

the Bethe-Salpeter (BS) approach (CARBONELL; KARMANOV; MANGIN-BRINET,

2009) it was shown that the elastic electromagnetic form factor can vary while comparing

calculations with the BS amplitude computed in Minkowski or Euclidean spaces, if the

analytic structure is not properly handled. Therefore, further e↵orts towards solving the

BSE directly in Minkowski space are valuable to better understand those formal steps

while computing physical observables. This is the main purpose of the rest of the thesis.

The following parts of the thesis were devoted to explore solutions of the homogeneous

BSE in order to build a feasible framework to phenomenologically investigate hadron ob-

servables, which can be used for more realistic descriptions of CPV and other hadronic

phenomena. Needless to say that, given the complexity of the problem outlined above,

the following research is part of a big project with the long-term goal of dealing with non-

perturbative problems fully in Minkowski space. This ongoing development will enable

to study realistic few-body systems, such as hadrons, nucleons and light nuclei, in a fully

relativistic framework and with direct access to any observable. Historically, the first case

solved within the approach that will be adopted here was the ��2
model, i.e a two-scalar

system interacting through a massive scalar exchange in the ladder approximation, over-

coming the limitation of the honored Wick-Cutkowsky model (WICK, 1954; CUTKOSKY,

1954), that managed to solve the BSE analytically but for a massless exchange. For get-

ting actual solutions for the scalar system, Kusaka and Williams (KUSAKA; WILLIAMS,

1995) numerically applied the technique based on the so-called Nakanishi Integral Repre-

sentation (NIR) (NAKANISHI, 1963) for the BS amplitude. The NIR can be seen as a

spectral representation, as in this case the spectral function, called the Nakanishi weight

function, is an unknown quantity to be found numerically. The method combines the

analysis of the n-leg transition amplitude carried out by Nakanishi (NAKANISHI, 1963)

within a diagrammatic framework and the freedom o↵ered by the unknown weight func-

tion. The diagrammatic analysis determines an explicit structure in the complex plane

and lead to a real weight function, which depends upon a set of compact and non compact

variables. In the last decade, the method was made more e↵ective by exploiting the light-

front (LF) framework (KARMANOV; CARBONELL, 2006), what allowed to develop a

more robust approach (CARBONELL; KARMANOV, 2006; FREDERICO; SALMÈ; VI-

VIANI, 2012; FREDERICO; SALMÈ; VIVIANI, 2014) and represented a breakthrough in

the field. Particularly, appealing for the physical intuition, it is the use of the so-called LF

projection, that corresponds to the integration over the external momentum k�
= k0�k3

component of the BS amplitude, and eliminates the LF relative time between the two

particles. Thereby, the four-dimensional singular equation becomes a three-dimensional

non-singular one, as the LF projection amounts in practice to Cauchy integrations, hence

being able to take into account the involved singularities that NIR makes explicit in the
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BS amplitude. Besides simplifying the algebraic manipulations to derive an integral equa-

tion for the weight function, the integration over k�
of the BS amplitude also gives direct

access the valence LF wave function.

Although extremely challenging, this approach leads to phenomenological covariant

models to explore not only the spectra, but also the dynamics inside hadrons. The first

question addressed in the thesis is the relevance of the truncation of the BSE 4D interaction

kernel (GIGANTE et al., 2016; GIGANTE et al., 2017a; GIGANTE et al., 2017b). In

particular, for a two-scalar system, it is shown that the cross-ladder kernel has a sizable

e↵ect on dynamical observables, e.g the valence LF wave function and the electromagnetic

form factor. Moreover, the asymptotic behavior of the form factor is analyzed in detail

both analytically and numerically. In the analysis it is included the crossed contribution

beyond the impulse approximation of the form factor, necessary to keep the formulation

consistent with the higher order diagram of the interaction kernel. The notable impact

seen by the inclusion of only the second order of the interaction kernel indicates that the

BSE should be essentially reformulated in order to give reasonable results when applied

to QED without taking into account the whole set of irreducible diagrams contributing

to the kernel. The question is whether the same persists within a theory with di↵erent

degrees of freedom, like for dealing with hadron physics. To accomplish this, in the thesis

the study has been extended to a scalar QCD model, where the color factors appear

di↵erently for each diagram of the interaction kernel (Alvarenga Nogueira et al., 2018;

NOGUEIRA et al., 2018). It is seen that the inclusion of the color degree of freedom

produces a remarkable suppression of the cross-ladder diagrams even if the number of

colors is fixed at Nc = 3. This finding is extremely important for further developments of

phenomenological QCD models, since it supports the ladder truncation of the BSE as a

viable tool for studying hadron dynamics.

A further step is to generalize the approach to include more particles in the bound

state. A first attempt to explore the dynamics of a three-body system, within the BSE

framework, has been therefore carried out (YDREFORS et al., 2017). A three-boson

system, interacting through a zero-range interaction, is described by means of: (i) the

Wick-rotated BSE, i.e in Euclidean space; (ii) and the BSE projected onto the LF hy-

perplane, in Minkowski space but truncated at the valence component. Although the

approaches are defined in di↵erent spaces, there are quantities that can be compared,

e.g. binding energies and transverse amplitudes. In particular, it is shown an e↵ect

from the higher-Fock components remarkably sizable for three-body systems, as e↵ective

three-body forces also take place. Another notable finding is that the Thomas collapse, a

well-known phenomena in the non-relativistic context which makes scale invariant equa-

tions not bounded from below, disappears in the spectrum. This is related to the di↵erent

nature of the relativistic dispersion relation, which already plays the role of a regulator.
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However, it is still noticed that, although a finite value is found, it does not correspond

to a physical ground state as its squared mass is negative.

Although interesting conclusions could be found from the above-mentioned studies,

the three-body BSE still needs to be solved fully in Minkowski space with access to the

content beyond the valence component, as done in the two-body case. Recalling that,

the investigation of the zero-range three-body BSE is fully done in Minkowski space, now

without relying on NIR ansatz or LF projection but by integrating directly the singulari-

ties (YDREFORS et al., 2019). It is desirable to extend the approach based on the NIR

and LF projection also to this case. Indeed, the direct integration method for integrating

the singularities, developed for two-scalar scattering and bound states in the ladder ap-

proximation in Ref. (CARBONELL; KARMANOV, 2014), could be a possible alternative

to the NIR plus LF projection, at least when the spin dof are not considered. Furthermore,

although a considerable part of the singularities is analytically tractable, the final equa-

tion still has singularities to be evaluated, but with a notable numerical e↵ort. However,

the solution has been obtained and the comparison of the suitable observables with the

corresponding ones evaluated from the Wick-rotated equation has been performed. The

comparison confirms for both binding energy and transverse amplitude that the solutions

are correct, despite the challenging numerical implementation. Due to the complexity

of the method, generalizing for other systems would make things barely unsolvable. For

this reason, an ansatz for the integral representation supplemented by uniqueness con-

jecture, following what was developed in Ref. (FREDERICO; SALMÈ; VIVIANI, 2012),

is an ongoing research that will also be presented in this thesis. The NIR (or a similar

integral representation) together with uniqueness or with the LF framework (both in its

standard form (BRODSKY; PAULI; PINSKY, 1998) or in the explicitly covariant formu-

lation (CARBONELL et al., 1998)) seems quite appealing, given the peculiar feature of

plainly exhibiting the analytic structure of the BSE. Indeed, one expects that this method

will require less e↵ort to achieve the numerical stability.

In order to deal with spin dof and gain physical intuition on the three-body case, de-

sirable for describing mock baryons through an e↵ective two-body quark-diquark model,

the NIR together with LF projection has been applied to develop a fully covariant frame-

work in Minkowski space for a scalar-fermion bound state, interacting through one-boson

(scalar or vector) exchange (NOGUEIRA et al., 2019b). This solution can be interest-

ing for e↵ectively modeling a three-body system, eventually elaborating a quark-diquark

description of baryons. This is an important step in the direction of describing a three

independent quark system interacting through a finite-range interaction. The observables

obtained for this system would, inter alia, give an interesting input for representing bary-

onic states present in some decay channels of the B meson which present CP violation,

e.g. B+ ! pp̄K+
(TANABASHI et al., 2018). As it is presented in what follows, the
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new idiosyncrasies of the problem bring new challenging aspects. For instance, extremely

interesting phenomena, such as the consequence of the scale invariance property of the

integral equation with the vector exchange kernel, is seen in the observables.

The closing point of the research regards the solution of the BSE for a fermion-

antifermion system interacting through a massive vector boson (CARBONELL; KAR-

MANOV, 2010; De Paula et al., 2016; PAULA et al., 2017). The first phenomenological

application of the actual solutions of the BSE within this approach is made in an attempt

to extract observables for a mock pion (PAULA et al., 2017), like the electromagnetic

form factor and the Generalized Parton Distributions (GPDs). Although the approach

still need to be further developed for describing a realistic QCD bound state, this is the

first step for building an environment where the evaluation of the partonic amplitudes

with a proper representation of the involved mesons can be carried out. Indeed, such

development is extremely important for evaluating the partonic decay amplitudes that

enter in the CPV model since this model for the pion BS amplitude can straightforwardly

applied to compute the B± ! ⇡±⇡+⇡�
, by considering the tree and penguin Feynman

diagrams with the BS amplitude as an input for the pion vertexes.

The thesis is organized as follows. Chap. 2 is dedicated to the study of CP violation

and final state interactions in B meson decays. The BSE for bosonic two-body systems is

then investigated in Chap. 3. In Chap. 4, the three-boson system with zero-range inter-

action is extensively explored. The boson-fermion bound state is considered in Chap. 5.

Lastly, in Chap. 6, the fermion-antifermion BSE is solved and used to develop a model

for a mock pion. Chap. 7 is devoted to the summary and conclusions. Further details are

given in Appendices A to I.



2 B-decays: CP violation and FSI

In 1928, the relativistic wave equation proposed by Dirac was the first successful

description of massive spin-1/2 particles consistent with both quantum mechanics and

special relativity. A remarkable consequence of Dirac’s theory is the existence of anti-

particles, objects with the same mass as standard particles but with conjugate quantum

numbers, e.g. electrical charges. Although the prevailing cosmological model for the

Universe expects that same amounts of matter and antimatter were generated in the early

moments, this is not what is seen nowadays. Therefore, a key point in particle physics

regards the imbalance between matter and antimatter. Knowing that laws of nature do not

apply equally to matter and antimatter, the Russian physicist Andrey Sakharov proposed

conditions for a preponderant amount of matter (SAKHAROV, 1991). The conditions

basically involve nonconservation of baryonic number and charge-parity (CP) symmetry

violation. CP violation concentrates the main research e↵orts due to its role in particle

physics. It was first discovered in 1964, linked to the fact that neutral kaons oscillate

into their antiparticles with di↵erent probability of the transformation in the opposite

direction (CHRISTENSON et al., 1964). Years later, ”B-factory” experiments observed it

also in charged decay processes. The asymmetry involving neutral kaons basically happens

because the K0
oscillation into its conjugate, K̄0

, does not happen in the same rate of the

oscillation from K̄0
to K0

. In charged decay processes instead, the number of times that

a meson decays in a specific channel is di↵erent from the one involving the corresponding

antimeson decaying into the CP conjugated final state (see (AAIJ et al., 2014) for the

treatment for three-body B decays).

Particles and antiparticles have symmetry relations connecting their states. The charge

conjugation operator C promotes the interchange of all internal quantum numbers, while

parity P reverses the sign of the space coordinates, i.e ~x! �~x. Hence, under CP , a left-

handed electron e�
L

would become a right-handed positron e+
R
. If a physical phenomena

is not C- and/or P symmetric it means that CP violation is present and laws of Nature

distinguish between particle and antiparticle. All fundamental interactions preserve ex-

act CP -symmetry, except by weak interaction processes. Although firstly discovered in

neutral K processes, the CP violating e↵ects in B meson decays, only experimentally

observed in recent years, are remarkable. Its importance is emphasized by the several
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B-factories spread around the globe.

An important question that arises while discussing CP violation (CPV) is what is

the fundamental composed symmetry enclosing all physical interactions. To answer that,

a third spacetime operator comes into play, time-reversal transformation, t ! �t. CP

combined with T generates a fundamental symmetry of Nature, preserved by any locally

Lorentz-invariant quantum field theory with a Hermitian Hamiltonian. This argument

is extremely general and encompasses every single physical process, being confirmed by

every experimental observation made so far (TANABASHI et al., 2018). This gives a sub-

stantial constraint for exploring CP violation within the Standard Model. The question

is whether this is a practical constraint, in the sense that it can be explicitly tested for

every calculation, or if it involves countless channels, making the explicit verification of

CPT in phenomenological calculations of CPV unfeasible.

The CPV dynamics within the SM is strictly related to the quark dynamics. Within

the SM, Yukawa interactions with the Higgs condensate generate the masses and mixing

of quarks, which are summarized by the following Lagrangian (TANABASHI et al., 2018)

LY = � vp
2

�
Y d

ij
Q̄I

Li
� dI

Rj
+ Y u

ij
Q̄I

Li
✏ij �

⇤ uI

Rj
+ h.c.

�
, (2.1)

where the indexes i, j = 1, 2, 3 are fermion generation labels, Y d,u
are the Yukawa coupling

matrices, � is the Higgs field, ✏ij is the Levi-Civita tensor, uI

R
and dI

R
are up- and down-

type right-handed quark singlets and the superscript I indicates that the quark fields are

conveyed in the interaction basis. The shorthand notation QI

Li
represents a SU(3)C triplet

left-handed SU(2)L doublet and can be explicitly written as
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The matrices Y d,u
are responsible for the quark mixing, i.e the coupling between di↵erent

quarks, and its diagonalized version M f
= V f

L
Y fV f

R
(v/
p

2) (f = u, d), also known as

mass matrix, gives rise to the physical states. Consequently, uLk and dLk quarks couple

to charged-current weak interactions, indicated by W±
, through the following couplings,

�gp
2
(ūL, c̄L, t̄L)�µW+

µ
VCKM

0

B@
dL

sL

bL

1

CA+ h.c., (2.3)

where the unitary 3⇥ 3 matrix is the Cabibbo-Kobayashi-Maskawa (CKM) (CABIBBO,

1963). It can be parametrized by three mixing angles and one complex CP-violating
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phase, and it reads

VCKM ⌘ V u

L
V d†
L

=

0

B@
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

CA (2.4)

This is the only source of CP violation within SM and has been confirmed at B factories

measuring CP asymmetry, always in agreement with the CKM phase as a CPV source.

The LHCb experiment has been working to confirm measurements previously obtained

by other ones, as Belle and BaBar, as well as exploring alternative systems also aim-

ing at exploring possibilities beyond the CKM dynamics (see Ref. (LHCB, ) for more

information).

The focus of the first part of the PhD research has been the heavy meson B decay

CP violation which is compatible with the SM. As it is well-known, to have more refined

predictions of CPV within SM allows one to improve the ability in recognizing signatures

of new physics.

The mechanism for CP violation in weak interactions within the Standard Model is

given by a single complex phase of the CKM matrix. As illustrated by Fig. 2.1, quark

transitions between members of the same quark generation are more probable, what makes

the CKM matrix almost diagonal. A quite useful parametrization of the quark mixing

u c t

d s b
FIGURE 2.1 – Strength of quark transitions among the di↵erent generations.

matrix, introduced by Wolfenstein (WOLFENSTEIN, 1989), is obtained by expanding

the matrix elements in terms of the Cabibbo angle as � = sin ✓12. Equation (2.5) presents

the approximation to order �3.

2

64
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

3

75 =

2

64
1� �2/2 � A�3(⇢� i⌘)

�� 1� �2/2 A�2

A�3(1� ⇢� i⌘) �A�2 1

3

75+ O(�4) (2.5)

The other parameters in terms of the standard Euler angles ✓12, ✓23, ✓13 and CP-violating

phase � are A�2 = sin ✓23 and A�3(⇢ � i⌘) = sin ✓13e�i�
. This parametrization is help-

ful in order to quickly identify the order of the coupling between the quarks and the

weak bosons, as the magnitude of the matrix elements can be experimentally determined

(WOLFENSTEIN, 1989). It is worth emphasizing that the only source of CPV is given

by the quantity (⇢� i⌘).
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The next sections are composed by three main parts. The goal of Sec. 2.1, presented

below, is to build a model explicitly consistent with the CPT constraint for studying

CPV. That implies having identical particle and antiparticle lifetimes, even if the partial

decay widths can be di↵erent for CP conjugate channels due to CP violation. Therefore,

in order to fulfill CPT invariance, the total width for particle and antiparticle should be

equal and, consequently, the CPV seen in one channel should be seen with opposite sign

in other channels.

Within this model the flow of CPV among di↵erent channels is given by two-body final

state interactions. Inelastic scattering of the type PP ! P 0P 0
, with P and P 0

being light

mesons, is the key hadronic e↵ect connecting di↵erent decay channels. As anticipated in

the introduction, interfering resonances are also important sources of CPV, but in this

case within a single decay channel. For this reason the model includes the main resonances

experimentally seen for the channels under scrutiny. Although the resonant amplitudes do

not distribute CPV among di↵erent channels they interfere with the FSI amplitude and

change the ”compound” CPV flow
1
. In short, a CP asymmetry formula is derived in the

lowest order in the strong interaction scattering matrix and decomposed in terms of the

spin of the two-body channels. For the sake of simplicity, only two-body interactions are

considered in the model. The kinematical motivation for retaining the interaction in the

spectator pair is from the fact that the experimental distribution seen for the three-body

phase space is largely located at low energies (AAIJ et al., 2014). The structure observed

in the experimental Dalitz plot, given in Ref. (AAIJ et al., 2014), is parameterized by

the isobar model, where Breit-Wigner distributions outline the main resonances, namely

⇢ and f0(980), plus a non-resonant background. Furthermore, the inelastic scattering

amplitude ⇡⇡ $ KK, connecting the coupled channels, is incorporated in the description

of the three-body decay amplitude.

Sec. 2.2 is devoted to present a simple application of the aforementioned model, where

it is possible to see a suppression of the CPV in decays like B ! PV , where P = ⇡ or K

and V is a vector meson. The approach allows one to analyze the three-body phase-space

in resonant regions without relying on a full amplitude analysis and has as outcome that,

around regions arising from intermediate states like PV , the CPV should be very low.

The third part, presented in Sec. 2.3, is devoted to build a model for the three-body

decay amplitude with FSI e↵ects including all the mesons in the final state. This model

is based on the inhomogeneous Bethe-Salpeter equation projected onto the LF and solved

perturbatively. Finally, issue of the partonic (or source) amplitudes is presented, show-

ing that the need of a full approach for embedding the quark-level amplitudes moves the

research work into a much broader area: the proper description of non-perturbative sys-

1The term compound CPV will be adopted to refer to CPV distributed among di↵erent channels by
FSI (ATWOOD; SONI, 1998).
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tems in quantum field theory. That paves the way of the rest of the thesis, where the

homogeneous Bethe-Salpeter approach is developed and solved for some relevant bound

systems.

2.1 CP violation and the CPT constraint

As mentioned in the introduction, the first evidence of CPV in charged systems was

shown by Bander, Silverman and Soni in Ref. (BANDER; SILVERMAN; SONI, 1979),

where it was proposed what is known as the BSS mechanism. The hadron decay amplitude

is proposed to be a sum of two terms as

A±
= A� + B�e

±i�, (2.6)

where A�, B� are, in a general scenario, complex functions invariant under CP and e±i�
,

the CP-violating phase, which enters linearly at lowest order in the decay amplitude.

CP conjugation changes only the sign multiplying the weak phase � in Eq. (2.6). The

two terms, at leading order, can be associated with the tree and penguin diagrams that

interfere producing measurable asymmetries in reactions involving the b quark, as shown

by Bander, Silverman and Soni. Figure 2.2 shows the tree and penguin diagrams for a

generic reaction b! f + q + q̄ associated to the terms of Eq. (2.6), with f (d or s), q and

q̄ denoting quark flavors.

q̄

b

f

q

W

W

b
f

g q

q̄

FIGURE 2.2 – Tree (left) and penguin (right) diagrams for the reaction b! fqq̄, where

f = d, s.

The goal now is to formulate a decay amplitude consistent with CPT invariance that

takes into account the BSS mechanism presented in Eq. (2.6). The notation adopted in

this section to derive the B meson decay amplitude consistent with the CPT constraint

follows Refs. (MARSHAK; RIAZUDDIN; RYAN, 1969; BRANCO; LAVOURA; SILVA,

1999; BEDIAGA; FREDERICO; LOURENÇO, 2014; NOGUEIRA et al., 2015), where

topics related to the ones discussed here are treated.

As it is well known in quantum field theory, the CPT transformation has a status
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of fundamental symmetry, with the straightforward consequence that any Hamiltonian

within the SM conserves CPT, i.e

(CPT )
�1 Hw CPT = Hw and (CPT )

�1 Hs CPT = Hs, (2.7)

where Hw and Hs are, respectively, the weak and strong Hamiltonians. Representing

the initial hadron state by |hi and the interacting final state by |�outi, the weak decay

amplitude is simply given by the following matrix element

h�out|Hw|hi = h�out|(CPT )
�1 Hw CPT |hi = �h��h�in|Hw|hi⇤ , (2.8)

where �h,� are complex phases coming from the CPT operator applied to the states, e.g.

CPT |�i = ��h�|, and �in denotes the initial state a↵ected by the strong interaction. Now

introducing the completeness relation of the interacting states,
P

�̄0 |�̄0outih�̄0out| = 1, in

Eq. (2.8) and taking into account that Hw is a Hermitian operator, one gets

h�out|Hw|hi = �h��
X

�
0

S
�
0
,�
h�0

out
|Hw|hi⇤, S

�
0
,�

= h�0
out

|�ini = S�0,�, (2.9)

where Si,j represents S-matrix elements.

The fundamental constraint of the model, the CPT invariance, is implemented in

practice by requiring that the sum over all the partial widths to be the same for the hadron

|hi and its CP conjugate, since particle and antiparticle must have equal mean lifetimes by

CPT. This consequence of Eq. (2.9) and the hermiticity of the weak Hamiltonian operator

can be summarized through the following expression

X

�

|h�out|Hw|hi|2 =

X

�

|h�out|Hw|hi|2. (2.10)

The decay amplitude discussed above within CPT invariance carries the strong interaction

present in the final state. It can be related to the BSS mechanism, from Eq. (2.6), by

A�
�

= h�out|Hw|hi, A+
�

= h�out|Hw|hi. (2.11)

Therefore, writing the BSS decay amplitude consistently with CPT invariance gives the

following expression

A� + e⌥i �B� = �h��
X

�0

S�0,�
�
A�0 + e±i �B�0

�⇤
, (2.12)

which establishes a connection between the amplitudes A�, B� and their conjugates.

The CPT constrain of Eq. (2.10) sums over the decay widths �� of the final state
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channels, denoted by �̄, of the kinematically allowed phase-space and can be written in a

more convenient notation by

X

�

�(A�
�
) =

X

�

�(A+
�
). (2.13)

After the formation of the final state hadrons, the mesons can interact through final

state interactions. It is useful to introduce the expansion of the strongly interacting state

in terms of the free state |�0i and the states carrying the FSI e↵ects in higher orders, i.e

|�outi = |�0i+ . . . where the dots indicate the interacting states with the FSI corrections.

The expansion allows one to rewrite Eq. (2.9) as

h�out|Hw|hi = �h��
X

�
0

S
�
0
,�
h�00|Hw|hi⇤ + · · · =

X

�0

(��0,� + i t�0,�) h�00|Hw|hi+ · · · ,

where the scattering matrix are written in terms of the T-matrix t�0,�.

The only source of mesonic strong interactions at leading order (LO) is from the T-

matrix. In this formalism, the FSI e↵ect enters simply in LO in the decay amplitude

and will be introduced by replacing A� ! A0� and B� ! B0�, where A0� is the decay

amplitude related to the tree (left panel of Fig. 2.2) and B0� to the penguin (right panel

of Fig. 2.2) diagrams. These diagrams and their higher orders compose the BSS model.

Hence Eq. (2.12) turns into

A0� + e⌥i �B0� = �h��
�
A0� + e±i �B0�

�⇤
+ i�h��

X

�0

t�0,�
�
A0�0 + e±i �B0�0

�⇤
. (2.14)

Another important point to bear in mind is that only two-body interacting terms are

taken into account in this formalism, as in what follows the T-matrix is restricted to its

lowest order. Taking into account the CPT constraint as

h�0|Hw|hi = �h��h�0|Hw|hi⇤ , (2.15)

one gets that the partonic amplitudes should be related as A0�(B0�) = �h��A⇤
0�(B

⇤
0�).

Consequently, the decay amplitude up to the leading order in t�0,� reduces to a simpler

form, more common in the literature. (WOLFENSTEIN, 1991; BIGI; SANDA, 2009),

A±
LO

= A0� + e±i�B0� + i
X

�0

t�0,�
�
A0�0 + e±i�B0�0

�
. (2.16)

Obtaining the CP asymmetry means calculating the di↵erence ��� = |h�out|Hw|hi|2 �
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|h�out|Hw|hi|2, which computed to leading order in the hadronic interaction, gives

��� = 4(sin �) Im

(
(B0�)

⇤ A0� + i
X

�0

[(B0�)
⇤ t�0,� A0�0 � (B0�0 t�0,�)

⇤ A0�]

)
, (2.17)

where �0 labels each state coupled to the decay channel � by the strong interaction.

In the RHS of Eq. (2.17), the two terms between square brackets, that contain the

scattering matrix elements, correspond to the so-called ”compound” CP asymmetry (AT-

WOOD; SONI, 1998), i.e the one coming from the flow among di↵erent decay channels.

This contribution, enclosing the FSI e↵ects, is notated by ��FSI

�
. When summing over

all the possible decay channels and integrated over the phase-space, these two contribu-

tions cancel each other resulting in
P

�
��FSI

�
= 0, due to the CPT condition. Another

essential consequence of CPT is the constraint at microscopic level, accounted by

X

�

Im [(B0�)
⇤ A0�] = 0.

In the situation where particle and antiparticle amplitudes conserve CP for all decay

channels, this is a trivial condition as it does not involve the flux of CPV among di↵erent

channels owing to FSI. Although it was not taken into account by Wolfenstein (WOLFEN-

STEIN, 1991), the condition is worth to be explicitly tested in practice. In the situation

where only two channels, � and �0, are coupled by FSI, Eq. (2.17) reduces to

��� = 4(sin �) Re

n
(B0�)

⇤ t�0,� A0�0 � (B0�0 t�0,�)
⇤ A0�

o
= ����0 . (2.18)

Equation (2.18) was applied to analyze the large CP violation observed by LHCb

collaboration (AAIJ et al., 2013) in the B± ! K±K+K�
and B± ! K±⇡+⇡�

decay

channels (BEDIAGA; FREDERICO; LOURENÇO, 2014). The observed large CPV was

on the low K+K�
and ⇡+⇡�

mass regions between 1 and 1.6 GeV, where those channels

are known to be coupled by strong interactions (GRAYER et al., 1974; COHEN et al.,

1980). Giving the dominance of the s-wave scattering and after manipulations, the final

expression, apart from a phase-space factor, is simply proportional to

p
1� ⌘2 cos (�KK + �⇡⇡ + �) ,

where ⌘ is the inelasticity parameter and �⇡⇡(KK) the s-wave phase-shifts. These functions

are given by the parametrization of the ⇡⇡ ! KK scattering amplitude proposed in

Ref. (PELÁEZ; YNDURÁIN, 2005).

An interesting particular case of Eq. (2.18) is when the contribution from the diagram

that does not carry the weak phase is insignificant, e.g. A0� = 0 (notice that the corre-
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sponding amplitude of the coupled channel, A0�0 , is not considered to be negligible in this

scenario), for which

��� = 4(sin �) Re{(B0�)
⇤ t�0,� A0�0} .

This expression shows that CP violation still can arise, in this case as a consequence of

the interference between the decay amplitudes in the channels � and �0 (coupled by strong

interactions), and the diagram which carries the weak phase e±i�
. Thereby, CPV can still

exist in a B±
decay channel, �, where the penguin (or tree) contribution is negligible

while in the corresponding coupled channel, �0, the tree (or penguin) contribution can be

neglected. As a consequence, only one channel may carry the weak CP violating phase.

For measurable CPV, the interference needs to happen between amplitudes originating in

di↵erent channels, coupled by the strong interaction. In such an example, the CPV inter-

ference e↵ects will be predominantly coming from FSI, as it would be the only mechanism

linking di↵erent channels.

As previously discussed, this formalism aims to deal with three-body decays but so far

taking into account two-body interactions. Therefore the decay amplitude always assume

a non-interacting particle, not a↵ected by FSI. Three-body FSI it is not yet included in

this formalism, but will be discussed in the next sections. The formalism is similar to

the one developed for the D± ! K±⇡+⇡�
decay in Refs. (MAGALHÃES et al., 2011;

GUIMARÆS et al., 2014; FREDERICO et al., 2014), where the rescattering via three-

body FSI was shown to be small when compared to two-body scattering contributions.

Another important process to take into account is the formation of intermediate res-

onances. In order to do that, the formalism needs to explicitly label the spin of the

two-body state. Certainly, the decomposition in other quantum numbers also needs to be

properly included, but those are kept implicit in the formalism in pursuit of keeping the

notation clean, as no ambiguity happens in terms of them in the later analysis. The spin

is expressed here by the index J , which appears in the decomposition of the amplitudes

A0� and B0�, as well as in the t�0,� matrix. Identifying the angular momentum of the

outgoing channel allows one to introduce the main resonances experimentally seen in the

measured phase-space. Decomposing the decay amplitude of Eq. (2.16) in terms of J ,

A±
LO

=

X

J

�
AJ

0� + e±i�BJ

0�

�
+ i

X

�0,J

tJ
�0,�

�
AJ

0�0 + e±i�BJ

0�0
�
, (2.19)

where, recalling, � (�0) are the two-body channels in the final mesonic state. Although

not explicitly shown, the amplitude includes dependence on the energy-momentum of the

spectator hadron, as well as on other quantum numbers, but this will be displayed only
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when necessary for the sake of simplicity. The decomposed CP asymmetry is, consequently

��� = � (h! �)� �(h! �) = 4(sin �)⇥ (2.20)

⇥
X

J J 0

Im

n�
BJ

0�

�⇤
AJ

0

0� + i
X

�0

h�
BJ

0�

�⇤
tJ

0

�0,� AJ
0

0�0 �
⇣
BJ

0

0�0 t
J
0

�0,�

⌘⇤
AJ

0�

i)
,

where the states �0 are the ones coupled by FSI to the decay channel �.

Everything discussed under the angular momentum decomposition still satisfies the

CPT condition as stated before. Therefore, the CP asymmetry summed over all the

possible decay channels will result in the following

X

�

��� = 4(sin �)
X

� J

Im
⇥�

BJ

0�

�⇤
AJ

0�

⇤
+

X

�

��FSI

�
= 0, (2.21)

where the ��FSI

�
corresponds to the CPV arising from the flow due to FSI and explicitly

fulfills,

X

�

��FSI

�
= 4(sin �)⇥ (2.22)

⇥
X

�0� J

Re
⇥
�h��J

�
BJ

0�

�⇤
tJ
�0,�

�
AJ

0�0
�⇤ � �⇤

h
�⇤
�0JB

J

0�0
�
tJ
�0,�

�⇤
AJ

0�

⇤
= 0.

Recalling that one proves Eq. (2.22) by using A0�(B0�) = �h��A⇤
0�(B

⇤
0�), the symmetry

property tJ
�,�0 = tJ

�0,�, and the fact that di↵erent CP eigenstates are not mixed by strong

interactions, i.e ��J = ��0J .

2.1.1 Resonances, interferences and CPV formula

Resonance formation corresponds to an essential contribution in the decay process.

It can happen both at the partonic amplitude level, as well as a hadronic e↵ect, while

the mesonic rescattering process is going on. Resonances are particularly important due

to their influence on the dynamics of the phase-space, as they interfere with neighboring

areas. The first step to introduce the resonant structure into the formalism is to separate

the source amplitudes in resonant (R) and non-resonant (NR) parts in the decay amplitude

of Eq. (2.19), i.e

A±
LO

=

X

J

"
X

R

AJ

0�R + AJ

0�NR
+ + e±i�

 
X

R

BJ

0�R + BJ

0�NR

!#
(2.23)

+ i
X

�0,J

tJ
�0,�

"
X

R

AJ

0�0R + AJ

0�0NR
+ e±i�

 
X

R

BJ

0�0R + BJ

0�0NR

!#
.



CHAPTER 2. B-DECAYS: CP VIOLATION AND FSI 47

As said, AJ

0�R and BJ

0�R do not take into account the physical processes happening at

the hadronic level. The entire two-meson rescattering process is fully encoded within the

T-matrix, so that double counting the processes is avoided. The aim is to identify the

resonant amplitudes analogously to how it is performed in the isobar model (BEVAN et

al., 2014) and, therefore, it is useful to establish the following relations

(1 + i tJ
��

)AJ

0�R ! aR

0 FBW

R�
PJ(cos ✓); (1 + i tJ

��
)BJ

0�R ! bR0�F
BW

R�
PJ(cos ✓), (2.24)

where FBW

R�
are Breit-Wigner amplitudes, J is the spin of the resonance and PJ(cos ✓) the

Legendre polynomial, defined in terms of the helicity angle ✓ (see Fig. 2.3) between the

equally charged particles. This is in agreement with the Gottfried-Jackson frame (SAL-

GADO; WEYGAND, 2014), which is used by the experimentalists (AAIJ et al., 2014).

Important to recall that although the formalism is still completely general, in the forth-

coming applications the interest will be on resonances decaying to two spin zero particles.

B+ ⇡0+

⇡�

⇡+

✓
B+ ⇡0+

⇡�

⇡+

✓

(a) (b)

FIGURE 2.3 – Diagram representing the definition of the helicity angle, ✓. As an example,

the B+ ! ⇡+⇡+⇡�
decay, where ⇡0+

is the non-interacting particle. (a): cos ✓ < 0 (✓ > ⇡

2 ).

(b): cos ✓ > 0 (✓ < ⇡

2 ).

Introducing the relations given in Eq. (2.24), the decay amplitude can be written as

A±
LO

=

X

J R

�
aR

0� + e±i�bR0
�
FBW

R�
PJ(cos ✓) +

X

J

�
AJ

0�NR
+ e±i�BJ

0�NR

�

+ i
X

�0,J

tJ
�0,�

�
AJ

0�0NR
+ e±i�BJ

0�0NR

�
, (2.25)

where the first two terms on the RHS correspond to the isobar model, the first one

enclosing all the resonant structures and the second being the partoninc process when

it leads directly to the final state. The two-body hadronic final state interactions are,

naturally, in the third term where the scattering matrix elements appear. This term is

supposed to also carry the possibility of the resonance being formed during the rescattering

process, e.g. P 0P 0 ! R! PP .
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From the decay amplitude of Eq. (2.25) the final CP asymmetry formula reads

��� = � (h! �)� �(h! �) = 4(sin �) ⇥ (2.26)

⇥
X

J J 0

Im

( 
X

R

bR0�FBW
R� PJ(cos ✓) + BJ

0�NR

!⇤ X

R0

aR0

0�FBW
R0� PJ 0(cos ✓) + AJ 0

0�NR

!

+ i
X

�0

 
X

R

bR0�FBW
R� PJ(cos ✓) + BJ

0�NR

!⇤

tJ
0

�0,�

 
X

R0

aR0

0�0FBW
R0�0PJ 0(cos ✓) + AJ 0

0�0NR

!

� i
X

�0

 
X

R0

bR
0

0�0FBW
R0�0PJ 0(cos ✓) + BJ 0

0�0NR

!⇤ h
tJ

0

�0,�

i⇤
 
X

R

aR
0�FBW

R� PJ(cos ✓) + AJ
0�NR

!)
.

This expression still depends explicitly on two variables in the three-body decay context,

e.g. the two-body invariant masses m2
12 and m2

23, and the index � that indicates the decay

channel and includes all the possible kinematical regions. As the Breit-Wigner distribu-

tions were introduced by hand to relate the formalism with the isobar model, it is essential

to explicitly check the CPT constraint while performing the experimental data analysis.

There might be terms which are not consistent with the CPT constraint, thus Eq. (2.26)

needs to be integrated over the phase-space and summed over all decay channels after the

fitting procedure, showing that
R

dm2
12 dm2

23

P
�
��� = 0 is still satisfied (NOGUEIRA et

al., 2015).

Equation (2.26) represents the final formal step of the derivation, and describes, in a

general manner, the CP asymmetry in a weak decay channel � enclosing partonic e↵ects,

resonant structures, final state interactions and interference terms. All the interactions

are at two-body level. The CPT constraint needs to be verified in every calculation, which

is easily achievable within the formalism. Now it is time to specify the cases which will

be treated with the CPV formula. Two three-body decays will be analyzed with the

formula in this study, namely B± ! ⇡±⇡+⇡�
and B± ! K±⇡+⇡�

. As it was shown

experimentally (AAIJ et al., 2014; GARMASH et al., 2006; AUBERT et al., 2005), the

vector ⇢(770) and the scalar f0(980) resonances are the dominant ones in the dynamics

of those decays for low invariant ⇡+⇡�
masses. These resonances are assumed to decay

always in the ⇡⇡ channel. Moreover, it is also known that the s-wave coupling between

the strongly interacting channels ⇡⇡ and KK is very large (COHEN et al., 1980), being

the exception as early experiments have shown that the elastic regime is predominant

in the low ⇡⇡ and K⇡ mass regions (GRAYER et al., 1974). This knowledge on the

suppression of inelastic transitions makes reasonable to assume that transitions between

di↵erent channels are uncommon. Therefore, the aforementioned resonances will be the

ones included, as well as their interference with the non-resonant background and tJ=0
⇡⇡!KK

amplitude.

The partonic amplitudes now can be explicitly identified by the specific structures of
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the decays under study as

A0�R = a⇢0F
BW
⇢

k(s) cos ✓ + af

0F
BW
f

, B0�R = b⇢0F
BW
⇢

k(s) cos ✓ + bf0F
BW
f

,

A0�NR =
anr

0�

1 +
s

⇤2
�

, B0�NR =
bnr0�

1 +
s

⇤2
�

, (2.27)

where the Breit-Wigner distribution, representing the decay of a resonance R, takes the

form (TANABASHI et al., 2018)

FBW
R

(s) =
1

m2
R
� s� imR�R(s)

, (2.28)

where mR, a fixed input parameter, is the resonance mass and �R(s), given by

�R(s) =

�
s

4 �m2
⇡

�1/2
mR�0

R⇣
m2

R
4 �m2

⇡

⌘1/2

s1/2
, (2.29)

denotes the energy dependent relativistic width and where �0
R

is the resonance width.

All the masses and widths are experimentally known in the literature. Particularly,

the resonance masses are given by m⇢ = 0.775 GeV and mf = 0.975 GeV, and the widths

are fixed as �0
⇢

= 0.150 GeV and �0
f

= 0.044 GeV (TANABASHI et al., 2018; AITALA

et al., 2001) in the analysis published in Ref. (NOGUEIRA et al., 2015), that will be as

follows. More explicitly, the resonant and non-resonant terms of the B± ! ⇡±⇡+⇡�
and

B± ! K±⇡+⇡�
decays, takes the form

A±
0� = a⇢0F

BW
⇢

k(s) cos ✓ + af

0F
BW
f

+
anr

0� + bnr0�e
±i�

1 +
s

⇤2
�

+ [b⇢0F
BW
⇢

k(s) cos ✓ + bf0F
BW
f

]e±i�, (2.30)

where k(s) =

q
1� 4m2

⇡
s

is a kinematical factor that takes into account the threshold

behavior of the ⇢ p-wave amplitude. The angle ✓, illustrated in Fig. 2.3, is conveniently

defined, for the subsequent experimental data, as the angle between the non-interacting

with its equally charged particle in the final state. Therefore, �1  cos ✓  1 is related

to the spin of the ⇢ resonance. This is one of variables that characterize the three-body

decay phase-space, as it will be seen later.

Another ingredient considered in the modeled amplitude is the form factor

⇣
1 +

s

⇤2
�

⌘�1

,

which parametrizes the squared mass dependence in the non resonant partonic amplitude.

The quark-level tree and penguin diagrams, which composes the partonic decay ampli-

tude, depend on the structure of the mesons involved in the diagram, i.e on their wave
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functions. In favor of simplicity, the form factor is chosen to depend on only one of the

independent Mandelstam variables, but still accounts the power-law behavior expected

from the hard momentum structure of the involved mesons (BRAMBILLA et al., 2014).

The value of the ⇤ parameters should, roughly, be scaled by ⇤QCD, though this is just

an empirical guide for fixing them. The values chosen here were ⇤� = ⇤⇡⇡ = 3.0 GeV

and ⇤�0 = ⇤KK = 4.0 GeV. Worth to say that no significant change is seen in the fitting

with changes up to 50% of these parameters. As it is known, the partonic amplitudes are

very complicated to be properly described, although it deserves a deeper understanding.

However this simple model will be adopted, as its characterization is beyond the scope of

the present study.

The CP asymmetry given by Eq. (2.26) can be written for the specific decay amplitude

discussed above (2.30) as

��� = 4(sin �)Im

" 
b⇢0F

BW
⇢

k(s) cos ✓ + bf0F
BW
f

+
bnr0�

1 +
s

⇤2
�

!⇤

⇥

⇥
 

a⇢0F
BW
⇢

k(s) cos ✓ + af

0F
BW
f

+
anr

0�

1 +
s

⇤2
�

!#

+ 4(sin �) Re

(
X

�0

" 
b⇢0F

BW
⇢

k(s) cos ✓ + bf0F
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, (2.31)

where � designates the di↵erent regions of the phase-space for a given decay channel and

�0 are the corresponding coupled channels, i.e. ⇡KK or KKK coupled, respectively, to

⇡⇡⇡ and K⇡⇡. It has already been placed J = 0 for the T-matrix, since only the s-wave

channel will be considered. The CPV from the coupling between di↵erent decay channels,

originated by FSI and its interferences with resonant and non resonant amplitudes, are

fully concentrated in the terms between curly brackets.

The last ingredient missing to write down the explicit formula for the CP asymmetry

is the ⇡⇡ ! KK rescattering amplitude. It is given by the s-wave isoscalar inelastic T-

matrix, corresponding to the o↵-diagonal S-matrix elements. The two-channel S-matrix

can be written as

S =

"
⌘e2i�⇡⇡ i

p
1� ⌘2 ei(�⇡⇡+�KK)

i
p

1� ⌘2 ei(�⇡⇡+�KK) ⌘e2i�KK

#
, (2.32)

where ⌘(s) is the inelasticity parameter and �⇡⇡(s) the ⇡⇡ phase-shift. The explicit form of

these expressions are presented in Ref. (PELÁEZ; YNDURÁIN, 2005), which incorporate

the requirements of analyticity and unitarity, and being fully consistent with the known
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⇡⇡ scattering experimental data. In Eq. (2.32), the inelasticity parameter reads

⌘(s) = 1�
✓
✏1

k2

s1/2
+ ✏2

k2
2

s

◆
M 02 � s

s
; k2 =

p
s� 4m2

K

2
, (2.33)

where the phase shift is written as

�⇡⇡(s) =
1

2
cos

�1

(
cot

2
[�⇡⇡(s)]� 1

cot2[�⇡⇡(s)] + 1

)
; cot(�⇡⇡) = c0

(s�M2
s
)(M2

f
� s)

M2
f
s1/2

|k2|
k2
2

. (2.34)

The input parameters involved in the equations above, as fixed in Ref. (PELÁEZ; YN-

DURÁIN, 2005), are quantified as follows: mK = 0.494 GeV, Ms = 0.92 GeV, M 0
=

1.5 GeV, Mf = 1.32 GeV, ✏1 = 2.4, ✏2 = �5.5, and c0 = 1.3, Important to note that, for

simplicity, the central values of the parameters are used, without considering their uncer-

tainties as given in (PELÁEZ; YNDURÁIN, 2005). Therefore, one source of uncertainty

in this model are the errors in the parametrization of the ⇡⇡ phase shift and inelasticity

parameter. The model aims to describe the main CPV dynamics, but not the whole rich

structure observed in the full phase-space. The pion mass is assumed to be degenerated

for ⇡±
and given by m⇡ = 0.138 GeV. An assumption made here is that the phase-shifts

are comparable for both ⇡⇡ and KK amplitudes between 1 and 1.6 GeV, i.e. �KK ⇡ �⇡⇡.

With all the ingredients in hand, the CP asymmetry formula (2.31) can be further elab-

orated, by using simple relations between complex numbers as presented in Appendix A.

The goal is to turn all the source amplitudes into coe�cients in each term, as they will

be unknown parameters to be found through the fitting procedure. Using the formulas

presented in Appendix A, one can write the explicit formula for the fitting as
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(2.35)
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where � designates the decay channels, ⇡±⇡+⇡�
or K±⇡+⇡�

, and the subindex �0 corre-

sponds to the respective coupled channels, ⇡±K+K�
or K±K+K�

. As explicitly studied

in Ref. (NOGUEIRA et al., 2015), the terms containing the parameters A, C, H, P and

Q are not CPT invariant, either locally or globally, and have to be zero. Moreover, as

done in Ref. (NOGUEIRA et al., 2015), the parameter B0
is chosen to be zero, so the

whole e↵ect of the rescattering term is concentrated in the term containing the parameter

B. In summary, the free parameters to be fitted in Eq. (2.35) are B, D, D0
, E , E 0

, F , G,

H0
and P 0

. It is important to keep in mind that ⇤� = 3 GeV and ⇤�0 = 4 GeV are fixed

parameters associated to the size of the incoming bound state, as explained in detail below

Eq. (2.30). The inelasticity, ⌘(s), and phase shift, �⇡,⇡(s), are fixed by the ⇡⇡ ! KK

scattering experimental data following the parametrization given in Ref. (PELÁEZ; YN-

DURÁIN, 2005) (see Eqs. (2.33) and (2.34)). Furthermore, FBW

R
is the Breit-Wigner

distribution, given by Eq. (2.28), and �R is the energy dependent relativistic width, given

by Eq. (2.29). All the masses of the particles (m⇡, mK , m⇢, mf , mB) and particle widths

(�0
⇢
,�0

f
) involved in Eq. (2.35) are fixed by the well-known experimental measurements

listed in Ref. (TANABASHI et al., 2018).

Worth mentioning that in Eq. (15) of Ref. (BEDIAGA; FREDERICO; LOURENÇO,

2014) only the terms of parameters B and B0
were present and, therefore, all the other

structures of Eq. (2.35) besides those were introduced for the first time in the research

performed in this thesis. The content of these new structures included here account for

the amplitudes of the resonances ⇢ and f0(980), the non resonant background amplitude

and all the possible interference terms among the involved amplitudes. None of these

structures were ever taken into account in an explicitly CPT invariant model before,

with this being the first time that the whole three-body phase space of the channels

B ! ⇡⇡⇡ and B ! K⇡⇡ was studied in detail with such a CPT invariant model, as in

Ref. (BEDIAGA; FREDERICO; LOURENÇO, 2014) it was only considered the region

of two-body invariant masses between 1 and 1.6 GeV. This is also the first CPT invariant

model compatible with the isobasic model, widely used by experimentalists.

The expression above, before used to fit the experimental data (AAIJ et al., 2014),

needs to be expressed only in terms of the low invariant mass
p

s = m⇡+⇡� . Moreover,

experimentally the phase-space was defined in two regions, namely the ones defined by

cos ✓ < 0 and cos ✓ > 0. One can write the dependence of the angle ✓ through the

kinematics of the decay, e.g. for the B+ ! ⇡+⇡+⇡�
case, as

2

cos ✓ =
2m2

⇡
0+⇡� �m2

B
� 3m2

⇡
+ s

2 (s� 4m2
⇡
)
1/2

h
(m2

B�m2
⇡�s)2

4s �m2
⇡

i1/2 , (2.36)

2See the complete derivation in Ref. (NOGUEIRA et al., 2015).
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where mB = 5.279 GeV is the B meson mass (TANABASHI et al., 2018). There-

fore, it is necessary to perform the integration ��(s) ⌘
R
���(s, m2

⇡0+⇡+) dm2
⇡0+⇡+ =

��(s)(cos ✓<0)
+ ��(s)(cos ✓>0)

, eliminating the dependence on m2
⇡0+⇡+ and separating the

phase space. This process is done in the appendix of Ref. (NOGUEIRA et al., 2015). The

remaining Mandelstam variable, s, is the interacting pair square mass. Notice that, al-

though Eq. (2.35) is long, every term in it correspond to one possible interference within

the phase space, under the ingredients considered in the model. The whole set of co-

e�cients, i.e. A, B, · · · , Q, is presented in its original form, as obtained through the

derivation, in Appendix A.

It is worth stressing that a di↵erent but equivalent form of the tJ=0
⇡⇡!KK

amplitude

can be written, namely |K�| cos(�� + ��0 + ��), where K� = B⇤
0�A0�0 � B0�A⇤

0�0 and

�� = �i ln(K�/|K�|). This was the form presented in Ref. (BEDIAGA; FREDERICO;

LOURENÇO, 2014), where it was assumed that �� = 0. Here, instead, the same ampli-

tude was written in terms of B and B0
, where a zero phase would correspond to B0

= 0.

This condition is later on obtained in the fitting procedure. Just as an illustration, but

eliminating all the terms that violate CPT in Eq. (2.35), as they must vanish once the

asymmetry is integrated over the phase-space, and eliminating the terms shown by the

fitting procedure to be suppressed, one gets for the B± ! ⇡±⇡+⇡�
decay

��� =
B cos[2�⇡⇡(s)]

p
1� ⌘2(s)⇣

1 + s
⇤2

�
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1 + s

⇤2
�0

⌘ + |FBW
⇢ (s)|2k(s) cos ✓

(
D(m2

⇢ � s)

1 + s
⇤2

�

+
Em⇢�⇢(s)

1 + s
⇤2

�

)

+ FBW
⇢ (s)|2|FBW

f (s)|2k(s) cos ✓ ⇥

⇥
�
F [(m2

⇢ � s)(m2
f � s) + m⇢�⇢(s)mf�f (s)] + G[(m2

⇢ � s)mf�f (s)�m⇢�⇢(s)(m
2
f � s)]

 
.

(2.37)

which is a much simpler formula. For the B± ! K±⇡+⇡�
decay, the same formula

is valid but with the term multiplying D0
in Eq. (2.35) also appearing as non-zero in

the fit. It is straightforward to notice that Eq. (2.37) simply presents the interferences

among the non-resonant background, the resonances ⇢(770) and f0(980) and the s-wave

KK ! ⇡⇡ amplitude. The coupling between channels in the B±
decays to ⇡±K+K�

and

K±K+K�
is an outcome of the fitting and, since it presents purely compound CPV, only

B is non-zero.

2.1.2 Analyzing the CPV experimental data

The aim now is to use Eq. (2.35), integrated in one of the two-body invariant masses

as explained in the previous section, to analyze the experimental data, for the di↵erence

between the B�
and B+

di↵erential decay rates of Ref. (AAIJ et al., 2014). For the
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two decay channels, namely B± ! ⇡±⇡+⇡�
and B± ! K±⇡+⇡�

, the CPV distributions

given by Eq. (2.35) are fitted. Following the way how the data was presented (AAIJ et

al., 2014), the fit is over the CPV distribution on the ⇡+⇡�
invariant mass, m⇡+⇡� =

p
s,

where the resonant structure, as well as the compound CPV, is more prominent. For the

B± ! ⇡±⇡+⇡�
decay, the fitting is performed in the region of the space where cos ✓ > 0.

The fitting procedure to find the relevant parameters compatible with the experimen-

tal data follows the �2
method. Important to notice that the ✓ angle definition in the

formalism derived for the B± ! ⇡±⇡+⇡�
decay is the opposite as the definition followed

in Ref. (AAIJ et al., 2014), i.e. cos ✓ > 0 ! cos ✓ < 0 and cos ✓ < 0 ! cos ✓ > 0. With

the parameters fixed, the CP asymmetry is plotted for cos ✓ < 0 and compared with the

data. For the B± ! K±⇡+⇡�
decay instead, the fit was performed in the cos ✓ < 0 region.

The CPV of the corresponding coupled channels, B± ! ⇡±K+K�
and B± ! K±K+K�

,

are compared with the formula where the coe�cient of the term carrying FSI, namely the

one multiplying B, has been fixed by the previous fitting of the respective coupled chan-

nels. All the CPV in the coupled channels is assumed to be coming from the two-body

rescattering and, therefore, only B is non-zero for them. This assumption is supported by

the features of the experimental data, as no resonant interference is measured in the region

between 1 and 1.6 GeV. Important to mention that the model developed here includes

only specific ingredients and, therefore, other contributions, as well as the B± ! ⇡±⇡+⇡�

decay amplitude symmetrization, are lacking and would be interesting to be considered

to describe more details of other regions of the phase space (AAIJ et al., 2014).

2.1.3 B ! ⇡⇡⇡ decay

The first step is to carry out the fit of the integrated Eq. (2.35) to the measured

CPV distribution over the low ⇡+⇡�
invariant mass projection for the B± ! ⇡±⇡+⇡�

decay in the region cos ✓ > 0. This decay channel has two identical pions in its final

state and, as discussed, the necessary symmetrization e↵ects are not taken into account

in the developed model. It is expected that this deficiency of the model might spoil some

regions of the fitting and, hence, some study to minimize the negative impact is needed.

This can be done by examining Fig. 2.4, from where it is possible to conclude that the

CP asymmetry is mostly a↵ected for cos ✓ < 0 when m⇡+⇡� is high, while the e↵ect is

minimum for cos ✓ > 0. The angle ✓, as already mentioned (see Fig. 2.3), is the angle

between the equally-charged pions, i.e. ⇡0+
and ⇡+

. The CP symmetry is sensitive to

the invariant mass of the system (⇡0+, ⇡�
), but if it is correctly symmetrized ✓ and ⇡ � ✓

should produce the same result. Figure 2.4 shows that when cos ✓ < 0 the invariant mass

of the pair containing the bachelor particle stays below ⇡ 3 GeV. The plot shows the

invariant mass of the system (⇡0+, ⇡�
), for fixed invariant mass of the system (⇡+, ⇡�

),
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FIGURE 2.4 – m⇡0+⇡� as a function of cos ✓ for some particular values of m⇡+⇡� .

that contains the interaction. Since the region of interest here is under 1.6 GeV, it can

be a↵ected by the lack of symmetrization of the decay amplitude if the fit is performed

for cos ✓ < 0. Meanwhile, for cos ✓ > 0, m⇡0+⇡� ' 3 GeV, what reduces the lack of

symmetrization e↵ects in the range under study (m⇡0+⇡� < 1.6 GeV). Choosing the less

a↵ected region is, obviously, a palliative measure and the symmetrization e↵ects need to

be studied with more care in the future. The symmetrization of the decay amplitude

could considerably increase the number of free parameters if the relations between the

partonic amplitudes are not carefully considered, as twice as many terms will be present

in the CPV expression. Moreover, following the discussion above, not using the data for

cos ✓ < 0 to find the fitting parameters will ensure more reliable results, even if the model

misses the Bose symmetrization of the decay amplitude.

The fitting outcome is shown in Fig. 2.5a, while the right side of Fig. 2.5 displays

each individual non-zero term. All these contributions are locally consistent with CPT,

as explained in detail in Ref. (NOGUEIRA et al., 2015), which means that the integration

over the phase space of each contribution is vanishing individually. More explicitly, these

terms are: 1) the ⇡+⇡� ! K+K�
rescattering amplitude, with coe�cient B; 2) both real

and imaginary parts of the interference between the ⇢ Breit-Wigner and the non-resonant

amplitudes, corresponding to the D and E parameters; and 3) the interference between the

imaginary part of the ⇢ and the f0(980) Breit-Wigner amplitudes, where the coe�cient

is G. It is notable the fact that each term contributing to the fitting is clearly related

to a particular structure in the CPV dynamics. As measured by LHCb, ⇢ is the main

resonance in the ⇡⇡⇡ phase space and its spin structure is clearly seen in Figs. 2.5 and

2.6, with the CP asymmetry changing sign almost exactly at the ⇢ mass. This structure is

also locally CPT invariant, as it vanishes when the term of D integrated over m⇡+⇡� and
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when the term of E is integrated over the whole phase space (including over cos ✓). The

presence of the amplitude related to the scalar meson f0(980) is also consistent with the

known dynamics and, analogously, the term of G vanishes when integrated over the phase

space. Exploring the dynamics at this level of detail for these decays within an explicitly

CPT invariant model was never considered before in the literature.
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(a) (b)

FIGURE 2.5 – CP violation distribution in the B± ! ⇡±⇡+⇡�
decay. Solid line: fit

of the experimental data by using the integrated Eq. (2.35) (cos ✓ > 0). (a) total and

(b) individual contributions. Dots: experimental data from Fig. 4c of Ref. (AAIJ et al.,
2014). Notice that B, D, E and G are the same as, respectively, B, D, E and G.

All the explicit values of the non zero parameters obtained in the fit are presented in

Table 2.1. The contributions from the amplitudes of the parameters D and E are related

to the ⇢ meson and are especially significant for the real part of the Breit-Wigner, while

f0(980) appears only in the interfering term with ⇢, that is related to G. In the rescattering

region, i.e. between 1 and 1.6 GeV, the ⇡+⇡� ! K+K�
amplitude (B term) dominates,

as anticipated in Ref. (BEDIAGA; FREDERICO; LOURENÇO, 2014). The asymmetry

related to the rescattering amplitude, unlike the other terms, is not locally CPT invariant
3

and, therefore, does not vanish when integrated over the phase space. Due to the inelastic

scattering, this CPV is distributed between di↵erent channels, as previously explained.

The key coupled channel in this case is B± ! ⇡±K+K�
, and should have an equal amount

of CP asymmetry as B± ! ⇡±⇡+⇡�
between 1 and 1.6 GeV but with an opposite sign.

This will be checked as follows.

3The asymmetry is not locally CPT invariant if it does not vanish when integrated over the phase
space of the decay channel under scrutiny.
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B �24.02 ± 3

D 7.82 ± 0.6

E �1.23 ± 1

G �0.534 ± 0.3

�2/ndf 42.48/26

TABLE 2.1 – Non zero parameters, outcome of the fitting procedure for Fig. 2.5. All the

other parameters of Eq. (2.35) are zero. The value of �2
for the fitting is also presented.

The errors of the parameters give a rough estimate on how important the correspondent

term in Eq. (2.35) is to the fit. This combination of free parameters is the one that gives

the best fit, all the others are zero, either due to CPT invariance or for decreasing the

quality of the fit.

One can use the parameters found through the fitting procedure to fix Eq. (2.35) and

compare it with the data in the cos ✓ < 0 region. It is expect that this region will not be

perfectly represented, due to the issues mentioned above, but it is interesting to check if the

main physical features can be represented. This is done in Fig. 2.6a, where it is seen that,

although with discrepancies, the plot is mostly in fair agreement with experimental data.

Mainly two regions are not reproduced, specifically: below the ⇢(770) meson mass and just

above 1 GeV, where the main contribution comes from the ⇡+⇡� ! K+K�
rescattering

amplitude. Following the symmetrization arguments obtained through Fig. 2.4, the main

suspicion is that the disagreements are related to an interference between ⇢ and ⇡+⇡� !
K+K�

amplitudes in the crossing channels, since for the data above 1 GeV the m⇡0+⇡�

invariant mass for cos ✓ . �0.75 can be even below 1 GeV in the crossing channel. Again,

the contributions term-by-term, which are the same as before but now for negative cos ✓,

are also shown in Fig. 2.6b.

Besides the ones already mentioned, other structures could improve the model and its

representation of the data in the region below the ⇢ mass. For instance, the explicit inclu-

sion of the s-wave ⇡⇡ elastic scattering amplitude also given in (PELÁEZ; YNDURÁIN,

2005). Furthermore, the scalar resonance f0(500) (PELÁEZ, 2016), also called � reso-

nance, could improve the matching of the model with the data for low two-body invariant

mass, as suggested in Ref. (KANG et al., 2014). Worth noting that including such struc-

tures in the formalism needs to be done with care, in order to avoid double counting.

Just as an exercise, the simplified Eq. (2.37) can be used in the fitting, but now without

the form factors

⇣
1 +

s

⇤2
�

⌘�1

, what can be done, for instance, by making ⇤� ! 1. It is

seen in Fig. 2.7 that the form factor hardly changes the shape of the fit, which is good

since its simple structure should not a↵ect the main points under study.
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FIGURE 2.6 – CP violation distribution in the B± ! ⇡±⇡+⇡�
decay from the integrated

Eq. (2.35) (cos ✓ < 0) compared with the experimental data (dots). (a) total and (b)

individual contributions. Experimental data from Fig. 4d of Ref. (AAIJ et al., 2014).

Notice that B, D, E and G are the same as, respectively, B, D, E and G.
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tude form factor in the integrated CP asymmetry (solid lines) formula (2.37).
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2.1.4 B ! ⇡KK decay

After fixing the parameters through the fitting of the ⇡⇡⇡ channel, the CP asymmetry

in the respective coupled channel is obtained as an outcome that can be compared with

experimental data. The CP violation formula for the coupled channel, B± ! ⇡±K+K�
,

derived from Eq. (2.26) and integrated over cos ✓, reads

��⇡KK(s) = � 2A

a0(s)
p

s� 4m2
K

⇣
1 +

s

⇤2
�0

⌘2 �
2B

p
1� ⌘2(s) cos[2�⇡⇡(s)]

a0(s)
p

s� 4m2
K

⇣
1 +

s

⇤2
�

⌘⇣
1 +

s

⇤2
�0

⌘ ,

(2.38)

where a0
(s) is the the kinematical factors coming from the angular integration and is

written as

a0
(s) =

1

(s� 4m2
K

)1/2
h
(M2

B�m2
⇡�s)2

4s �m2
⇡

i1/2 , (2.39)

where the factor
p

s� 4m2
K

, namely the kaon momentum in the rest frame of the KK

subsystem, is the main di↵erence with respect to the kinematical factor of the ⇡⇡⇡ channel.

Due to the fact that the formalism fulfills the CPT constraint, by integrating the decay

width of Eq. (2.35) over cos ✓ one gets precisely Eq. (2.38) integrated over the phase space

but with opposite sign, i.e. ��⇡⇡⇡ = ���⇡KK . Evidently, this is valid only above the

KK threshold, since only in that region the channels are coupled by the ⇡⇡ ! KK

rescattering. As in this region there are no resonant e↵ects, the only two remaining terms

are the ones with parameters the A and B in Eq. (2.35), of which only B is non-zero from

the fitting procedure.

As opposed to the ⇡⇡⇡ channel case, Eq. (2.38) is not separated into two kinematical

regions and is simply obtained by adding the contributions detailed in Figs. 2.5 and

2.6 for the term which contains the ⇡+⇡� ! K+K�
amplitude. The reason is that

LHCb presented the sum of events in the cos ✓ < 0 and cos ✓ > 0 regions for this decay.

The result is compared with the experimental data in Fig. 2.8. The figure shows a fair

agreement between the outcome of the model and the experimental data. Although a small

discrepancy is seen, it is essential to bear in mind that there is an uncertainty present in

the model, coming from the t⇡⇡!KK parametrization, that is not explicitly shown in the

plot. Worth repeating that CPT is conserved, what can be demonstrated by summing all

CP asymmetry contributions obtained for B± ! ⇡±⇡+⇡�
and B± ! ⇡±K+K�

decays

within the model, in the region of two-body invariant mass (m⇡+⇡� and mK+K�) below

1.6 GeV. This is remarkable, showing that, at least for some cases, not many decay

channels need to be considered in order to verify explicitly CPT invariance.
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FIGURE 2.8 – CP violation distribution �� given by Eq. (2.38) compared with the

experimental data (points) for the B± ! ⇡±K+K�
decay. Experimental data from Fig. 7b

of Ref. (AAIJ et al., 2014).

The same procedure can be followed for the two other channels measured in Ref.

(AAIJ et al., 2014), i.e. B± ! K±⇡+⇡�
and its coupled channel B± ! K±K+K�

. In

these decays, the number of measured events is about an order of magnitude bigger than

the ones analyzed before, what enables a more reliable and constrained fit. Additionally,

no symmetrization e↵ect occurs in the fitted channel, K⇡⇡, which makes irrelevant which

region of cos ✓ is chosen for obtaining the partonic amplitudes (A, · · · , Q). In this decay

the most stable region for the fitting is cos ✓ < 0, given that this part of the phase space

emphasizes better the structures included in the model. Further investigation needs to be

done on the cos ✓ > 0 region of the phase space, as its dynamics presents a new feature

not yet clarified. A suggestion made in Ref (BEDIAGA; FREDERICO; LOURENÇO,

2014), within the confines of the present formalism, is the possible existence of double

charm meson rescattering extending to high two-body invariant mass. This would mean

that strong coupling of type ⇡⇡ ! DD or similar would be distributing CPV between

channels, DDK ! KKK or K⇡⇡, in that region. As this e↵ect is far from the KK

threshold and above 1.6 GeV, under investigation here, and can be avoided by neglecting

the cos ✓ < 0 distribution, only cos ✓ > 0 will be treated here.

2.1.5 B ! K⇡⇡ decay

The best fit for the K⇡⇡ channel of the integrated Eq. (2.35) includes the terms

with the following parameters: 1) B, which refers to the CPV flow to the coupled channel

KKK; 2) F and G, associated to the real and imaginary parts of the interference between
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the ⇢ and f0(980) resonances; and 3) D, which is related to the interference of the FBW

⇢

real part with the non-resonant partonic amplitude. This is shown in Fig. 2.9a, where the

best fit to the cos ✓ < 0 region is presented. In Fig. 2.9b the individual components are

displayed. Again the same exercise as before can be done, by integrating each contribution

over the phase space to verify CPT invariance, and all the present contributions vanish

except the term of B. This is a consequence of the CP asymmetry in that region being

distributed to a di↵erent channel, which should have an equal amount, with opposite sign,

of CPV events. As mentioned, the coupled channel in this case is B± ! K±K+K�
.

The main resonant structure present in the B± ! ⇡±⇡+⇡�
decay, as pointed out

experimentally, is f0(980), although ⇢ exists in smaller amounts. Following the BSS

mechanism and thinking on the possible partonic diagrams for this amplitude one also

notices the possibility of quark transitions where f0(980) appears in the final state. It

is evident from the fit that this resonant structure appears as expected. Looking at

Fig. 2.9b one notices that the interference between real parts of ⇢ and f0(980) is the

dominant term. Although present, the imaginary part is less relevant. Above the KK

threshold, as usual, the term that contains the t⇡+⇡�!K+K� amplitude dominates, with

the amplitudes associated to the ⇢ resonance appearing with smaller contributions. The

explicit values of the non zero parameters obtained in the fit are shown in Table 2.2.
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FIGURE 2.9 – CP violation distribution for the B± ! K±⇡+⇡�
decay (cos ✓ < 0 region)

through the integrated Eq. (2.35) fitted to the experimental data (points), presented in

Fig. 5c of Ref. (AAIJ et al., 2014). (a) total and (b) individual contributions. Notice that

B, D, F, G and D’ are the same as, respectively, B, D, F , G and D0
.
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B �80.23 ± 8

D �2.437 ± 1

F �4.48 ± 0.6

G 1.541 ± 0.3

D0
57.41 ± 13

�2/ndf 31.18/25

TABLE 2.2 – Non zero parameters, outcome of the fitting procedure for Fig. 2.9. All the

other parameters of Eq. (2.35) are zero. The value of �2
for the fitting is also presented.

The errors of the parameters give a rough estimate on how important the correspondent

term in Eq. (2.35) is to the fit. This combination of free parameters is the one that gives

the best fit, all the others are zero, either due to CPT invariance or for decreasing the

quality of the fit.

2.1.6 B ! KKK decay

Once the parameters are fixed through the fitting, it is time to compare the outcome

of the rescattering term with the coupled channel to check if it can describe the data and

provide CPT invariance in that region, i.e. ��K⇡⇡ = ���KKK . From the B�
and B+

event distribution, the measured CP violation enclosing the sum of events for cos ✓ < 0

and cos ✓ > 0 provided by LHCb, as done for the B± ! ⇡±K+K�
decay, is compared to

the model in Fig. 2.10. As seen in the figure, for the experimental data concentrated in the

region above 1 GeV the shape of the curve is the same of Eq. (2.38). The only di↵erence

in this case, due to the di↵erent mesons in the final state, is in the kinematical factor a0
(s)

(2.39) which needs the substitution m⇡ ! mK in order to be consistent with the new case.

Again, the only non-zero parameter in the region is B of Eq. (2.35), fixed by the fitting

of the CP asymmetry performed for the B± ! K±⇡+⇡�
decay channel. The agreement

is clear and gives a robust evidence of the importance of the strong coupling between the

channels under discussion. The connection between the CP asymmetry of these channels

was explored for the first time in this study and is another notable indication of the strong

coupling between channels by final state interactions.

2.1.7 The main input: scattering matrix

At this point, the formalism showed to be very successful in the description of CP

violation distributions in heavy meson three-body decays. Evidently this was verified

studying specific decay channels and taking into account their essential features. The

major lessons learned are: CPT can be a practical constraint and strong interaction

among the final state mesons can distribute the CPV among specific decay channels,

sometimes even only two of them. This is remarkable and allows one to think about other

examples that could be explored within this idea. As discussed at the end of Sec. 2.1.4,
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FIGURE 2.10 – CP violation distribution for the sum of both cos ✓ regions in the

B± ! K±K+K�
decay. Experimental values (points) from Figs. 6c and 6d of Ref. (AAIJ

et al., 2014).

strong couplings of the type DDK ! KKK or K⇡⇡ could be related to the interference

seen in the CP asymmetry pattern of the decay K⇡⇡ in a region of the phase space. The

successful application of the model for the studied decays opens the way for exploring

the strong coupling through final state interactions in other decays, and the goal of this

section is to discuss simple alternatives to promote this study. The aim is to discuss this

idea still in the context of B decays in three light pseudoscalars, but now for two-body

invariant mass around 4 GeV, i.e. above the D̄D threshold, always taking into account

final state interactions and the CPT constraint.

In a general manner, while two-body B decays are extensively explored in the litera-

ture, three-body ones still have a lot to be understood. Considering the 2+1 factorization,

i.e. a three-body decay with a non-interacting particle, the properties of two-body decays

can be used to explore three-body decays. Obviously, that involves neglecting three-body

rescattering e↵ects, as done in the formalism treated in the previous sections. The dynam-

ics in three-body decays, even when considering only two-body interactions, is far more

challenging, since their phase space, also called Dalitz plot, depends on two kinematical

variables that can assume various values. If soft final state interactions, meaning the

ones happening once the final state hadrons are formed, are relevant for specific two-body

scattering processes, one can assume that it might contribute to three-body decays with

same final state mesons. That is possible as the B meson initial energy can be more

distributed between the meson pair and the non interacting particle, allowing the pair to

rescatter to di↵erent configurations. Some examples and discussions from the literature,

which brings possible arguments while supporting FSI of the type DD0 ! PP 0
, (D, D0 ⌘
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charmed mesons, P , P 0 ⌘ K, ⇡), will be discussed in what follows.

Bander-Silverman-Soni, in their seminal paper (BANDER; SILVERMAN; SONI, 1979),

already put into discussion quark reactions from the b�quark involving cc̄ intermediate

states. For instance, within the BSS mechanism the process b! cc̄s! uūs emerges con-

tributing to the absorptive part, i.e. strong phase, of the penguin diagram. Low-energy

hadronic FSIs could play that role if the cc̄ pair is understood as a double charm meson

which connects two di↵erent channels through inelastic scattering. As previously shown,

that transition allows CPV consistent with CPT constraint in the formalism developed

here, even if the BSS mechanism is not explicitly taking CPT invariance into account.

The discussion involving CPT invariance within the BSS mechanism was only later

properly introduced, by Gérard and Hou in Ref. (GÉRARD; HOU, 1989). The study by

Gérard and Hou treated mc, the charm quark mass, as a free parameter to study how an

intermediate channel of the type, e.g., b ! scc̄ opens. Thereafter, they could examine

the absorptive part, from the timelike gluon propagator, arising, depending on whether or

not the internal legs goes on-shell for q2 > m2
c

(GÉRARD; HOU, 1991). Although their

study was not directly associated to soft FSIs, it shows the concern of implementing the

fundamental CPT symmetry into CP violation studies.

One essential discussion is whether the e↵ects from the penguin absorptive parts, also

known as hard FSI, are surpassed by hadronic FSI in two-body modes. As discussed in

Ref. (GÉRARD; HOU, 1989), that would make it even more challenging to describe exclu-

sive partial rate asymmetries, given that the involved inelastic phase-shifts are problematic

to be measured. Hadronic FSIs causing CPV in B meson decays was firstly pointed out

by Wolfenstein, in 1991 (WOLFENSTEIN, 1991), where the idea was to carry out the

partial wave decomposition of the scattering amplitude, taking into consideration strong

phase shifts to write down the decay amplitude. This is, of course, an inspiration of the

model developed in Refs. (BEDIAGA; FREDERICO; LOURENÇO, 2014; NOGUEIRA

et al., 2015). Wolfenstein’s formalism was also particularly interesting for conserving CPT

explicitly. This type of formalism, although very promising and theoretically consistent,

depends on the knowledge of the possible mesonic rescatterings, i.e. on the S-matrix,

which can end on the final state under study to understand the CPV distribution in that

specific decay channel.

Although various intermediate transitions can influence the CPV dynamics in three-

body decays, as for example when involving double charm mesons as DD̄ ! PP , inelastic

rescattering processes of the type are poorly explored in the literature, both theoretically

and experimentally. However, there are some relevant studies performed in the two-body

decay context that could be used to understand three-body decays. For instance, the

initial pictorial idea for the B ! ⇡⇡ decay was the B meson decaying into a color-

less qq̄ state with high relative momentum, what would bring small FSI e↵ects in the
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⇡⇡ channel (BJORKEN, 1989). Nevertheless, that was indicated to be inaccurate in

Ref. (DONOGHUE et al., 1996), where it was shown that the meson-meson s-wave in-

teraction at mb energies can be large, as soft FSI can eventually grow for high energies.

The main point is that perturbative calculations usually miss this feature, as the process

has a purely non-perturbative nature. Ref. (WOLFENSTEIN, 1999) also discusses the

relevance of hadronic FSI in heavy meson decays, where it was shown that the strong

phase estimated from the inelastic scattering amplitude can turn significant if the decay

ratio of the involved final states are high. The possibility of large e↵ects from scattering

phase-shift in two-body B decays was also discussed in Ref. (FALK et al., 1998). As a

last example, Ref. (ZENCZYKOWSKI, 1999) also discusses inelastic rescattering contri-

butions in the context of coupled-channel approaches, Regge exchanges, as well as the use

of other hadronic models applied to study two- and three-body decays.

Many well-known approaches in the literature to deal with heavy meson decays are

based on e↵ective field theories, as QCD factorization, perturbative QCD and soft-collinear

e↵ective theory. Although they allow deep studies of B meson decays, some aspects are

still not clear, particularly in three-body decays. Usually soft FSI e↵ects are understood

to be suppressed in the heavy quark limit, because of cancellations occurring between

many intermediate states (BENEKE et al., 1999a). However, this was shown to not be

always the case for physical values of mb (BURAS et al., 2004), especially when involv-

ing intermediate states with high branching fractions (GRONAU; LONDON; ROSNER,

2013). Ref. (ATWOOD; SONI, 1998) brings an interesting set of two-body decays being

analyzed under the e↵ects of hadronic final state interactions, with a similar formalism be-

ing used to explore the B ! KK decay in (LÜ; SHEN; WANG, 2006). Briefly, their idea

is that soft FSI can enhance considerably color-suppressed neutral modes, what a↵ects

considerably the CP violation distribution from pure short-distance physics. It means

that intermediate hadronic channels, e.g. B ! DsD̄ ! K⇡ and B ! DD̄ ! ⇡⇡, can

produce sizable impact on the CP asymmetry. If this type of process can be relevant at

the two-body level, one could expect even higher contributions to three-body decays as

the rescattering process can happen for di↵erent relative energies between the mesons and

a↵ect the dynamics in broad regions of the phase space. As said, obtaining the scattering

amplitude is the major challenge while trying to take into account rescattering processes

in the decay amplitude. However, models like the one in Ref. (ATWOOD; SONI, 1998)

can shed some light on the soft FSI dynamics, even if obtained only for two-body decays

as it can be used to settle the normalization of the scattering matrix element. In the

three-body context, the hadronic transition has to be known with its dependence on the

scattering energy, starting from the opening channel threshold energy, e.g. DD0
, prefer-

ably over the whole phase-space. It is a quite intriguing task the development of models

that can describe that dynamics. One promising path, based on lattice QCD calculations,

has been the study such as the one done for the P-wave ⇡⇡ ! KK coupled-channel,
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and some others, in Ref. (WILSON et al., 2015). Worth mentioning some other papers

dealing with the parametrization of matrix elements to take into account long-distance

e↵ects (SMITH, 2004) and a discussion on allowed regions for soft FSI within QCD fac-

torization (KRÄNKL; MANNEL; VIRTO, 2015).

Given the need of new S-matrix models bringing the necessary inputs for CP violation

studies under the e↵ect of final state interactions, a simple idea is sketched below. This

might be a useful start to account for the contribution coming from coupled channels

involving two light pseudoscalars and two charmed mesons, which can be playing a role in

the CPV distribution recently released by LHCb for high KK, ⇡⇡, K⇡ invariant masses

of three-body B decays (AAIJ et al., 2014).

The goal is to sketch a simple relativistic S-matrix model that describes inelastic

meson-meson rescattering. The parametrization should consider relevant physical ingre-

dients involved in the process. Firstly, thinking about the S-matrix modulus, the two-

meson inelastic collision is simply approximated by the annihilation of the initial hadronic

states producing a qq̄ pair which recombines and generates the final state particles. Im-

plementing the idea is based on three assumptions: 1) the intermediate propagation has

a damping factor like s�1
; 2) the meson breakup into the qq̄ pair, which creates an imbal-

ance in the relative momentum, goes as ⇡
p

s; and 3) a factor going as s�1
related with

the threshold behavior. The threshold behavior also depends on the relative momentum

of the intermediate qq̄ pair, as well as on its valence wave function asymptotic behavior

(for energies ⇡ mb). One can use Ji’s (JI; MA; YUAN, 2003) idea on the s-wave valence

light-cone wave function to fix its asymptotic behavior, which goes as k�2
? in the trans-

verse momentum. For the sake of simplicity, his can be translated into a s�1
damping

factor. All the aforementioned factors together suggest that the S-matrix element should

have a suppression that goes as s�3
. One can now include the threshold energy, sth,

obtaining for the Lorentz invariant S-matrix element a dependence as N
p

s� sth/s3.5,

where N is a normalization factor to ensure the matrix element to meet unitarity. This

parametrization, although simple, is consistent with the s-wave isospin-zero ⇡⇡ ! ⇡⇡

scattering matrix obtained in Ref. (GARCÍA-MARTÍN et al., 2011), being able to re-

produce the respective experimental data if taken into account the proper parameters, as

shown in Fig. 2.11. Worth mentioning that the parametrization is also perfectly consistent

with the inelastic scattering transition of Ref. (PELÁEZ; YNDURÁIN, 2005). Once the

modulus has its shape developed, it is time to discuss the phase-shift parametrization.

The scattering matrix, assuming only two channels, is a unitary SU(2) matrix with three

unknown independent parameters, i.e. the inelasticity ⌘ and the two phase shifts, for say

�PP 0 and �DD0 . One usual way of writing the S-matrix diagonal element in terms of the
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FIGURE 2.11 – (Left panel) Comparison of the s-wave I = 0 ⇡⇡ inelasticity parameter

proposed in (GARCÍA-MARTÍN et al., 2011) with the experimental data. Figure taken

from Ref. (GARCÍA-MARTÍN et al., 2011). (Right panel) The simple parametrization

suggested in the text.

phase-shift and consistent with unitarity is given by

S� = ⌘e2i�� =
k cot �� + ik�
k cot �� � ik�

, (2.40)

where k� =
p

s� sth�/2 is the kinematical factor that takes into account the � channel

threshold.Two channels, represented by the SDD0 and SPP 0 matrix elements, are consid-

ered. In its explicit form, the S-matrix is then assumed to have a pole in k cot � with

momentum s = s0, i.e.

k cot �PP 0 = � c

(1� kPP 0/k0PP 0)
, (2.41)

where k0PP 0 =
p

s0 � sth PP 0/2. The pole represents a node in the projected CP violation

distribution or, physically, a virtual bound state in the charmed two-meson decay channel.

At the threshold momentum this virtual bound state actually exists, as shown in the pre-

vious sections and also in Ref. (NOGUEIRA et al., 2015). The c parameter has dynamical

origin as it constitutes the residue of the pole in k cot � of the PP 0
(light pseudoscalars)

phase-shift. The remaining parameter, for the SDD0 matrix element, is introduced as a

(virtual or real) bound state represented by a scattering length and introduce a node in

the PP 0
channel. In the unitary limit, the scattering length can take the limit a ! 1

with no changes in the result.

The aforementioned idea, of introducing a zero in the S-matrix, is inspired by its non-

relativistic counterpart known as the Ramsauer-Townsend e↵ect. The e↵ect manifests

precisely as a minimum (or a zero) in the scattering amplitude. Although simple, the

parametrization developed above can be further explored and used to fit the experimental

data. It can also have its parameters fixed from models available in the literature in order

to determine the non-diagonal strong S-matrix elements, which is the main ingredient

to explore the compound CP violation. E↵orts in this direction, using elements of the

parametrization explained, have been made recently in Refs. (BEDIAGA; FREDERICO;
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MAGALHÃES, 2018).

2.2 CPT and CP asymmetry suppression in B ! PV

decays

As mentioned before, the main theoretical approaches in the literature nowadays ap-

plied to perform calculations on CP violation for B decays are based on short distance

factorization and do not incorporate CPT invariance explicitly. Apart from that, if the

CP asymmetry does not vanish after integrated over the phase space of a decay channel

it must exist an equal sum, with opposite sign, distributed among other decay channels.

Depending on how many existing coupled channels, verifying that explicitly can be very

challenging. However, the mechanism responsible to distribute the CPV among di↵erent

channels, that is to say final state interactions, is in general quite restrictive. In particu-

lar, for processes involving one pseudo-scalar and one vector particle in the final state, i.e.

B ! PV , the CPV from quark-level processes might be suppressed if CPT invariance is

explicitly taken into account.

This section presents a simple and straightforward consequence of the CPT invari-

ant model developed previously. The content presented in this section was published in

Ref. (NOGUEIRA et al., 2016), where a simple model was developed to analyze CPV in

regions of three-body phase spaces involving intermediate vector mesons. The model is

particularly interesting due to its simple and practical structure, avoiding the need of a

full amplitude analysis.

Short distance approaches are based on the fact that the strong coupling constant

is small, due to the nature of the process mainly dominated by high energy interac-

tions, thus allowing the use of pertubation theory techniques. Nevertheless, most QCD

processes involve color confinement, particularly when hadrons are formed, requiring a

non-perturbative treatment. To account for that, the idea is to break the decay ampli-

tude into two parts, one perturbatively calculable, enclosing the short distance portion,

and the other one taking part of the non-perturbative long distance physics. The latter

e↵ects are usually obtained from global fits to experiments, as theoretical calculations

are quite challenging. The factorization idea applied to B meson decays started with the

so-called Naive factorization approach (NF) (WIRBEL; STECH; BAUER, 1985), which

combined with ideas of the seminal paper by Lepage and Brodsky (LEPAGE; BROD-

SKY, 1980) originated the leading frameworks in use nowadays, i.e. QCD factorization

(QCDF) (BENEKE et al., 1999b), perturbative QCD (pQCD) (KEUM; LI; SANDA,

2001) and soft- collinear e↵ective theory (SCET) (BAUER; FLEMING; LUKE, 2001).

Although attempts to include hadronic e↵ects has been done (FURMAN et al., 2005),
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those approaches focus mostly on the quark-level perturbative processes. It is worth also

mentioning that mostly the non-perturbative frameworks explored in the literature are

based on the flavour SU(3) symmetry approach used in Refs. (ZEPPENFELD, 1981).

One common characteristics of the aforementioned approaches is that they hardly dis-

cuss the consequences that CPT invariance imposes on the decay amplitude, hoping that

many hadronic channels, involving various numbers of final state mesons, would be coupled

through rescattering processes. This supported the idea that CPT is hardly verifiable in

practice for charmless B decays (BIGI, 2015). As discussed beforehand, experimental data

has been extensively suggesting that multi-meson rescattering is unlikely to be the rul-

ing process in charmless multi body B decays (BEDIAGA; FREDERICO; LOURENÇO,

2014; NOGUEIRA et al., 2015). As also has been discussed here for three-body B decays,

LHCb measurements (AAIJ et al., 2014) show that mostly two-body interactions and low

mass resonances are the dominant leading processes, causing the event distribution to

occupy mainly the edges of the phase space.

The noteworthy compilation carried out in Ref. (CHENG; CHIANG; KUO, 2015)

brings results of CP asymmetries and branching ratios for several two-body charmless

B decays and constitutes an interesting indication for the CP asymmetry suppression

idea presented here. The disagreement between the experimental data and theoretical

calculations, arising from di↵erent frameworks, highlights a poor understanding of the

CP asymmetries, particularly for decays like B ! PV . This is remarkable and suggests

that something special happens for decays involving one pseudoscalar and one vector

meson. Another peculiarity of this kind of decays is that their observables are e↵ectively

measured from three-body phase spaces, making three-body data also useful to indirectly

study two-body decays involved in the phase space dynamics. Following the discussion

above, the idea is to consider in a general manner the possible hadronic processes involved

in B ! PV decays, as well as to build a simple formula to extract their CP asymmetry

from the three-body phase space without relying on complicated amplitude analysis.

Dealing with more specific cases, available theoretical calculations of B ! PV decays

are restricted to the ones including low mass vector resonances, like ⇢(770), K⇤
(890)

and �(1020). The ⇢(770) and K⇤
(892) vector resonances decay always to ⇡⇡ and K⇡,

respectively, while �(1020) has a considerable branching fraction to KK̄ but also decays

significantly to three pions through ⇡⇢(770) (TANABASHI et al., 2018). Moreover, all the

approaches, e.g isobar model and K-matrix, applied for the three-body amplitude analysis

use the (2+1) factorization, i.e. do not consider three- body final state interaction e↵ects.

Therefore, the third particle, the non interacting one, does not a↵ect the intermediate

resonances and the CPT constrained model presented in the last section suggests that CP

violation could not be possible for the processes involving V = ⇢(770) or K⇤
(890). For

charmless B meson three-body decays, this is not a particularly groundless approximation,
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as the event distribution is almost completely concentrated on the edge of the phase

space (AAIJ et al., 2014). Meanwhile, for decays with V = �(1020), one could expect

perceptible CP asymmetry, though that seems unlikely as the small contribution of tree

diagrams suppresses the CPV coming from the BSS mechanism. The last e↵ect that

could cause CP asymmetry is the presence of hadronic FSI, which is by itself a constraint

regardless what happens at quark-level. The goal below is to discuss the arguments to

support, using simple theoretical concepts, that eventual rescattering between mesons in

the final state is also suppressed in B ! PV decays.

Even though three-body final state interaction e↵ects are not explicitly taken into ac-

count in the experimental approaches, this is evidently one possible hadronic mechanism

that could produce CP asymmetry in B ! PV decays. In this process the rescattering

with the non interacting particle would distribute the CP asymmetry among di↵erent re-

gions of the three-body phase space. This e↵ect deserves more attention, since one needs

a formalism which explicitly takes into account three-body final state interactions and is

still CPT invariant. Although this has not been done yet, a formalism for three-body

decays based on the Bethe-Salpeter equation will be presented in Sec. 2.3. Within this

approach, which is based on the Faddev decomposition, three-body final state interac-

tions are intrinsically deemed and the integral equations are solved perturbatively. The

result shows that the three-body final state interaction e↵ect is considerably small with

respect to the driving partonic amplitude (NOGUEIRA; FREDERICO; LOURENÇO,

2017). Moreover, similar results within the same approach were already obtained for the

D+ ! K�⇡+⇡+
decay (MAGALHÃES et al., 2011; GUIMARÆS et al., 2014; MAGAL-

HÃES; ROBILOTTA, 2015).

Another possibility that can produce CP asymmetry is the inelastic rescattering of the

type PV ! P 0X, with P 0
and X representing the outbound particles in the scattering

process. Analogously, the reverse process could happen, i.e. XP 0 ! PV , where the PV

is the outcome of a hadronic rescattering. Calculating the probability for this transi-

tion amplitude would require an enormous e↵ort carried out within the QCD framework.

However, one can simplify the discussion using the unitary scattering matrix idealized

in Sec. 2.1.7, which can already give an idea on whether or not the e↵ect is suppressed.

As the probability of the transition is given by the modulus square of the o↵-diagonal

S-matrix element, the phase will not enter in this discussion. In other words, the quantity

of interest is the inelasticity, given by ⌘(s) =
p

1� |SPV!P 0X(s)|2. Following that same

discussion, the transition amplitude SPV!P 0X(s) should carry a damping factor that goes,

at least, as

SPV!P 0X(s) ⇠ N
p

s/sth � 1 /(s/sth)
3.5. (2.42)

As already said, this formula is consistent with other parametrizations made in the liter-

ature, as the one for the s�wave isospin zero ⇡⇡ ! KK amplitude of Ref. (PELÁEZ;
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YNDURÁIN, 2005). As a matter of fact, that amplitude also drops rapidly above
p

s ⇠
1.6 GeV. From the S-matrix unitarity, the maximum value that the transition element

can reach is constrained. With the purpose of fixing the normalization, one can suppose,

for instance, that the maximum value for a particular PV ! P 0X process is ⇠ 0.87, what

imposes that N = ⇤6
= (1.24)

6
. If the threshold is located at

p
s
th

= 2 GeV, one gets

that at the B meson mass SPV!P 0X0(mB) ⇠ 0.014, suggesting a substantial suppression of

the inelastic transition amplitude under consideration. Although the chosen number for

the parameters N and sth are quite arbitrary, it is a conservative estimate and allows to

say that no other choices would prevent such a suppression. In short, based on the above

simple arguments, one can expect that any hadronic rescattering processes are expected

to produce small e↵ects on the CP asymmetry distribution for the B ! PV decay.

2.2.1 A method to extract ACP for B ! PV decays

The model presented below is a particular case of Eq. (2.35) where the hadronic

rescattering amplitude is neglected, as this term is meant to be suppressed in the ac-

tual scenario. As an extensive discussion on the model was already made, this section

targets to be straightforward. As said, the model aims at circumventing complicated

amplitude analysis while obtaining CP asymmetry parameters for decays involving one

pseudoscalar and one vector meson. Following the ingredients of the formalism introduced

in Sec. 2.1, the key point is to explore the angular distribution coming from the spin one

vector meson (2.24) and its interferences with the surroundings on the three-body phase

space. This interference usually happens with the resonant amplitudes from light scalar

resonances, e.g. the �, , f0(980) resonances, and can also involve the non-resonant back-

ground. The specific type of process which is the main object of interest here is a decay

like B± ! P±
b

(V ! P+
1 P�

2 ), where Pb is the bachelor particle and Pb,1,2 = ⇡ or K, i.e.

the same kind of processes investigated in the previous subsections. Therefore, the de-

cay amplitude is the same as before (2.30), but a new parametrization, more familiar to

experimentalists for performing Monte Carlo simulations, will be considered now, namely

A±
0� = aV

±ei�
V
±FBW

V
cos ✓(s?, sk) + aS

±ei�
S
±FBW

S
, (2.43)

where, following the prevalent convention used by experimentalists
4
, the dependence on

the phase space variables is written in terms of sk = (pP1+pP2)
2
and s? = (pPb

+pP1)
2
. The

function FBW

V,S
is the Breit-Wigner amplitude, Eq. (2.28), meant to account for the scalar

(S) and vector (V) resonant amplitudes, while the phases �± come from the partonic

amplitude representing the three-body final state production. Worth mentioning that

4For the interested reader, Ref. (BYCKLING; KAJANTIE, 1973) brings more details on the kinematics
of the Dalitz plot.
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the second term on the RHS of Eq. (2.43) could instead be a non-resonant background

if written as anr

± ei�
nr
± FNR

, where FNR
represents an arbitrary non-resonant amplitude,

without changing the possible applications of the method. The strong phase coming from

the hadronic rescattering process is not accounted for those phases. The relations between

the parameters of Eq. (2.43) and the decay amplitude introduced previously, of Eq. (2.30),

are simply aV

±ei�
V
± = aV

0 + bV0 e±i�
and aS

±ei�
S
± = aS

0 + bS0 e±i�
.

As discussed before for the B ! ⇡⇡⇡ decay (2.36), it is convenient to use the phase

space variables, sk and s?, to express the angular distribution related to the vector meson

spin of Eq. (2.24), i.e. cos ✓(s?, sk). Assuming that the vector meson is in the sk channel,

the relation reads (BYCKLING; KAJANTIE, 1973)

cos ✓(s?, sk) =

(m2
B
� sk �m2

Pb
)(sk + m2

P
+
1
�m2

P
�
2

) + 2 sk(m2
Pb

+ m2
P

+
1
� s?)

q
�(m2

B
, sk, m2

Pb
)

q
�(sk, m2

P
+
1
, m2

P
�
2

)

, (2.44)

where mB is the B meson mass, mPb
, m

P
+
1

and m
P

�
2

are the final state meson masses and

�(x, y, z) is the triangle (or Källén) function, given by

p
�(x, y, z) =

h
x�

�p
y +
p

z
�2i h

x�
�p

y �
p

z
�2i

.

For an illustration of the angle ✓, see Fig. 2.3. The formula of Eq. (2.44) is the same that

enters in Eq. (2.35) used in the last section, but now not integrated over s?.

As usual, to obtain the CP asymmetry formula one needs to simply subtract the B+

and B�
decay amplitudes square modulus, i.e.

|��|2 = |A+
0�|

2 � |A�
0�|

2

= [(aV+)2 � (aV�)2]|FBW
V |2 cos2 ✓ + [(aS+)2 � (aS�)2]|FBW

S |2 + 2 cos ✓|FBW
V |2|FBW

S |2 ⇥

{[(m2
V � s)(m2

S � s)�mV �V mS�S ][aV+aS+ cos(�V+ � �S+)� aV�aS� cos(�V� � �S�)]

�[mV �V (m2
S � s)�mS�S(m2

V � s))[aV+aS+ sin(�V+ � �S+)� aV�aS� sin(�V� � �S�)]} ,

(2.45)

which is simply a special case of Eq. (2.35) before the integration over s?. Notice that

cos ✓ is a shorthand for cos ✓(s?, sk). Eq. (2.45) would carry the same essential features

if instead of the scalar resonant amplitude a non-resonant amplitude would have been

considered, i.e. the coe�cients related to BSS mechanism and the interference term

would carry the same dependence on cos ✓(s?, m2
V
).

The method now consists in studying the resonance vicinity, in other words sk ⇡ m2
V
,

where V = ⇢(770), K⇤
(892) and �(1020). The function cos ✓ is expected to be quite stable

with respect to s?, around the fixed value of sk = m2
V
, which is illustrated, for a specific

case, in Fig. 2.4. This means that the helicity angle can be explored in a small area
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around the resonance, assumed to vary only with respect to s?, i.e. cos ✓(s?, m2
V

± ✏) ⇡
cos ✓(s?, m2

V
).

All the unknown parameters of Eq. (2.45) are meant to be extracted directly from

experimental data, through the fitting of the square amplitudes with a quadratic function

of cos ✓(s?, m2
V
). However, it is important to interpret the terms in Eq. (2.45) in order

to understand the method. The coe�cients depending on aV,S

± of the first two terms

on the RHS are related to the direct partonic CP asymmetry, explained by the BSS

mechanism. Meanwhile, the proportionality to cos
2 ✓(s?, m2

V
) in the first one arises from

the interference with the vector resonance angular structure. These two terms violate

CPT, as they do not vanish if Eq. (2.45) is integrated over the whole phase space, and,

therefore, it must be imposed that they do not contribute in order to be consistent with

CPT. One simple solution for this is having the same coe�cients from B+
and B�

for these

amplitudes. Anyway one could also expect them to be di↵erent and canceling out after

the integration over the phase space. The term linear in cos ✓(s?, m2
V
) is the interference

term. The CP violation distribution in this term is associated to the mixing between

the real and imaginary parts of the Breit-Wigner distributions of the vector and scalar

resonances. By studying the cosine signature when looking at the distribution in s? one

identify the specific type of CP asymmetry source according to the model.

The quantity of interest of the method is the CP asymmetry inherent to the BSS

mechanism around the vector resonance region, as it corresponds to the intermediate

PV channel. This is extracted after obtaining the parameters associated with the vector

partonic amplitude through the fit of the resonance area in the three-body phase space.

The aforementioned CP asymmetry can be written as

AV

CP
=

(aV

�)
2 � (aV

+)
2

(aV
�)2 + (aV

+)2
. (2.46)

As discussed, these parameters are mainly associated with a CPT violating term of Eq. (2.45).

If one expects to verify CPT invariance locally in this context, i.e. assuming that the ar-

guments of the last section for the suppression of inelastic rescattering e↵ects distributing

CPV among di↵erent channels are valid, the data analysis should give AV

CP
! 0.

It is relevant to notice that resonances are also present in the crossed channel, i.e.

as functions of s?, and, therefore, can make the analysis of the angular distribution,

cos ✓(s?, m2
V
), quite challenging, as other sources of CP asymmetry might exist. Nonethe-

less, the resonances in the perpendicular channel are also located in the low mass region of

the phase space, concentrating the interferences there. Experimentalists can then, with-

out serious consequences, exclude these interference regions from the analysis, due to the

huge available phase space of charmless three-body B decays. The measured value for

AV

CP
from the fitted parameters might still have good resolution and limited errors if the
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available experimental data has significant statistics.

The straightforward conclusion from the discussion above is that if the CPT constraint

is explicitly carried out, the CP asymmetry can be suppressed for some charmless B ! PV

decays. This feature was never suggested in the literature, as mostly short distance

approaches indicate a substantial direct CP distribution in these decays. Specifically,

for three-body decays involving three pseudoscalar mesons (i.e. the situation where the

subsequent decay of the vector meson that leads to a three-body state, B ! PV ! PPP )

in the final state, two experimental characteristics reinforce those constraints: i) charmless

B decays have their phase spaces mostly populated around the edges, what encourage the

(2+1) approximation accounting for two-body resonances and a non interacting meson.

ii) the elastic regime dominates the ⇢(770) and K⇤
(890) resonances, making the coupling

through FSI with other channels unlikely. These two features combined with the CPT

constraint practically gives no place for CP violation e↵ects in B ! PV decays. Important

to highlight that, although unlikely, the possibility of inelastic rescattering contributions

generating direct CP violation needs to be further explored with more reliable calculations.

For the reader interested in more explorations of the model, a Toy Monte Carlo simula-

tion using the equations discussed above can be found in Ref. (NOGUEIRA et al., 2016).

The potential information that can be extracted through this method can shed some light

on the disagreements among the theoretical calculations and experimental measurements

of ACP for B ! PV decays presented in the compilation of Ref. (CHENG; CHIANG;

KUO, 2015). However, this simple method is unable to substitute the refined amplitude

analysis and their complexity, since the access to, e.g., the resonance branching fractions,

are not reachable within the model.

2.3 Three-body FSI in B decays

One of the most important e↵ects not embedded in the model formulated earlier is

three-body rescattering, i.e. hadronic interactions involving all the final state mesons

of the three-body decay. The idea of this section is to develop a decay amplitude that

includes final state interactions among all the involved mesons, however in a completely

independent formalism. An interesting exercise for future explorations is to find a formal

way to merge the formalism present in what follows with the CPT invariant CP asymmetry

formula of Eq. (2.35).

The goal is to present a fully relativistic model to account for three-body final state

interactions, and subsequently apply it to the process B+ ! K�⇡+⇡+
. The formalism

presented here follows closely what was developed in Ref. (GUIMARÆS et al., 2014)

for the D meson decay in the same channel. The model aims at formulating the decay
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amplitude and exploring its structure outputs without going deep into the details. As

there is no experimental amplitude analysis available for this channel the model is meant

to be further explored in the future. The study presented in this section was published in

Ref. (NOGUEIRA; FREDERICO; LOURENÇO, 2017).

The three-body decay amplitude within this model is based on the Faddeev decomposi-

tion of the Bethe-Salpeter equation, taken care in the light-front framework (BRODSKY;

PAULI; PINSKY, 1998; CARBONELL et al., 1998). The two-body interaction kernel is

given by the s-wave scattering amplitude for the K⇡ system, with the 1/2 and 3/2 isospin

channels being considered. The outcome is a set of inhomogeneous integral equations that

are expanded perturbatively and then solved numerically. It is worth emphasizing that

partonic processes, part of the source amplitudes, are not addressed, neither the large

absorption to the several decay channels present in the huge B decay phase space. The

convergence of the rescattering perturbative series is tested numerically, being achieved

in the expansion up to two-loops. These kind of investigation, even if not ultimate, has

its value as the main approaches available in the literature, mostly based on QCD e↵ec-

tive field theories within heavy quark expansions (BENEKE et al., 1999b; KEUM; LI;

SANDA, 2001; BAUER; FLEMING; LUKE, 2001), are drawn up on the factorization

of the hadronic matrix elements, mainly considering short-distance physics. Separating

the problem in the long- and short-distance physics, through, e.g., the operator product

expansion of the weak e↵ective Hamiltonian, is a quite di�cult task and new methods

can help to understand the involved physics.

FSI e↵ects play an important role in heavy meson weak decays, even in strongly sup-

pressed channels. As an example, a recent experimental study of the charmless Bc decay

to the KK⇡ channel, which within the Standard Model can only occur by weak annihila-

tion diagrams, shows some events in the phase space of this suppressed channel (AAIJ et

al., 2016). This unexpected measurement can be associated to inelastic hadronic rescat-

tering transitions related with that final decay channel. This type of interactions are

usually considered as suppressed non-factorizable e↵ects in the QCD factorization, but

even within this approach it was shown that the b-quark mass mb is not large enough

to suppress the decay, mainly, in the center of the phase space (KRÄNKL; MANNEL;

VIRTO, 2015).

The perturbative expansion is allowed if the strong coupling constant, ↵s, is expected

to be small in the treated high-energy process. Nonetheless, the long-distance physics and

its non-perturbative nature leads to amplitudes complicated to deal with, both analytically

and numerically. Solving the final equation needs to be done, in principle, without relying

on any perturbative expansion. At this first attempt, in order to keep things simple, the

perturbative approach will be adopted and the convergence verified numerically. For the

moment, this will quantify the reliability of the present approach, but similar equations
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(for the bound state) will be properly treated later in the coming chapters.

The convergence of the series expansion is checked going up to third order terms of

the two-body transition matrix, i.e. up to three-loops. The numerical results for the

B+ ! K�⇡+⇡+
decay amplitude comprising three-body FSI and K⇡ interactions in the

I = 1/2 and 3/2 isospin states are the outcome. The transition amplitude is parametrized

by the LASS experimental data (GRAYER et al., 1974), which gives the resonant structure

as well as the corresponding scattering amplitude poles only in the isospin 1/2 channel.

It is relevant also to point out other developments of relativistic models for the three-

body FSI that were applied to the D+ ! K�⇡+⇡+
decay (GUIMARÆS et al., 2014;

MAGALHÃES et al., 2011; GUIMARÃES et al., 2010), since the formalism shown here

carry many ingredients from those references. More specifically, in Ref. (GUIMARÆS et

al., 2014), the isospin projection of the decay amplitude was performed to study di↵er-

ent isospin state contributions to the K�⇡+
rescattering. The formulation starts from

the three-body Bethe-Salpeter equation and uses its Faddeev decomposition. The decay

amplitude was separated into a smooth term and a three-body interaction contribution.

Moreover, the amplitude was factorized as a two-meson amplitude times a reduced com-

plex amplitude for the non interacting meson, which carries the three-body FSI e↵ect.

The desired o↵-shell bachelor amplitude
5

is the solution of an inhomogeneous Faddeev

type integral equation. Its input is the two-body s-wave isospin 1/2 and 3/2 K�⇡+
T-

matrix. The two-body amplitude included in the kernel accounts for e↵ective three-body

interactions, no irreducible three-body force (a �6
term in the Lagrangian) is included in

the relativistic equation. The light-front projection of the Faddeev-Bethe-Salpeter equa-

tions (SALES et al., 2000a) was performed, as it reduces the four-dimensional equations to

three-dimensional ones due to the k�
= k0 � k3

integration, simplifying its structure and

the subsequent numerical calculations. Interactions between identical charged pions were

neglected, as this impact is expected to be suppressed. The aforementioned procedure,

followed in Ref. (GUIMARÆS et al., 2014), is the same as the one used below.

This is a single channel model and, therefore, not including directly three-body ab-

sorptive interactions. The absorption due to the coupling to other channels is introduced

here by a finite i" parameter in the free LF three-body propagator. The stability with

respect to this parameter is also studied. This is a naive way of considering absorptive

e↵ects due to the coupling to other channels, which are needed for three-body unitarity

to be satisfied. Consequently, the loss in probability flux is given by a finite width in the

free three-body propagator.

5The bachelor particle amplitude is the one describing the non interacting meson.
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2.3.1 B+ ! K�⇡+⇡+ decay amplitude with FSI

The B+ ! K�⇡+⇡+
decay amplitude, solution of a Bethe-Salpeter equation, enclosing

the 3! 3 transition matrix in its kernel is given by

A(k⇡, k⇡0) = B0(k⇡, k⇡0) + (2.47)

+

Z
d4q⇡d4q⇡0

(2⇡)8
T (k⇡, k⇡0 ; q⇡, q⇡0)S⇡(q⇡) S⇡0(q⇡0)SK(K � q⇡0 � q⇡)B0(q⇡, q⇡0),

where, Si (i = ⇡, ⇡0, K) are scalar propagators, B0 is the source amplitude, k⇡, k⇡0 the

pions four-momenta and K denotes the total momentum of the system. Following this

notation, the two-body invariant mass of the K⇡ system is defined as M2
K⇡

= (K � k⇡0)
2
.

The meson propagators read Si(qi) = i(q2
i
� m2

i
+ i✏)�1

and do not take into account

dressing e↵ects. The short-distance physics resides in the B0(k⇡, k⇡0) amplitude and its

computation involves the evaluation of the quark-level amplitudes contributing to the de-

cay channel. The o↵-shell interaction kernel T (k⇡, k⇡0 ; q⇡, q⇡0) consists of an infinite sum of

rescattering diagrams and is considered in ladder approximation. The complete scattering

matrix enclosing FSI is a solution of the fully o↵-shell four-leg transition amplitude. More

details on its formalism can be found in Ref. (FREDERICO; SALMÈ; VIVIANI, 2012).

The kernel will include only two-body irreducible diagrams involving all the final state

mesons, except by the interference between the pions. The interaction kernel encloses the

K⇡ transition matrix, which sums over all respective 2 ! 2 collision terms. Writing the

interaction kernel in terms of the two-body rescattering matrix, one gets

Ti(k
0
j
, k0

k
; kj, kk) = (2⇡)

4⌧i(si) S�1
i

(ki) �(k
0
i
� ki) , (2.48)

where � is a four-momentum conserving delta function and the Mandelstam variable

si = (kj + kk)
2

is the only dependence considered. The amplitude ⌧i(si) is the unitary

s-wave scattering amplitude involving the particles j and k. This term brings to the model

the long-range physics.

Using the separable form of Eq. (2.48) the problem is reduced to a four-dimensional

integral equation in one momentum variable for the Faddeev components of the vertex

function. Applying Eq. (2.48), the decay amplitude of the B+ ! K�⇡+⇡+
process,

excluding the ⇡+⇡+
interaction, reads

A0(k⇡, k⇡0) = B0(k⇡, k⇡0) + ⌧(M2
K⇡

)⇠(k⇡0) + ⌧(M2
K⇡0)⇠(k⇡) , (2.49)

where the subindex in A0 denotes the angular momentum of the s-wave two-meson scat-

tering, M2
K⇡

= (K � k⇡0)
2
, M2

K⇡0 = (K � k⇡)2 and the on-mass-shell momentum of the



CHAPTER 2. B-DECAYS: CP VIOLATION AND FSI 78

non interacting pion is given by

|k⇡|2 =

✓
M2

B
+ m2

⇡
�M2

K⇡0

2 MB

◆2

�m2
⇡

. (2.50)

Decomposing the decay amplitude in terms of a complex phase and an amplitude is

convenient for the forthcoming amplitude analysis. It reads

A(M2
K⇡0) =

1

2
hK⇡⇡|B0i+ hK⇡⇡|⌧(M2

K⇡0)|⇠(k⇡)i = a0(M
2
K⇡0)ei�0(M2

K⇡0 ), (2.51)

which is a function of only M2
K⇡0 and |K⇡⇡i represents the state in isospin space. The

amplitude ⇠(ki) represents the non interacting particle and carries the three-body rescat-

tering e↵ect, being written in its general form as the solution of a Faddeev-like equation.

For the specific decay under scrutiny, where two of the particles are identical and no

interaction between them, the inhomogeneous integral equation for the spectator ampli-

tude is a function only of the momentum of the non interacting particle (see (GUIMARÆS

et al., 2014)),

⇠(k) = ⇠0(k) +

Z
d4q

(2⇡)4
⌧
�
(K � q)2

�
SK(K � k � q) S⇡(q) ⇠(q), (2.52)

where the first term, i.e. the driving term of the perturbative expansion, will be identified

as

⇠0(k) =

Z
d4q

(2⇡)4
S⇡(q)SK(K � k � q)B0(k, q), (2.53)

where the partonic decay amplitude, B0(k, q), is written with its general dependence for

now. Bear in mind that, since the interaction between the identical pions is not taken

into account in the model, the non interacting particle will be always a ⇡+
. All the other

possible interactions are of the type K⇡ and are included by iteration.

The rescattering series comes from the solution of Eq. (2.52), where the second term

encloses the higher order loop diagrams. Both amplitude and phase are enclosed by

Eq. (2.52), depending only on the bachelor meson on-mass-shell momentum. The main

ingredients of the decay amplitude are the well behaved function B0(k⇡, k⇡0), which will

naively treated as an overall normalization, and the scattering amplitude, ⌧ (M2
K⇡0). The

operator ⌧ will be conveniently decomposed into two isospin states, namely, 1/2 and 3/2.

The scattering amplitude is meant to include the K⇡ s-wave resonances present in the

decay. Its explicit form will be obtained through a parametrization that reproduces the

K⇡ s-wave scattering LASS experimental data (GRAYER et al., 1974). It will be followed

the same procedure as in Ref. (GUIMARÆS et al., 2014), where the K⇡ s-wave elastic



CHAPTER 2. B-DECAYS: CP VIOLATION AND FSI 79

scattering amplitude was introduced in the resonant IK⇡ = 1/2 and non-resonant IK⇡ =

3/2 isospin states. The parametrization includes the three main low-mass resonances of

the channel, K⇤
0(1430), K⇤

(1630) and K⇤
0(1950). The K⇤

0(1630) and K⇤
0(1950) resonances

are included following the LASS data, whereby the kinematical phase space was fitted up

to 1.89 GeV. See appendix B.1 for the explicit form of the adopted parametrization. In

addition, the I = 3/2 channel is covered with a s-wave parametrized scattering amplitude,

by using the first two terms in the e↵ective range expansion, due to its simpler structure.

As said, the ⇡⇡ interaction is neglected, as considered in Ref. (GUIMARÆS et al., 2014),

since it involves identical particles and, for this reason, is expected to be considerably

suppressed.

The form presented in Eq. (2.52) is not yet convenient to be solved numerically due

to the singular structure of the propagators when expressed in Minkowski space. One

way of simplifying it is by the projection onto the light-front hyperplane, what is done

in practice by integrating the equation over q� = q0 � q3. The projection transforms the

four-dimensional coupled equations into a three-dimensional set, structurally simpler to

handle numerically. Such technique is widely used in the literature (BRODSKY; PAULI;

PINSKY, 1998; CARBONELL et al., 1998) as it gives a notable alternative to bypass the

Minkowski space singularities keeping the consistency with its dynamics. Nevertheless, it

is important to mention that the projection as it is predominantly done in the literature

retains only the valence component of the amplitude, what can be a limitation particularly

for three-body relativistic systems (NOGUEIRA et al., 2018; YDREFORS et al., 2017).

This light-front Fock-space truncation to the three-meson valence component is present

in the model under consideration.

One of the main advantages of performing the LF projection is the suppression of Z-

diagrams in the kernel (BRODSKY; PAULI; PINSKY, 1998). In addition, the projected

integral equations are covariant under seven LF kinematical transformations, namely the

ones that keep the null-plane invariant, including three translations, a rotation around

the z-direction, two other kinematical boosts and, finally, the boost along the z-direction.

Moreover, the truncation of the LF Fock-space is stable under kinematical boosts (PERRY;

HARINDRANATH; WILSON, 1990). In contrast, the Fock-space truncation in the in-

stant form has three translations, three rotations and no boosts.

For further details on the derivation of the equation suitable for the numerical solution,

see Appendix B.2. The interaction among the final state mesons needs to include two pos-

sibilities, considering that ⇡+⇡+
interaction is discarded. Therefore, the symmetrization

of the decay amplitude with respect to the identical pions becomes simply given by

A0 = A0(M
2
K⇡0) + A0(M

2
K⇡

). (2.54)
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Performing the isospin projection (see Appendix B.2 for more details) on each term leads

to

A0(M
2
K⇡0) =

X

IT ,IK⇡0 ,IzT

⌦
K�⇡+⇡+

�� IT , IK⇡0 , Iz

T
i ⇥ (2.55)

⇥

1

2
hIT , IK⇡0 , Iz

T
| B0i+ ⌧IK⇡(M

2
K⇡0)⇠

I
z
T

IT ,IK⇡0 (k⇡)

�
= a0(M

2
K⇡0)ei�0(M2

K⇡0 ),

from where one can extract both the modulus, a0(M2
K⇡0)e, and the phase, �0(M2

K⇡0), of

the decay amplitude.

2.3.2 Perturbative solution

For the sake of simplicity, the problem is solved perturbatively, by iterating Eq. (B.11)

starting with the driving term, until convergence is reached. Iterating up to three loops

showed to be enough for all the tested sets of parameters, as at this level the contribution

is already significantly small. Two sets of equations are solved, the first for the coupled-

channel case, where the IT = 3/2 total isospin states are formed by coupling IK⇡ = 1/2

or IK⇡ = 3/2 states. The second case is a single channel contribution, with total isospin

IT = 5/2, where the K⇡ interaction involves isospin 3/2 states.

For testing the convergence, one can start by only considering the resonant contribution

in the IK⇡ = 1/2 channel, for which the perturbative expansion of the equation (B.11) up

to three loops can be written as

⇠3/2
3/2,1/2(y, k?) =

=
1

6

r
2

3
⇠0(y, k?)� i

3

 
1

6

r
2

3

!Z ⇤

0

dq?
(2⇡)3

Z 1�y

0

dx K1/2(y, k?; x, q?) ⇠0(x, q?)

� 1

9

 
1

6

r
2

3

!Z ⇤

0

dq?
(2⇡)3

Z 1�y

0

dx K1/2(y, k?; x, q?)

⇥
Z ⇤

0

dq0?
(2⇡)3

Z 1�x

0

dx0 K1/2(x, q?; x0, q0?) ⇠0(x
0, q0?) + · · · (2.56)

where, for simplification, in the driving term it is taken ↵3/2
3/2,1/2 = 1. The other fac-

tors are given in more detail in Refs. (NOGUEIRA; FREDERICO; LOURENÇO, 2017;

GUIMARÆS et al., 2014). The integration kernel K1/2 is defined by Eq. (B.13).

The equation is normalized arbitrarily, since the partonic structure is not properly

taken into account in this model. The integration over the transverse momentum is

computed by introducing a cut-o↵ of ⇤ = 0.8 GeV. This value is considerably smaller

than in the D decay case (GUIMARÆS et al., 2014). As checked in this work, the
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results of Ref. (GUIMARÆS et al., 2014) su↵er almost no visible change if the cut-o↵

parameter is moved from 2.0 GeV to 0.8 GeV. Nevertheless, in the B case, the use of

⇤ = 2.0 GeV is very expensive numerically, probably caused by the large non-physical

region, and consequently plenty of numerical noise. As the B meson has a much larger

mass, its wave function is expected to be concentrated at low momentum. Moreover,

the finite value of the momentum cut-o↵ represents roughly the two-meson interaction

range, that is somewhat related to the size of the mesons itself. If the model for the

K⇡ interaction had a finite range (and not a zero-range one, as it is), it would naturally

include a cut-o↵ in the hadronic loop. In the present model, it is instead introduced by

the integration momentum cut-o↵.

On the other hand, concerning the " parameter, the value used was " = 0.5 GeV
2
,

which is considerably larger than the one used in the D decay case. Since the accessible

B meson phase space is much larger, it is a known fact that the absorption, due to the

several decay possibilities, is higher if compared with the D meson decay. The finite

value of the " parameter can be understood as a way of introducing the absorption e↵ect.

Di↵erent values of " were tested, mostly around " = 0.5 GeV
2
, showing a small di↵erence

in the results. Important to say that a very small value for this parameter brings a lot

of numerical instability. Finally, the subtraction constant in the driving term, �(µ2
) (see

Eq. (B.8)) coming from the regularization procedure is chosen to be zero. The numerical

outcomes, the phase-shift and modulus of the bachelor particle amplitude, are outlined in

Fig. 2.12.
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Three values of the subtraction point, for the regularization of the kernel, were used in

order to verify its e↵ect on the results, namely µ2
= (0.4,�0.1) GeV

2
. For any tested value

of µ2
it was clear that the two-loop solution is already perfectly converged for practical

applications. Notice that this fact was also observed in the D decay case, but now the

convergence is considerably enhanced. The phase is always positive for µ2
= 0.4 GeV

2
,

but changes sign for µ2
= �0.1 GeV

2
. It also varies more for µ2

= �0.1 GeV
2
, increasing

until reaching a roughly constant region after ⇡ 4 GeV. For µ2
= 0.4 GeV

2
, it presents a

minimum around 1 GeV and then increases again becoming pretty much unchanged after

⇡ 3 GeV. In both cases the modulus increases as the K⇡ two-body invariant mass grows.

One can now include both two-body interactions kernels, for IK⇡ = 1/2 and IK⇡ = 3/2,

and check the convergence for all the components. Including these two isospin channels

results in a coupled set of inhomogeneous integral equations, obtained from Eq. (B.11)

for IT = 3/2, which reads

⇠3/2
3/2,1/2(y, k?) = Aw ⇠0(y, k?) + (2.57)

+
iR3/2

3/2,1/2,1/2

2

Z 1�y

0

dx

x(1� y � x)

Z 1

0

dq?
(2⇡)3

K1/2(y, k?; x, q?) ⇠3/2
3/2,1/2(x, q?)

+
iR3/2

3/2,1/2,3/2

2(2⇡)3

Z 1�y

0

dx

x(1� y � x)

Z 1

0

dq?
(2⇡)3

K3/2(y, k?; x, q?) ⇠3/2
3/2,3/2(x, q?)

and

⇠3/2
3/2,3/2(y, k?) = Bw ⇠0(y, k?) + (2.58)

+
iR3/2

3/2,3/2,1/2

2

Z 1�y

0

dx

x(1� y � x)

Z 1

0

dq?
(2⇡)3

K1/2(y, k?; x, q?) ⇠3/2
3/2,1/2(x, q?)

+
iR3/2

3/2,3/2,3/2

2

Z 1�y

0

dx

x(1� y � x)

Z 1

0

dq?
(2⇡)3

K3/2(y, k?; x, q?) ⇠3/2
3/2,3/2(x, q?).

For IT = 5/2 only the interaction for IK⇡ = 3/2 appears, resulting in a single channel

equation from Eq. (B.11), which reads

⇠3/2
5/2,3/2(y, k?) = Cw ⇠0(y, k?) + (2.59)

+
iR3/2

5/2,3/2,3/2

2

Z 1�y

0

dx

x(1� y � x)

Z 1

0

dq?
(2⇡)3

K3/2(y, k?; x, q?) ⇠3/2
5/2,3/2(x, q?),

where the isospin states related to the partonic amplitude projection, defined in Eq.

(B.10), bring the weights Aw, Bw and Cw, which depends on the Clebsch-Gordan and

recoupling coe�cients (R
I
z
T
IT ,IK⇡

) The weights are defined by

Aw = hIT = 3/2, IK⇡ = 1/2, Iz

T
= 3/2| B0i , Bw = h3/2, 3/2, 3/2| B0i

and Cw = h5/2, 3/2, 3/2| B0i .
(2.60)
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More explicitly, the isospin coe�cients are

Aw =↵3/2
3/2,1/2(1 + R3/2

3/2,1/2,1/2) + ↵3/2
3/2,3/2R

3/2
3/2,1/2,3/2,

Bw =↵3/2
3/2,3/2(1 + R3/2

3/2,3/2,3/2) + ↵3/2
3/2,1/2R

3/2
3/2,3/2,1/2 and

Cw =↵3/2
5/2,3/2(1 + R3/2

5/2,3/2,3/2).

(2.61)

The coe�cients, ↵
I
z
T
IT ,IK⇡

, come from the partonic decay amplitude (B.10) projection

onto the isospin space and are defined as

↵3/2
3/2,1/2 =

W1

2
C1/2 1 3/2

1/2 1 3/2 C1 1/2 1/2
1 -1/2 1/2,

↵3/2
3/2,3/2 =

W2

2
C3/2 1 3/2

1/2 1 3/2 C1 1/2 3/2
1 -1/2 1/2 and

↵3/2
5/2,3/2 =

W3

2
C3/2 1 5/2

1/2 1 3/2 C1 1/2 3/2
1 -1/2 1/2.

(2.62)

The Clebsch-Gordan and recoupling coe�cients are C1/2 1 3/2
1/2 1 3/2 = 1 , C1 1/2 1/2

1 -1/2 1/2 =
p

2/3 ,

C3/2 1 3/2
1/2 1 3/2 = �

p
2/5 , C1 1/2 3/2

1 -1/2 1/2 = 1/
p

3 , C3/2 1 5/2
1/2 1 3/2 =

p
3/5 , R3/2

3/2,1/2,1/2 = �2/3 , R3/2
3/2,1/2,3/2 =p

5/3 , R3/2
3/2,3/2,3/2 = 2/3 , R3/2

3/2,3/2,1/2 =
p

5/3 , and R3/2
5/2,3/2,3/2 = 1 . The final forms of the

weights, after some manipulations, are Aw =

q
1
54(W1 �W2), Bw =

q
5
54(W1 �W2) and

Cw =
W3p
5
.

Again, convergence of the bachelor amplitude is checked for the coupled-channel case.

All Eqs. (2.57), (2.58) and (2.59) appear in the case IT = 3/2. For IT = 5/2, a single

channel equation, only Eq. (2.59) contributes. The results are shown in Fig. 2.13, where

it is adopted " = 0.5 GeV
2

and µ2
= �0.1 GeV

2
. The free parameters from the isospin

projection of the source term are fixed, following Ref. (GUIMARÆS et al., 2014), by

W1 = 1, W2 = 2 and W3 = 0.2. As in the single channel case, the convergence is

reached at two-loops, suggesting that higher order terms in the perturbative expansion

can be neglected for practical applications. Moreover, both phase and modulus of the

bachelor amplitudes increase with growing MK⇡, becoming almost invariant for higher

values of the two-body invariant mass, except for the |⇠3/23/2,3/2| amplitude modulus which

keeps increasing. In the channel IT = 3/2, both amplitudes have for their phases similar

magnitudes, which are larger than in the IT = 5/2 case and with a similar pattern to the

one that was observed for the D decay (GUIMARÆS et al., 2014).

2.3.3 Results for the B+ ! K�⇡+⇡+ decay amplitude

Considering that the two-loop result is already enough for the convergence of the per-

turbative expansion for the bachelor amplitudes, hereafter all the calculations will consider

the truncation at that order. For the moment, there is no experimental data available to
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perform a comparative analysis as done for the D meson decay in Ref. (GUIMARÆS et

al., 2014), so the goal here is simply to present the general form of the decay amplitude

under the current model. The reduced form of the decay amplitude, from where both

phase and modulus can be extracted by means of Eq. (2.55), reads

A0(M
2
K⇡

) =

r
2

3

"
1

12

r
2

3
+ ⌧1/2(M

2
K⇡

)⇠3/2
3/2,1/2(k⇡0)

#
. (2.63)

The iteration of the coupled equations (2.57)-(2.58) gives the amplitude for the channel

IT = 3/2. Meanwhile, for the the IT = 5/2 state, the amplitude is given by the single

expression in Eq. (2.59). The resulting s-wave decay amplitude for the coupled-channel

case is given by

A0(M
2
K⇡) = C1


Aw

2
+ ⌧1/2(M

2
K⇡)⇠

3/2
3/2,1/2(k⇡0)

�
+ C2


Bw

2
+ ⌧3/2(M

2
K⇡)⇠

3/2
3/2,3/2(k⇡0)

�
+

+ C3


Cw

2
+ ⌧3/2(M

2
K⇡)⇠

3/2
5/2,3/2(k⇡0)

�
(2.64)

where the constants Ci come from the isospin projection onto the state K⇡⇡, Eq. (2.55),

and are given in Eqs.(2.61) and (2.62). There are two free parameters, which are the

weights related with the projected partonic amplitude, namely, W1 � W2 and W3 (see

Eq. (2.62)). If the first one is zero and the second one nonzero, it means that only the

amplitude with total isospin 5/2 contributes and, therefore, the decay amplitude misses
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the resonant structure, as shown in Ref. (GUIMARÆS et al., 2014). This shows that

it is not a good physical choice, since the isospin state contributions are not taken into

account in a reasonable way. A more relevant study of the involved weights would be

guided by experimental data, as done for the D+ ! K�⇡+⇡+
decay (GUIMARÆS et al.,

2014), which is not possible for the B decay under study here. For that reason, this work

simply follows what was indicated by the D decay analysis, where the authors found a

small mixture in the total isospin 5/2 state.

Figure 2.14 shows a comparison between the decay amplitudes from the B and D

mesons to the same final state, i.e. K�⇡+⇡+
. All the parameters involved in the model are

adopted to be the same, including the overall normalization. In particular, the subtraction

scale was fixed at µ2
= �0.1 GeV

2
, the " parameter was chosen to be " = 0.5 GeV

2
, and

W1�W2 = �1 and W3 = 0.2 were used. In order to test the e↵ect of the constants W1�W2

and W3, a second set of parameters was tested, namely, W1�W2 = 1 and W3 = 0.3, which

was the one used in Ref. (GUIMARÆS et al., 2014), but the results showed to be very

similar to the ones presented here, with the major change being a sign flip in the phase

(which is not relevant due to the arbitrariness of the complex normalization).

It is quite clear that the amplitude becomes practically constant above MK⇡ ⇡ 2.6

GeV. This behavior appears due to the fact that the two-body amplitude of Eq. (B.3)

damps quickly for large MK⇡ and only the constant partonic amplitude (first term in

Eq. (2.48)) dominates. It basically evidence the poor manner how the partonic structure

is taken into account in the model, and that the model is not suitable to describe in

detail the region beyond the resonant structure. The wavelike behavior of the two-body

amplitude in the dominant I = 1/2 channel is traced back to the inclusion of resonances

below 2 GeV, suggested by the current available experimental information from LASS

and the study on the D+ ! K�⇡+⇡+
decay. The intention here was simply to present

the model as an alternative to include three-body FSI e↵ects on the decay amplitude,

however, the model might not be realistic in its current form for a detailed experimental

analysis.

Figure 2.15 compares both modulus and phase of the B+ ! K�⇡+⇡+
decay amplitude

with and without the resonances K⇤
0(1630) and K⇤

0(1950). The same parameters as before

were used. The figure shows that the inclusion of the resonances produces more structure

in both modulus and phase. This is clearly related with the resonances contained in the

K⇡ two-body scattering amplitude, since the peaks are around the resonance masses and

below K⇤
0(1430) the pattern is di↵erent. All the curves have the same tail for increasing

two-body invariant masses, what is expected due to the simplistic form adopter for the

source amplitudes.
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2.3.4 Concluding remarks and perspectives

The model presented here, although simple, shows to be an interesting alternative

to take into account three-body FSI e↵ects in the decay amplitude. Combining this

model with the one for CP violation formulated in Sec. 2.1, maintaining CPT invariance,

could open interesting possibilities in the study of the three-body phase space. The

light-front formulation simplifies the inhomogeneous integral Bethe-Salpeter equations,

reducing them to three-dimensional ones. Although they were solved perturbatively in

the present work, it would be extremely valuable to explore the structure of the equations

without relying on any expansion, as e↵ects of the non-perturbative nature might be

lost in the procedure. Including properly the absorption due to other decay channels

within a unitary formulation is desirable, since the oversimplified approach of including

the " parameter as in the present model is insu�cient if the aim is to perform a realistic

amplitude analysis.

The momentum cut-o↵ used in the transverse momentum integration needs also to

be further explored, as it would be appealing to find a stable numerical approach where

that parameter can be avoided. The amplitudes also need to be properly normalized

and experimental data would be useful in order to fix the weights of the three isospin

components, that are free parameters for the moment. Another valuable advance would be

to solve the equations using a finite-range interaction, where the e↵ective range expansion

would be overtaken by the exchanged particle mass, allowing the understanding of the

interaction kernel from a broader perspective. The resonant structure above the K⇤
0(1430)

resonance is a question that deserves a detailed analysis in the face of future experimental

data. While the presence of the K⇤
0(1630) resonance is expected to play a role, the

influence of the K⇤
0(1950) should be better understood.

And last but not least, the source amplitudes, poorly incorporated here and also in the

CPT invariant model for the CP asymmetry of Sec. 2.1, deserve proper care by computing

the partonic diagrams and including realistic amplitudes for the involved mesons. These

are important ingredients and could yield interesting outcomes. Indeed, the parametrized

amplitudes adopted in the previous sections were able to give a reasonable description of

the CPV e↵ects through the fitting procedure, but a refinement of the description at short

distances, i.e. in a non-perturbative regime, opens new windows on the dynamical e↵ects.

Unfortunately, computing these amplitudes is a very challenging task, as one needs to

evaluate the mesonic vertexes and, preferably, their non-perturbative structure attainable

through the theory of quantum chromodynamics (QCD).

This problem leads to a more general question: how to properly represent a mesonic

bound state? There are several approaches in the literature, e.g. lattice QCD and Dyson-

Schwinger equation, but most of them are based in the Euclidean space. It is interesting
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to notice that what seemed first a simple problem within a specific context turned out

to be a general and fundamental question within hadron physics. This intriguing and

challenging problem has motivated the original research, presented in what follows. Next

chapters aim at illustrating how to build a sound formalism for addressing a bound system

in Minkowski space. The road is long and the ultimate goal is ambitious, however, by

starting with simple systems and increasing the complexity little by little it is possible

to gather useful knowledge to be exploited for describing hadronic states, in terms of the

relevant partonic degrees of freedom.



3 Two-boson BSE in Minkowski

space

Quantum few-body problems appear throughout physics, as structures and/or reac-

tions involving only a few acting degrees of freedom, like in the case of two and three nu-

cleons systems, hadron structure with quark degrees of freedom, and electron-hole correla-

tions in nano-structured materials. Furthermore, crucial relativistic quantum mechanical

correlations, to be investigated within a quantum field-theory framework, often originate

from properties of few-body subsystems. Nevertheless, to achieve a thorough description of

relativistic few-body systems engaging specific interactions, one should resort to the non-

perturbative domain. The predominant tools for dealing with the non-perturbative regime

within the field theory are two: the path-integral formulation-based methods, e.g. Lattice

QCD, and the covariant integral equation frameworks, e.g the Bethe-Salpeter and Dyson-

Schwinger equations. In both cases the calculation procedure most commonly adopted is

completely drawn up in Euclidean space (ROBERTS; WILLIAMS, 1994; EICHMANN et

al., 2016).

The BS equation, proposed in the early 50s, is an important tool within manifestly

covariant non-perturbative quantum field theory. It allows one to describe both bound

states, through the homogeneous BS equation, and scattering states, via the inhomo-

geneous one (SALPETER; BETHE, 1951; GELL-MANN; LOW, 1951). The example

to be considered here is the two-body Bethe-Salpeter bound-state equation. It is ob-

tained through the on-shell total momentum pole of the four-point Green’s function in

the energy-complex plane (MANDELSTAM, 1955). As a theory in the non-perturbative

regime, the kernel must contain all possible two-body irreducible diagrams. However, it

has to be emphasized that, even in presence of a truncated interaction kernel, the homoge-

neous BSE is able to describe a non perturbative regime, since it is the very nature of the

integral equation that implicitly generates an infinite set of contributions, and eventually

reconstructs a bound state pole in the four-leg Green’s function
1
. The refinement of the

interaction kernel certainly a↵ects the position of the pole, but its existence is assured by

the integral equation one has to solve. The major challenge in Minkowski space, where

1The pole is impossible to be reproduced without an infinite number of interaction exchanges.
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relativistic observables are formally defined, is due to the existence of singularities and

branch points along the real axis of the relative energy in the amplitude as well as in the

equation’s interaction kernel. Dealing with this cumbersome analytic structure when try-

ing to solve the BSE in Minkowski space by brute force is numerically very hard. Indeed,

these singularities are integrable due to the infinitesimal dislocation to the complex plane

of the poles in the denominators of the propagators, i.e. the ı✏ factor according to the

causality constraints. However, their integration is a quite delicate task and requires the

use of appropriate analytical as well as numerical methods.

Such technical di�culties in solving the BSE emerge even for the most simple model,

like a two-scalar system interacting through a massless scalar particle, and it hampered for

a long time the development of a solution for the BSE directly in Minkowski space. The

first approach, proposed by Wick (WICK, 1954), was based on the possibility of avoiding

the intrinsic singularities through analytical continuation of the BSE to the complex plane,

solving the equation in Euclidean space. This method, known as ”Wick-rotation”, makes

the integral equation non-singular and allow its solution by standard numerical methods.

Worth mentioning that for the special case of a massless exchanged boson an analytical

solution of the BSE is achievable, what is known as the Wick-Cutkosky model (WICK,

1954; CUTKOSKY, 1954) and the technique adopted, though in Euclidean space, is quite

similar to the one adopted in what follows, namely a suitable integral representation of the

BS amplitude. For many years the Wick-rotation was fundamentally the only procedure

adopted for solving the 4D BSE (see e.g. Refs. (Zur Linden; MITTER, 1969; NIEUWEN-

HUIS; TJON, 1996; MANGIN-BRINET; CARBONELL, 2000; DORKIN et al., 2008;

LEVINE; WRIGHT; TJON, 1967; SCHWARTZ; ZEMACH, 1966)). Also noteworthy

that the analytical continuation from Euclidean to the Minkowski space is unstable when

done by numerical extrapolation (CARBONELL; FREDERICO; KARMANOV, 2017b).

Despite being widely used, Euclidean BS amplitudes have shortcomings related to its

analytical extension to return to Minkowski space, where all dynamical observables are

attainable. For example, the naive application of the Euclidean BS amplitude for the

calculation of the electromagnetic form factors of bound states solutions of the BSE can

lead to inconsistencies (CARBONELL; KARMANOV, 2011a). Another example of the

necessity of the Minkowski space description appears in the calculation of the of light-like

and time-like quantities, like e.g. the parton distribution functions (PDFs).For instance,

within the framework based on the BSE plus DSE, the pion distribution has been eval-

uated in Euclidean space and then extrapolated to Minkowski space in order to get the

light-front pion wave function (CHANG et al., 2013). A calculation fully underpinned

by the Minkowskian structure would enable a remarkable corroboration of such extrap-

olation. However, it should be pointed out that there exist a general issue regarding

the calculation of light-like and time-like observables in hadron physics, as shown by the
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intriguing example of the quasi-parton distributions. As recently proposed, one can calcu-

late quasi-PDFs with moving hadrons in the Euclidean Lattice QCD for large longitudinal

momentum to match with parton distribution functions in the infinite momentum frame

(JI, 2013), but unfortunately they are a↵ected by uncontrollable renormalization issues as

shown in Ref. (ROSSI; TESTA, 2018). Such an example yields another good motivation

of developing non-perturbative tools genuinely Minkowskian.

One of the first successful attempts to provide a thorough numerical investigation of

the solutions for the bosonic Bethe-Salpeter equation in Minkowski space was obtained by

Kusaka and Williams (KUSAKA; WILLIAMS, 1995). They studied a simple model for the

bound state of two massive scalar bosons interacting by exchanging another massive scalar

boson, the so-called Yukawa model. They used the first order ladder approximation and

the Nahanishi Perturbative Integral Representation (PTIR) for the BS amplitude. The

PTIR proposed in the early 60’s (NAKANISHI, 1963), allows one to write any perturbative

transition amplitude as an integral over a non-singular function of real variables, called

Nakanishi weight-function, times a denominator containing the full analytical structure

unambiguously determined within the Feynman diagrammatic framework. Since the BS

amplitude is a three-leg amplitude, with one leg on its mass-shell, Kusaka and Williams

used the Nakanishi integral representation (NIR) as an ansatz for the non-perturbative

BS amplitude and solved the BSE, for the first time, directly in Minkowski space. They

successfully reproduced the Euclidean space coupling constants computed by Linden and

Mitter (Zur Linden; MITTER, 1969). Although groundbreaking, their formulation was

quite cumbersome to be extended to more complex systems, in particular with spin degrees

of freedom or higher-order interaction kernels. Nevertheless, the NIR brings an important

input on spelling out the analytical structure of the BS amplitude.

Following their success, in 2006, Karmanov and Carbonell (KARMANOV; CAR-

BONELL, 2006) improved the method using a technique formally equivalent to LF pro-

jection (which is introduced below), but in spirit it is di↵erent. In their approach it is

necessary to eliminate the spurious degree of freedom associated to the ”auxiliary field”,

introduced to assure the four-momentum conservation for interacting systems when the

interaction is buried in the mass of the system. In such a way, including higher-order

contributions into the interaction kernel became possible. The reduction of degrees of

freedom, inherent in the approach of Ref. (KARMANOV; CARBONELL, 2006), does not

spoil the dynamical content of equation, since it is summarized in the Nakanishi weight

function, which is the actual quantity to be determined numerically. Indeed, the approach

puts in evidence the relation between the BS amplitude and the so-called valence light-

front wave function (LFWF). This relation, obtained through a formally exact step, allows

one to gain a deeper physical understanding. As a matter of fact, the BS amplitude does

not have a probabilistic interpretation, but such a basic feature, helpful for the physical
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�
LF projection

//  2

Inverse Stieltjes transform

��
g

NIR

__

FIGURE 3.1 – Diagram illustrating the connection between the BS amplitude �, valence

LF wave function  2 and Nakanishi weight function g (diagram extracted from (GHER-

ARDI, 2017)).

intuition, can be recovered after expanding the interacting state on a Fock basis. The am-

plitudes of each Fock state are called LFWF and the sum over their square moduli is equal

to one. This property is fundamental for introducing the above mentioned probabilistic

interpretation. In particular, the 3D restriction of the BS amplitude yields the amplitude

of the first Fock state in the expansion, namely the amplitude of the valence component

(more details are given below). Through the approach proposed in Ref. (KARMANOV;

CARBONELL, 2006) a non-singular integral equation for the Nakanishi weight function

was derived, enabling the numerical solution even when including a higher-order diagram

in the kernel (CARBONELL; KARMANOV, 2006) and successfully comparing the re-

sults with calculations within Light-Front Dynamics. They were able to obtain the BS

amplitude and the valence wave functions, from where any dynamical observable can be

directly computed.

By adopting the so-called light-front projection, i.e. the integration on the component

k�
= k0 � k3

, allied to the uniqueness conjecture for the PTIR, Frederico et al. (FRED-

ERICO; SALMÈ; VIVIANI, 2012) obtained a non-singular inhomogeneous integral equa-

tion to describe the two-body scattering states in Minkowski space, as well as a new form

for the homogeneous bound state equation which was solved numerically (FREDERICO;

SALMÈ; VIVIANI, 2014).

A valuable feature of the LF framework applied to the BSE is due to the relations

among three essential quantities: the valence light-front wave function, the NIR spectral

function and the BS amplitude (see Fig. 3.1). The connections are due to the fact that

the Nakanishi integral representation gives the Bethe-Salpeter amplitude � through the

weight function g, the light-front projection of the BS amplitude gives the valence light-

front wave function  2 and the inverse Stieltjes transform gives the weight function g from

the valence LFWF (CARBONELL; FREDERICO; KARMANOV, 2017a). This makes

quite straightforward to compute any of those quantities once one of them is known.

The main aim from now on is to explore and develop the approach for solving the BSE
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in Minkowski space, eventually via Light-Front Dynamics (LFD) (CARBONELL et al.,

1998), starting with a bosonic two-body bound state, i.e. the �2� model. None of the

systems investigated hereinafter includes self-energies or vertex correction e↵ects (for a

solution of the �2� model including dressed propagators within a framework alike the one

by Kusaka and Willians, see Ref. (ŠAULI; ADAM, 2003)). Following the aforementioned

ideas, the main approach to be used here relies on the NIR of the BS amplitudes.The

ladder approximation is the truncation of the interaction kernel considered, but other

two-body irreducible contributions can be added, as well as di↵erent degrees of freedom,

e.g. colors, as it is considered in what follows.

Although the method to solve the BSE in Minkowski space is quite general, allowing

the inclusion of any order of the interaction kernel, solving the equation become numer-

ically demanding when the interaction kernel is truncated beyond the ladder approxi-

mation. For instance, in the form factor calculation, considering the two-body current

contribution already involves the computation of a 10-dimensional integral and, conse-

quentially, a significant computational power. For that reason, most of the calculations

are performed by using the first order truncated kernel. This hypothesis is intended to

be tested here by adding explicitly the cross-ladder diagram to the kernel and studying

its impact on the solution. How significant the impact is can depend on the underlying

theory and its degrees of freedom. For instance, it turns out that within a scalar QCD

model with non planar diagrams, color factors, generated after including the Gell-Mann

matrices to each diagram, have a fundamental role for mitigating the influence of the con-

tributions beyond the ladder one. Hence, one expects that the application of the ladder

truncation in QCD should be more sound , given the color weights, than in the case of

QED, where it is more problematic, as it is well-known. In the context of hadronic and

nuclear physics, this outcome supports applications also to hadronic bound and scatter-

ing states, after the essential peculiarities of the underlying system under scrutiny are

included in the approach.

A brief discussion of the BSE is also done in the context of 2+1 dimensions in

Minkowski space. The validity of the NIR for the BS amplitude in 3 + 1 dimensions has

been treated and tested in several works, see e.g. (KUSAKA; WILLIAMS, 1995; KAR-

MANOV; CARBONELL, 2006; FREDERICO; SALMÈ; VIVIANI, 2012). In Ref. (GI-

GANTE et al., 2015), it was shown for the first time that the extension of the NIR of the

BS amplitude can be successfully applied to treat the problem of a bound state consisting

of two scalar bosons in 2 + 1 dimensions. The authors presented comparisons between the

coupling constants computed in both Euclidean and Minkowski spaces. It was also shown

that the BS amplitude in Euclidean space, calculated by means of the Wick-rotation, is

in fair agreement with the one computed through the Wick-rotated NIR obtained from

the solution in Minkowski space (GIGANTE et al., 2017b). This is a strong statement in
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favor of the representation’s reliability also in 2+1 dimensions.

It is well-known in non-relativistic quantum mechanics that any attractive short-range

force binds a s-wave two-body system, as the radial eigenvalue equation reduced to a

Sturm-Liouville problem has an attractive �1/(2r)2 potential (LANDAU; LIFSHITZ,

1977). Therefore, it is reasonable to expect an increase in the binding energy of the

relativistic bound state if an attractive interaction term is added, like the cross-ladder

contribution to the kernel of the BSE. By using the same techniques and numerical meth-

ods as in the treatment of the BSE in 3+1 dimensional Minkowski space, the e↵ects of the

cross-ladder contribution to the interaction kernel is investigated also in 2+1 dimensions.

One observes that, similarly to the case in 3+1 dimensions, the impact on the results is a

significant attraction, being even more pronounced for states with large binding energy.

One of the most interesting applications of relativistic 2+1 approaches is studying the

properties of excitons, i.e. electron-hole bound states, in 2D materials within condensed

matter physics. For example, experiments of light absorption by excitons and trions in

monolayers of MoS2, material that has an hexagonal structure similar to graphene, could

be explored within the relativistic formulation for the excitonic problem. The 2+1 BSE

could be applied to model the interaction between the electron and the hole. However,

the current status of the developed approach for 2+1 bosonic systems in Minkowski space

needs further development to deal with problems at that level of complexity. More details

of what will be shown here can be found in Refs. (GIGANTE, 2014; GÓMES, ).

Although some results for the solution of the BSE in 2+1 dimensions are given in

what follows, the aim is to explore the 3+1 BSE towards developing a sound approach

to deal with non-perturbative systems in Minkowski space. Once the technical steps are

understood within simpler systems, like the scalar two-body one, the BS approach will

be adapted to perform a phenomenological description of light mesons. This development

gives the inputs for evaluating the partonic source amplitudes which are necessary for a

better description of CPV in heavy meson decays, studied in Chap. 2.

3.1 The bound state structure within the BSE

The starting point is the investigation of the e↵ect of the interaction-kernel truncation

on the bound state structure of a bosonic two-body system once the BSE (see a diagram-

matic sketch in Fig. 3.2) is solved by means of the NIR and light-front projection. The

main observables under scrutiny are the valence light-front wave function and the elastic

electromagnetic form factor beyond the impulse approximation, i.e. taking into account

the two-body current coming in consequence of the cross-ladder interaction. Adding the

two-body exchange is necessary for fulfilling the gauge invariance, as the cross-ladder di-
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agram also contributes to the EM current of the bound state pair. The aforementioned

observables are particularly relevant in this context since they are intrinsically linked with

the Minkowski space structure. Their asymptotic behaviors (i.e. at large values of the

constituent momentum or momentum transfer, respectively, for the LFWF and form fac-

tor) are found to be quite independent of the inclusion of the cross-ladder kernel, and,

moreover, the form factor’s asymptotic tail turns out to decrease in agreement with the

analytical result obtained through counting rules.

� = �K
FIGURE 3.2 – Diagrammatic representation of the two-body BSE.

For instance, the leading asymptotic large momentum behavior of hadron elastic form

factors are usually calculated using quark counting rules within perturbative QCD (LEP-

AGE; BRODSKY, 1980; BRODSKY; JI, 1985), while the higher-twist (i.e., beyond the

impulse) contributions are expected to be suppressed for high momentum transfer (LEP-

AGE; BRODSKY, 1980). One interesting example of such a calculation, applied to a spin

1 two-fermion bound state, was performed in Ref. (BRODSKY; HILLER, 1992), with the

subleading power corrections being later considered for both the deuteron (KOBUSHKIN;

SYAMTOMOV, 1994; KOBUSHKIN; SYAMTOMOV, 1995) and ⇢-meson (MELO; JI;

FREDERICO, 2016) elastic form factors. Given the rich information on the dynamics

that one could extract, it is worth carrying out a calculation completely performed in

a non-perturbative approach, even for a simple spinless system like the one presented

here. This is part of the e↵orts of this thesis, that aim at establishing a phenomenological

framework where hadrons can be studied also in a non-perturbative regime. Understand-

ing the dynamics in simpler scenarios is essential to keep subtleties under control. Here

the asymptotic behavior is obtained from the numerical solution of the BSE, as well as

analytically from counting rules, both for the valence LF wave function and EM form

factor.

The investigation of the cross-diagrams in the interaction kernel was already done

within the Minkowski space approach in Ref. (CARBONELL; KARMANOV, 2006), but

without a detailed exploration of the bound state structure, as the aim was to demonstrate

the generality of the method based on the NIR while enclosing di↵erent contributions to

the interaction kernel truncation. The infinite set of irreducible cross-ladder diagrams for a

�2� model was previously analyzed within the Feynman-Schwinger representation frame-

work in Ref. (NIEUWENHUIS; TJON, 1996), showing a huge e↵ect on the binding energy.

However, the approach was completely done in Euclidean space. One interesting study
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beyond the one-body exchange was performed in Ref. (JI; TOKUNAGA, 2012), where,

within a light-front two-body bound-state equation, the full light-front dynamic inter-

action kernel, including the ladder, cross-ladder, stretched-box, and particle-antiparticle

creation/annihilation e↵ects was explored showing in detail contributions of higher Fock

states.

It is known that the cross-ladder diagram in its lowest order imposes a significant net

attraction between the two particles in the bound state (CARBONELL; KARMANOV,

2006). This e↵ect is expected to be seen in every observable, but can manifest di↵er-

ently on dynamical ones. Therefore, if the influence of the lowest-order cross-diagram

is not negligible, introducing higher order contributions could lead to a sizable e↵ect on

the observables. In view of this, understanding quantitatively the dynamics beyond the

ladder exchange is an essential step, since to access in detail the range of validity of

the ladder approximation is important for extending the description based on the BSE

to more complicated systems (e.g. with spin dof or other interaction lagrangian) with-

out facing too cumbersome calculations. The LF framework analysis can be extended

to fermionic systems (CARBONELL; KARMANOV, 2010; De Paula et al., 2016) in a

quite straightforward way, what would prepare the ground for applications to the study

of meson structure. A starting development in this direction will be presented at the end

of the thesis.

3.1.1 Bethe-Salpeter Equation and Nakanishi Integral Repre-

sentation

For two spinless particles, carrying momenta p1 and p2, and with a general interaction

kernel the BS equation in Minkowski space reads

�(k, p) = G(⌘1 p + k)G(⌘2 p� k)

Z
d4k0

(2⇡)4
iK(k, k0, p)�(k0, p), (3.1)

where, for ⌘1 = ⌘2 = 1/2, k = (p1 � p2)/2 is the relative momentum, p = p1 + p2 the

total momentum and M =
p

p2 the total bound state mass. The Feynman propagators

G(p0) can in general be represented by the Källen-Lehmann spectral representation as

(ITZYKSON; ZUBER, 2006)

G(p0) =

Z 1

0

ds
⇢(s)

p02 � s + i✏
. (3.2)
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In what follows, B(n) = 2m�M(n) > 0 is the binding energy of the n�th state. Including

the representation for the propagator the equation reads

�(k, p) =

Z 1

0

d�
⇢(�)

(⌘1p + k)2 � � + i✏

Z 1

0

d�0
⇢(�0)

(⌘2p� k)2 � �0 + i✏

⇥
Z

d4k0

(2⇡)4
iK(k, k0, p)�(k0, p). (3.3)

For the further developments the simplest version of the propagator will be considered,

i.e. without including self-energy or loop corrections. Therefore, one has that ⇢(�) =

�(� �m2
), and Eq. (3.2) becomes

G0(p
0
) = i

1

[p02 �m2 + i✏]
. (3.4)

The interaction kernel iK(k, k0, p), extensively discussed in Refs. (CARBONELL; KAR-

MANOV, 2006; GIGANTE et al., 2017a; JI; TOKUNAGA, 2012) is given by an infinite

sum of two-body irreducible Feynman diagrams, being most commonly represented in the

ladder approximation.

Solving Eq. (3.1) in terms of the unknown quantity �(k, p; M2
) is generally challenging,

as its analytic structure contains singularities that are hard to deal with numerically.

The approach of Refs. (KUSAKA; WILLIAMS, 1995; KARMANOV; CARBONELL,

2006; FREDERICO; SALMÈ; VIVIANI, 2012) proposes to introduce an ansatz for the

BS amplitude: the Nakanishi integral representation (NAKANISHI, 1963; KUSAKA;

WILLIAMS, 1995), which for the s-wave amplitude is given by

�(k, p) = �i

Z 1

�1

dz

Z 1

0

d�
g(�, z)

(� + m2 � 1
4M

2 � k2 � p · k z � i✏)3
, (3.5)

where the weight function g(�, z) is a non-singular unknown quantity, to be determined

numerically, and the dependence upon the external momenta is explicitly given by the

denominator. The representation of Eq. (3.5) is an essential tool in this approach, as

it allows one to deal with the singularities and branch cuts analytically, and to know

their positions so that it is possible to avoid eventual numerical problems. The NIR is a

general representation for N-leg transition amplitudes, originally proposed in the pertur-

bative context.One particular well-known case of the NIR is the Källen-Lehmann spectral

representation (see Eq. (3.2)), which corresponds to the 2-point correlation function, and

is often used to describe one-particle propagators.

Once all the singularities are known due to the explicit analytic structure, one needs

to deal with them, preferably analytically, to make the numerical resolution of the BSE

smoother. A very useful technique for that purpose is the light-front projection, which
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simply relies on introducing the LF variables k± = k0 ± kz and k? = (kx, ky) and perform

the integration over the k�
variable.

It is important to notice that such an integration over k�
amounts to restrict the BS

amplitude onto the hyperplane x+
= 0, which physically corresponds to eliminate the rel-

ative LF time t + z between the constituent particles, and also recovers the probabilistic

interpretation. The LF projection allows one to address the light-cone dynamics, since

the hyperplane x+
= 0 is tangent to the light-cone (i.e. x2

= x+x� � x2
? = �x2

?  0).

Formally, the k�
projection corresponds simply to perform Cauchy integration, what en-

sures a proper treatment of the singularities by taking into account their contributions.

This straightforward trick makes the solution of the dynamics of the propagators and

amplitudes much simpler (JI, 2017) and enables a direct connection between the valence

light-front wave function,  LF , and the BS amplitude through the k�
integration (FRED-

ERICO; SALMÈ; VIVIANI, 2012), i.e.

 LF (�, ⇠) =
p+p

2
⇠ (1� ⇠)

Z 1

�1

dk�

2⇡
�(k, p) =

=
1� z2

4

Z 1

0

g(�0, z)d�0
h
�0 + � + z2m2 + (1� z2)2

i2 , (3.6)

where the transverse momentum is k? =
p
� and the LF longitudinal momentum fraction

is ⇠ = (1 � z)/2 with 0 < ⇠ < 1. The BS equation has physical and abnormal solutions,

with the first ones constrained, for identical bosons, by the symmetry property on the

weight function, namely g(�, z) = g(�,�z), what should be also seen in the valence wave

function.

Combining NIR and LF projection is a robust procedure as it makes the final inte-

gral equation non-singular, something that is remarkable regarding solving BSE directly

in Minkowski space. Applying the NIR (3.5) on both sides of the spinless BSE (3.1),

performing the integration over k�
, and making some transformations (KARMANOV;

CARBONELL, 2006; FREDERICO; SALMÈ; VIVIANI, 2014), one gets the following

compact expression

Z 1

0

g(�0, z; 2)d�0
h
�0 + � + z2m2 + (1� z2)2

i2 =

Z 1

0
d�0

Z 1

�1
dz0 V (�, z, �0, z0; ↵)g(�0, z0; 2), (3.7)

where 2 = m2 � 1
4M

2 > 0, since within the model the bound state mass is constrained

by the constituent particle masses, and V (�, z, �0, z0;↵) is the expression resulting from

the interaction kernel K, the boson propagators and the NIR denominator.The weight

function g is determined by solving the generalized eigenvalue problem like Ag = �(↵)Cg,

where A and C are the matrices coming from the basis expansion of g on the LHS and

RHS of Eq. (3.7), respectively. � is the eigenvalue and ↵ = ↵(B) the coupling constant
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for a fixed binding energy B. More details on the full expressions for V (�, z, �0, z0;↵) for

both ladder and ladder plus cross-ladder kernels see Refs. (KARMANOV; CARBONELL,

2006; CARBONELL; KARMANOV, 2006; GÓMES, ). The numerical method to solve

Eq. (3.7) is quite straightforward, simply involves basis expansions using orthogonal poly-

nomials, namely, Laguerre polynomials for the noncompact dependence on � and Gegen-

bauer polynomials for the compact z variable. The numerical procedure is described more

explicitly in Sec. I.2 and Refs. (FREDERICO; SALMÈ; VIVIANI, 2014; GUTIERREZ et

al., 2016), for the interested reader. Any other basis expansion can in principle be used as,

for instance, splines (see Ref. (KARMANOV; CARBONELL, 2006)), but the particular

one used here is convenient since it allows an easy implementation of the weight func-

tion symmetry for z ! �z and allows to impose orthogonality of the polynomials on the

matrices avoiding the need of meshes for interpolating the basis functions.

3.1.2 Coupling constant and valence LFWF

The numerical solution of Eq. (3.7) gives two main quantities for fixed bound state

(M) and exchanged boson (µ) masses: the coupling constant ↵(K)
and the weight function

g(K)
(�, z), both dependent on the adopted truncation for the interaction kernel K. From

these quantities all the observables can be obtained. Table 3.1 shows the values of ↵(L)
and

↵(L+CL)
, i.e. the coupling constants with Eq. (3.7) solved with the ladder (L) and ladder

plus cross-ladder (L+CL) kernels, di↵erent values of the binding energy (B = 2m �M)

and exchanged boson mass µ. It is clear that adding the cross-ladder kernel brings a

B/m µ/m ↵(L+CL) ↵(L) ↵(L)/↵(L+CL)  (L)
LF

/ (L+CL)
LF

1.5 0.15 4.1399 6.2812 1.5172 1.5774

0.50 5.1568 7.7294 1.4988 1.5395

1.0 0.15 3.5515 5.3136 1.4961 1.5508

0.50 4.5453 6.7116 1.4766 1.5094

0.5 0.15 2.5010 3.6106 1.4436 1.4805

0.50 3.4436 4.9007 1.4231 1.4405

0.1 0.15 1.1052 1.4365 1.2997 1.2763

0.50 1.9280 2.4980 1.2956 1.2694

TABLE 3.1 – First and second columns present the fixed values for the binding energy

and exchanged boson mass, respectively. Third and forth columns give the outputs when

solving Eq. (3.7) with ladder (L) and ladder plus cross-ladder (CL) kernels. The last two

columns are for comparison between the ratio of the coupling constants, given in terms

of ↵ = g2/(16⇡m2
), corresponding to ladder (L) and ladder plus cross-ladder (L+CL)

kernels, with the ratio of the LF wave functions in the asymptotic limit ( (� = 500 m2
,

⇠ = 1/2)).

strongly attractive e↵ect on the coupling constant reducing its value for a given binding
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energy. In order to check the e↵ect on a structure observable, the valence LFWF is also

computed under both truncations of the interaction kernel and their ratio,  (L)
LF

/ (L+CL)
LF

,

is given for ⇠ = 1/2 (z = 0) and � = 500 m2
(asymptotic region). Analogously, the

fifth column of Table 3.1 gives the ratio between the coupling constants, ↵(L)
LF

/↵(L+CL)
LF

.

Comparing the rations of the fifth and sixth columns it is possible to conclude that the

impact of the di↵erent truncations in the interaction kernel bring the same e↵ect on both

quantities. A large value is chosen for fixing � due to the fact that the LFWF is arbitrarily

normalized as  (L)
LF

(0, 1/2) =  (L+CL)
LF

(0, 1/2) = 1 in all the cases.

After understanding a bit better the cross-ladder impact on the asymptotic limit, one

can look at the overall momentum dependence of the valence wave function. The chosen

case is for a strongly bound system, B = 1.5 m, as there the e↵ect is more pronounced.

Fig. 3.3 presents the valence LFWF as a function of � = k2
? for fixed longitudinal mo-

mentum ⇠ = 1/2 for both ladder (dashed-red) and ladder plus cross ladder (solid-black)

kernels. The left and right panels are for µ = 0.15 m and µ = 0.5 m, respectively. Due

to the fact that the same normalization was adopted to both cases, it is seen that at low

momentum,
p
� . 3 m, the curves almost coincide for ladder and ladder plus cross-ladder

kernels. Physically, this can be understood as the a behavior dictated by the binding

energy, as the coincidence region between the curves is around
p
� ⇠B = 1.5 m. On the

other extreme, at large momentum, ladder and ladder plus cross-ladder results are prac-

tically proportional, what agrees with the general discussion on asymptotic behavior of

the LF wave function in Ref. (LEPAGE; BRODSKY, 1980) where it was shown that the

large momentum tail should be dominated by the ladder exchange.
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FIGURE 3.3 – LF wave function vs. � for ⇠ = 1/2 with ladder (L) (dashed lines)

and ladder plus cross-ladder (L+CL) (solid lines) interaction kernels for B = 1.5 m and

µ = 0.15 m (left-frame) and µ =0.5 m (right-frame).

A simple, but interesting, factorization of the LFWF in terms of its asymptotic be-

havior and general longitudinal momentum distribution was given in Ref. (GUTIERREZ
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et al., 2016) for ground and excited states, reading as follows,

 LF (�, ⇠)! ↵ ��2 C(⇠) , (3.8)

where the coupling constant, ↵, is factorized and the asymptotic behavior (� ! 1)

is fixed by the generalized counting rule given in Ref. (JI; MA; YUAN, 2003), being

the same found through the Wick-Cutkosky (WC) model (ladder kernel, zero exchanged

mass), where the valence wave function reads (HWANG; KARMANOV, 2004)

 (WC)
LF

(�, ⇠) =
C(WC)

(⇠)

2
p
⇡(� + m2 � ⇠(1� ⇠)M2)2

. (3.9)

The function C(WC)
is given by C(WC)

(⇠) = ⇠(1 � ⇠)g(WC)
(1 � 2⇠) and has two di↵erent

shapes according to the extreme limits of the binding energy, i.e. strongly and weakly

bound states. They are explicitly given by

C(WC)
(⇠) = [⇠(1� ⇠)]2 , (3.10)

for B = 2 m, and,

C(WC)
(⇠) = ⇠(1� ⇠)

✓
1

2
�
��1
2
� ⇠

��
◆

(3.11)

for B ! 0. Keeping these functions in mind is helpful to understand more of the C(⇠)

behavior in the case under study here.

The aim now is to study the longitudinal asymptotic (� !1) distribution C(⇠) under

the influence of the interaction kernel. For practical purposes the normalization is arbi-

trarily fixed at  LF (0, 1/2) = 1 for all the cases. Formally this constraint for fixing the

function C(⇠) should be obtained from the normalization of the BS amplitude (FRED-

ERICO; SALMÈ; VIVIANI, 2014), nevertheless the precise quantity is not necessary given

the goal of the current study. The aim is to explore how C(⇠) changes if the binding en-

ergy is kept fixed, knowing that the coupling constant changes due to the cross-ladder

attraction and since the high momentum region is unaltered due to the ladder exchange

dominance. Fig. 3.4 presents a comparison including C(⇠) computed with the ladder ker-

nel, ladder plus cross-ladder kernel and their shapes when obtained within the WC model

(Eqs. (3.10) and (3.11)). The results are presented for weak, B = 0.118 m, and strong,

B = 1.5 m, binding energies and compared with the Wick-Cutkosky model for both ex-

tremes, B = 2m and B ! 0. The exchanged boson mass is here fixed as µ = 0.15 m.

From Table 3.1 it could be concluded that the wave function scales according to ↵ in the

asymptotic region. Therefore, for the calculations represented in Fig. 3.4, it was consid-

ered the di↵erent coupling constants according to their binding energies, as well as the

ratio  (L)
LF

/ (L+CL)
LF

for fixed � = 500 m2
and ⇠ = 1/2 (z = 0), which is approximately the
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same as the ratios between the values of ↵, i.e. ↵(L)/↵(L+CL) ⇡  (L)
LF

/ (L+CL)
LF

. This brings

a good argument in favor of factorizing ↵ in Eq. (3.8).
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FIGURE 3.4 – Asymptotic function C(⇠) of Eq. (3.8) computed for the ladder, C(L)
(⇠)

(dashed line), and ladder plus cross-ladder, C(L+CL)
(⇠) (solid line), kernels. The results

are compared to the functions obtained within the Wick-Cutkosky model for B = 2m
(full box) and B ! 0 (dash-dotted line, right panel). On the left B = 1.5 m and on the

right B = 0.118 m. Exchanged boson mass of µ = 0.15 m. For the comparison, the curves

for B = 0.118 m are multiplied by 10.

Fig. 3.4 shows that the shape of C(⇠) is practically unchanged with B, di↵erently from

what is given by the Wick-Cutkosky model between the extreme limits of binding energy.

However it is important to point out that the magnitude of C(⇠) decreases by a factor

of ⇡ 10 from B = 1.5 m to 0.118 m, what is seen on the plot due to the fact that both

curves are normalized to the same value. This significant di↵erence comes from the fact

that the wave function decays considerably slower for strongly bound systems. Regarding

the comparison with the Wick-Cutkosky model, one can see that the results are better

represented by the case where B = 2 m, i.e. C(⇠) can be reasonably well represented by

[⇠(1 � ⇠)]�, where � = 2 when µ ! 0. If µ ! 1, that means a zero-range interaction,

the LFWF asymptotic behavior becomes ��1
, with its longitudinal distribution better

represented by C(⇠) = [⇠(1� ⇠)]2.

This study shows that the form of the longitudinal momentum fraction distribution of

the valence LF wave function is quite universal. One can then make up a conjecture that

the shape and magnitude of C(⇠), along with the wave function at low transverse mo-

mentum, for an arbitrary normalization and given binding energy, are independent on the

inclusion of the irreducible cross-ladder contributions in the interaction kernel. Remind-

ing Ref. (NIEUWENHUIS; TJON, 1996), where the Yukawa model with the complete

ladder kernel was solved by means of the Feymman-Schwinger representation, one can

use the result for the coupling constant found there to model through Eq. (3.8) the form

of the valence wave function with an infinite set of cross-ladder diagrams in the kernel

interaction kernel.

Worth mentioning that the Nakanishi weight function, g(�, z), gives the behavior at
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z ! ±1, and which is quadratic at the end points. Therefore the behavior of C(⇠) comes

from a linear damping of g(�, z) ⇠ (1 � |z|) for |z| ! 1, feature that will be useful later

while analytically analyzing the asymptotic form of the EM form factor to demonstrate

the consistency of the results with the counting rules.

3.1.3 Space-like elastic EM Form factor

Firstly the electromagnetic current needs to be introduced. In its general case and for

a scalar bosonic system it reads

Jµ = (pµ + p0
µ
)F1(Q

2
) + (pµ � p0

µ
)F2(Q

2
) , (3.12)

where the total momentum transfer is defined as Q2
= �(p� p0)2 > 0, being greater than

zero since only the space-like region will be studied here. Equation (3.12) is reduced to

a simpler form in the case that no transition is considered since F2 = 0 due to current

conservation in the elastic case. The remnant form factor, F1, stands for the absorption

of a virtual photon by the bound state system. As the cross-ladder interaction kernel

is considered in the calculations, due to gauge invariance the EM coupling requires two

irreducible contributions to the photon absorption amplitude, leading to two terms of the

form factors, i.e.

F1(Q
2
) = FI(Q

2
) + FX(Q2

), (3.13)

where FI represents the usual impulse contribution, related to the triangle diagram on

the left of Fig. 3.5, and FX is linked to the additional two-body current contribution,

illustrated in the right side of Fig. 3.5. Applying the Feynman rules to the diagram on

p1 p2

kp p0

q

p1

p3 p4

p5

p9p2 p8

p7

p6

p p0

q

FIGURE 3.5 – Photon absorption amplitude diagramatically represented for the (left)

impulse and (right) two-body current contributions.

the left of Fig. 3.5, one can analytically express the impulse approximation for the EM

form factor as

(p + p0)µFI(Q
2
) = i

Z
d4k

(2⇡)4
(p + p0� 2k)

µ
(k2�m2

)�
⇣p

2
� k, p

⌘
�

✓
p0

2
� k, p0

◆
, (3.14)
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which is written in terms of the BS amplitude �. One can now substitute on the right

hand side the NIR for the BS amplitude and contract both sides of Eq. (3.14) with

(p + p0)µ obtaining the following,

FI(Q
2
) =

i

(2⇡)4

Z 1

0

d�

Z 1

�1

dz

Z 1

0

d�0
Z 1

�1

dz0
Z

d4k


1� 2k · (p + p0)

(p + p0)2

�

⇥ (m2 � k2
) g(�, z)g(�0, z0)

D3(�, z;
p

2 � k, p) D3(�0, z0; p0

2 � k, p0)
, (3.15)

where D = �+m2� 1
4M

2� k2� p · k z� i✏ is the denominator of the NIR (3.5). One can

easily perform the loop integral in d4k in Eq. (3.15) through Feynman parametrization,

a procedure that is detailed in Refs. (CARBONELL; KARMANOV; MANGIN-BRINET,

2009; GÓMES, ). The final expression, after performing the analytical integration, is

given by

FI(Q
2) =

=
1

27⇡3

Z 1

0
d�

Z 1

�1
dz g(�, z)

Z 1

0
d�0

Z 1

�1
dz0 g(�0, z0)

Z 1

0
dy y2(1� y)2

fnum
f4
den

, (3.16)

where

fnum = (6⌘� 5)m2
+[�0(1� y)+�y](3⌘� 2)+2M2⌘(1� ⌘)+

1

4
Q2

(1� y)y(1+ z)(1+ z0)

and fden = m2
+ �0(1� y) + �y �M2

(1� ⌘)⌘ +
1

4
Q2

(1� y)y(1 + z)(1 + z0), (3.17)

with 2 ⌘ = (1 + z)y + (1 + z0)(1 � y). Eq. (3.16) depends on the weight function g(�, z)

which was obtained by solving the BSE (3.7).

The same can be now done for the two-body current, starting by applying the Feynman

rules to the diagram on the right of Fig. 3.5. Following the notation of the figure, the

photon vertex is now �i(p4 + p3)µ. The full expression can be written as

FX(Q2
) = �i

g4

(2⇡)12

Z
d4p2d

4p8d
4p9


1� 2

(p + p0) · (p9 + p2 � p8)

(p + p0)2

�

⇥
"

8Y

i=3, i 6=5

1

p2
i
�m2

i
+ i✏

#
�
⇣p

2
� p2, p

⌘
�

✓
p0

2
� p9, p

0
◆

, (3.18)

where p3 = p�p9�p2+p8, p4 = p0�p9�p2+p8, p6 = p2�p8, p7 = p9�p8, m3 = m4 = m

and m6 = m7 = µ. Naturally, the second term between square brackets in the first lines

of Eqs. (3.15) and (3.18) yields zero contributions for the linear terms in k after the 4D

loop integrations (further details on the derivation are presented in Ref. (GÓMES, )).

Again, the NIR should be introduced and the Feynman parametrization used to per-



CHAPTER 3. TWO-BOSON BSE IN MINKOWSKI SPACE 105

form all the three loop integrations. The final formula can be conveniently expressed in a

compact form

FX(Q2
) = �3↵2m4

(2⇡)5

Z 1

0

d�

Z 1

�1

dz

Z 1

0

d�0
Z 1

�1

dz0g(z0, �0)g(z, �)

⇥
6Y

i=1

Z 1

0

dyi⇥

 
1�

4X

j=i+1;i<4

yj

!
(1� y5)

2y2
5(1� y6)

2y3
6

fX

num

[fX

den
]
5 , (3.19)

where the lengthy expressions for fX

num
and fX

den
, dependent of m, yi, �, z, �0, z0, p0 and

p, are presented in Ref. (GÓMES, ), where the detailed derivation is also presented. Six

Feynman parametric integrations are necessary to perform the loop integrations. Notice

that Eq. (3.19) is completely non-singular and can be computed by means of standard

numerical methods.

It is valuable to comment briefly on current conservation in this problem. The elastic

EM vertex (3.12) is symmetric when permuting p $ p0, either for the impulse or for

the two-body current contributions. Therefore, the second term of Eq. (3.12), which is

antisymmetric under the same permutation, needs to be necessarily zero for the elastic

EM vertex, implying F2(Q2
) ⌘ 0. The contraction of the EM vertices with (p� p0)µ (for

any individual contribution to the form factor in the elastic case, namely the impulse or

two-body current ones in the present case) will lead to zero as a consequence of current

conservation J · q = 0. This property is even for an isolated irreducible term of the

form factor, what does not happen in the inelastic (transition) case (i.e., the non-diagonal

matrix elements of J · q = 0) where one verifies the current conservation condition after

adding all the terms relative to the ones included in the interaction kernel. It would be

very interesting to consider this beyond the impulse approximation problem for, e.g., a

transition between the ground to an excited case, where finding numerically J · q = 0

would depend on the non-trivial cancellation among the contributions to the form factor.

One analogous example of the discussion above was presented in Ref. (CARBONELL;

KARMANOV, 2015), where current conservation for the inelastic form factor of the EM

breakup process (bound ! scattering state) was explicitly obtained numerically. In that

case two contributions were necessary for finding the cancellation that produces J · q = 0,

namely the triangle diagram plus the FSI contribution on the outgoing scattering state.

Thereafter deriving the equation, one can plug in the eigenvector and eigenvalue found

by solving Eq. (3.7) with the appropriate kernel, in Eqs. (3.16) and (3.19) and perform the

needed integrations to find what is shown in Fig. 3.6. The figure displays the impulse, FI ,

and two-body current irreducible contributions, FX , to the form factor for di↵erent sets of

input parameters, i.e. binding energy B and exchanged boson mass µ. It is important to

have in mind that although there is a truncation involved in the interaction kernel, all the

Fock state contributions related to a certain irreducible graph are naturally incorporated
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in the Bethe-Salpeter approach. Therefore, the form factor presented here present all the

contributions beyond the valence component both at ladder and cross-ladder levels.

Trying to cover both strongly and weakly bound state regimes the adopted sets were:

B = 0.1 m and µ = 0.15 m; B = 0.1 m and µ = 0.5 m; B = 1.5 m and µ = 0.15 m;

B = 1.5 m and µ = 0.5 m. Solid curves in Fig. 3.6 represent the total form factor (3.13),

i.e. with both contributions added, and its individual contributions are also showed. From

the figure one can observe that the two-body current FX contribution increases for smaller

µ when B is fixed, which indicates that when µ!1 (limit to the contact interaction) the

contributions beyond the triangle approximation tends to be suppressed. The total form

factor is normalized to one at Q2
= 0, as it should be for the elastic case. Noteworthy

that the value of Ftotal(Q2
= 0) gives the covariant normalization of the BS amplitude.

Meanwhile when the binding energy is increased for fixed µ the size of the state is bigger

and a slower decay of the form factor is seen, with the crossed contribution also getting

more relevant, reaching about 15% of the total at Q2
= 0. Simplistically, based on this

toy model, one could expect that strongly bound QED systems would require adding this

kind of extra contributions while computing their observables. For QCD systems, as the

color degree of freedom comes into play, this expectation is even less obvious, but this will

be covered in the next section.

Figure 3.6 also shows that as Q2
grows the impulse approximation gets practically

parallel to the total form factor, suggesting that the ladder exchange defines the pattern

of the curve for large momentum. This indicates that only the first graph, i.e. the simple

triangle diagram, is enough for describing the asymptotic region. Moreover, the bigger µ

is, earlier the impulse approximation starts to dominate, what happens also for smaller

B with µ fixed (see the upper panels of Fig. 3.6). This enhancement of the two-body

current contribution for smaller µ (wider range of the interaction) and larger B (smaller

size of the bound state) can be understood by considering that in both cases the overlap

between the bound state and the two-body current increases. For the low momentum

region, as happens for the valence LFWF, the binding energy (or the bound state mass)

is the main quantity shaping the form factor. The asymptotic region concentrates a lot

of physics and will be analyzed in detail later in the text.

Another result that corroborates the argument that the structure at the low momen-

tum region is fixed by the binding energy can be seen in Fig. 3.7. To bring a di↵erent

perspective, all the curves now are normalized to one and a broader interval of Q2
, namely

0  Q2/m2  50, is shown (logarithmic scale is adopted for a better visualization). In this

figure the form factor in the impulse approximation is computed both with the solution of

the BSE corresponding only to the ladder interaction kernel as well as with the solution

considering both graphs, i.e. ladder plus cross ladder diagrams, aiming at analyzing the

change in the dynamics according to the interaction kernel. Dot-dashed lines present the
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FIGURE 3.6 – EM Form factor vs momentum transfer Q2
for the BS amplitude with

the ladder plus cross-ladder kernel. Total form factor (solid) compared to the impulse

contribution FI (dashed) and to the two-body current FX (double-dotted dashed) con-

tribution to the vertex. Sets of fixed parameters are (upper-left frame) B = 0.1 m and

µ = 0.15 m; (upper-right frame) B = 0.1 m and µ = 0.5 m; (lower-left frame) B = 1.5 m
and µ = 0.15 m; (lower-right frame) B = 1.5 m and µ = 0.5 m.

impulse contribution computed with the BS amplitude obtained by solving the BSE with

the ladder truncation, while dashed lines show the impulse contribution with the solution

for a ladder + cross-ladder interaction kernel. The results are all for strongly bound sys-

tems with B = 1.5m and for two exchanged boson masses: µ = 0.15m and µ = 0.5m.

It is quite clear that at low momentum, typically below Q ⇡ B, all the curves roughly

coincide and have similar slopes, what express the bound state size and charge radius.

Comparing the left and right panels of the figure one sees that changing µ does not a↵ect

that feature. Regarding the tail of the curve, it is possible to see that something similar

to what was seen in Table. 3.1, that the valence LFWF asymptotic region scales with the

coupling constant, also appears in the form factor.

3.1.4 Asymptotic behavior of the form factor

As commented before, the asymptotic behavior of the form factor is very interesting,

among other reasons, due to the fact that this region is extensively discussed in the liter-

ature and many properties are known, including from perturbative approaches. The aim
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FIGURE 3.7 – EM Form factor vs Q2
. Dot-dashed line: impulse contribution calculated

in ladder (L) approximation. Dashed line: the same as the dot-dashed line but adding

the cross-ladder (CL) diagrams. Solid line: full calculation. All curves are normalized to

F (Q2
= 0) = 1. Binding energy fixed at B = 1.5 m, while two exchanged boson masses

are adopted: (left-panel) µ = 0.15 m and (right-panel) µ = 0.5 m.

here is to explore some properties of the form factor at high momentum both numerically

and analytically. Analytically, it is quite useful to obtain the leading behavior of the form

factor for Q2 ! 1 using standard counting rules, as done in the seminal paper by Lep-

age and Brodsky (LEPAGE; BRODSKY, 1980). Following this idea, the form factors of

Eqs. (3.16) and (3.19) should have their leading power-law behavior as dictated by simply

counting the Q2
factors coming from the propagators, and the results are expected to be

FI(Q
2
) ⇠ Q�4

and FX(Q2
) ⇠ Q�6, (3.20)

discarding logarithmic corrections, which can be found in Ref. (HWANG; KARMANOV,

2004). As expected after analyzing Figs. 3.6 and 3.7, the two-body current (also called

higher twist contribution) decreases faster than the impulse approximation. The expected

behavior of (3.20) can be derived directly from Eqs. (3.15) and (3.18), as follows.

For the sake of simplicity, the Breit reference frame will be adopted, where the con-

strains are ~p = �~p0 ⌘ ~n pv, p0 = p00 =
p

M2 + p2
v
, Q2

= �(p0 � p)
2

= 4 p2
v

and ~n is the

direction of the incident momentum ~p. Therefore, pv =
1
2Q and p0 = p00 =

q
M2 +

1
4Q

2

in Eq. (3.15). Furthermore, the shorthand notation is used: kv = |~k|. The denominator

D(�, z;
p

2 � k, p) (analogously for D(�0, z0; p
0

2 � k, p0)) of Eq. (3.15), for Q!1, enclosing

the aforementioned relations reads

D(�, z;
p

2
� k, p) / (1 + z)Q + �, D(�0, z0;

p0

2
� k, p0) / (1 + z0)Q + �0, (3.21)

where only the dependence on Q is explicitly displayed, with �, �0 containing the terms



CHAPTER 3. TWO-BOSON BSE IN MINKOWSKI SPACE 109

independent of Q. The impulse approximation contribution then becomes

FI(Q
2
) /

Z 1

�1

g(z)dz

[(1 + z)Q + �]3

Z 1

�1

g(z0)dz0

[(1 + z0)Q + �0]3
=

=
1

Q6

Z 1

�1

g(z)dz
⇣
1 + z +

�

Q

⌘3

Z 1

�1

g(z0)dz0
⇣
1 + z0 + �0

Q

⌘3 , (3.22)

where, again, terms not dependent on Q are omitted, as well as the integration over

k, as they bring only finite corrections that become irrelevant for Q2 ! 1. For the

sake of simplicity, one can put g(z) ⌘ 1, since the aim is to analyze the powers of Q2
.

Consequently, the integral gets the form

Z 1

�1

dz
⇣
1 + z +

�

Q

⌘3 ⇠
Q2

2�2
, (3.23)

which is divergent at z = �1 for
�

Q
= 0, meaning that the factor

1
Q6 in Eq. (3.22) can

be compensated by increasing factors at finite Q2
coming from the integrals. However,

considering g(z) ⌘ 1, which gives FI(Q2
) / 1/Q2

for the form factor asymptotic behavior,

is oversimplified. For a proper analyzes one needs to consider the divergent behavior as

Q!1, i.e. Z

�1

dz

(1 + z)2
= � 1

1 + z

����
z!�1

, (3.24)

which needs to be properly treated by considering Q large but finite and not discarding

the �/Q term in the denominator, which acts as a cuto↵, that means z = �1 +
�

Q
. It is

important also to consider that g(z) has a general linear behavior close to the end point,

i.e. z ! �1, as g(z) ⇠ (1� |z|), what alters the compensation, i.e.

Z 1

�1

g(z)dz
⇣
1 + z +

�

Q

⌘3 =

Z 1

�1

(1� |z|)dz
⇣
1 + z +

�

Q

⌘3 ⇠
2Q

�
, (3.25)

providing the expected asymptotic behavior FI(Q2
) / Q�4

. Therefore, the product of

integrals in Eq. (3.22) create an extra factor like ⇠ Q
2

�2
which modifies the fall-o↵ from

⇠ 1
Q6 to F (Q2

) / 1
Q4 . In short, since Eq. (3.15) contains two propagators with 3rd degree

denominators like Eq. (3.21), involving terms with p or p0 and, consequently, bringing a

factor of Q, the asymptotic behavior goes as ⇠ �
6

Q6 .

This analysis, although simple, brings an interesting understanding on the asymptotic

behavior of the form factor. Subtle corrections to leading asymptotic behavior, as the

log-term ⇠ log (Q2/m2
) discussed in Ref. (HWANG; KARMANOV, 2004) for the Wick-

Cutkosky model, are not achievable through such a simple analysis as the one presented

here. Nevertheless, the fall-o↵ of FI(Q2
) / 1

Q4 found here coincides with the leading order
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form factor fall-o↵ derived in Ref. (HWANG; KARMANOV, 2004) for the Wick-Cutkosky

model, what corroborate the analysis. The next step is to perform an analogous study

for the two-body contribution.

For the crossed contribution, the independent integration variables are, following

Eq. (3.18), p2, p8, p9, and in terms of them one can express the conservation vertices as

defined in Fig 3.5 p1 = p�p2, p5 = p0�p9, p6 = p2�p8, p7 = p9�p8, p3 = p�p2�p9 +p8

and p4 = p0 � p2 � p9 + p8. Hence, the BS amplitudes entering in (3.18) are dependent

of k =
1
2(p1 � p2) =

1
2p � p2 and k0

=
1
2(p5 � p9) =

1
2p

0 � p9. For large Q2
, (p0 + p)

2
and

[(p0 + p)
2 � 2(p + p0) · (p9 + p2 � p8)] can be omitted,as well as propagators depending on

p6, p7 and p8.

As in the impulse approximation case, Eq. (3.18) present the cubic denominators

coming from the Nakanishi integral representation. Therefore, a term that decays like

Q�4
also arises in this case, due to the same reasons as before. Nevertheless, now two

additional propagators containing p and p0 appear, namely the ones with p3 and p4. These

denominators can be reduced to a similar form as (3.21), anyway in this case the singular

behavior due to that (1 + z) and (1 + z0) does not appear. Thus, two extra factors as
1
Q

are present in the two-body contribution case, what makes the leading order asymptotic

behavior to be like FX(Q2
) / Q�6

. It is important to bear in mind that the end-point

behavior of the Nakanishi weight function influences the fall-o↵. Moreover, a more detailed

studied would be valuable to understand which kind of correction terms would appear to

the asymptotic form.
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FIGURE 3.8 – Left panel: EM form factor computed numerically with L+CL kernel and

shown up to large values of Q2
. Right panel: The impulse and two-body contribution

multiplied by the factors shown inset. Input parameters: µ = 0.15 m and B = 0.1 m.

Figure 3.8 presents, in the left-panel, the impulse (FI) and two-body current (FX) con-

tributions to the EM form factor, as well as the multiplication by their asymptotic behav-

iors as discussed above, in the right-panel. The dependence is displayed in a wide range of

Q2
, so that the fall-o↵ becomes more evident. The interaction kernel for the solution of the
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BSE utilized for these calculations is composed by ladder plus cross-ladder diagrams. In

order to properly compare the fall-o↵ of the contributions, both of them are normalized to

one at zero momentum transfer. The asymptotic region appear to start around Q/m ⇠ 30,

what is reasonably for the weakly bound state under consideration. The asymptotic behav-

ior is also explored under the inclusion of the log correction derived for the Wick-Cutkosky

model in Ref. (HWANG; KARMANOV, 2004), which is naively assumed to be the same

in the current case. As seen in Fig. 3.8, Q4/ [1 + (↵/2⇡) log(Q/m)
2
] FI seems to represent

better the asymptotic behavior of the impulse contribution, but not significantly, while

for the two-body term Q6/ [1 + (↵/2⇡) log(Q/m)
2
] FX shows to be considerably more re-

liable than simply Q6 FX . Nevertheless, it is notable to see how reasonable results the

counting rule performed here can provide. Further developments aiming at evaluating

also the log-corrections to the fall-o↵ from the massive BSE would be more than welcome.

The study provided so far in this section should be considered as a toy model towards

a scalar QCD theory. A natural subsequent question would be how is the response of the

Minkowski space structure of the same system within a context more compatible with

degrees of freedom typical of the QCD theory. The goal now is to explore how the cross-

ladder e↵ect on the observables discussed here changes if a simplified scalar QCD model is

considered and the extra factor due to the presence of the Gell-Mann matrices are taken

into account.

3.2 The color dof and its suppression on non-planar

diagrams

In this section, the aim is to explore the role of the color degrees of freedom within

the same approach discussed up to now in the present chapter. After introducing the

color factors, one can consider the development as an oversimplified scalar QCD model

of a meson. Although the study brings notable results, as it will be shown, this does

not exclude the future need of a realistic investigation within QCD theory, so that the

conclusions can be tested and their reliability for hadron physics confirmed. As it will be

shown, the color factors impose a strong suppression of the irreducible crossed, also known

as non-planar, diagrams, creating some hope that they can be discarded for practical

purposes where there is no need of refined corrections.

In addition to the analysis of the case of 3 + 1 spacetime dimensions carried out

so far in this chapter, the response of the observables in 2 + 1 dimensions will be also

briefly investigated. The system under scrutiny can be understood in this context as a

flavor-nonsinglet bound state of a scalar-quark and a scalar-antiquark with equal masses,

exchanging a scalar-gluon with a distinct mass. The underlying framework is essentially
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FIGURE 3.9 – Cross-ladder diagram with color matrices.

the same as the one presented in Sec. 3.1.1. By repeating the calculations of the coupling

constants, valence LFWF and EM form factor in the presence of color factors, one can

see that the cross-ladder contribution is already significantly suppressed for Nc = 3.

This is remarkable considering, e.g., that only the coupling constant is already a↵ected

by about 30-50% after introducing merely one crossed irreducible kernel, as shown in

Table 3.1. Moreover, if confirmed for more complex systems, would support the use of

rainbow-ladder truncations in non-perturbative calculations within the continuous QCD

framework (see, e.g. Ref. (EICHMANN et al., 2016)).

The suppression of non-planar diagrams was already demonstrated long ago, starting

with the seminal papers by ’t Hooft on developing a planar theory for hadrons in the Nc !
1 limit (where Nc is the number of colors) (HOOFT, 1974) and later by explicitly deriving

a SU(N)c theory of QCD in 1+1 dimensions and demonstrating the suppression in the

kernel (’t Hooft, 1974). The later work was further explored in Ref. (HORNBOSTEL;

BRODSKY; PAULI, 1990), where a deeper numerical analysis was performed by keeping

Nc finite and increasing it step by step in order to follow the evolution of the suppression.

Inspired by that work, the aim is to perform an analysis on how the suppression happens

in 3+1 and 2+1 spacetime dimensions for di↵erent number of colors. The work presented

here was published in Ref. (Alvarenga Nogueira et al., 2018).

3.2.1 Scalar QCD model

The generalization to include color factors is quite straightforward, starting through

the introduction of the Gell-Mann matrices �i in the vertices of the interaction kernel

diagrams. This is illustrated in Fig. 3.9 for the cross-ladder kernel and the idea is the

same for any irreducible graph. Once the diagram is properly defined, it is time to ap-

ply the Feynman rules and then perform the trace of the products of color matrices,

relative to the colorless composite bound state system. Notice that the resulting color

factor is independent on the type of particles involved in the bound state. Following this

Ref. (CVITANOVIĆ, 1976), the internal boson line factors are replaced by the corre-

sponding SU(N) projection operators. Here N = Nc represents the number of charges or
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colors of the theory. Following the procedure for the ladder kernel, one gets

tr[(�a)ji(�
a
)ij] =

X

a

(�a)ji(�
a
)ij =

1

2

3X

i,j=1

✓
�jj�ii �

1

N
�ji�ij

◆

=
1

2

 
N2 � 1

N

3X

i=1

�ii

!
=

N2 � 1

2
, (3.26)

which is a multiplying factor in the ladder kernel iKL in Eq. (3.5), being the only di↵erence

in that equation. For the cross-ladder diagram, as shown by Fig. 3.9, the color factors

are the following products: (�a)ij(�a)kj0 and (�b)jk(�b)j0i. One important property comes

into play in this case (CVITANOVIĆ, 1976)

X

a

(�a)ji(�a)j0k =
1

2

✓
�jk�ij0 �

1

N
�ij�j0k

◆
. (3.27)

The same process described above for the ladder kernel allied to Eq. (3.27) brings for the

color factor of the cross-ladder kernel:

tr[�a�b�a�b] = �(N2 � 1)

4N
. (3.28)

Comparing Eqs. (3.26) and (3.28) it is already clear that for N large enough the cross-

ladder kernel will be suppressed by 1/(2N). Another interesting di↵erence is the sign flip

brought by the color factor, which becomes repulsive instead of attractive as it was shown

in Sec. 3.1.2. An interesting way to graphically visualize this result is through the color

flow diagrams corresponding to the cross-ladder graph, as shown in Fig. 3.10. The closed

loops in the figure can be related with a factor of N , while the dotted lines represent

phantom propagators and give factors of �1/N (CVITANOVIĆ, 1976). If one considers,

as an exercise, a planar two-boson exchange kernel (i.e. a box diagram, instead of crossed

one as in Fig. 3.9) the corresponding factor, obtained by the same procedure described

above, would be

N

4

✓
N � 1

N

◆2

=
1

4

✓
N3 � 2N +

1

N

◆
,

what reinforces that non-planar graphs are significantly more suppressed than the planar

ones. This is in accordance with one of the main conclusions brought by ’t Hooft within

a QCD1+1 model for mesons on the light-front (’t Hooft, 1974). The question now is how

large N needs to be in practice to suppress su�ciently the e↵ect from non-planar graphs

on observables. For answering that one needs to introduce the factors computed here in

the interaction kernel and solve once again the BSE.
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FIGURE 3.10 – Diagrams illustrating the color flow in the cross-ladder graph.

3.2.2 Sensitivity under finite Nc

In the case of the scalar QCD, the procedure adopted for the solution of the BSE is

the same as the one described in Sec. 3.1. Figure 3.11 presents for 2 + 1, on the left,

and 3 + 1 dimensions, on the right, the coupling constant, obtained by solving the BSE

with ladder and ladder plus cross-ladder kernels, as a function of the binding energy of

the bound state system. The upper panels concern the solution of the bare BSE, i.e.

without the inclusion of the color factors, and the lower ones are for the SU(N) BSE,

with N = 2, 3 and 4 (red, green and purple, respectively). The exchanged boson mass is

µ = 0.5 m for all the curves. Both for 2 + 1 and 3 + 1 dimensions the attractive e↵ect

from the cross- ladder kernel for the bare BSE is quite evident, being slightly bigger for

the first case, as pointed out at the beginning of Chap. 3. On the other hand, when color

factors are introduced the suppression is already quite significant for N = 2, since the

cross-ladder e↵ect drops from about 47% with no color factor to around 15%. For N = 3,

the actual number of color charges in QCD theory, the e↵ect is already only 3%, even

though a strongly bound system, where the cross-ladder impact is more serious, is being

considered. For N = 4 the e↵ect is already almost negligible. Another important feature

seen in the lower panels in Fig. 3.11 is that g2
decreases, for a given B, when N increases.

This is an expected behavior by ’t Hooft’s limit, which states that g2N should become a

constant as N !1.

In Fig. 3.12, the coupling constant obtained by using the L and L+CL kernels, now

only for 3+1 dimensions, is shown for di↵erent fixed values of the binding energy. The

interaction boson has its mass fixed at µ = 0.15 m. The figure presents the results from

the BSE without color factors compared with the ones for N = 2, 3 and 4. In addition,

the Feynman-Schwinger representation (FSR) calculations from Ref. (NIEUWENHUIS;

TJON, 1996), where the infinite sum of irreducible diagrams was included to the inter-

action kernel of the same system treated here, but without the Gell-Mann matrices at

the interaction vertexes, is also presented. Only reasonably weakly interacting systems

(B / 0.25 m) are considered, following what was presented in Ref. (NIEUWENHUIS;

TJON, 1996). As it was mentioned, this calculation was performed in Euclidean space

and the e↵ect on dynamical observables formally defined in Minkowski space were not

disclosed. As it can be concluded from the figure, the e↵ect when including the whole set
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FIGURE 3.11 – Dimensionless coupling constant for various values of the binding energy

B obtained by using the Bethe-Salpeter ladder (L) and ladder plus cross-ladder (CL)

kernels, for an exchanged mass of µ = 0.5 m. In the upper panels are shown the results

computed with no color factors for 2+1 (left) and 3+1 dimensions (right) respectively.

Similarly, in the lower panels are compared the results for N = 2, 3 and 4 colors.

of cross-ladder diagrams is sizable, reaching a factor of three for the largest considered

binding energy. For a strongly bound state the di↵erence would be even bigger. Although

the e↵ect of the cross-ladder graphs is huge, one could expect that to be significantly

suppressed if the color factors are included. Higher order non-planar diagrams would

bring even more complex structures than what is shown in Fig. 3.10, with more inner

lines and one could expect, consequently, more suppression factors that go like 1/N (see

the discussion in Sec. 3.2.1). This would mean that at higher orders the e↵ect would

be even smaller than the already small impact found here for N = 3 including the first

crossed diagram. If it turns out to be correct, this would be a strong argument to support

rainbow-ladder truncation (ROBERTS; WILLIAMS, 1994; EICHMANN et al., 2016),

making calculations for more complicated physical systems (e.g. involving many bodies

and more degrees of freedom) feasible as the interaction kernel would be simpler.

It is already interesting to notice that the results including the color factor in Fig. 3.12

get almost parallel to the FSR ones as N increases. This could be a potential indication

that the inclusion of color factors in the FSR calculations would give a quite reasonable

agreement with the BSE results already at N = 3. This expectation should be explicitly
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tested, as it promises remarkable outcomes. Nevertheless, it is worth mentioning that

the scalar �3
theory contains a sharp shortcoming due to its inherent instabilities from

quantum fluctuations, showed in Ref. (BAYM, 1960). Therefore, it would be even more

interesting to consider another type of interacting theory, in order to explore the validity

of the results in a broader context, closer to, e.g., lattice QCD. An interesting study to be
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FIGURE 3.12 – Coupling constant as a function of the binding energy B obtained by

solving the Bethe-Salpeter equation with ladder (L) and ladder plus cross-ladder (L +

CL) kernels in 3+1 dimensions. The exchanged boson mass is µ = 0.15 m. The results

are computed without color factors, as well as for N = 2, 3 and 4. The results are also

compared with the FSR calculations (NIEUWENHUIS; TJON, 1996), that contain many

types of crossed diagrams, but without GM matrices at interaction vertexes.

performed is on how the suppression happens when the scalar QCD gluon mass µ becomes

closer to zero. This can give a contrast to how the model behaves in the other extremum,

i.e. when a long-range interaction takes place. For a clear comparison, Table 3.2 presents

the ratios between the coupling constants g2
L

and g2
L+CL

, corresponding to the solutions

with the ladder and ladder plus cross-ladder kernels, respectively. Two di↵erent values

of the exchanged mass are considered, namely µ = 0.001 m and µ = 0.15 m, both for a

weakly bound system, where the binding energy is B = 0.1 m, and for a strongly bound

one, with B = 1.5 m. The table compares the results obtained through the bare BSE

with the ones including N = 2, 3 and 4 colors. The suppression shows to be quite strong

already for N = 3. As the impact from the cross-ladder is less intense for low bindings,

the suppression is more severe in this region. The results seem to be quite independent

of the exchanged boson mass µ.
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B/m µ/m g2
L/g

2
L+CL g2

L/g
2
L+CL g2

L/g
2
L+CL g2

L/g
2
L+CL

(BSE) (N=2) (N=3) (N=4)

0.1 0.001 1.3181 0.9246 0.9823 0.9930

0.1 0.150 1.2998 0.9303 0.9835 0.9935

1.5 0.001 1.5199 0.8456 0.9661 0.9867

1.5 0.150 1.5174 0.8467 0.9663 0.9868

TABLE 3.2 – Ratios of the coupling constants calculated with the ladder (g2
L
) and ladder

plus cross-ladder (g2
L+CL

) kernels. Two binding energies are considered, B = 0.1 m and

B = 1.5 m. The comparison is also made between two exchanged masses, namely µ =

0.001 m and µ = 0.15 m. The results for the no-color BSE are compared with the ones

computed with N = 2, 3 and 4 colors. Calculations in 3 + 1 spacetime dimensions.

Now that the suppression has been seen from di↵erent perspectives for the coupling

constant, one can look on the e↵ect for di↵erent dynamical observables. The starting

point is the valence light-front wave function, which was shown to have a sizable e↵ect

from the cross-ladder graph on its tail, comparable to the e↵ect seen on the coupling

constants as shown in Table 3.1. The result is shown in Figs. 3.13 and 3.14, respectively

presenting the dependencies of the wave function with respect to the variables � = k2
? and

z = 2⇠ � 1. The binding energy is fixed at B = 1.0 m and the two considered exchanged

boson masses are µ = 0.001 m and µ = 0.5 m. For the transverse momentum distribution,

the longitudinal momentum is fixed at z = 0. As done before, the LF wave function

normalization is chose to be one at (z, �) = (0, 0). Figure 3.13 shows that there is no

di↵erence between the calculation with the colorless ladder kernel (dash-double-dot black

line) and the one for N = 3 (dashed blue line). This is expected since all the curves are

normalized to one, therefore the overall color factor is lost. The appreciable di↵erence is

between the calculations for the ladder plus cross-ladder graphs in the interaction kernel

without color (dash-dot red line) and with N = 3 (solid black line). This shows that

the significant suppression also happens for the valence LFWF. In conclusion, for the

adopted arbitrary normalization, the full calculations (L+CL) without color factors are

remarkably overlapping with the N = 3 ladder and ladder plus cross-ladder ones.

The dependence on z, displayed in Fig. 3.14, is presented for � = 50.0 m2
(which is

already in the asymptotic region, as discussed in Sec. 3.1.2). The binding energy and

exchanged boson masses are the same as in Fig. 3.13. The two results for the ladder

kernel, with and without the SU(3) color factor, are again on top of each other. The

dependence on z is also compared for the BSE results with and without color factor for

ladder and ladder plus cross-ladder interaction kernels. It is even more apparent, due

to the scale, that the valence light-front wave function also has the cross-ladder e↵ects

largely suppressed by the color factor. It is remarkable that N = 3 is already enough to

enforce a substantial suppression.
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FIGURE 3.13 – Valence LF wave function dependence on � = k2
? computed from the

Bethe-Salpeter amplitude for both ladder and ladder plus cross-ladder kernels.The LF

wave function obtained with N = 3 is compared with the one without color factors for

both kernels and they are hardly distinguishable from the full results without Gell-Mann

matrixes at the in the vertexes. On the left panel the exchanged mass is µ = 0.001 m and

on the right it is µ = 0.5 m. The other fixed input parameters are B = 1.0 m and z = 0.
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FIGURE 3.14 – Same as in Fig. 3.13, but now was a function of z. The transverse

momentum is fixed as � = 50 m2
.

For making the results of the last two figures more evident, the ratios between light-

front wave functions presented in those figures are shown in Fig. 3.15. In the left panel it is

presented the dependence on gamma �, i.e.  L(�, z = 0)/ L+CL(�, z = 0), while the ratio

as a function of z, namely  L(� = 50 m2, z)/ L+CL(� = 50 m2, z), is shown on the right

panel. In this figure it is clearer that with no color factors the cross-ladder contribution

is above 40% for high �. Nevertheless, when N = 3, the cross-ladder e↵ect is reduced to

about 3%. Furthermore, the cross-ladder e↵ect on the tail of the ratio between the wave

functions turns to be proportional to the ratio of the coupling constant, as discussed in

Sec. 3.1.2. What is seen here is analogous, as the suppression is therefore similar in both

of those observables. The e↵ects identified in the dependence on z is equivalent.

Finally, the suppression can be also studied on the elastic EM form factor, since this

observable does not involve a Fock-space truncation and shows a di↵erent context. Both

the impulse approximation and two-body current contributions to the EM current, are
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FIGURE 3.15 – Ratios between the valence LF wave functions computed with ladder and

ladder plus cross-ladder kernels of Figs. 3.13 (left) and 3.14 (right). In the figures the

results for N = 3, i.e. SU(3), are compared with the ones obtained without color factors.

shown as functions of the momentum transfer (Q2
= �qµqµ) in Fig. 3.16. The binding

energy is still fixed as B = 1.0 m, while the exchanged masses are again µ = 0.001 m

(left) and µ = 0.5 m (right). The charge radius (given by the slope of the EM form factor

at Q2
= 0) is larger for smaller µ, i.e. for µ = 0.001 m. This happens since the range

of the interaction is longer for smaller exchanged mass. The figure compares the results

obtained with N = 3 and the ones computed without color factors, showing again a strong

suppression.
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FIGURE 3.16 – EM form factor beyond the impulse approximation (IA), considering

the contribution from the first cross graph (right panel in Fig. 3.5), namely, the higher

twist (HT) (or two-body current) contribution. µ = 0.001 m (left) and µ = 0.5 m (right).

Comparison with the ones computed with N = 3. The binding energy is B = 1.0 m.

Analogously to what was presented in Fig. 3.15 for the LFWFs, in Fig. 3.17 are

displayed the ratios between the two-body current and the impulse-approximation con-

tributions. This figure makes even more clear the suppression of the two-body current

contribution when the number of colors is only N = 3, again without the need of taking

the limit N ! 1 to see a big di↵erence. As an example, for Q2
= 0 the ratio is about

13% without any color factor, while it decreases to 1% when N = 3.
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FIGURE 3.17 – Ratio between the higher twist and the impulse approximation contribu-

tions to the EM form factor as function of the transferred momentum Q2
. Results without

and with (N=3) color factor.

This concludes the analysis of a prototype for the flavor-nonsinglet meson system

composed by a scalar-quark and a scalar-antiquark with equal masses. The non-planar

diagrams are shown to be significantly suppressed for all the studied observables already

for N = 3. If confirmed for realistic QCD systems, this result, which is already assumed

in most of the cases seen in the literature and provides a necessary simplification for

calculations with the BSE, would be a notable argument on supporting the rainbow-ladder

approximation to the continuous QCD (ROBERTS; WILLIAMS, 1994; EICHMANN et

al., 2016). Another extremely interesting study would be to repeat the same calculations

for particles with di↵erent constituent masses and take the limit where m1 >> m2. This

study is particularly interesting because the e↵ect from cross-ladder graphs is enhanced

in this limit.



4 Bethe-Salpeter approach to

three-boson bound states

This chapter is devoted to study the solution of the three-boson Bethe-Salpeter equa-

tion in the case of the two-body zero-range interaction (FREDERICO, 1992). The equa-

tion will be solved both in Euclidean and Minkowski space. Although simpler, the Eu-

clidean case involves several subtleties and was never solved before in the form presented

here. The BS equation is also solved within light-front dynamics, as already done in

Refs. (CARBONELL; KARMANOV, 2003), through its projection onto the LF hyper-

plane which leads to an equation for the valence part of the Faddeev components of the

three-body BS amplitude. By comparing the LF result with the solution of the BSE

in Euclidean space one can access e↵ects coming from the higher-Fock contributions to

the three-body bound state. As it will be shown, the e↵ect is huge even for weakly

bound states. E↵ective three-body forces act in the system, having a large impact (KAR-

MANOV; MARIS, 2009). At the two-body level the truncation at the valence state does

not present such dramatic e↵ect (FREDERICO; SALMÈ; VIVIANI, 2014; JI; TOKU-

NAGA, 2012). Part of the development presented in this chapter was already published

in Refs. (NOGUEIRA et al., 2018; YDREFORS et al., 2017; YDREFORS et al., 2019),

while the alternative formalism, using an ansatz for the integral representation, is still

under development. Noteworthy that the BSE for three-bosons has a kernel analogous to

the quark exchange diagrams in quark-diquark models (EICHMANN et al., 2016) in the

constituent quark picture, making even more appealing the outcomes of the Minkowski

space approach to be presented as follows.

Concluding that the e↵ect coming from higher Fock components is sizable leads to raise

doubts regarding if valence inspired models, which are widely applied to hadron physics,

are appropriate to describe the bound state dynamics, particularly for three-body systems.

It is worth mentioning that even for two-boson bound states the valence component can

represent only less than about 70% of the strongly bound state (about the same for the

mock pion, as it will be presented in Chap. 6), as shown by the valence probabilities cal-

culated in Ref. (FREDERICO; SALMÈ; VIVIANI, 2014). The BSE and LFD approaches

presented here have already been used as a suitable framework for simplified phenomeno-
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logical applications. For instance, in the calculation of the light-front amplitudes for

a mock pion through the solution of the BSE directly in Minkowski space (PAULA et

al., 2017) and the light-front relativistic three-body model for final state interactions of

heavy meson decays (NOGUEIRA; FREDERICO; LOURENÇO, 2017; GUIMARÆS et

al., 2014), as presented in Sec. 2.3.

Regarding the BSE in Minkowski space, a new method was recently developed to access

the o↵-mass-shell scattering amplitude based on the direct integration of the singularities

of the propagators and interaction kernel (CARBONELL; KARMANOV, 2014). This

method does not resort to the NIR and LF projection, as the one used in this thesis for the

bosonic two-body system. The goal is to explore the method for three-body systems. Also,

alternative procedures will also be investigated here to solve the three-body Minkowski

space equation, aiming at building a robust framework that can be extended to more

realistic systems in the future. Even if challenging, the method was able to provide the

o↵-shell BS amplitude for bound and scattering states, allowing to compute highly non-

trivial observables like the electromagnetic transition form factor (breakup of the bound

state) (CARBONELL; KARMANOV, 2015).

As shown in Ref. (KARMANOV; MARIS, 2009), the comparison of the binding ener-

gies calculated within LFD and BSE for a one-boson exchange kernel present a significant

di↵erence (KARMANOV; MARIS, 2009), unlike what happens for two-body systems

(MANGIN-BRINET; CARBONELL, 2000). The di↵erence between two- and three-body

systems basically happens due to the existence of three-body forces of relativistic ori-

gin (KARMANOV; MARIS, 2009). They found an increasing e↵ect of the three-body

forces as µ grows, what is relevant for the zero-range case, which corresponds e↵ectively

to µ ! 1. Although this work is quite instructive, the three-body forces were taken

into account perturbatively, producing a significant contribution to the bound state, what

indicates the necessity to go beyond perturbation theory. It is essential to obtain the non-

perturbative solution of the three-body BSE and LFD equations, including three-body

forces, in order to have an thorough understanding of the physical system.

As in this thesis the goal is to address the zero-range interaction case, a major point is

the influence of relativistic e↵ects on the stability of the three-body system. In the non-

relativistic approach, within the Schrödinger equation, it is well knwon that the binding

energy of a three-body system with the two-body zero-range interaction is not bound from

below, what is known as the Thomas collapse (THOMAS, 1935). As shown in Ref. (FRED-

ERICO, 1992), and further explored numerically in Ref. (CARBONELL; KARMANOV,

2003), the relativistic e↵ects result in an e↵ective repulsion at small distances and prevent

the Thomas collapse in the relativistic case. This result was found for the valence trun-

cation, within the LFD framework. Exploring the complete amplitude by means of the

BSE, which includes higher-Fock contributions is crucial and it was studied for the first
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time in Ref. (YDREFORS et al., 2017), as a part of the research in this thesis. In that

work, the covariant three-body BSE, proposed in Ref. (FREDERICO, 1992), was solved

in Euclidean space for the first time, where it was used the Faddeev decomposition of the

full three-boson BS amplitude.

The approach for three-boson systems allows one to explore within the relativistic

context a wide and important field of research that is already very well established non-

relativistically, known as the Efimov physics (FREDERICO et al., 2012; EFIMOV, 1970).

The three-body approach developed here paves the way to explore many interesting phe-

nomena in that direction within the relativistic context and it is expected to bring more

remarkable outcomes as further exploration is done.

The study presented in this chapter represents a very nice advance in comparison with

the similar approach discussed in Sec. 2.3, as the equations from now on are totally solved

non-perturbatively. Future e↵orts within this framework include the formulation of the

three-body decay amplitude for heavy mesons, where the final state interactions among

all the outbound mesons can be included. This would be a considerable progress for the

studies presented in Chap. 2.

4.1 Euclidean space and LF dynamics: beyond the

valence e↵ects

The starting point is to solve the BSE for three-bosons for a zero-range interaction.

The equation is solved for the first time in the form presented in (FREDERICO, 1992),

where the Faddeev decomposition was used to obtain one integral equation for the reduced

amplitude of the bachelor particle. As the kernel is divergent for the contact interaction, a

parameter needs to be introduced in its regularization process of the two-boson transition

matrix. This input parameter can be either the two-body scattering length or binding

energy. The outputs of the solution are the binding energies, BS amplitudes (when solving

the BSE) and valence light-front wave function (when solving the BSE projected onto the

LF plane), of the three-body bound state.

By controlling the two-body input parameter one can study three regimes. The first

one happens when the two-body interaction is weak enough, for which the three-body

system is unbound. The second regime is for stronger two-body interaction, but with the

two-body subsystem still virtual, and a three-body bound state appears, what characterize

a deeply bound Borromean system (FREDERICO et al., 2012). And the last situation, for

even stronger two-body interaction and the three-body ground state becomes unphysical,

characterized by a negative mass squared. The interesting aspect in this last situation is

that the first excited state is physical, and this was the one found previously in light-front



CHAPTER 4. BETHE-SALPETER APPROACH TO THREE-BOSON BOUND

STATES 124

calculations, where the ground state was lost. The comparison between BSE and LFD

results allow to study the impact of the higher Fock space contributions to the observables,

as the BSE implicitly incorporates three-body forces of relativistic origin.

The starting point is to solve, for the first time, the three-body covariant BS equa-

tion in the Faddeev decomposition for the zero-range interaction. The Minkowski BSE is

transformed into Euclidean space by means of the Wick-rotation in the complex plane.

The time-ordered extra graphs incorporating antiparticles within LF dynamics are nat-

urally taken into account in the BS approach (BRODSKY; PAULI; PINSKY, 1998; JI;

TOKUNAGA, 2012). These graphs, as later explained, generate e↵ective three-body

forces of relativistic nature. As found in Ref. (KARMANOV; MARIS, 2009) for a one

boson exchange interaction, the intermediate antiparticles are mandatory for generating

the three-body forces. The aim is to compare the results found by solving the valence

LF and BS equations and to understand the role of dynamics beyond the valence on the

properties of relativistic three-body systems with the zero-range interaction. The trans-

verse momenta dependencies of the LF and BS amplitudes are studied and compared, in

order to illustrate the impact also on the structure of the relativistic three-boson bound

state.

Another remarkable finding is that the three-body state studied in Refs. (FRED-

ERICO, 1992; CARBONELL; KARMANOV, 2003), obtained by adopting the zero-range

interaction kernel defined through the constraint of generating a two-body bound state

with positive squared two-body mass M2
2 > 0, is not the physical three-body ground state

but the first excited one. There exists another low-lying state, which is unphysical, i.e.

with negative squared three-body mass M2
3 . This can be understood as a relativistic coun-

terpart of the Thomas collapse. However, di↵erently from the non-relativistic case, M2
3

is always finite. By fixing the interaction kernel through the two-body scattering length

one can explore di↵erent regimes and find a domain where the ground state has M2
3 > 0.

In this situation, the excited state found in Refs. (FREDERICO, 1992; CARBONELL;

KARMANOV, 2003) is moved to the continuous spectrum. The LF and BS frameworks

present this feature, with just the associated values of the scattering length being dif-

ferent due to the action of e↵ective three-body forces. In short, one can conclude that

an unbound two-body system is necessary to have a ground state within the framework

discussed as follows.

4.1.1 Bethe-Salpeter-Faddeev equation

The solution of the zero-range three-body BSE for three identical spinless particles

using the Faddeev decomposition of the full BS amplitude can be reduced to the solu-

tion of one single integral equation for the bachelor’s vertex function v(q, p) (external
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propagators are excluded). In the zero-range interaction case v(q, p) depends upon both

the total momentum p and on the four-momentum of the spectator particle q. It reads

(FREDERICO, 1992):

v(q, p) = 2iF(M2
12)

Z
d4k

(2⇡)4

i

[k2 �m2 + i✏]

i

[(p� q � k)2 �m2 + i✏]
v(k, p). (4.1)

Notice that the momentum of the spectator particle, q, determines the e↵ective mass

of the two-boson subsystem, M12, due to the four-momentum conservation (see below).

Therefore, there is no need to introduce further dependencies in the argument of the

vertex function, besides the ones on q and on the total four-momentum p. The other two

components can be easily obtained through the cyclic permutation of the momentum of

the constituent particles. The full BS amplitude is recovered by multiplying the vertex

function by the three external propagators and summing up the components, i.e.

i�M(k1, k2, k3; p) = i3
vM(k1, p) + vM(k2, p) + vM(k3, p)

(k2
1 �m2 + i✏)(k2

2 �m2 + i✏)(k2
3 �m2 + i✏)

, (4.2)

where k1 + k2 + k3 = p. In the zero-range interaction case, besides the total momentum

p, the vertex function depends only on the four-momentum of the spectator particle q.

The interaction kernel, is given by F(M2
12), namely, the relativistic two-body zero-range

scattering amplitude. Its derivation in terms of the scattering length a is given (as well as

the study of other analytical properties and its numerical behavior) in Appendix C and

its final form reads

F(M2
12) =

8
>>>>>>>><

>>>>>>>>:

1

1
16⇡2y

log
1+y

1�y
� 1

16⇡ma

; M2
12  0,

1

1
8⇡2y0 arctan y0 � 1

16⇡ma

; 0 M2
12  4m2,

1

y00

16⇡2 log
1+y00

1�y00 �
1

16⇡ma
� i y00

16⇡

; M2
12 � 4m2,

(4.3)

with

y =

p
�M2

12p
4m2 �M2

12

; y0
=

M12p
4m2 �M2

12

; y00
=

p
M2

12 � 4m2

M12
. (4.4)

The argument of the zero-range two-body amplitude, M12, is the o↵-shell two-body e↵ec-

tive mass, defined by M2
12 = (p� q)2. One major simplification in Eq. (4.1) happens due

to the fact that the interaction kernel does not depend on the loop integration variable

k in the zero-range case. Due to that the two-body amplitude factor out in the integral

equation, what does not happen for a finite-range interaction kernel like the one-boson

exchange or the cross-ladder one, treated in the previous chapter.

The renormalization of the bubble diagram, related to the integral equation for the



CHAPTER 4. BETHE-SALPETER APPROACH TO THREE-BOSON BOUND

STATES 126

two-boson scattering amplitude, can be alternatively done through a bound state with the

mass M2 in the two-body system, as done in Appendix C (see also Refs. (FREDERICO,

1992; CARBONELL; KARMANOV, 2003; YDREFORS et al., 2019)). Notice that in

Refs. (FREDERICO, 1992; CARBONELL; KARMANOV, 2003) the regime M2
12 � 4m2

of Eq. (4.3) was not presented, due to the range of the variables considered in those works.

The amplitude in terms of the bound state mass, as presented in Refs. (FREDERICO,

1992; CARBONELL; KARMANOV, 2003), can be obtained from Eq.(4.3) (in the physical

domain, 0  M12  2m) by relating M2 and a (a > 0 in this case), using the following

formulas

a =
⇡yM2

2m arctan yM2

with yM2 =
M2p

4m2 �M2
2

. (4.5)

Such link is very important to understand the range covered by the results obtained previ-

ously, in Refs. (FREDERICO, 1992; CARBONELL; KARMANOV, 2003), by considering

only the situation where the two-body state is bounded (i.e. a > 0, producing a real M2

through Eq. (4.5)), and the entire region covered by (4.3), including also virtual two-body

bound states (i.e. a 2 R). In other words, in the region for which a < 0 the amplitude

F(M2
12) has no pole in the physical domain and, therefore, the two-body bound state

does not exist. The three-body system can still be formed though, as it will be seen, as a

Borromean bound state.

Equations (4.1) and (4.3) define the general form of the three-boson Bethe-Salpeter-

Faddeev equation in Minkowski space. This equation will be solved in three di↵erent

ways here: (i) by means of the Wick-rotation, in Euclidean space; (ii) through the LF

projection, which truncates the LFWF on the valence component; and (iii) by direct

integration in Minkowski space, without a Fock-space truncation. A fourth form will

be derived here, by means of the Nakanishi integral representation and the uniqueness

assumption
1
, but not yet numerically solved.

The Wick-rotation is meant to simplify the solution of Eq. (4.1), avoiding the typical

intrinsic singularities of the Minkowski space BS equation. The corresponding integral

equation is Wick rotated and defined in Euclidean space, being able to provide correctly

the physical spectrum, but not the amplitudes (apart from the transverse one, as it is

shown as follows) obtained directly in Minkowski space. As no integral representation

is introduced so far to represent v(q, p), its analytic structure is not known a priori. By

examining the integral equation, it becomes clear that v(q, p) has the poles of F as well as

the three-body cut originated from the propagators of the integral equation kernel. One

expects that, if the Wick-rotation is properly performed, smooth solutions for v(q, p) will

be achievable.

1For a more detailed discussion of uniqueness in the NIR see Refs. (NAKANISHI, 1963; FREDERICO;
SALMÈ; VIVIANI, 2012; GIGANTE, 2014)
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The Wick-rotation (k0 ! ik0) of the integration contour is not always possible, which

is the case of Eq. (4.1). It can be shown that the positions of the singularities prevent

analytic continuation in the complex plane, since the rotating contour crosses the singu-

larities of the propagators. This issue can be, however, overcome by simply shifting the

variables and, consequently, the rotation points, so that one avoids crossings by properly

moving the rotating contour and the singularity positions. One suggestion that allows the

Wick-rotation to be performed in Eq. (4.1) is given by the following shift

q = q0 +
1

3
p, k = k0

+
1

3
p, (4.6)

which redefine the vertex function as follows

ṽ(q0, p) = v

✓
q0 +

1

3
p, p

◆
, ṽ(k0, p) = v

✓
k0

+
1

3
p, p

◆
.

Equation (4.1) under the shift reads

ṽ(q0, p) = 2iF(M 02
12)

Z
d4k0

(2⇡)4

i2ṽ(k0, p)h�
k0 + 1

3p
�2 �m2 + i✏

i h�
1
3p� q0 � k0

�2 �m2 + i✏
i , (4.7)

with the appropriate two-body e↵ective mass reading M 02
12 = (

2
3p� q0)2.

One can now make a simple analysis to confirm that the new equation allows the

Wick-rotation. For instance, the second propagator of Eq. (4.1) (in the three-particle rest

frame) has a complex pole in the variable k0
0 at k0

0 = k0
01, namely,

k0
01 = ⌘0 + i✏� q00, ⌘0 =

1

3
M3 �

q
(~k + ~q)2 + m2. (4.8)

If the three-body bound state is such that M3 < 3m, ⌘0 has always a negative value.

Rotating the path of integration over k0
01 by the angle � and making the replacement

q00 ! q00 exp(i�), both the pole and the contour move in such a way that the pole never

crosses the contour.

The zero-range amplitude F(M 02
12) also can have a pole, corresponding to the two-

body state, when M 02
12 = (p � q0)2 = M2

2 � i✏. This generates two poles in the vertex

function ṽ(k0, p) vs. k0
0. It can be easily checked that if

2
3M3 < M2 (in this situation

three-body binding energy per particle is larger than the two-body one, remembering that

M3/m < 3.) then the ṽ(k0, p) poles also do not a↵ect the Wick-rotation. In conclusion,

the Wick-rotation can be safely performed in Eq. (4.7) giving the above condition, where

the shifted variables are adopted. It is interesting to notice that the factor of 1/3 used in

this case is related to the fact that the system has three identical particles (analogously

to the factor of 1/2 used for the two-body system in Sec. 3.1). In an unbalanced mass
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system, i.e. where m1 6= m2 6= m3, the study needs to be performed to find the correct

shift factors. This will be used for the two-body system involving a boson and a fermion

later on in this thesis. See Ref. (GHERARDI, 2017) for more details on dealing with the

two-body BSE for constituent particles with di↵erent masses.

Finally, the Wick-rotation can be performed by an angle � = ⇡/2, making the relevant

variables to be transformed as k0 = ik4, q0 = iq4. Notice that the primes on the four-

momenta are omitted from now on. Thus, the unprimed momenta has a di↵erent meaning

than in Eq. (4.1). Then the angular integrations (one trivial for the azimuthal angle and

another for the angle between ~k and ~q) coming from the d4k loop integration in Eq. (4.7)

can be performed analytically. In the rest frame, the final Euclidean BS equation reads

vE(q4, qv) = 2F(�M 02
12)

Z 1

�1
dk4

Z 1

0

dkv

(2⇡)3

⇧(q4, qv, k4, kv)�
k4 � i

3M3

�2
+ k2

v
+ m2

vE(k4, kv), (4.9)

where qv = |~q|, kv = |~k| and the integration kernel has its final form reading

⇧(q4, qv, k4, kv) =
kv

2qv
log

�
k4 + q4 +

i

3M3

�2
+ (qv + kv)

2
+ m2

�
k4 + q4 +

i

3M3

�2
+ (qv � kv)

2 + m2
. (4.10)

After the Wick-rotation, the argument of F becomes complex and is given by M 02
12 =

(
2
3iM3 + q4)2 + q2

v
, which moves away the from the real axis. One important property

of Eq. (4.9) can be found by performing the complex conjugation of it and by changing

k4 ! �k4, q4 ! �q4. This enables to conclude that v⇤
E
(�q4, qv) = vE(q4, qv), or more

explicitly

Re[vE(�q4, qv)] = Re[vE(q4, qv)], Im[vE(�q4, qv)] = �Im[vE(q4, qv)]. (4.11)

This property can be imposed numerically, but this will not be the case here. Therefore

the outcome from the numerical solution must present the feature found analytically and

expressed in Eq. (4.11). To avoid confusion, it is worth it to mention that, since the two-

body amplitude is computed for complex arguments, the expression for M2
12 < 0 is used

with y replaced by ỹ =
p

M2
12 � 4m2 + i✏/

p
M2

12 + i✏, where a finite small ✏ parameter

is introduced to ensure the correct branch of square roots and logs. Moreover, for the

Euclidean case one should use �M 02
12 in place of M2

12.

The integral equation can be solved numerically by standard methods, due to its

non-singular form. As in the two-body case (Sec. 3), it can be reduced to a generalized

eigenvalue problem like Av = �(M3)Bv, where the vertex function v is expressed through

any basis expansion. The one adopted here is the bi-cubic spline decomposition, briefly

presented in Appendix D.
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4.1.2 Light-front Faddeev-Bethe-Salpeter equation

Another procedure to obtain a non-singular integral equation from Eq. (4.1), but now

in Minkowski space, is by performing the integration over k�
, as done in Ref. (FRED-

ERICO, 1992). Instead of the variable k = (k0,~k), one can introduce the LF variables,

i.e. k = (k�, k+,~k?), where k±
= k0 ± kz. The valence LF wave function is associated

to the integral over k�
of the BS amplitude in Minkowski space. Di↵erently from what

was done in Sec. 3.1, now the Nakanishi integral representation is not being introduced,

what means that after the projection onto the LF plane only the valence component of

the three-boson state is retained. The final equation for the valence component of the

three-body vertex reads

�(k?, x) = F(M2
12)

1

(2⇡)
3

Z 1�x

0

dx0

x0
(1� x� x0

)

Z 1

0

d2k0
?

M2
0 �M2

3

� (k0
?, x0

) , (4.12)

where the invariant mass squared of the intermediate three-body state is defined as

M2
0 =

~k02
? + m2

x0 +

~k2
? + m2

x
+

(~k0? + ~k?)
2
+ m2

1� x� x0 . (4.13)

Equation (4.12) can be also fully derived within the LFD framework, without relying

on the BSE, as done in Ref. (CARBONELL; KARMANOV, 2003). It is important to

mention that Eq. (11) of (FREDERICO, 1992) is not the same as (4.12), since the cut-

o↵s incorporated in (FREDERICO, 1992) were discovered to be not necessary later in

Ref. (CARBONELL; KARMANOV, 2003). Therefore, the version of the equation pre-

sented here (4.12) also does not include those cuto↵s. The two-body scattering amplitude

F(M2
12) is the same as in Eq. (4.3), but now the appropriate form of the two-body

invariant mass in terms of the LF variables reads

M2
12 = (1� x)M2

3 �
k2
? + (1� x)m2

x
.

Notice that M12 is not taken fixed, as it has the dependence upon the same variables of

the vertex function �(k?, x).

In its most general form, the vertex function depends on three transverse and three

longitudinal momenta, namely ~k1,2,3? and x1,2,3, respectively. However, the relations com-

ing from the conservation laws, ~k1? + ~k2? + ~k3? = 0 and x1 + x2 + x3 = 1 (see Ref.

(CARBONELL; KARMANOV, 2003)), reduce the number of independent variables. An-

other simplification in the case under scrutiny is due to the fact that the three particles

are identical and by symmetry properties the general BSE can be reduced to one single

integral equation for the vertex function of the spectator particle. Lastly, due to the

zero-range interaction kernel, the vertex depends on only one pair of variables, which for
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the valence LF equation are denoted here by ~k? and x (FREDERICO, 1992).

  

FIGURE 4.1 – The elementary two-body cross graph 2! 2 is shown in the left panel, from

which all the Feynman graphs for the zero-range interaction are composed. The graph

for the lowest order Feynman three-body amplitude 3! 3, composed by two elementary

cross graphs (left panel) is shown in the right panel.

As mentioned, the underlying dynamics is quite di↵erent for Eqs. (4.1) and (4.12). The

second equation is a truncation of the first one and represents only the valence component

of the Fock-space state vector. In order to illustrate the di↵erence, one can start by looking

at the diagrammatic representation of the three-body scattering amplitude for the two-

body contact interaction (left panel in Fig. 4.1), associated with the two-body amplitude

F , which is the most elementary building block to construct all the three-body diagrams

in the ladder expansion.

The right panel of Fig. 4.1 shows the Feynman diagram for the lowest order three-

body amplitude, which is composed by two two-body elementary graphs. In the LF all the

Feynman diagrams need to have their vertices LF time-ordered, a process that generates

the two graphs in Fig. 4.2 when applied to the covariant one on the right panel of Fig. 4.1.

For the sake of simplicity, not all diagrams, e.g. graphs including vacuum fluctuation, are

being displayed.

FIGURE 4.2 – The three-body LF graphs obtained by LF time-ordering of the Feynman

graph shown in right panel of Fig. 4.1.

The valence LF equation (4.12) incorporates only the graph on the left panel of Fig.

4.2 (and all its reducible iterations containing three-body intermediate states), since a

diagram like the one on the right panel already contains intermediate states with more

than three particles and therefore it is a contribution beyond the valence one (including

antiparticles). It should be pointed out that the irreducible 3! 3 graph including a five-

body intermediate state on the right side of Fig. 4.2 is an example of an e↵ective three-body

force of relativistic origin, since this contribution has to be explicitly incorporated in the
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LF framework, as the LF projection of the BSE only retains the valence component, i.e.

only 3-particle intermediate states (see e.g. Refs. (CARBONELL; KARMANOV, 2006;

JI; TOKUNAGA, 2012) for an analogous incorporation in two-body systems).

Fig. 4.3 shows examples of other diagrams generating e↵ective three-body forces. Dif-

ferently from the LF valence equation, the covariant BSE naturally includes those con-

tributions that amount to e↵ective three-body forces. It is worth mentioning that the

diagram on the right panel of Fig. 4.1 is not associated with an irreducible three-body

forces in the BS equation (4.1), however, it is able to produce e↵ective three-body forces,

as it is shown by the LF time ordered diagrams. Notice that the model does not corre-

spond to the full �'4
theory, since Eq. (4.1) contains only the ladder diagrams and does

not consider dressed propagators and vertex corrections.

FIGURE 4.3 – Examples of many-body intermediate state contributions to the LF three-

body forces.

In conclusion, the whole set of contributions beyond the valence component is what

builds the e↵ective three-body forces, only seen within a covariant approach. This was

subject of the study, as presented hereafter in the thesis.

4.1.3 Transverse amplitudes

From Euclidean space, if NIR is not used, it might be extremely di�cult, or even not

possible, to recover the BS amplitude in Minkowski space, since the analytic structure

of BS amplitude is hardly reachable through the Euclidean approach. Therefore, for

comparing the Euclidean BSE results with the outcomes from the LF equation, defined

in Minkowski space, one can rely on the transverse momentum amplitudes to relate the

amplitudes in order to explore deeply the dynamical e↵ects. The procedure exposed as

follows is analogous to what was found in Ref. (SALES et al., 2000a) and applied in

(GUTIERREZ et al., 2016) for the two-body system. The relation between the Euclidean

BS amplitude and the valence LF wave function comes from the fact that the integrals

of the Euclidean BS amplitude over k4, kz and of the Minkowski BS one over k�
and k+

are proportional to each other, di↵ering simply by a Jacobian. For a formal view on the

relation between the Bethe-Salpeter amplitude and the light-front wave function.

In order to derive the relation, one should start by considering the full vertex function,
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which is obtained by the sum of the three Faddeev components. The full three-body LF

wave function is also obtained after summing up all the components. As mentioned before,

the integral equations presented in Eqs. (4.9) and (4.12) represent the Faddeev component

of the vertex function associated with one spectator particle, and the goal is solving them.

The full BS amplitude is given by Eq. (4.2). Analogously, the LF wave function is obtained

from the vertex by dividing by the LF energy denominator, reading

 (~k1?,~k2?,~k3?, x1, x2, x3) =
�(~k1?, x1) + �(~k2?, x2) + �(~k3?, x3)

M2
0 �M2

3

, (4.14)

where M2
0 = (k1+k2+k3)

2
is the same as defined before in Eq. (4.13). Notice that all the

four-momenta are on the mass shell, i.e. k2
i

= m2
and p2 = M3

3 , and satisfy the relation

k1+k2+k3 = p, from the four-momentum conservation law. Eq. (4.14) is written in terms

of the variables ~ki?, xi, where ~ki? is the spacial transverse component of the four-vector

Ri = ki � xip and xi = ki/p. The equation in terms of the variables k1, k2, k3 and p are

easily obtained by performing the change of variables (such equation is formally derived in

Ref. (CARBONELL; KARMANOV, 2003)). Analogous arguments are valid for Eq. (4.2).

In the case of the LF amplitude the situation is very simple, as it is already integrated

over k�
. The integration needs to be performed only over two variables, x1 and x2 (one

analytically), what can be explicitly written as

LLF
(~k1?,~k2?) = LLF

1 + LLF

2 + LLF

3 , (4.15)

LLF

i
= �1

2

r
⇡

2

Z 1

0

dx1 �(~ki?, x1)

Z 1�x1

0

dx2

a0x2
2 + b0x2 + c0

, i = 1, 2, 3

where a0
= E2

1? � x1M2
3 , b0 = �(1 � x1)E2

1? + x1[E2
2? � E2

3? + (1 � x1)M2
3 ] and c0 =

E2
2? � x1M2

3 .

In summary, following the derivation presented in Appendix E.1, one gets for the L1

contribution to the Euclidean transverse amplitude

L1(
~k0
1?,~k0

2?) = �
Z 1

�1
dk0

1z

Z 1

�1
dk0

10�(k0
14, k

0
1z;
~k0
1?,~k0

2?)ṽ(k0
1v, k

0
14)

⇥ i

(k0
14 � iM3

3 )2 + k02
1z + m2

1

,
(4.16)

where � is given by Eq. (E.17).

The quantities LLF

1 (~k1?,~k2?), defined in Eq. (4.15), and L1(
~k1?,~k2?), of Eq. (4.16),

are supposed to coincide. However, as the LF wave function, found from Eq. (4.12),

only retains the valence component of the BS amplitude, of Eq. (4.9), then LLF

1 and L1

are expected to di↵er due to the di↵erent diagrams incorporated in the kernels of Eqs.

(4.12) and (4.1). This di↵erence brings a deeper understanding of the e↵ect, since it goes
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beyond the comparison between the binding energies and provides the impact also on the

structure of the relativistic three-body bound state.

The non-relativistic limits for the Euclidean BSE, as well as for the LF one, are

presented in Appendix F.

4.1.4 Spectrum and transverse amplitudes

The LF and Euclidean BS integral equations are numerically solved as in the two-body

case (Sec. 3), but now by means of a spline decomposition instead of the orthogonal basis

used in that case. The main reason is the fact that splines (see appendix D) are local and

thus more general functions, being able to represent possibly unknown behaviors of the

amplitude. In the two-body case, symmetries of properties of the eigenvector were known

and fixing specific polynomials enclosing the system properties was achievable. Moreover,

the results presented here are converged with a numerical error of at most about 3%. This

accuracy can be further improved by enlarging the number of basis functions or Gaussian

points for the integrations, but that would increase the runtime unnecessarily considering

the purposes of the study.

The aim is to investigate the low-lying states, considering that the ground state was

missed by previous LF calculations (FREDERICO, 1992; CARBONELL; KARMANOV,

2003). Exploring more about the spectrum can lead to interesting outcomes, particularly

regarding the relativistic e↵ects on the Efimov physics
2
. This is an attractive subject

for further research within the model. Worth mentioning that studying an unbalanced

system (SUISSO; MELO; FREDERICO, 2002), with two heavy and one light particle,

would make the numerical search of excited states easier since the mass gap between the

states would be smaller (FREDERICO et al., 2012).

The first basic quantity found numerically is the three-body bound state mass. After

its solution, the LF equation (4.12) determines the squared mass M2
3 , as well as the BS

equation (4.9). Interesting to notice that the change of the sign M3 ! �M3 is equivalent

to the complex conjugation and does not a↵ect the real (i.e. physical) eigenvalues. The

value of M2
3 can be, in principle, found to be both positive or negative while solving the

equations, since one can get an unphysical solution depending on the value of the input

scattering length a. Although a solution for a given value of a can be non-physical for the

ground state, the excited one could still be physical, i.e. with a positive M2
3 . As mentioned

2In this context, the Efimov physics has been placed and observed in a variety of quantum few-body
systems, mainly studied in non-relativistic quantum mechanics for atomic and nuclear systems. The
Efimov physics is studied predominantly for the s-wave three-body equation with short-range interactions,
based on scale invariance, which is dynamically broken to a discrete one. Efimov, in 1970, showed how
the discrete scaling appears in the several features seen on the observables of the three-boson system. See
Refs. (FREDERICO et al., 2012; EFIMOV, 1970) for more details.
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FIGURE 4.4 – Squared three-body mass M2
3 dependence on the inverse scattering length

(a m)
�1

. The solid curve is the BS ground state, while the dashed one is the LF ground

state. The first excited state of the BSE is represented by the dashed-dotted curve and

the LF first excited state through the double-dash-dotted one.

before, Refs. (FREDERICO, 1992; CARBONELL; KARMANOV, 2003) found that the

relativistic e↵ects eliminate the Thomas collapse from the spectrum, meaning that the

eigenvalues M2
3 never go to �1. Still M2

3 can be negative depending on the two-body

interaction, what happens already for a two-body state with quite small binding energy.

Analogously to what is done to avoid the Thomas collapse in non-relativistic calculations,

a cuto↵ could be introduced to avoid the negative M2
3 . When the two-body interaction

becomes weaker, i.e. when the scattering length gets negative and then |a|! 0, the ground

state squared three-body mass M2
3 becomes positive and grows making B3 = 3m�M3 ! 0,

until when the three-body bound states disappear. Figure 4.4 shows this e↵ect through

the plot of M2
3 as a function of the inverse scattering length (a m)

�1
. The ”LF-excited

state” in that figure is the solution found in Refs. (FREDERICO, 1992; CARBONELL;

KARMANOV, 2003) as a ground state. The present calculations confirm the values M2
3

vs. M2 found in (CARBONELL; KARMANOV, 2003), where cuto↵s were not used, as

can be better seen in Fig. 4.5.

Table 4.1 gives the inverse scattering lengths (a m)
�1

for M2
3 = 0 and 9 m2

(or, re-

spectively, B3 = 0 and 3 m). The corresponding values for the inverse scattering lengths

are (a m)
�1 ⇡ 0.34, for the BS approach, and (a m)

�1 ⇡ 0.50, in the light-front, when

M2
3 = 0 for the excited state. Using Eq. (4.5) one can find that the two-body binding

energies are, respectively, B2 ⇡ 0.194 m and B2 ⇡ 0.582 m. For the sake of complete-

ness, for B2 = 2m � M2 ! 0 the ground state masses are M2
3 ⇡ �94 m2

, for the BS
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FIGURE 4.5 – Three-body B3 vs. two-body B2 binding energy for the first excited state.

The solid curve is computed solving the Euclidean BS equation, while the dashed one is

obtained from the LF equation.

Inverse scattering length (a m)
�1

M2
3 ground state excited state

BS LF BS LF

9 m2 �0.78 �0.57 �0.08 �0.04

0 �0.51 �0.21 0.34 0.50

TABLE 4.1 – Limiting values of the inverse scattering length (a m)
�1

for which the curves

in Fig. 4.4 cross the bound state thresholds M2
3 = 9 m2

and M2
3 = 0.

equation, and M2
3 = �18 m2

, for the LF one. In both cases they are extremely over-

bounded, and the di↵erence between those values is huge. For the corresponding excited

state, still for B2 = 0, the three-body binding energy is B3 ⇡ 0.066 m, for the BS equa-

tion, and B3 ⇡ 0.013 m, for the LF one. The latter value is close to one computed in

(CARBONELL; KARMANOV, 2003). In all the cases it is possible to notice the huge

di↵erence originated by the higher-Fock components. This result suggests that models us-

ing only the valence truncation can be missing relevant information, particularly the ones

for three-body systems. From Fig. 4.4 it is also possible to conclude that the three-body

mass M2
3 found in the BS approach is always smaller than the one through the LF equa-

tion, showing an attractive and strong impact of the e↵ective three-body forces (see Sec.

4.1.1). This corroborates what was found in Refs. (MANGIN-BRINET; CARBONELL,

2000; KARMANOV; MARIS, 2009) for the one-boson exchange interaction kernel.

Figure 4.6 shows the amplitudes �(k?, x) for the two states, ground and excited ones,
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obtained through the LF equation (4.12) (for the same B3) and normalized by �(0, 1/3) =

1, for comparison purposes. It is quite evident that they considerably di↵er from each

other, with the characteristic node structure of the excited state being evidently seen.

It is remarkable that the functions �(k?, x = 1/3) vs. k? have the same fall-o↵ for

both ground and excited states. The same asymptotic behavior is expected since both

solutions come from the same equation (4.12). The main di↵erence is that for the excited

state the amplitude for high momentum is ten times smaller than for the ground state.

The asymptotic k?-dependence comes from the factor (M2
0 � M2

3 ) ⇠ k2
?, which gives

�(k?, x) ⇠ c/k2
?. That is close to the asymptotic form of both curves shown in the right

panel of Fig. 4.6. A logarithmic correction coming from F(M2
12) also contributes to the

asymptotic behavior of the amplitude. However, the non-asymptotic domain of �, as well

as the factor c, are more sensitive to the details of �(k?, x) and strongly depend on the

state.
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FIGURE 4.6 – The LF vertex function �(k? = 0, x) of Eq. (4.12) vs. x (left panel) and

�(k?, x = 1/3) vs. k? (right panel). Both panels present the ground state with B3 = m
(solid curve) and the excited state (dashed curve). B3 = m for all the cases, but for

di↵erent (a m)
�1

(given in the text).

Figure 4.7 presents the BS vertex amplitudes vE(k4, kv), i.e. the solutions of (4.9),

for ground ((a m)
�1 ⇡ �0.57) and excited ((a m)

�1
= 0.25 ! B2 = 0.093 m) states with

the same three-body binding B3 = m. The numerical solutions presents the symmetries

expected analytically from Eq. (4.11), namely Re[vE(k4, kv = const)] vs. k4 is symmetric

relative to k4 ! �k4 and Im[vE(k4, kv = const)] is antisymmetric. This is the first time

that Eq. (4.9) is fully solved and that the BS vertex amplitude for this model is presented.

One can notice that the decay of the BS amplitude for the three-body case with zero-range

interaction is quite slow if compared with the amplitudes for the two-body case with an

one-boson exchange kernel.

After emphasizing the huge impact that the e↵ective three-body forces impose on the

two lowest-lying levels of the spectrum, one can proceed to study the outputs for the

transverse amplitudes.Fig. 4.8 shows the comparison of the transverse dependencies of

the LF and BS amplitudes, as presented in Sec. 4.1.1. The comparison is made for the
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FIGURE 4.7 – The BS amplitude vE(k4, kv) vs. k4 (left) and vs. kv (right) normalized

to Re[vE(k4 = 0, kv/m = 3)] = 1. Ground (solid curve) and exited (dashed curve)

states have their real parts displayed for Re[vE(k4, kv/m = 3)], in the left panel, and for

Re[vE(k4/m = 3, kv)], in the right one. Analogously, the imaginary parts are presented

for Im[vE(k4, kv/m = 3)], on the left panel, and for Im[vE(k4/m = 3, kv)], on the right

panel. The dot-dashed curve represents the ground state and the dot-dot-dashed curve

the exited one.

Faddeev components given by Eqs. (4.15) (LLF

1 - LF approach) and (4.16) (L1 - Euclidean

BS approach). They compose full LF wave function (4.14) and the full BS amplitude (4.2).

The amplitudes Li (i = 1, 2, 3) have the same functional form due to the Bose symmetry.

The components defined by Eqs. (4.15) and (4.16) depend on two variables, ~k1? and

~k2?. For the comparison shown in Fig. 4.8 it is chosen ~k2? = 0. Both amplitudes are

normalized to one at k1? = 0, so one can compare their k1? dependencies. Again, the

binding energy was fixed at B3 = m for the calculations in both approaches. The node

structure of the excited state, already seen in the transverse momentum dependence of the

LF vertex function in Fig. 4.6 (right panel), is clearly visible in the figure. The number of

nodes is a form of characterization of the states, as the ground state is expected to have

no node while the first excited state should present one. Moreover, Fig. 4.8 shows that for

the same three-body binding energy, the BS transverse amplitude has a slower fall-o↵ than

the LF one. This is one manifestation of the importance of the higher Fock-components

to the structure of the amplitude, as the coupling of those components with the valence

one is not considered in the LF equation.

A comparison between the transverse amplitudes obtained from Minkowski and Eu-

clidean BS equations without any truncation in the Fock space give exactly the same

result, as seen for a two-body system in Ref. (GUTIERREZ et al., 2016). For a given

approach (LF or BS), the asymptotic behaviors of both excited and ground states are the

same, since their amplitudes are two solutions of the same equation. The high-momentum

fall-o↵ is an interesting subject for future research, as it can be studied analytically to

understand in detail the leading fall-o↵ and its corrections, as the log correction coming

from the two-body scattering amplitude (4.3).
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FIGURE 4.8 – Transverse momentum Faddeev components of the LF and Euclidean BS

amplitudes. Binding energy fixed at B3/m = 1. The solid (ground state) and dot-dashed

(excited state) curves are the BS calculations (Eq. (4.16)), while dashed (ground state)

and dash-dash-dotted (excited state) curves are the LF calculations (Eq. (4.15)).

In conclusion, the four-dimensional Bethe-Salpeter Faddeev equation for a zero-range

interaction was solved, as well as the three-dimensional reduction in the light- front ap-

proach. It was found that the previous LF calculations (FREDERICO, 1992; CAR-

BONELL; KARMANOV, 2003) missed the formal ground state, and the structure of

both ground and excited states was exposed in detail. Introducing the renormalization

of the two-body amplitude (4.3) by means of the scattering length was essential for that.

The results found previously for the excited state in Ref. (CARBONELL; KARMANOV,

2003) in the LF framework were confirmed. For negative scattering length, it was found

a strongly bound Borromean system. Moreover, it was shown the di↵erence in the dy-

namical contents of the BS and LF approaches, due to the contribution of the many-body

intermediate states which generate e↵ective three-body forces of relativistic origin. A sim-

ilar e↵ect was also seen for the OBE kernel in Ref. (KARMANOV; MARIS, 2009). The

relativistic e↵ects in both frameworks also create an e↵ective repulsion, eliminating the

Thomas collapse (THOMAS, 1935) in a three-boson system. Further exploration on the

spectrum and the Efimov ratio
3

can be done if the approaches are generalized to systems

with non-equal masses (SUISSO; MELO; FREDERICO, 2002). The next step is to solve

3Efimov predicted that when the two-body binding energy goes to zero the number of three-body
bound states increases indefinitely and, in this limit, the ration between two successive states is given

by an universal constant, namely B(N)
3 /B(N+1)

3 ⇡ 500 for the equal mass system. The ratio is at least
two orders of magnitude smaller for a system with two heavy and one light particle (FREDERICO et al.,
2012; EFIMOV, 1970).
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Eq. (4.1) fully in Minkowski space. Although this is a complex task, finding a reliable

method for its solution without any truncation would clear the way to the exploration of

complex three-body systems, like baryons.

4.2 BSE in Minkowski space by direct integration

The goal is now to solve the scalar three-body Bethe-Salpeter equation (FREDERICO,

1992), with zero-range interaction, fully in Minkowski space and retaining implicitly the

Fock-space beyond the valence truncation. The adopted method is the direct integration

of the singularities of the four-dimensional integral equation, developed recently for the

two-body BSE in Ref. (CARBONELL; KARMANOV, 2014). The method does not rely on

any ansatz, as e.g. the NIR used for the solution of the two-body equation in Chap. 3. No

three-dimensional reduction of the covariant 4D equation, as the one done by performing

the projection onto the LF plane, is adopted. Part of what is exposed here was published

in Ref. (YDREFORS et al., 2019). The results in Minkowski space will be properly

compared with the Euclidean space ones, to test the reliability of the method.

One interesting example of calculation within the approach utilized here is the electro-

magnetic transition form factor, which quantifies the breakup of a two-body bound state.

This highly complex calculation was performed through the direct integration method

in Minkowski space, using as inputs the solutions, obtained by the same method (CAR-

BONELL; KARMANOV, 2014), of the scattering and bound state BS equations. The

transition form factor was calculated in the whole kinematical region, including the fi-

nal state interaction (CARBONELL; KARMANOV, 2015), with the non-trivial current

conservation explicitly verified numerically.

After presenting and applying the direct integration method, in the next section the

NIR will be introduced to turn the three-body equation into a form that could be solved

numerically. Developing di↵erent methods for the solution fully in Minkowski space is

essential to understand the technical di�culties and extend the BSE approach to more

complex physical systems.

4.2.1 Three-body Bethe-Salpeter equation in Minkowski space

As already mentioned, Eq. (4.1),

v(q, p) = 2iF(M2
12)

Z
d4k

(2⇡)4

i

[k2 �m2 + i✏]

i

[(p� q � k)2 �m2 + i✏]
v(k, p), (4.17)
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is a singular integral equation and solving it numerically is a very challenging task, if not

impossible. For that reason, the equation requires a proper treatment to be rewritten in

a, at least, less singular form before its numerical solution. The propagators, containing

the strongest singularities of the BSE kernel, is represented in the customary form (CAR-

BONELL; KARMANOV, 2014)

1

k2 �m2 + i✏
=

1

k2
0 � k2

v
�m2 + i✏

= PV
1

k2
0 � "2k

� i⇡

2"k
[�(k0 � "k) + �(k0 + "k)],

(4.18)

where "k =
p

k2
v
+ m2, kv = |~k| and PV denotes the principal value. The terms like

PV
R

. . . dk0

k20�"2k
contain a singularity that is removed by subtracting integrals from the

equation, with appropriate coe�cients, in such a way that the final equation is not a↵ected.

For that, the following identities are used

PV

Z 0

�1

dk0

k2
0 � "2k

= PV

Z 1

0

dk0

k2
0 � "2k

= 0. (4.19)

The second propagator in (4.1) can be integrated over the angles analytically. Denoting

z = cos

⇣
~k·~q
kvqv

⌘
and recalling that d3k = k2 dz d', one can write that

⇧(q0, qv, k0, kv) =

Z
idzd'

[(p� q � k)2 �m2 + i✏]
=

i⇡

qvkv

⇢
log

����
(⌘ + 1)

(⌘ � 1)

����� i⇡I(⌘)

�
,

(4.20)

where the integration over the azimuthal angle integration brings simply a factor of 2⇡.

In Eq. (4.20) it was defined

I(⌘) =

(
1 if | ⌘ |  1

0 if | ⌘ | > 1
, (4.21)

with

⌘ =
(M3 � q0 � k0)

2 � k2
v
� q2

v
�m2

2qvkv

. (4.22)

The kernel of Eq. (4.20) still has log-singularities and discontinuities that will be treated

numerically
4
.

Once the propagators are expressed as in Eq. (4.18), the principal value singularities

are subtracted and the angular integrations are performed, Eq. (4.1) acquires the following

4See Appendix D for more details on the numerical methods.
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form (in the center-of-mass frame, ~p = 0)

v(q0, qv) =
F(M2

12)

(2⇡)4

Z 1

0

k2
v
dkv (4.23)

⇥
⇢

2⇡i

2"k
[⇧(q0, qv; "k, kv)v("k, kv) + ⇧(q0, qv;�"k, kv)v(�"k, kv)]

� 2

Z 0

�1
dk0


⇧(q0, qv; k0, kv)v(k0, kv)� ⇧(q0, qv;�"k, kv)v(�"k, kv)

k2
0 � "2k

�

� 2

Z 1

0

dk0


⇧(q0, qv; k0, kv)v(k0, kv)� ⇧(q0, qv; "k, kv)v("k, kv)

k2
0 � "2k

��
.

This equation has now, besides the unknown analytical behavior of v(q0, qv) which will be

discovered numerically, only weak singularities and discontinuities, but unlike (4.1) the

singularities in k0 = ±"k no longer exist.

The logarithmic singularities of the kernel ⇧(q0, qv, k0, kv) (4.20) at ⌘ = ±1 can be

found for fixed values of q0, qv and kv, what makes the numerical treatment in k0 easier.

Their positions with respect to the variable k0 are

k0 = (M3 � q0) +

p
m2 + (kv ± qv)2

k0 = (M3 � q0)�
p

m2 + (kv ± qv)2 (4.24)

Analogously, the position of the singularities can be found for the variable kv, so that

the integration over this variable can be optimized numerically. The positions of the

singularities of ⇧(q0, qv, ±"k, kv) as a function of kv are given by

kv =
±
p

M2
12(M

2
12 + q2

v
)(M2

12 � 4m2) ± qvM2
12

2M2
12

, (4.25)

where M2
12 = (M3 � q0)2 � q2

v
. The argument of the square root is positive if M2

12 �
4m2

or M2
12  0 and, therefore, for existing real singularities in kv one needs to ensure one

of the following conditions for q0: q0 < M3 �
p

q2
v

+ 4m2 or M3 � qv < q0 < M3 + qv or

q0 > M3 +
p

q2
v

+ 4m2. This means that the branching points that needs to be considered

while fixing the mesh numerically to separate the regions with and without singularities

in kv are

q(1)0 =M3 �
p

q2
v

+ 4m2, q(2)0 = M3 � qv,

q(3)0 =M3 + qv and q(4)0 = M3 +

p
q2
v

+ 4m2,
(4.26)

with q(1)0 < q(2)0 < q(3)0 < q(4)0 . As it can be seen from Eq. (4.3), these branching points

are also present in the two-body amplitude F(M2
12). More details on the behavior of the

F(M2
12) amplitude can be found in Appendix C.



CHAPTER 4. BETHE-SALPETER APPROACH TO THREE-BOSON BOUND

STATES 142

4.2.2 Transverse amplitude in Minkowski space

As mentioned before, the vertex function v(q0, qv) is fundamentally dependent on the

metric adopted to define the integral equation. The transverse amplitude, already derived

for the Euclidean BS amplitude in Sec. 4.1.3, is instead a quantity useful for comparison

between calculations performed in Euclidean and Minkowski spaces. The derivation of the

expressions for the Minkowski transverse amplitude is presented below. The final ampli-

tude is expected to coincide with Eq. (4.16), defined in Euclidean space, after computed

with the BS amplitude obtained from the solution of the BSE in Minkowski space (4.23).

The BS amplitude can be written in terms of the three vertex components by intro-

ducing the external propagators, as given by Eq. (4.2). The transverse amplitude can be

defined in Minkowski space, analogously to what was written in (E.7), as

L(~k1?,~k2?) = L1(
~k1?,~k2?) + L2(

~k1?,~k2?) + L3(
~k1?,~k2?) =

Z 1

�1
dk10

Z 1

�1
dk1z

Z 1

�1
dk20

Z 1

�1
dk2zi�M(k10, k1z, k20, k2z;

~k1?,~k2?).
(4.27)

The final expression for the contribution L1(
~k1?,~k2?), after the derivation presented in

Appendix E.2, is given by

L1(
~k1?,~k2?) = �i

Z 1

�1
dk1z

⇥
⇢

i⇡

2k̃10

h
�(k̃10, k1z;

~k1?,~k2?)vM(k̃10, k1v) + �(�k̃10, k1z;
~k1?,~k2?)vM(�k̃10, k1v)

i

�
Z 1

0

dk10

⇥ �(�k10, k1z;
~k1?,~k2?)vM(�k10, k1v)� �(�k̃10, k1z;

~k1?,~k2?)vM(�k̃10, k1v)

k2
10 � k̃2

10

�
Z 1

0

dk10
�(k10, k1z;

~k1?,~k2?)vM(k10, k1v)� �(k̃10, k1z;
~k1?,~k2?)vM(k̃10, k1v)

k2
10 � k̃2

10

)
,

(4.28)

where

k̃10 =

q
k2
1z + ~k2

1? + m2. (4.29)

Notice that in Appendix E.2 important properties of Eq. (4.28) are discussed, for the

interested reader.

4.2.3 Numerical solution

Equation (4.23) is now solved by standard numerical methods, similarly to what was

performed in Ref. (CARBONELL; KARMANOV, 2014; YDREFORS et al., 2019). The
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vertex function v(p, q), as done before for the solution of the equation in Euclidean space,

represented through the spline decomposition (see Appendix D for more details). The

inputs are the scattering length a and the three-body binding energy B3, the same as in

the Euclidean calculations (see Sec. 4.1.4). The equation is numerically represented in the

form Av = �(a, B3)Bv, where A is the left-hand side matrix and B is the right-hand side

one. The solution is found through iterations such that the eigenvalue fulfills �(a, B3) =

1.0, under a certain precision. The convergence is also verified for the eigenvector v and

more iterations are done (or a larger basis is adopted), if needed.

B3/m am �

0.006 �1.280 0.999� 0.054i
0.395 �1.500 1.000 + 0.002i
1.001 �1.705 0.997 + 0.106i

TABLE 4.2 – Eigenvalues of the three-body ground state for three values of scattering

lengths, a. Three-body binding energies are the same as the ones computed in Euclidean

space, through the framework presented in Sec. 4.1.1.

Three results for the eigenvalue are given in Table 4.2, for the following values of

the two-body scattering length: am = �1.280, am = �1.500 and am = �1.705
5
. The

corresponding three-body binding energies are, respectively, B3/m = 0.006, 0.395, 1.001,

as obtained by solving the BSE in Euclidean space. The results for the eigenvalue �,

expected to be real and equal to one, present small deviations from the unity and also

an imaginary part. Both of these facts are related to numerical errors, which are about

5% and 10% for the worst cases. These errors could be reduced by increasing the number

of splines and Gaussian points for the integrations, but this enhances considerably the

runtime and a better precision is not needed for the purposes of the present work.

Nevertheless, it is important to mention another potential source of error: cuto↵s were

introduced to constrain the domains of the variables qv and q0. It is very di�cult to reach

a reasonable convergence considering the full domains, as the size of the region where the

singularities (given by Eqs. (4.24) and (4.25)) appear is enlarged along the axes. Moreover,

the asymptotic regions start at larger momenta.

The actual values used to truncate the variables were qmax
v

/m = 6.0 and qmax
0 /m =

13.0, for the two smallest binding energies, or qmax
0 /m = 15.0, for the case where B3/m =

1.001. Regardless, the convergence was reached within about 10% for the worst case. On

the other hand, in the Euclidean calculations it is possible to take into account the whole

range of the involved variables qv, q4, kv and k4. The fact that in the Minkowski approach

cuto↵s were applied while the whole domains were used in the Euclidean calculations

make the results not fully comparable. This might be one of the reasons why in � non-

5Values of a < 0 were chosen for simplicity, in order to avoid the pole in F(M2
12).
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zero imaginary parts appear and for the deviations from 1 obtained in the real part.
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FIGURE 4.9 – Real (left panel) and imaginary (right panel) parts of the vertex function,

v(q0, qv) with respect to q0 for qv/m = 0.05, 0.5, 2.5. calculations made with the parameters

am = �1.5 and B3/m = 0.395. For each value of qv the analytical positions of the peaks,

given by Eq. (4.26), are shown with dotted vertical lines.

.

In Fig. 4.9 it is shown the calculated real and imaginary parts of the vertex function

v(q0, qv) versus q0 for three fixed values of qv, namely qv/m = 0.05, 0.5, 2.5. The results

correspond to the binding energy B3/m = 0.395 and a m = �1.5. In the figure, the

analytical positions of the peaks, given by Eq. (4.26), are also shown. For all three cases

there is a quite good agreement between the analytical and numerical peak positions.

These peaks appear as branching points of the kernel ⇧(q0, qv, ±"k, kv), defining its singu-

larities, as discussed in Sec. 4.2.1. Interestingly, the aforementioned positions correspond

to M2
12 = 0 and M2

12 = 4 m2
, which give the branching points of the two-body scattering

amplitude F(M2
12). In Fig. 4.9 it is seen that for small values of qv a singularity appears

at q0 ⇡ M3. The distance between the external peaks, corresponding to M2
12 = 4 m2

, is

equal to 2
p

q2
v

+ 4m2, an increasing function with respect to qv. This fact makes things

more complicated from the numerical point of view, as for large values of qv a very wide

region of q0 has to be covered. This requests the need of adopting cuto↵s for the variables.

Evidently, it is important to check that the adopted number of basis functions is

enough for convergence. For this purpose, Fig. 4.10 shows the real and imaginary parts

of v(q0, qv = 0.5m), computed by using di↵erent number of subintervals Nqv and Nq0

(see Appendix D), which vary the number of basis functions for the variables qv and q0,

respectively. In the calculations it is used the parameters am = �1.5 and B3/m = 0.395.

It is seen in the figure that for Nqv � 40 and Nq0 � 80 the solution is well-converged.

Furthermore, in Fig. 4.11, it is displayed the modulus of the contribution L1(|k1?|, |k2?|)
to the transverse amplitude versus |k1?|, computed in Minkowski space (symbols). The

binding energy is fixed at B3/m = 0.395. The calculations are made through Eq. (4.28),

for three fixed values of |k2?|, namely |k2?|/m = 0.0, 0.5, 1.0. The angle between the
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FIGURE 4.10 – Convergence of the real (left panel) and imaginary (right panel) parts of

the vertex function v(q0, qv = 0.5m) with respect to the size of the basis, Nqv ⇥ Nq0 . In

the calculations it was used B3/m = 0.395.

vectors k1? and k2? is fixed at ✓ = 0. It is also shown, for comparison, the correspond-

ing Euclidean results (lines), with the same aforementioned parameters and calculated

through Eq. (4.16). It seen that Minkowski and Euclidean results are in fair agreement

with each other. The non-smooth behavior of the BSE solution in Minkowski space, shown

in Fig. 4.9, makes the agreement even more remarkable.
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FIGURE 4.11 – Transverse contribution, L1(|~k1?|, |~k2?|, ✓ = 0) versus |~k1?|, for |~k2?|/m =

0.0, 0.5, 1.0, obtained in Minkowski space (symbols) compared with the ones calculated in

Euclidean space (lines), for the parameters am = �1.5 and B3/m = 0.395.

The dependence of the transverse contribution L1 on the angle ✓ between k1? and k2?

is also displayed, in Fig. 4.12. The following sets of fixed values for the other variables are

used: (|~k1?|/m, |~k2?|/m) = (0.5, 0.5), (0.5, 2.0). For the scattering length and binding en-

ergy it is used am = �1.5 and B3/m = 0.395, respectively. The modulus of L1 is a slowly

decreasing function with respect to cos ✓. As seen in the figure, a satisfactory agreement
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is again found between the Euclidean (lines) and Minkowski (symbols) calculations.
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FIGURE 4.12 – Transverse contribution, L1(|~k1?|, |~k2?|, ✓) with respect to cos(✓) for

(|~k1?|/m, |~k2?|/m) = (0.5, 0.5), (0.5, 2.0), obtained in Minkowski space compared with the

results computed in Euclidean space, for the parameters am = �1.5 and B3/m = 0.395.

The results above present, for the first time, the solution of Eq. (4.1) directly in

Minkowski space. Although the outcomes are remarkable, showing a non-smooth behavior

of the three-body amplitude returning a great agreement with the smooth quantities

computed in Euclidean space, the method reveals to be quite challenging to be generalized.

For that reason, the next section is dedicated to develop a di↵erent way of dealing with the

equation in Minkowski space. The Nakanishi integral representation, used for solving the

two-boson problem, is adopted as an ansatz and the uniqueness conjecture (NAKANISHI,

1963; FREDERICO; SALMÈ; VIVIANI, 2012) is introduced to obtain a smooth equation

to be solved numerically.

4.3 Minkowski space equation: integral representa-

tion and uniqueness

As discussed previously, when solving the three-body BSE by direct integration one

still has to deal with a non-smooth equation (4.23) numerically. That brings a notable

numerical instability, as well as important sources of errors in the calculations (e.g. the

need of using cuto↵s to avoid infinite amount of moving weak singularities, with arbitrar-

ily large distances among them along the real axis). For this reason, a new method was

developed in order to solve Eq. (4.1). The method basically consists in expressing the
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Faddeev component of the vertex function through an ansatz for the integral representa-

tion and use the uniqueness theorem to obtain a smooth integral equation for the weight

function g. This procedure is similar to the one adopted in Ref. (FREDERICO; SALMÈ;

VIVIANI, 2012) for two-boson scattering and bound state systems. What is presented

below is the derivation of the equation and an analytical study of its kernel. The next

step, to be performed in the future, consists in exploring the equation numerically.

As discussed in Sec. 4.1.1, as well as in Refs. (YDREFORS et al., 2017; YDREFORS

et al., 2019), the zero-range three-body BS equation for the vertex function in the Faddeev

decomposition is given by Eqs. (4.1) and (4.3). As the three-body amplitude v(q, p) is

now represented by means of an ansatz for the integral representation, the same can be

done for the two-body scattering interaction kernel. The two-body amplitude (4.3) can

be written in the spectral form as follows

F(M2
12) =

Z 1

4m2

⇢(�)d�

M2
12 � � + i✏

, (4.30)

with the imaginary part given by (c.f. the last line of Eq. (4.3))

Im[F(M2
12)] = �⇡⇢(M2

12) =
✓(M2

12 � 4m2
)

16⇡

y00

(
y00

16⇡2 log
1+y00

1�y00 �
1

16⇡ma
)2 + (

y00

16⇡ )2
. (4.31)

The spectral function is thus given by

⇢(M2
12) = �✓(M

2
12 � 4m2

)

16⇡2

y00

(
y00

16⇡2 log
1+y00

1�y00 �
1

16⇡ma
)2 + (

y00

16⇡ )2
. (4.32)

The three-body vertex function, v(q, p), can be written in terms of the following ansatz

for the integral representation

v(q, p) =

Z 1

0

d�

Z 2
3

� 4
3

dz
g(�, z)

� � q2 � (p · q)z � i✏
, (4.33)

where g(�, z) denotes the Nakanishi weight function. The denominator is very similar to

the one which appears in the Nakanishi representation for the two-body BS amplitude,

since it is the Faddeev component for the bachelor particle and considers only two-body

interactions. The main di↵erence are the integration limits, basically related with the new

denominator and to the fact that the system has three identical particles, with masses

m1 = m2 = m3 = m. Di↵erently from what was done in Sec. 4.2, the total momentum

fraction is chosen to be p/3 in the propagators of Eq. (4.1), which is a simple kinematic

choice but might be numerically more stable (as seen for the Euclidean case, in Sec. 4.1).

By adopting the NIR of the vertex function and the spectral form of the two-body
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amplitude, the BSE (4.1) becomes

Z 1

0

d�

Z 2
3

� 4
3

dz
g(�, z)

� � q2 � (p · q)z � i✏
= 2i

Z 1

4m2

⇢(�00)d�00

(
2
3p� q)2 � �00 + i✏

Z
d4k

(2⇡)4

i

(
p

3 + k)2 �m2 + i✏

i

(
p

3 � q � k)2 �m2 + i✏

⇥
Z 1

0

d�0
Z 2

3

� 4
3

dz0
g(�0, z0)

�0 � k2 � (p · k)z0 � i✏
=

2i

Z 1

4m2

⇢(�00)d�00

(
2
3p� q)2 � �00 + i✏

I(q, �0, z0; p)g(�0, z0).

(4.34)

Following the steps detailed in Appendix G, one obtains the following integral equation

g(�, z) = � 2

(4⇡)2(z +
4
3)

4

Z 2
3

� 4
3

dz0
⇣

2

3
� z0

⌘2

✓
⇣⇣

2

3
� z0

⌘
�
⇣
z +

4

3

⌘⌘

⇥
Z 1

4m2

⇢(�00)d�00
Z 1

z+4
3

2
3�z0

d↵1

↵1

Z z+4
3

2
3�z0

0

d↵3

h⇣
z +

4

3

⌘
� ↵3

⇣
2

3
� z0

⌘i

⇥ @

@�0

h
g(�0(�, z, z0, �00), z0)

i
✓(�0(�, z, z0, �00)).

(4.35)

with

�0(�, z, z0, �00) =
p2

9
+ m2 � z0

p2

3
� 1

4

↵3

↵1

⇣
2

3
� z0

⌘2

p2 � ↵1

↵3
m2

+
(
2
3 � z0)

(z +
4
3)

2

⇥
h⇣

z +
4

3

⌘
� ↵3

⇣
2

3
� z0

⌘ih
� � (1� ↵1)�

00 � 2

3
p2
⇣

2

3
+ z

⌘i
,

(4.36)

considering that the following identity was used

@�0
@�

=

2
3 � z0

(z +
4
3)

2

h⇣
z +

4

3

⌘
� ↵3

⇣
2

3
� z0

⌘i
. (4.37)

Equation (4.35) is expected to be suitable for numerical treatment.

The condition �0 > 0 leads to the following constrain on �00

�00 6 �00max =
[� � 2

3p
2
(
2
3 + z)]

1� ↵1
+

(z +
4
3)

2

(
2
3 � z0)(1� ↵1)[(z +

4
3)� ↵3(

2
3 � z0)]

⇥
hp2

9
+ m2 � z0

p2

3
� 1

4

↵3

↵1

⇣
2

3
� z0

⌘2

p2 � ↵1

↵3
m2

i
.

(4.38)

It is possible to demonstrate that, if the di↵erent regions of �, z plane are considered

separately, the Wick-rotation q0 �! exp(i✓), with 0 6 ✓ 6 ⇡

2 , can be performed without

crossing any singularities for the Nakanishi integral representation used in this derivation
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(4.33). This is an important fact as the comparison with the Euclidean results is intended

to be performed, so that the forthcoming numerical results can be confirmed by previous

calculations obtained in Euclidean space (YDREFORS et al., 2017). Solving numerically

(4.36) and its Wick rotated version is the next step of this ongoing study.

It is worth remarking that the non-smooth behavior of the vertex function, v(q0, q),

seen in Figs. 4.9, could be eventually traced back to the singularities brought by the

integral representation proposed in Eq. (4.33). It would be of interest to clarify the relation

between the complex cut structure and the branching points originated by Eq. (4.33) and

the position of the peaks, which still needs to be investigated in the future. A formal aspect

that requires further elaboration is the relation of the integral representation of the vertex

function proposed in the section and the NIR of the full three-body BS amplitude of the

model (E.3).



5 Boson-fermion bound state

After dealing with two- and three-boson systems, it will now be considered a di↵erent

physical system, enclosing new degrees of freedom. An interesting transition case, which

is essentially a two-body system but can be used e↵ectively to explore three-body ones is

the one composed by a boson bounded to a fermion. In QCD it is often the case where

quark-diquark approaches are developed to deal with baryons (EICHMANN et al., 2016).

Moreover, considering the bound state systems studied so far in this thesis, that kind of

approach brings a new element for the theory framework, as it calls for the necessity to

handle an unbalanced mass systems having non-zero spin.

Following the outlook sketched above, this chapter presents the solution of the Bethe-

Salpeter equation, for a bound system composed by a fermion and a scalar boson, ex-

changing a boson that can be either a scalar or vector particle. The fermion-scalar system

is built with positive parity, having quantum numbers given as J⇡ = (1/2)
+
. The equation

is solved in Minkowski space through the same procedure as the one used for two-boson

systems, i.e. by representing the BS amplitude with the NIR and, subsequently, projecting

the BSE onto the LF plane (the method is presented in Sec. 3.1). For the sake of com-

pleteness, the equation is also solved in Euclidean space, by means of the Wick-rotation

(see Sec. 4.1), so the results can be confirmed by comparing calculations within two inde-

pendent methods. Vertex corrections and dressing e↵ects are not yet included in this first

exploration of the model. The main goal is to extend the BS approach to include a new

degree of freedom, the spin, and generalize the framework to include di↵erent constituent

masses.

Two interaction kernels are considered, namely, a scalar and a vector boson exchange,

both in the ladder approximation. With the vector exchange kernel the final equation

happens to be scale invariant, enabling intriguing explorations in close analogy with the

mathematical origin of the Efimov phenomena, where the conformal invariance is lost (KA-

PLAN et al., 2009). After presenting the integral equation and its solution in Sec. 5.1,

the scale invariant regime will be investigated in some detail in Sec. 5.2, in what is an on-

going research. The formal details of the derivation of the non-singular integral equations

for the Nakanishi weight functions leading to the BS amplitudes in Minkowski space, its

associated valence probabilities and light-front momentum distributions, as well as the
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numerical results for these solutions, are presented in Refs. (NOGUEIRA et al., 2019b;

GHERARDI, 2017).

Further analysis of the system within the scale invariance perspective, presented in

Sec. 5.2, is foreseen to be organized in a publication in the due course. Moreover, en-

compassing features to make the framework more realistic, e.g. dressing e↵ects and more

complex structures in the interaction kernel, and applying it to hadron physics is a great

challenge that must be faced. Although simple, this model can o↵er a first approach

to represent baryons, as e.g. mock protons, involved in B+
meson decays which con-

tains significant amount of CP violation. Some examples of these decays can be found

in (TANABASHI et al., 2018).

5.1 Boson-fermion BSE

The physical systems subject of the study here are represented by the following simple

interacting Lagrangians

Ls
=�s

F
 ̄ �+ �s

S
�⇤��

and Lv
=�v

F
 ̄ /V  � i�v

S
�⇤ !@ µ�V µ,

(5.1)

where Ls
describes the fermion ( )-boson (�) system interacting through the exchange of

a scalar � field, while Lv
comprises the vector boson field V µ

. The interacting Lagrangian

in the second line of Eq. (5.1) has only dimensionless coupling constants and, therefore, the

bound state BSEs are scale invariant in the ultraviolet region, as it will be discussed. This

is a quite simple model for describing a mock baryon, as more realistic descriptions, e.g.

for the nucleon, would include quark and gluon exchanges consistent with the underlying

gauge theory in the interaction kernel (EICHMANN et al., 2016).

The homogeneous BSE of the aforementioned system can be written, analogously to

Eq.(3.1), as follows (NOGUEIRA et al., 2019b; GHERARDI, 2017)

�(k, p) = G0(p/2� k)S(p/2 + k)

Z
d4k0

(2⇡)4
iKLd

(k, k0, p) �(k0, p), (5.2)

but now with two di↵erent propagators, one for the scalar boson G0, given by (3.4), and

the second one for the fermion, explicitly given by

S(q) = i
/q + mF

[q2 �m2
F

+ i✏]
. (5.3)

As the system under scrutiny in this chapter has non-identical particles, the scalar boson

mass will be notated here as mS instead of m, used in Eq. (3.4). For the interaction kernel
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KLd
it is considered the one boson (scalar or vector) exchange truncated at the first ladder

diagram, reading as

iKLd

s
(k, k0, p) = �i �s

S
�s
F

1

(k � k0)2 � µ2 + i✏
(5.4)

for the scalar and

iKLd

v
(k, k0, p) = �i �v

S
�v
F

(/p� /k � /k
0
)

(k � k0)2 � µ2 + i✏
(5.5)

for the vector boson exchange in the Feynman gauge. In both equations µ represents

the exchanged boson mass. The BS amplitude is normalized for both cases and the

normalization procedure is described in the Appendix C of Ref. (NOGUEIRA et al.,

2019b).

For solving Eq. (5.2) in Minkowski space it will be adopted the NIR, subsequently

projecting the resulting set of integral equations onto the LF, as done for the two-boson

case in Sec. 3.1.1. The equation will also be solved in Euclidean space, by simply per-

forming the Wick-rotation, what is enough to ensure a non-singular kernel. Obtaining

the solutions through two independent methods allows one to check the reliability of the

numerical outcomes. Before the integral equations are built, the BS amplitude needs to

be decomposed in terms of its Dirac structures. After imposing the relevant properties

for a 1/2+ system (NOGUEIRA et al., 2019b; GHERARDI, 2017), the BS amplitude can

be written as follows

�(k, p) =

h
O1(k) �1(k, p) + O2(k) �2(k, p)

i
U(p, s), (5.6)

where the functions �i are scalar, that can be suitably represented through the NIR,

and U(p, s) is the spinor of the whole system with squared mass M2
= p2, normalized

according to ŪU = 1. Eq. (5.6) is obtained from the most general decomposition (which

includes all the Dirac structures, including the tensor component) by introducing the

Dirac equation, (/p �M)U(p, s) = 0, and then further exploring the properties following

from the discrete symmetries of the BS amplitude
1
. The remaining Dirac structure of the

terms are given by the operators O1(k) = 1 and O2(k) =
/k

M
.

After expanding the BS amplitude through Eq. (5.6), the BSE (5.2) can be written as

1A detailed examination of the BS equation for the J⇡ = (1/2)+ system is presented in Ref. (GHER-
ARDI, 2017).
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a set of coupled integral equations for �1 and �2, as follows

�s(v)
i

(k, p) =
i

(p/2� k)2 �m2
S

+ i✏

i

(p/2 + k)2 �m2
F

+ i✏

Z
d4k0

(2⇡)4

⇥ (�i�s(v)
S

�s(v)
F

)

(k � k0)2 � µ2 + i✏

X

j=1,2

Cs(v)
ij

(k, k0, p) �s(v)
j

(k0, p),
(5.7)

where the coe�cients for the scalar exchange (5.4) are given by Eq. (H.1) and for the

vector exchange (5.5) by Eq. (H.2), both presented in Appendix H.1 (in the center of

mass frame, defined by ~p = 0).

The Wick-rotated equation can be obtained by imposing the following relations: k2
E

=

�(k2
4 +k2

), p ·kE = iMk4, p ·k0
E

= iMk0
4, kE ·k0

E
= �(k4k0

4 +~k · ~k0) and k
02
E

= �(k
02
4 +k

02
).

The equation for the scalar exchange is derived in the Appendix C.4 of Ref. (GHERARDI,

2017), while for the vector exchange the procedure is described in Appendix H.2.

In Minkowski space the procedure is the same as the one used for the bosonic system

of Sec. 3.1.1, i.e. the first step is to introduce the NIR
2

(3.5) in Eq. (5.7) to repre-

sent the scalar amplitudes, �1 and �2. After that the whole set of integral equations

can be integrated over k�
, similarly to what was done for the two-fermion system in

Ref. (PAULA et al., 2017). The procedure is quite straightforward and the resulting

equation reads (NOGUEIRA et al., 2019b)

Z 1

�min

d�0
gi(�0, z;2)

[�0 + � + (1� z2)2 + z2m̄2 � i✏]2
=
�F �S
2(4⇡)2

1

� + (1� z2)2 + (�� zm̄)2

⇥
Z 1

0

dv v2

Z 1

�min

d�0
Z 1

�1

dz0
X

j=1,2

gj(�
0, z0;2)

⇥

(1 + z)

2 Bij(k�
u
)✓(z0 � z)

D2
u
(z0, z, m2

S
)

+
(1� z)

2 Bij(k
�
d
)✓(z � z0)

D2
d
(z0, z, m2

F
)

�
,

(5.8)

where the support of the Nakanishi weight function is now defined as (NOGUEIRA et al.,

2019b; GHERARDI, 2017)

�min = �2zm̄|�| +�2,

with � = (mS � mF )/2. The support is found by imposing that the BS amplitude

integrated over k�
, i.e. the LFWF, should not present poles/cuts as it must be for a

bound system. Notice that �min = 0 for the equal mass case, as it was for the two-boson

2Notice that now the system has two particles with di↵erent masses and the variable  is defined as
 = m̄2 �M2/4, where m̄ = (mF + mS)/2.
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system. Moreover, the denominator Du reads

Du(z
0, z, m2

S
) = v(1� v) (z0 � z)


� � (1� z2)

M2

4
+ m2

S

�

+ (1 + z)


v(1� v)

✓
� + z2

M2

4

◆
+ v(�0 + 2) + v2z02

M2

4
+ (1� v)µ2

�
,

(5.9)

For the second term of the third line in Eq. (5.8) the denominator is given by Dd(z0, z, m2
F
) =

Du(�z0,�z, m2
F
). The factor (1 + z)

2
present in the denominators does not represent a

problem while solving the equation, as in the limiting case where z0 ! z it cancels out

with the factor in the numerator.

The coe�cients of Eq.(5.8) can be defined, for both interaction kernels, through

B11(k
�
u(d)) = c(0)11 + c(1)11 k�

u(d) , B12(k
�
u(d)) = c(0)12 + c(1)12 k�

u(d)

B21(k
�
u(d)) = c(0)21 , B22(k

�
u(d)) = c(0)22 + c(1)22 k�

u(d)

, (5.10)

where

k�
u

=
M

2
� 2 (� + m2

S
)

M(1 + z)
and k�

d
= �M

2
+

2 (� + m2
F
)

M(1� z)
. (5.11)

The explicit formulas for c(0)
ij

and c(1)
ij

are given in Appendix H.1.1.

5.1.1 Numerical outcomes

For solving the Wick-rotated BSE the BS amplitudes are expanded in terms of splines

(see Appendix D). The equation is then solved as a eigenvalue problem. In Minkowski

space the amplitudes are expanded in terms of an orthonormal basis composed by the

product of Laguerre (�-dependence) and Gegenbauer (z-dependence) polynomials, as done

for the bosonic system. The numerical methods applied for a fermion-antifermion system

are presented in Appendix I.2. Nevertheless, in contrast to that case the boson-fermion

bound state does not present the symmetry under the exchange z ! �z, equivalent

to exchanging the two constituent particles. Thus, both symmetric and antisymmetric

Gegenbauer polynomials need to be included in the basis to represent the BS amplitude

properly. More details and the specific parameters used in the solution of Eqs. (5.8) can

be found in Ref. (NOGUEIRA et al., 2019b).

As discussed previously for the two- and three-boson cases, the equation is solved as

an eigenvalue problem from where the outcomes, after assigning a binding energy, are the

coupling constant and the Nakanishi weight functions gi(�0, z;2). For the equation with

the scalar exchange the coupling constant has a dimensional dependence on the mass, i.e.

↵S
= �s

F
�s
S
/8⇡mS. Meanwhile, the dimensionless coupling constant for the vector case is

defined as ↵V
= �v

F
�v
S
/8⇡. These definitions are convenient to match the non-relativistic
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TABLE 5.1 – The coupling constant for the scalar exchange case for di↵erent values of

the binding energy (B/m̄). Two masses are considered for the exchanged boson, namely

µ/m̄ = 0.15, 0.50. Constituent particles are considered with equal masses, mF = mS. The

comparison between the Wick-rotated (↵S

WR
) and the Minkowskian (↵S

M
) BS equations is

shown.

B/m̄ ↵S

M
(0.15) ↵S

WR
(0.15) ↵S

M
(0.50) ↵S

WR
(0.50)

0.10 1.506 1.506 2.656 2.656

0.20 2.297 2.297 3.624 3.624

0.30 3.047 3.047 4.535 4.535

0.40 3.796 3.796 5.451 5.451

0.50 4.568 4.568 6.404 6.404

0.80 7.239 7.239 9.879 9.879

1.00 9.778 9.778 13.738 13.738

limit to the Born term of the fermion-scalar scattering.

The results for the coupling constant in the scalar exchange case are presented in

Table 5.1. Two values are considered for the exchanged boson mass, µ/m̄ = 0.15 and 0.5.

Moreover, it is considered the equal-mass case, mF = mS, for several binding energies

between B/m̄ = 0.1 and B/m̄ = 1.0. The results are obtained through the solution of

the Wick-rotated BSE (↵S

WR
), as well as the ones obtained from Eq. (5.8), in Minkowski

space (↵S

M
). These are two completely independent methods of solving the BSE (5.7) and

the coincidence between the results from the di↵erent approaches confirms the reliability

of the numerical outcomes. For strongly bound systems, namely beyond B/m̄ ⇡ 1.2 for

mF = mS, the numerical results become very unstable and, most likely, the numerical

methods have to be further developed to deal with these extreme situations. This problem

needs to be better understood through a deeper analysis of the interaction kernel for

this system, which present particles with di↵erent nature. Further exploration, both

analytically and numerically, should be done in the future to clarify the situation.

Furthermore, the Nakanishi weight functions evaluated with the Minkowskian BSE are

shown in Fig. 5.1. These quantities do not bring much of the physical features, but are

essential since from them any other dynamical observable can be computed. Interesting

to point out that the Nakanishi weight functions can have a strongly oscillatory behavior

depending on the considered input parameters, but observables obtained from them, e.g.

the LFWF, will still have a smooth behavior.

In Fig. 5.1, the considered scalar exchange mass is µ/m̄ = 0.15, while the equal-mass

case mS = mF is again considered. The panels on the left side present the calculations

for B/m̄ = 0.1 and the ones on the right side for B/m̄ = 1.0. Upper panels present the

dependence on �, for z = 0 fixed, while the lower ones show the dependence on z, for
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FIGURE 5.1 – Nakanishi weight functions g1 (solid line) and g2 (dotted line) as a function

of �, for fixed z = 0 (upper panels) and as a function of z, for fixed � = 0 (lower panels).

It is considered an equal-mass (1/2)
+

system, with the scalar exchanged boson mass of

µ/m̄ = 0.15. On the left side B/m̄ = 0.1, while on the right one B/m̄ = 1.

� = 0 fixed. The normalization factor is adopted to be g1(0, 0;2) = 1 for both g1 and

g2. One interesting feature is that for weakly bounded states the eigenvectors g1 and g2

are practically the same, while when the system becomes more relativistic the Nakanishi

weight functions start to di↵er more and more. One simple way of seeing the source of

this di↵erence is through the chosen decomposition of the BS amplitude, presented in

Eq. (5.6). The Dirac structure multiplying �2 depends on the mass, i.e. /k/M , therefore

the amplitude �2 should decrease when the size of the system decreases and it becomes

more relativistic, so that its contribution in Eq. (5.6) does not increase indiscriminately

when M ! 0.

For the vector exchange, the results for the coupling constant are shown in Table

5.2, for several binding energies up to B/m̄ = 0.5. Once again the results in Minkowski

space (5.8) agree with the Wick-rotated calculations (see Appendix H). As discussed in

Sec. 5.1, the integral equation for the (1/2)
+

fermion-boson system interacting through

a vector boson is scale invariant in the ultraviolet region, what in practice reflects into

a maximum value for the coupling constant and beyond that the solution is not stable

anymore and requires the introduction of an ultraviolet regulator (see e.g. (CARBONELL;
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TABLE 5.2 – The coupling constant for the vector exchange for di↵erent values of the

binding energy (B/m̄). Two masses are considered for the exchanged boson, namely

µ/m̄ = 0.15, 0.50. Constituent particles are considered with equal-masses, mF = mS. The

comparison between the Wick-rotated (↵S

WR
) and the Minkowskian (↵S

M
) BS equations is

shown.

B/m̄ ↵V

M
(0) ↵V

WR
(0) ↵V

M
(0.15) ↵V

WR
(0.15) ↵V

M
(0.50) ↵V

WR
(0.50)

0.10 0.513 0.513 0.608 0.609 0.849 0.854

0.20 0.758 0.761 0.823 0.823 1.009 1.015

0.30 0.936 0.938 0.979 0.978 1.127 1.129

0.40 1.074 1.074 1.107 1.097 1.225 1.216

0.50 1.189 1.18 ± .03 1.214 1.19 ± .03 1.311 1.28 ± .04

KARMANOV, 2010; DORKIN et al., 2008) for the procedure in the two-fermion system).

This discussion is very interesting and rich and will be developed in more detail in Sec. 5.2.

Noteworthy that, as is the case in the two-fermion bound state (PAULA et al., 2017), the

values of the coupling constant are larger for the scalar exchange than the dimensionless

ones shown in Table 5.2. In the table, a numerical uncertainty is included for B/m̄ = 0.5,

due to some instabilities when getting close to the limiting case imposed by the breaking

of the scale invariance.

Two other quantities, intrinsically defined in Minkowski space and significant for un-

derstanding its dynamics, are the valence LF valence distributions. They describe the

probability distributions of finding one of the constituent particles with a given longitudi-

nal momentum fraction ⇠, denoted by �F
(⇠), or of finding it with a transverse momentum

� = |k?|2, namely PF
(�). For the fermionic constituent they read, respectively,

�F
(⇠) =

1

32M⇡2
(1� ⇠)

Z 1

0

d�

⇣
�̃1(⇠, �;

2
)� z

2
�̃2(⇠, �;

2
)

⌘2

+
�

M2
�̃2
2(⇠, �;

2
)

�

(5.12)

and

PF
(�) =

1

32M⇡2

Z 1

0

d⇠ (1� ⇠)
⇣
�̃1(⇠, �;

2
)� z

2
�̃2(⇠, �;

2
)

⌘2

+
�

M2
�̃2
2(⇠, �;

2
)

�
.

(5.13)

Both Eqs. (5.12) and (5.13) are normalized to the valence probability Pval, which can

be found in Ref. (NOGUEIRA et al., 2019b). The two squared terms in brackets in

Eqs. (5.12) and (5.13), i.e.

⇣
�̃1(⇠, �;

2
)� z

2
�̃2(⇠, �;

2
)

⌘2

and
�

M2
�̃2
2(⇠, �;

2
)

are, respectively, the aligned and the anti-aligned contributions, related to the two possible

spin configurations of the system. The functions �̃i are the components of the LFWF,
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defined as

�̃i(⇠, �;
2
) = iM

Z 1

�1

dk�

2⇡
�i(k, p) =

Z 1

�1
d�0

gi(�0, z;2)

[�0 + � + (1� z2)2 + z2m̄2 � i✏]2
,

(5.14)

where ⇠ = q+1 /p+ = k+/p++1/2 = (1� z)/2. It is important to bear in mind that the BS

amplitude is properly normalized through its covariant normalization condition for com-

puting the LF distributions. The normalization procedure is described in Ref. (NOGUEIRA

et al., 2019b).

The LF longitudinal and transverse distributions, given by Eqs. (5.12) and (5.13), are

displayed, respectively, on the left and right panels of Fig. 5.2. In an attempt of presenting

a first investigation towards the description of a mock nucleon, the results were computed

for an unbalanced mass with ratio mS/mF = 2. Two values of the exchanged vector boson

mass are considered, namely µ/m̄ = 0.15 and µ/m̄ = 0.50, while the binding energy is

fixed at B/m̄ = 0.1. For the sake of completeness, the coupling constants associated

with the exhibited results are ↵V
= 0.648 (µ/m̄ = 0.15) and ↵V

= 0.898 (µ/m̄ = 0.5),

while the valence probabilities are Pval = 0.75 (µ/m̄ = 0.15) and Pval = 0.77 (µ/m̄ = 0.5).

This means that about 25% of the dynamical content is beyond the valence, which is a

notable amount considering that the binding energy for the case under scrutiny is quite

low. This is in accordance with the results presented for two-bosons in Chap. 3 and in

Ref. (FREDERICO; SALMÈ; VIVIANI, 2014), meaning that valence models for highly

relativistic systems, extensively used in the literature, might have a large associated error

due to the lack of the dynamics beyond the valence. The fact that the valence distribution

�(⇠), on the left panel of Fig. 5.2, is not centered around ⇠ = 1/2 but at ⇠ = 1/3 it is a

straightforward consequence of the mass asymmetry in this case. It is worth to reinforce

that these results could be di↵erent for a more realistic approach, that includes, e.g.,

vertex and self-energy corrections. However, the general shape, before properly applying

the evolution to the result at the initial scale, should be the same.

A deep analysis on the LF-momentum distributions of the (1/2)
+

model can be found

in Ref. (NOGUEIRA et al., 2019b). Therein are also presented the valence probabilities

and an extensive physical interpretation of the features seen in the results.

The next step is to analyze in detail the asymptotic behavior of the transverse momen-

tum distribution. As it will be seen in the next section, the fall-o↵ of the result obtained

from the numerical solution of Eq. (5.7) for the vector exchange coincides with the one

predicted by the analytical analysis of the ultraviolet form of the integral equations in the

scale invariant regime. The current toy model, although didactic, is quite simple and is

lacking more realistic propagators and interaction kernel. Naturally, if considered within

QCD theory, the features brought by scale invariance would be deeply changed as the

theory has its own intrinsic scale. Therefore, the discussion presented below is limited to
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FIGURE 5.2 – The longitudinal (left panel) and transverse (right panel) light-front dis-

tributions of the fermion in the valence component of the state (1/2)
+
. The considered

mass ratio is mS/mF = 2, while the binding energy is fixed at B/m̄ = 0.1. Solid lines

present results for µ/m̄ = 0.15 and dotted ones for µ/m̄ = 0.50.

the model discussed in this chapter.

5.2 Scale invariance in the fermion-boson system

As discussed before, the coupling constant for fermion-boson system with the vec-

tor exchange, ↵V
= �v

F
�v
S
/(8⇡), is dimensionless, feature that follows from the nature

of the interaction Lagrangian (5.1). Therefore, the BSE (5.7) is invariant under a scale

transformation in the ultraviolet region, what brings consequences to be studied in the

following. The main feature, seen in the results presented in Sec. 5.1.1, is the appearance

of an upper-bound for the value of the coupling constant, for given input parameters.

As illustrated in Table 5.2, above a certain value of the coupling constant, which varies

depending on the fixed values for B/m̄ and µ/m̄, the convergence of the numerical solu-

tion becomes very challenging. A similar situation occurs in the fermion-fermion bound

state, both in Euclidean (DORKIN et al., 2008) and in Minkowski spaces (CARBONELL;

KARMANOV, 2010; KARMANOV; CARBONELL, 2001). Overcoming this e↵ect passes

through the inclusion of a new scale in the integral equation. That can be done, e.g.,

by means of a form factor at the vertex interaction (CARBONELL; KARMANOV, 2010;

PAULA et al., 2017).

It is well-known in quantum mechanics that when the scale invariance is broken it

can bring interesting physical phenomena, manifested both in the spectrum and wave

function of the corresponding system. For instance, the most classical example, the three-

boson bound state with zero-range interaction is not bounded from below, meaning that

the three-body system collapses and no finite three-body binding energy can be found as

a solution. This was discussed for the relativistic case in Chap. 4. This phenomenon is
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known as the Thomas collapse (THOMAS, 1935), and it is closely related to the prominent

Efimov phenomena (EFIMOV, 1970), already largely explored in non-relativistic quantum

mechanics (FREDERICO et al., 2012).

As shown in Chap. 4 and in Refs. (YDREFORS et al., 2017; FREDERICO, 1992;

CARBONELL; KARMANOV, 2003), the relativistic counterpart of the Efimov phenom-

ena present remarkable di↵erences and further study of the features brought by scale

invariance are very promising. Therefore, this section is dedicated to explore the fermion-

boson equation at high momentum, a regime where all the scales can be disregarded. As

it will be seen, properties of the original BSE (5.7) can be predicted in the asymptotic

regime. For instance, it can be proven that there is a critical value of the coupling con-

stant and below that the solutions are stable, having a power-law form in the ultraviolet

region. An overall view of this in progress study is shown hereinafter. The content of this

section is based on Refs. (NOGUEIRA et al., 2019a; NOGUEIRA; FREDERICO, 2019).

5.2.1 High momentum limit

The starting point for the present analysis is the BS amplitude as presented in Eq. (5.6).

The component �2 should go to zero for M ! 0, in order to keep the BS amplitude finite.

To examine if the ratio �2/M can be finite, one can check the self-consistency of this

assumption in the set of coupled integral equations for �1 and �2, given by (5.7).

Suppose that one solves the integral equation for �1 in the limit when M ! 0 and

M << m . In this case one can assume that �2/M ! 0 and solve the uncoupled equation

for �1.The solution for �1 could be inserted back in the equation for �2 and, due to the

coupling coe�cients c(0),(1)21 / M (see Appendix H.2 for the coe�cients of the vector

exchange), the inhomogeneous linear equation for �2 could be solved. The conclusion

would be that �2 is indeed proportional to M and, therefore, the ratio �2/M is finite.

On the other side, such behavior of �2/M produces a finite contribution to the integral

equation for �1, considering the coupling coe�cient c(0),(1)12 / 1/M for M ! 0. This means

that c(0),(1)12 �2 would be finite, which does not support the initial guess of disregarding �2

to solve the uncoupled equation for �1. To avoid this contradiction, the coupled equations

for �1 and �2/M should be solved simultaneously in the limit of M ! 0.

Therefore, one has to solve the coupled set of integral equations for �1 and �2/M to

check whether one of the components vanishes or not. This can be done either in Euclidean

or Minkowski space, with the goal of understanding whether the equations remain coupled

in the asymptotic regime. Furthermore, the behavior of the coupling constant can be also

obtained regardless if the Wick-rotation is adopted.

For the sake of simplicity, the Wick-rotated BSE can be considered first. After per-
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forming the limit where k, k4 >> µ, m , m�, M in Eq. (H.10) of the Appendix H, one

gets

c(0)11 ! �k2 � k2
4, c(1)11 ! �

k2
+ k2

4

k2
, c(0)12 ! �i

k0
4

M
(k2

+ k2
4),

c(1)12 ! i
k4

M

✓
1 +

k2
4

k2

◆
, c(0)21 ! iMk0

4, c(1)21 ! �i
M

k2
k4,

c(0)22 ! �k
02
4 � k

02, c(1)22 ! �
k2

+ k2
4

k2
. (5.15)

After the integration on the angular part and in the limit where all the momenta are much

larger than the masses, the set of coupled integral equations for the components of the

BSE reads

�1(k4, k) = � ↵

(2⇡)2

Z
dk0

4dk0

(
b
⇣
c̄(0)11 +

a

2 c̄
(1)
11

⌘
ln

a+b

a�b
� b2c̄(1)11

k2 [k2 + k2
4]

2 �1(k
0
4, k

0
)

+

b
⇣
c̄(0)12 +

a

2 c̄
(1)
12

⌘
ln

a+b

a�b
� b2M c̄(1)12

k2 [k2 + k2
4]

2 �2(k
0
4, k

0
)

)
,

�2(k4, k) = � ↵

(2⇡)2

Z
dk0

4dk0

(
b
⇣
c̄(0)22 +

a

2 c̄
(1)
22

⌘
ln

a+b

a�b
� b2c̄(1)22

k2 [k2 + k2
4]

2 �2(k
0
4, k

0
)

+

b
⇣
c̄(0)21 +

a

2 c̄
(1)
21

⌘
ln

a+b

a�b
� b2c̄(1)21

k2 [k2 + k2
4]

2 �1(k
0
4, k

0
)

)
, (5.16)

where a factor of M in the coe�cients was absorbed into the first component of the

amplitude, i.e. M�1(k4, k)! �1(k4, k). The auxiliary functions a and b in Eq. (5.16) are,

in the limit, given by

a = (k4 � k0
4)

2
+ ~k2

+ ~k02 and b = 2 |~k||~k0|. (5.17)

The new coe�cients are therefore independent of the masses

c̄(0)11 = �k2 � k2
4, c̄(1)11 = �k2

+ k2
4

k2
, c̄(0)12 = �ik0

4(k
2
+ k2

4),

c̄(1)12 = ik4

✓
1 +

k2
4

k2

◆
, c̄(0)21 = ik0

4, c̄(1)21 = �i
k4

k2
,

c̄(0)22 = �k
02
4 � k

02, c̄(1)22 = �k2
+ k2

4

k2
. (5.18)

Now one can introduce the following change of variables (analogous for k0
and k0

4)

k4 = K cos' and k = K sin' (5.19)



CHAPTER 5. BOSON-FERMION BOUND STATE 162

with 0 < ' < ⇡. Eq. (5.17) then becomes

a = K2
+ K 02 � 2K K 0

cos' cos'0
and b = 2K K 0

sin' sin'0. (5.20)

and for the coe�cients the change of variables gives

c̄(0)11 = �k2 � k2
4 = �K2, c̄(1)11 = �k2

+ k2
4

k2
= � csc

2 ',

c̄(0)12 = �ik0
4(k

2
+ k2

4) = �iK2K 0
cos'0, c̄(1)12 = ik4

✓
1 +

k2
4

k2

◆
= i K cos' csc

2 ',

c̄(0)21 = ik0
4 = iK 0

cos'0, c̄(1)21 = �i
k4

k2
= � i

K
cos' csc

2 ',

c̄(0)22 = �k
02
4 � k

02
= �K 02, c̄(1)22 = �1� k2

4

k2
= � 1

sin
2 '

= � csc
2 '.

(5.21)

Considering that the first goal is to find the condition for having real solutions for the

coupling constant according to the fall-o↵ in K. For that purpose, one can search for

solutions with following asymptotic behavior

�1(k4, k) = K⌘+1F1(')

sin
2 '

and �2(k4, k) = K⌘
F2(')

sin
2 '

. (5.22)

After the manipulations detailed in the Appendix H.3, one gets

F1(') = � ↵
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◆

L� 4y cos' sin'0
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F1('
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�
, (5.23)

where it was considered the change of variables K 0 ! K y, as shown in Appendix H.3,

and L represents the following logarithmic function

L = ln
a + b

a� b
= ln

1 + y2 � 2y cos('+ '0
)

1 + y2 � 2y cos('� '0)
. (5.24)

The first step is to analyze the support of <[⌘], which defines the region where the
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integrals in (5.23) are not singular (having in mind the limits y ! 0 and y ! 1 of

the integrand) and one gets actual solutions. For this purpose, one needs to study the

behavior of both the non-diagonal term in the first equation and the diagonal term in the

second one, in the limit y ! 0. In the first case, for y ! 0 the non-diagonal term behaves

as follows

⇢
csc'

�
(1 + y2

) cos'� 2y cos'0� L

y
� 4 cos' sin'0

�����
y!0

! �4 y sin
2 ' sin 2'0 , (5.25)

and, in the second case, one has that

⇢
� sin'

✓
2y2

+ (1 + y2 � 2y cos' cos'0
) csc

2 '

◆
L

y
+ 4 sin'0

�����
y!0

! 4

3
y2

sin
2 ' (sin(3'0

)� 9 sin'0
) . (5.26)

Then, imposing that the integrals over y in (5.23) converge in the limit y ! 1 and

considering the above analysis of the integrand for y ! 0, the solution for the equation is

found only if the real part of ⌘ is constrained by

�5 < <[⌘] < �4 . (5.27)

The coupled integral equations (5.23) has two pairs of solutions for Fi, corresponding

to the two possible coupling constants, ↵1 and ↵2. They are found to be

F1(') = sin
2 ', F2(') = 0 and F1(') = 0, F2(') = sin

2 '. (5.28)

This leads to a pair of solutions for the BS amplitude (5.22). The first solution is given

by

�1(k4, k) = K⌘+1
and �2(k4, k) = 0 . (5.29)

for which the coupling constant reads

↵1(⌘) = �⇡(3 + ⌘)(5 + ⌘)(7 + ⌘)

4(6 + ⌘)
, (5.30)

while the second one is

�1(k4, k) = 0 and �2(k4, k) = K⌘. , (5.31)
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which is obtained from the F1 and F2 amplitudes related to ↵2, i.e.

↵2(⌘) = �⇡(6 + ⌘)(4 + ⌘)(2 + ⌘)

4(3 + ⌘)
. (5.32)

It is worth noticing that one can relate the two couplings through the following formula

↵ = ↵1(�9� ⌘) = ↵2(⌘) . (5.33)

The support obtained in Eq. (5.27) is better illustrated when one considers Fig. 5.3,

where Eqs. (5.30) and (5.32) are shown. As seen in the figure, the range of ⌘ that encloses

both solutions and still ensures that the kernel of Eq. (5.23) does not diverge when y !1
is the one given by Eq. (5.27).
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FIGURE 5.3 – ↵1 (left panel) and ↵2 (right panel) as a function of ⌘ from Eqs. (5.30)

and (5.32), respectively.

The maximum value of the coupling constant was found to be ↵c u 1.187 for ↵1(⌘max)

at ⌘max u �4.089, and for ↵2(⌘max) at ⌘max u �4.911. In Fig. 5.3 one observes that for a

given value of ↵ < ↵c two solutions, ↵(⌘1) and ↵(⌘2), are found. For the critical value, ↵c,

there is only one possible solution instead. For ↵i above the maximum value, the exponent

⌘ is complex and the BS equation in Euclidean space presents a pair of log-periodic solu-

tions, which demands one extra scale to determine the solution uniquely (FREDERICO

et al., 2012). Although the study has been done for the large momentum region, the

solution of the original set of coupled integral equations (5.7) is also given by the values

of ⌘ satisfying Eq. 5.27 for a given value of ↵. This can be confirmed numerically for the

general case, but one particular example will be discussed.

The solutions (5.29) and (5.31) were confirmed by solving the integral equations (5.23)

numerically. When getting close to the extremes of ⌘, given by Eq. (5.27), obtaining the

solution gets more demanding numerically. It was also checked numerically that for the

solutions in Eq. (5.28) the terms coupling the integral equations of Eq. (5.23) are very close

to zero. Therefore, the equations can be decoupled, obtaining the same aforementioned

results (considering that �2/M ! 0).
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One can now use the results from the Wick-rotated equation and derive the asymptotic

behavior of the LFWF. The first step is to obtain the NIR of the BS amplitude in the

asymptotic region, i.e

�i(k
2
) =

Z 1

0

d�

Z 1

�1

dz
gi(�, z)

(k2 � � + ı✏)3
! 1

(k2 + ı✏)�
⌘
2

, (5.34)

recalling that z = 1 � 2⇠. The solution of Eq. (5.34) can be found using the following

ansatz

gi(�, z) = �2+
⌘i
2 fi(z) . (5.35)

From that, the valence wave function in the asymptotic limit, written in terms of the NIR,

is expected to be proportional to the original LFWF, i.e.

 i(�, z) =

Z 1

0

d�0
gi(�0, z)

(�0 + � + (1� z2)2 + z2m2
)2

=

Z 1

0

d�0
�02+

⌘
2 fi(z)

(�0 + � + (1� z2)2 + z2m2
)2
/ fi(z)

(� + (1� z2)2 + z2m2
)
�1� ⌘i

2

(5.36)

where the function fi(z) needs to be determined numerically, by solving the BSE equation

in the asymptotic limit. Despite of that, it is simple to see that the expected ultraviolet

behavior of the light-front wave function is given by

 i(�, z) ⇠ �1+
⌘i
2 . (5.37)

This result can be compared to the numerical solution of the coupled integral equations

(5.8).

One particularly interesting example, where the matching between results from the

original equation (5.8) and scale invariant high-momentum regime, is obtained when ↵

reaches its maximum value. In this case ↵c = ↵2(⌘) u 1.187 and ⌘ = �4.9108. For this

situation, as  1 is expected to have a similar fall-o↵, it will be presented the results only

for  2:

 2(�, z) ⇠ ��1.45541 . (5.38)

The above scaling behavior is expected to be independent of the bound state mass and

this should be verified numerically. In Fig. 5.4, it is exemplified the case ↵ = 1.189, which

very close to the maximum value possible for the coupling constant. The parameters used

are m� = m = 1, µ = 0 and B = 0.5. The numerical result is compared in the figure

with the following product

�1.455  2(�, z)! const⇥ f2(z) , (5.39)
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showing that the asymptotic behavior for large � coincides very well with the result from

the numerical solution of the original equation. It is remarkable that the simple analysis

for the scale invariant regime can represent so well the asymptotic behavior of the original

BSE. Moreover, such agreement supports the result found for the dependence of ↵ on ⌘

in Eq. (5.32).

0 2 4 6 8 10

γ /m
2
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1

ψ
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(γ
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µ/m=  0.00 -  B/m=  0.500 - m
 F

=  1.00 - m
 S 
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0
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2

γ
1.455 

α = 1.189

FIGURE 5.4 – The light-front wave function  2(�, z0 = 0) obtained from the solution of

the original equation (5.8) as a function of � (solid blue curve) and its product with the

asymptotic limit found in the high momentum limit (dashed black curve).

Another check of the power-law behavior in the UV limit, discussed in Ref. (NOGUEIRA

et al., 2019b), is on the extension of the numerical calculations for �/m̄2 > 40 for Eq. (5.8).

The fall-o↵ for that case can be described by C1/�2.26, for µ/m̄ = 0.15, and C2/�2.43, for

µ/m̄ = 0.50, what is in agreement with the values predicted by the scale invariance

analysis presented above.

5.2.2 High momentum limit in the Minkowski space

Next one can consider the asymptotic limit of the integral equation for the Nakanishi

weight functions in Minkowski space (5.8). The high momentum limit of the equation is

presented in Appendix H.4 where, for simplicity, the derivation is made for �2, following

what was found in Eqs. (5.29) and (5.31). As discussed in the appendix, one can introduce

the following ansatz

g2(�, z) = �rf2(z) (5.40)
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where r = 2 +
⌘

2 with the constraint that �1 < r < 0, which is equivalent to (5.27).

Following the conclusion of the results obtained from the Wick-rotated equation, the

equations can be decoupled and only one of the components can be solved independently.

Here it is studied the equation for �2, but an analogous development could be done for

�1.

Following the derivation detailed in Appendix H.4, the unknown function f(z) is found

to obey the following equation

f(z) =
1 + |r|
2 + 4|r|

Z 1

�1

dz0f(z0)

⇥
⇢

1 + z

1 + z0

�|r|
✓(z0 � z) +


1� z

1� z0

�|r| 
1 +

4|r|
(1� z0)

�
✓(z � z0)

�
,

(5.41)

where it was used the relation between ↵ and r obtained in Eq. (5.32) and the subscript

2 in f(z) was dropped out for simplicity. Notice that for r = 0 one has that f(z) = f0,

where f0 is a constant, as expected. The numerical solution of Eq. (5.41) is found by

-1 -0.5 0 0.5 1
z

0.001

0.01

0.1

f(z
)

r = 0          α=0            λ=1
r = -0.25    α=0.9817   λ=0.9999
r = -0.5      α=1.1781   λ=0.9998
r = -0.75    α=0.8247   λ=0.9995
r = -1         α=0            λ=0.9993

FIGURE 5.5 – f(z) as a function of z for di↵erent values of ↵ and corresponding r. The

eigenvalue � is also provided in the figure.

solving the following eigenvalue equation

� f(z) =
1 + |r|
2 + 4|r|

Z 1

�1

dz0f(z0)

⇥
⇢

1 + z

1 + z0

�|r|
✓(z0 � z) +


1� z

1� z0

�|r| 
1 +

4|r|
(1� z0)

�
✓(z � z0)

�
.

(5.42)
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The eigenstates for real eigenvalues � close to 1 are shown in Fig. 5.5. The solution needs

to be further explored, including the case of complex values of r in order to study the

log-periodic solutions which appear beyond the critical value of the coupling constant.

In the case studied here, Eq. (5.42) was constrained to real values of r in the numerical

solution. The figure indicates an interesting property of f(z), the strong enhancement

exhibited close to z = 1. This enhancement is also observed in the numerical solutions

of the original equation (5.8), studied in detail in Ref. (NOGUEIRA et al., 2019b). By

further exploring Eq. (5.42), one could find more features of Eq. (5.8), that would help to

reach more stability in its numerical solution. This is a study in progress and there are

still some stages to be further developed. Nevertheless, it is already remarkable how the

scale invariant regime of the equation can bring a deep understanding of features hidden

in the original problem. Further exploration of the model within the realm of Efimov

physics, namely the scale symmetry breaking to a discrete one (KAPLAN et al., 2009;

FREDERICO et al., 2019), is a a next step of this study.

5.2.3 Concluding remarks

The BSE was solved for a boson-fermion system interacting through a scalar or a

vector exchange, both in Euclidean and Minkowski spaces. It was found a fair agree-

ment in the comparison between the coupling constants obtained in both Euclidean and

Minkowskian equations. The Nakanishi weight functions found numerically, which allows

one to recover the BS amplitudes, were also presented. The formalism was developed

by considering a generalized NIR for di↵erent constituent masses, what can be used for

modeling mesons through the fermion-antifermion BSE, presented in the next chapter for

the pion phenomenology. One interesting phenomenological application of the solutions

for the vector exchange would be to deal with baryons as quark-diquark bound states. As

an illustration of that, the longitudinal and transverse LF momentum distributions were

presented for the case when mS/mF = 2 in Sec. 5.1.1. Another interesting application,

related to the CPV formulation presented in Chap. 2, is the use of the boson-fermion BSE

to model CP-violating partonic decay amplitudes in B decays containing baryons in the

final state, as e.g. B+ ! pp̄K+
(TANABASHI et al., 2018).

Furthermore, the equation for the vector exchange is scale invariant in the ultraviolet

regime. Consequently, the real solutions for the boson-fermion problem with vector in-

teraction are only stable for a certain range of coupling constants, following the analysis

of the ultraviolet behavior of the Euclidean BSE.The critical value of the coupling con-

stant was explicitly found ↵c ⇡ 1.187, very close to the maximum value of ↵ presented

in Table 5.2 for which solving Eq. (5.8) numerically is still possible. For this value of

the coupling constant, the asymptotic behavior of one of the components of the LFWF
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was found to be the same when comparing the one obtained through the solution of the

equation and the prediction from the asymptotic region. It is worth mentioning that the

this is an ongoing research and needs to be further explored by comparing the asymptotic

form of the solutions of the BSE (5.8) for di↵erent coupling constants to the analysis of

the large transverse momentum region for the LF amplitudes,  1 and  2, made in the

previous section.



6 Fermion-antifermion bound state:

Pion phenomenology

This chapter illustrates to a phenomenological approach to a fermion-antifermion

bound state within the Bethe-Salpeter framework in Minkowski space. In view of future

applications to hadron physics, one can start by tuning the mass of the bound system

to the one of the pion, as well as by adopting the values of other relevant parameters as

suggested by lattice calculations (see below). Indeed, for the sake of simplicity, such a

system will be called pion in what follows, and an extensive overview of dynamical observ-

ables, like LF distributions, generalized parton distributions (GPDs) and electromagnetic

form factor, will be presented (CARBONELL; KARMANOV, 2010; De Paula et al., 2016;

PAULA et al., 2017). As discussed before, the dynamical description of the pion, to be

presented here, is an essential input to refine the CP violation model presented in Chap. 2,

as the light-meson amplitudes are the vertexes of the Feynman diagrams that need to be

evaluated in order to obtain the partonic CP-violating decay amplitudes. Particularly,

the BS amplitudes presented here can be promptly applied to compute the microscopic

decay amplitude of the process B± ! ⇡±⇡+⇡�
. For the other decays, involving also the

kaon meson, the procedure is to use the NIR for unequal mass systems (see Chap. 5 and

Refs. (NOGUEIRA et al., 2019b; GHERARDI, 2017)) to solve the fermion-antifermion

BSE. Once this task will be implemented, all the partonic decay amplitudes of the decays

treated in Chap. 2 can be microscopically described. Naturally, for the sake of com-

pleteness, it would be interesting to have also the spin-1 fermion-antifermion BSE, for

representing the vector intermediate resonances present in those decays, but this is not in

the range of the present work.

Regarding the solution of the 0
�

BSE, once again, the Nakanishi integral represen-

tation of the Bethe-Salpeter amplitude and light-front projection of the BSE are used,

similarly to what was done in Chaps. 3 and 5. The ingredients of the dynamical model

are a phenomenological quark-gluon vertex form factor, e↵ective constituent quarks and a

coupling constant obtained as the eigenvalue of the relevant equation with the bound state

mass tuned to the pion one. The mass scales of the model are chosen to be around ⇤QCD,

and an e↵ective gluon mass is also used, being calibrated through such QCD scale, and
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inspired by lattice QCD calculations, as it will be discussed. Through the BS amplitude,

this pion covariant model has, implicitly, besides the valence state, an infinite number of

Fock-components built by qq̄ and any arbitrary number of e↵ective gluons.

One of the most fundamental hadrons, the pion presents one of the simplest structures

within a constituent quark picture of quantum chromodynamics, but its description is far

from being understood and is still not complete, particularly in Minkowski space. Mean-

while, e↵orts to explore underlying aspects of its dynamics, like the intrinsic transverse

motion of valence quarks, are largely based on QCD approaches in Euclidean space (see

e.g. (SHI; CLOËT, 2019)). Its dynamics involves basic degrees of freedom and needs

a covariant Minkowski space formulation, even phenomenological. The connection with

the description of the bound state in terms of a LF wave function, easily achieved in the

formalism implemented in this thesis for boson-boson and boson-fermion systems, and

already extended to two-fermions (De Paula et al., 2016; PAULA et al., 2017), is essen-

tial for hadron 3D imaging (DUDEK et al., 2012; ADOLPH et al., 2013; ACCARDI;

BACCHETTA, 2017).

Generally, research e↵orts to get a realistic description of hadrons are either carried

out through Lattice discretization (LQCD) (BEANE et al., 2011) or continuous QCD

techniques, e.g. Dyson-Schwinger and BS equations (CLOËT; ROBERTS, 2014). Both of

these approaches are in Euclidean space and their outcomes, especially for the second one,

are used to obtain the light-front Fock-space content of the hadron wave function. One

example was the use of the NIR to perform the analytical extension to the Minkowski space

from the Euclidean BSE solution to obtain the actual pion valence parton distribution

function (CHANG et al., 2013), which was subsequently explored in Refs. (CLOËT et al.,

2013). However, extracting the relevant observables that are intrinsically defined in the

Minkowski space from Euclidean amplitudes is not yet a well established procedure and

calculations fully performed in the physical space are of great interest.

The fermion-antifermion BSE was solved for vector, scalar and pseudoscalar boson

exchanges in Minkowski space in Refs. (CARBONELL; KARMANOV, 2010; De Paula et

al., 2016; PAULA et al., 2017), where the formal developments were developed. In this

thesis, the fermion-antifermion BSE was solved similarly to what was done in Ref. (PAULA

et al., 2017) and all the results presented therein were reproduced. The BS equation is

considered in the ladder approximation, following the study of Sec. 3.2, that suggests the

suppression of cross-ladder diagrams when color degrees of freedom are included in the

BSE kernel for a scalar QCD framework.

The goal here is to use the obtained solutions for a phenomenological study of the pion

structure. This is a first step towards the description of hadrons, but extremely important

due to the dynamical framework being fully developed in Minkowski space. It is important

to highlight that self-energies are discarded and gauge invariance are not considered for the
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field operators, while the Feynman gauge is used here. Furthermore, the BSE kernel does

not enclose confinement. E↵orts in that direction are being made, through the inclusion

of derivatives of the Dirac delta function in the spectral representation of the propagators,

as suggested by Refs. (LOWDON, 2016). One great advantage of the approach is that

even the BS amplitude with minimal number of legs
1
already present infinite contributions

from the light-front Fock-space decomposition of the hadron state vector (SALES et al.,

2000b).

Important to point out that the hadron dynamics has been explored through other

approaches in Minkowski space, for instance by diagonalizing the light-front QCD Hamil-

tonian (BRODSKY; PAULI; PINSKY, 1998), a method known as basis light-front quan-

tization (see e.g. Refs. (VARY et al., 2010)). The covariant spectator theory has been

also used, where a three-dimensional reduction of the BSE is explored to develop the

formalism in Minkowski space (GROSS, 1969). Light-front models enclosing dynamical

chiral symmetry are also being widely used, with great success to describe several features

of the hadron spectra (BRONIOWSKI et al., 2010).

Another benefit of the NIR is that one can easily extend it from Minkowski to the

Euclidean space by Wick-rotating the denominator of the representation, where all the

dependence upon the external momenta is placed. This allows one to readily compare the

results with the ones obtained from Euclidean approaches, e.g. LQCD. A further property

of the NIR, already discussed for the two-boson case in Sec. 3.1, is the possibility of

achieving the asymptotic transverse momentum form of the valence wave function, since

the factorization of the dependencies on x and k? prevail (see Sec. 3.1.2). One can extend

such a property to describe the power-law dependence of higher Fock-components of the

wave function by means of the NIR (De Paula et al., 2016; GUTIERREZ et al., 2016).

In this chapter, it will be presented new results from the solution of the BSE for a

fermion-antifermion bound state interacting through a vector boson exchange. The scales

involved in the pion problem are fixed following results found in the literature, .e.g LQCD

calculations, and using as a general guideline ⇤QCD. Instead of presenting the direct

solution, already extensively explored in Refs. (CARBONELL; KARMANOV, 2010; De

Paula et al., 2016; PAULA et al., 2017), the outcomes will be used to compute the pion

decay constant, the longitudinal and transverse LF distributions, the GPD and, finally,

the EM form factor, which is compared to the experimental data. Although casually

called ”pion” here, the system can be more precisely understood as a mock pion, since

many fundamental aspects, e.g. dynamical chiral symmetry breaking, are still lacking

in the model. This ongoing research is being prepared for publication (PAULA et al.,

2019a).

1I.e., 3 for the two-body bound state, two o↵-shell and one on-shell.
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6.1 The BSE for a 0� state

The Bethe-Salpeter amplitude for a 0
�

fermion-antifermion bound state having total

momentum p = p1 + p2 and total mass M =
p

p2 obeys the integral equation (see

Refs. (CARBONELL; KARMANOV, 2010; De Paula et al., 2016; PAULA et al., 2017))

�(k, p) = S(k + p/2)

Z
d4k0

(2⇡)4
F 2

(k � k0
)iSµ⌫

g
(k, k0

)�1�(k0, p)�̂2S(k � p/2), (6.1)

where k = (p1�p2)/2 denotes the relative momentum and �i = �µ is the Dirac structure of

the interaction vertex. The argument of the form factor F is the the momentum transfer,

q = k � k0
. The interaction kernel K is assumed to be in the ladder approximation, as

suggested by the suppression of the non-planar diagrams when color degrees of freedom

are considered, as already seen for Nc = 3 in the bosonic example presented in Sec. 3.2.

In the interaction kernel it is considered a massive vector boson exchange to mimick the

gluon propagator, in the Feynman gauge, which reads

Sµ⌫

g
(k, k0

) = �i g2 gµ⌫

(k � k0)2 � µ2 + i✏
(6.2)

where g is the coupling constant and µ is an e↵ective gluon mass, fixed by lattice QCD

calculations (see e.g. Ref. (OLIVEIRA; BICUDO, 2011)).

Moreover, in Eq. (6.1) the Dirac propagator S for a fermion of mass m reads

S(k) = i
/k + m

k2 �m2 + i✏
. (6.3)

Furthermore, �̂2 = C�T

2 C and the vertex ”quark-gluon” form factor F is of the form

F (k � k0
) =

µ2 � ⇤2

(k � k0)2 � ⇤2 + i✏
, (6.4)

where ⇤ is a suitable scale for giving the size of the color distribution of the interaction

vertex. It is worth mentioning that the form factor F acts as a regulator to avoid the

breakdown following from scale invariance in the ultraviolet region that also happens in

the present system, similarly to what was discussed in Sec. 5.2 for the boson-fermion

bound state.

The BS amplitude can be decomposed as

�(k, p) =

4X

i=1

Si(k, p)�i(k, p), (6.5)

where each �i is a scalar function of the invariants k2
, p2, k · p. The symmetry property
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of the scalar functions, i.e. k ! �k for �i(k, p), can be straightforwardly translated

to the corresponding properties of the Nakanishi weight function, gi(�0, z0;2), which is

associated with the exchange z0 ! �z0. Hence, the weight functions must be even for

i = 1, 2, 4 and odd for i = 3. Moreover, the allowed Dirac structures read

S1(k, p) = �5, S2(k, p) =
/p

M
�5, S3(k, p) =

h
(k · p)

M3 /p�
1

M
/k
i
�5,

S4(k, p) =
i

M2
�µ⌫pµk⌫�5.

(6.6)

The NIR can subsequently be applied to each scalar functions, �i, i.e.,

�i(k, p) =

Z 1

�1

dz0
Z 1

0

gi(�0, z0;2)

[k2 + (p · k)z0 � �0 � 2 + i✏]3
(6.7)

with 2 = m2 �M2/4.

Noteworthy to mention that the Si operators of Eq. (6.6), present in the amplitude

�(k, p), together with the fermionic propagators (6.3) bring terms that produce extra

singularities, not present for the boson-boson or fermion-boson systems.

By inserting Eqs. (6.7) and (6.5) in (6.1), and subsequently performing the light-front

projection one can derive the following set of coupled integral equations for the Nakanishi

weight functions (De Paula et al., 2016; PAULA et al., 2017)

Z 1

0

d�0
gi(�0, z;2)

[� + �0 + m2z2 + (1� z2)2]2
=

↵
4X

j=1

Z 1

�1

dz0
Z 1

0

d�0
⇥
L(ns)

ij
(�, z, �0, z0) + L(s)

ij
(�, z, �0, z0)

⇤
gj(�

0, z0;2),
(6.8)

where ↵ = g2/(4⇡) is the dimensionless coupling constant
2
. Due to the extra singularities,

L(s)
ij

(�, z, �0, z0; p) requires a special treatment to deal with the additional powers of k�
.

Within the LF framework, the singular contributions can be singled out in a straightfor-

ward way, and rigorously evaluated by the procedure developed in Ref. (YAN, 1973) or

using the pole dislocation method given in Ref. (De Melo et al., 1998). In short, these end-

point singularities can be analytically treated by performing the k�
integration as (YAN,

1973)

I(�, y) =

Z 1

�1

dx

[�x� y ⌥ i✏]2
= ± 2⇡i�(�)

[�y ⌥ i✏]
. (6.9)

For more details on the application of the method to the 0
�

BSE, see Refs. (De Paula

et al., 2016; PAULA et al., 2017). The kernel of Eq. (6.8) is given in Appendix I. The

2The features observed due to scale invariance in Sec. 5.2 are avoided here due to the inclusion of the
vertex form factor of Eq. (6.4), which introduces a new scale in the problem.
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expressions for the non-singular contributions to the kernel are discussed in the next

subsections.

As done in Chaps. 3 and 5, gj(�0, z0;2) is expanded as Laguerre (�) ⇥ Gegenbauer (z)

polynomials. It is worth mentioning that in the equal mass case the symmetry under the

exchange of the particles simplifies significantly the kernel of the equation, as well as the

numerics since only the even (for g1, g2 and g4) or odd (for g3) Gegenbauer polynomials
3

are necessary to account for the z dependence of these Nakanishi weight functions.

For calculating observables, one needs to properly normalize the BS amplitude, so

the light-front wave function gives the correct valence probability and momentum distri-

butions. For normalizing the BS amplitude, in the ladder approximation, the following

expression needs to be evaluated

Tr

Z
d4k

(2⇡)4
@

@p0µ
{S�1(k � p0/2)�̄(k, p)S�1(k + p0/2)�(k, p)}|p0=p

�
= i 2pµ . (6.10)

Introducing Eq. (6.5) and the NIR (6.7) for the �i amplitudes, performing the trace

and the four-dimensional integration, one obtains the normalization condition (derived in

Ref. (PAULA et al., 2019b))

3

32⇡2

Z +1

�1

dz0
Z 1

0

d�0
Z +1

�1

dz

Z 1

0

d�

Z 1

0

dv v2
(1� v)

2

⇥
(

g1(�0, z0)g1(�, z) + g2(�0, z0)g2(�, z)� 4
m

M
g2(�0, z0) g1(�, z)

⇥
2 +

M2

4 �
2 + �0v + �(1� v)

⇤4

+
g3(�0, z0)g3(�, z) + g4(�0, z0) g4(�, z)� 4g1(�0, z0) g4(�, z)

2M2
⇥
2 +

M2

4 �
2 + �0v + �(1� v)

⇤3

)
= 1 , (6.11)

where � = [vz0 + (1� v)z]. It is worth mentioning that the covariant normalization in

Eq. (6.11) still contains the contributions beyond the valence state from the higher Fock

components.

Once the BS amplitude is properly normalized, the valence probability and momentum

distributions can be derived. The procedure passes through the evaluation of the valence

wave function, which emerges from the elimination of the relative light front time between

constituent particles defining the BS amplitude. The valence probability can be defined

as (PAULA et al., 2019b; MARINHO et al., 2008):

pval =
1

28 ⇡2

Z 1

�1

dz

Z 1

0

d�

Z
dk�

2⇡

Z
dk0�

2⇡
Tr

�
�+�(k, p) �+ �̄(k0, p)

 
, (6.12)

where � = k2
?, z = 2⇠ � 1 and ⇠ is longitudinal momentum fraction.

3See Appendix I.2 for more details on the numerical treatment.
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After performing the traces and integrating over k�
and k0�

, one finds that (more

details on the derivation of the equations below are given in Ref. (PAULA et al., 2019b))

pval =
1

32⇡2

Z 1

�1

dz

Z 1

0

d� Pval(�, z) , (6.13)

where the valence probability density is (PAULA et al., 2019b)

Pval(�, z) =  ̃(�, z)  ̃(�, z) +
�

M2
 (0)
4 (�, z)  (0)

4 (�, z) , (6.14)

and the other amplitudes, enclosing the longitudinal and transverse momentum distribu-

tions similarly to Eqs. (5.12) and (5.13), are defined as

 ̃(�, z) =  (0)
2 (�, z) +

z

2
 (0)
3 (�, z)

+
i

M3

Z 1

0

d�0
@g3(�0, z)/@z

[� + �0 + z2m2 + (1� z2)2]
(6.15)

and

 (0)
i

(�, z) =

Z
dk�

2⇡
�i(k, p) = � 1

M

Z 1

0

d�0
gi(�0, z)

[� + �0 + m2z2 + (1� z2)2 � i✏]2 .
(6.16)

For the derivation of Eq. (6.15) it was also used that

 (1)
i

(�, 2x� 1) =

Z
dk�

2⇡
k� �i(k, p) =

=
2

M2

Z 1

0

d�0
@gi(�0, z)

@z0
1

[� + �0 + m2z2 + (1� z2)2 � i✏]

� z

2

Z 1

0

d�0gi(�
0, z)

1

[� + �0 + m2z2 + (1� z2)2 � i✏]2
, (6.17)

which is performed by applying the integral given by the formula in Eq. (6.9) and its

derivative, which reads

Z 1

�1

dk�

2⇡

k�
h
↵ k� � � + i✏

i3 =
i

2

�0(↵)h
�� + i✏

i . (6.18)

Similarly to the procedure to obtain Eqs. (5.12) and (5.13), the longitudinal and

transverse valence LF momentum distributions are obtained through

�(⇠) =
1

32⇡2

Z 1

0

d� Pval(�, 2⇠ � 1) and P (�) =
1

32⇡2

Z 1

�1

dz Pval(�, z) . (6.19)
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6.1.1 LF distributions and pion decay constant

For illustrating the higher Fock contributions to the fermionic system, in Table 6.1

it is presented the valence probability (6.13) for three di↵erent values of the binding

energy, B/m = 0.01, 0.1 and 1.0. In the chosen example, the exchanged boson mass

µ/m = 0.15 and the vertex form factor parameter is ⇤/m = 2 have been adopted. The

valence probability of the fermion-antifermion bound state, pF
val

, is compared with the one

obtained for two-bosons, denoted by pB
val

. As it can be seen in the table, the value are

very similar for both cases, indicating that the inclusion of the spin dof does not change

the impact of contributions beyond the valence.

TABLE 6.1 – Comparison between the valence probability for the fermionic pF
val

and

bosonic pB
val

bound states. The exchanged boson mass is µ/m = 0.15 and the vertex form

factor parameter is ⇤/m = 2.0.

B/m pF
val

pB
val

0.01 0.96 0.94

0.1 0.78 0.80

1.0 0.68 0.67

Although the results of Table 6.1 are for a scalar exchange, simply for making the

comparison with the bosonic case of Chap. 3, it was checked that the results are very

similar when the vector exchange is considered. For strongly bound states, like the pion,

the e↵ect beyond the valence is about 30%, indicating that higher Fock components

are extremely important and models based only on the valence component might be

considerably limited.

As mentioned before, multiple structural observables are obtained through the valence

LFWF components. Following the adopted decomposition for the BS amplitude (6.5)

one has four LF components, obtained by integrating over k�
each component of the BS

amplitude (6.16) independently. These components, multiplied by a factor of
p
⇠(1� ⇠),

are presented in Fig. 6.1. The parameters, already chosen to provide a description of a

mock pion, are B/m = 1.35, µ/m = 2.0, ⇤/m = 1.0 and m = 215 MeV. Other observables

are straightforward to compute once the solution for the BS amplitude, which gives the

components in Fig. 6.1, is known.

In order to study the e↵ect from the parameters that can be adopted for the mock pion,

Fig. 6.2 present the transverse (left frame) and longitudinal (right frame) LF distributions

of Eq. (6.19). It is worth to point out that the ending points of the longitudinal distribution

(right panel) present a small numerical oscillation and its improvement is due to be studied

in the future. The coupling constant is tuned so that the pion mass is fixed at M =

M⇡ = 140 MeV while the constituent quark mass is varied for fixing the binding energy
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FIGURE 6.1 – The four light-front components, related to the decomposition of the BS

amplitude of Eq. (6.5), multiplied by the factor
p
⇠(1� ⇠). The adopted input parameters

are B/m = 1.35, µ/m = 2.0, ⇤/m = 1.0 and m=215 MeV. The associated coupling

constant is g2
= 26.718.

B/m = 1.35. The exchanged gluon considered is 2.0 and the vertex form factor parameter

is ⇤/m = 1.0. Three sets of parameters were studied, namely (B/m,⇤/m, µ/m) =

(1.25, 2.0, 1.5), (1.35, 2.0, 1.0) and (1.35, 1.0, 2.0) were studied, with the LF momentum

distributions being relatively similar for all the considered cases. The most significant

e↵ect happens when ⇤ is changed. The chosen set was the one returning the closest f⇡ to

its experimental value.
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FIGURE 6.2 – Transverse (left) and longitudinal (right) valence LF momentum distribu-

tions. The associated coupling constant is g2
= 26.718.

After all, the input parameters for the mock pion are fixed as follows. For the e↵ective

mass of the gluon µ ⇡ 430 MeV (equivalent to have µ/m = 2.0 in the units adopted

previously), following the result of Ref. (OLIVEIRA; BICUDO, 2011) from LQCD in

Landau gauge. This is obviously not ideal, since the vector boson is considered in the

Feynman gauge here, but the non-trivial task of reformulating the BS approach in a general
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gauge will be left for the future. The quark mass, following Ref. (PARAPPILLY et al.,

2006), is fixed at m ⇡ 215 MeV, given that the pion mass is kept fixed as M = M⇡ = 140

MeV. This corresponds to a binding energy of B/m = 1.35 in the unit adopted formerly.

For the vertex interaction parameter, it is chosen ⇤/m = 1, which has the same order as

�QCD. The coupling constant is conveniently rescaled as

↵s =
g2

4⇡
(1� µ2/⇤2

)
2,

where g2
is fixed through the outcome of the eigenvalue problem. The form presented

above is introduced in order to match the behavior in the infrared region (DEUR; BROD-

SKY; TÉRAMOND, 2016). Another relevant observable that can be computed is the

pion decay constant, defined as

i p2f⇡ = NC

Z
d4k

(2⇡)4
Tr[ /p �

5�(p, k)] , (6.20)

where NC is the number of colors. More details on the formulation of the decay constant

within the BS approach are presented in Appendix I.3. These parameters give for the pion

decay constant f⇡ = 96 MeV, which is very close to the experimental value (TANABASHI

et al., 2018). The obtained valence probability for this system is pval = 0.68. The

parameters, as well as the outcomes for pval and f⇡, are summarized in Table 6.2.

TABLE 6.2 – Input parameters for the mock pion. The last two columns show the results

for the valence probability pval and decay constant f⇡.

B/m M⇡ (MeV) g2 µ (MeV) ⇤/m m (MeV) pval f⇡ (MeV)

1.35 140 26.718 430 1.0 215 0.68 96

6.1.2 GPD and elastic form factor

In order to access information inside hadrons, considering the quark and gluon dof,

the so-called Generalized Parton Distributions (GPDs)
4

belong to the set of the elective

quantities. It can be understood as a 3D picture of the hadrons, carrying the correlation

between the transverse position and the longitudinal momentum of partons within the

hadron, giving direct access to observables like form factors and parton distribution func-

tions. One way of understanding the GPDs is as the o↵-shell parton-hadron scattering

4Worth pointing out that the Transverse Momentum Distributions (TMDs) are the relevant quantities
for focusing on the momentum distributions. Their calculation will be done in a future study.
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amplitude projected onto the LF, which reads (DIEHL, 2003). Schematically, one has

H(x, ⇠, t) =
1

2

Z
dk+d2k?�

✓
x� k+

P+

◆Z
dk�A(k), (6.21)

with

A(k) =

Z
d4zeik·z hP +

�

2
|T
h
 ̄(�z

2
)�+ (

z

2
)

i
|P � �

2
i , (6.22)

where the light-cone gauge is considered, P is the momentum average of the hadron

between the incoming and outgoing states, � is the transfered momentum and T is the

time ordering operator. For the chiral-even quark distribution in a pseudoscalar hadron,

the twist-2 GPD reads

Hq

⇡
(x, ⇠, t) =

1

2

Z
dz�

2⇡
eixP

+
z
� h⇡, P +

�

2
| ̄q

(�z

2
)�+ q

(
z

2
)|⇡, P � �

2
i |z+=z?=0 (6.23)

Restricting ourselves to the DGLAP region (|x| � ⇠, where ⇠ = ��+/(2P+
)), where the

valence description holds (see Refs. (FREDERICO et al., 2009; FANELLI et al., 2016;

MELLO; MELO; FREDERICO, 2017; CHOUIKA et al., 2018)), the GPD is simply an

overlap of the LFWFs, which for the valence contribution reads (CHOUIKA, 2018)

Hu

⇡
(x, ⇠, t) =

Z
d2k?

16⇡3

⇥
 ⇤
"#(x

0, k0
?) "#(x, k?) + k0

? · k? 
⇤
""(x

0, k0
?) ""(x, k?)

⇤
, (6.24)

where  "# and  "" are the two independent components of the LF wave function of the

pion, corresponding to the possible spin configurations.

Following Ref. (MEZRAG; MOUTARDE; RODRÍGUEZ-QUINTERO, 2016), the anti-

parallel helicity component is defined as

2P+ "#(k
+, k?) =

Z
dk�

2⇡
Tr[�+�5�(k, p)], (6.25)

while for the parallel component one has

ikiP+ ""(k
+, k?) =

Z
dk�

2⇡
Tr[�+i�5�(k, p)]. (6.26)

For the evaluation of Eqs. (6.25) and (6.26), it is used the decomposition of the BS

amplitude given by Eq. (6.5). The scalar components �i are expressed by the Nakanishi

integral representation, given in Eq. (6.7).

Computing the involved traces in Eqs. (6.25) and (6.26), one gets the following

Tr[� · n�5�(k, p)] =
4

M

✓
k · n�3 �

n · p k · p

M2
�3 � n · p�2

◆
(6.27)
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and

Tr[�µ⌫nµV⌫�5�(k, p)] =
i 4

M2
(n · p k · V � p · V k · n)�4. (6.28)

These expressions can be simplified by considering that p2 = M2
, n · p = M , n · k = k+

,

k2
= k+k� � k2

?, k · p = M/2(k+
+ k�

), k0
= (k+

+ k�
)/2, k3

= (k+ � k�
)/2, p · V = 0,

k · V = ki
and k+

= �Mz/2, which leads to

Tr[� · n�5�(k, p)] = �(2k�
+ Mz)

M
�3 � 4�2 (6.29)

and

Tr[�µ⌫nµV⌫�5�(k, p)] =
i4ki

M
�4, (6.30)

where M is the bound state mass, i.e. the pion mass M = M⇡. The next step is to

perform the involved integrations over k�
. One basically needs to consider two terms,

which are given by Eqs.(6.16) and (6.17).

The final result for the anti-parallel spin component of the light-front wave function

is given by

 "#(�, x) = � 1

2M2
[4 M (0)

2 (�, 2x� 1) + 2 (1)
3 (�, 2x� 1) + M z  (0)

3 (�, 2x� 1)]

=
2

M4

Z 1

0

d�0

h
M2g2(�0, z) +

⇣
zM

2

2

⌘
g3(�0, z)�Dg0

3(�
0, z)

i

D2
(6.31)

where x 2 [0, 1], g0
3(�

0, z) =
@g3(�0,z)
@z0 and D = � + �0 + m2z2 + (1� z2)2. For the parallel

component, one has

 ""(k
2
?, x) =

4

M2
 (0)
4 (�, 2x� 1). (6.32)

The final formulas for the GPD in the DGLAP region, i.e. valid in the region of the

phase space where |x| � ⇠, is given by

Hu;DGLAP

⇡
(x, ⇠, t) = Hu

"#(x, ⇠, t) + Hu

""(x, ⇠, t), (6.33)

where

Hu

"#(x, ⇠, t) =
1

16⇡3

Z 1

0

k?dk?

Z
⇡

�⇡
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?) "#(x

00, k
002
? ) (6.34)

and

Hu

""(x, ⇠, t) =
1

16⇡3

Z 1

0

k?dk?

Z
⇡

�⇡
d✓
q

|k02
? |
q

|k002
? | cos ✓ ⇤

""(x
0, k

02
?) ""(x

00, k
002
? ). (6.35)
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FIGURE 6.3 – Chiral-even GPD of the pion in the DGLAP region (6.33), given by the

overlap of LFWFs. The input parameters are presented in Table 6.2.

The kinematical variables above read

x0
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x� ⇠
1� ⇠ ; k

02
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? +

✓
1� x

1� ⇠

◆2 �2
?

4
+

1� x

1� ⇠�?k? cos ✓,

x00
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x + ⇠

1 + ⇠
; k

002
? = k2

? +

✓
1� x

1 + ⇠

◆2 �2
?

4
� 1� x

1 + ⇠
�?k? cos ✓,

�t =
�2

? + 4⇠2M2

1� ⇠2 ,

(6.36)

where it is neglected the pion mass term, using the chiral limit where M ! 0, following

what was done in Ref. (CHOUIKA, 2018).

Fig. 6.3 present the final result for the GPD of Eq. (6.33). The GPD obtained from the

fermion-antifermion BSE in Minkowski space shows to be compatible with other results in

the literature, as the ones presented in Refs. (CHOUIKA et al., 2018; CHOUIKA, 2018).

The valence form factor can be obtained simply by the following sum rule

F⇡(t) =

Z 1

�1

dx H⇡(x, ⇠, t), (6.37)

and its result can be seen in Fig. 6.4, where the normalization condition F⇡(�t = 0) =

1 for the valence contribution was adopted. The result is compared with data from
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FIGURE 6.4 – Pion electromagnetic valence form factor compared with data from (BAL-

DINI et al., 1999). The input parameters are presented in Table 6.2.

Ref. (BALDINI et al., 1999) and presents a very good agreement. As it is well-known,

there is a correlation between the pion decay constant, f⇡, and the charge radius, which

dictates the low momentum region of the form factor. Therefore, this might be the reason

for the nice agreement seen in Fig. 6.4, i.e. due to the pion form factor sensitiveness to

basically only one parameter. The asymptotic region of the form factor should be analyzed

with the model once the experimental data becomes available also for high momentum

transfer. There are still further investigations to be done and the results are preliminary,

but this indicates that the valence form factor can already represent very well the main

features of the pion form factor for practical calculations, at least in the range of t = �Q2

considered. The upcoming data beyond 10 GeV
2

will be extremely important, also to

understand the role of the higher Fock states in the observables that might a↵ect more

the fall-o↵ for high momentum transfer. The calculation of the electromagnetic form factor

through the evaluation of the triangle diagram involving directly the BS amplitudes, as

done in Sec. 3.1.3 for the two-boson case, is a work in progress. This calculation gives the

form factor beyond the valence Fock-space component.

The reader should bear in mind that the results presented in this chapter are still

preliminary, although promising. So far only the valence contribution to H⇡(x, ⇠, t) and

further development is necessary in order to obtain the ERBL domain (CHOUIKA et al.,

2018), i.e. |x| < |⇠|. The model implicitly contains contributions from the higher Fock-

space components with multiple intermediate gluons, part that corresponds to 32% of the
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total wave function, as given through the valence probability shown in Table 6.2. How-

ever, the formalism to account for the contributions from the higher Fock components

in Eqs. (6.21)-(6.23) can be developed for the present model following the approaches

developed Refs. (FREDERICO et al., 2009; FANELLI et al., 2016; MELLO; MELO;

FREDERICO, 2017; CHOUIKA et al., 2018). It will allow one to access, although indi-

rectly, the physical content beyond the valence component in the dynamical observables.

This can be done by computing, e.g., generalized transverse momentum distributions,

GPDs, PDFs and form factors by means of the BS amplitude, without relying on the

projection onto the LF.

In conclusion, a fully covariant non-perturbative model for the pion, without self-

energy and vertex-corrections, was developed in Minkowski space through the solution of

the fermion-antifermion BSE. The components of the valence LFWF were presented to

illustrate the solution. By tuning the parameters of the model, namely the constituent

quark masses, the e↵ective gluon mass and the vertex interaction scale, it has been found

68% for the valence probability and, for the pion decay constant, f⇡ = 96 MeV. The GPD

in the DGLAP region was then computed, from where it was obtained the pion valence

form factor, which shows to be in fair agreement with the experimental data. This notable

finding, by only using the valence component, is interpreted to be linked with the fact that

only one parameter, f⇡, is enough to determine the behavior of the form factor for low

momentum transfer. Further analysis in the asymptotic region, then taking into account

high Fock-space contributions, is expected to be performed in the near future. This model

gives the essential input to evaluate the microscopic decay amplitudes containing the pion

in the final state. These amplitudes are lacking in the CPV model discussed in Chap. 2.

The study presented above, once performed for the kaon by repeating the calculations for

two di↵erent quark constituent masses, will provide the BS amplitudes for computing the

partonic amplitudes for all the decay processes studied in Chap. 2.



7 Summary and Outlook

The CP asymmetry generated by the presence of resonances and two-body final state

interactions in charmless three-body B±
decays was derived within a formalism explic-

itly constrained by CPT (NOGUEIRA et al., 2015), extending the formulation proposed

in Ref. (BEDIAGA; FREDERICO; LOURENÇO, 2014). All the possible interferences

among the included resonant and non-resonant amplitudes were considered, except the

ones involving products of the inelastic scattering and the resonant amplitudes. While

summing up over the allowed kinematical phase space of all the considered decay channels,

the CPT invariance is found by matching the condition
P

�
��� = 0. Inelastic two-body

final state interactions are included through a parametrization of the leading order s-wave

scattering matrix elements t�,�0 , with � = ⇡⇡ and �0 = KK, fixed by the ⇡⇡ ! KK

scattering data. Naturally, the coupling between the ⇡⇡ and KK channels happens in

the region starting from the opening of the KK channel, i.e. around 1 GeV. The model

is able to analyze the phase space up to two-body invariant masses m⇡⇡0 ⇡ 1.6 GeV.

Below 1 GeV, the CPV within the model comes essentially from the interference among

the ⇢ and f0(980) resonances and the non-resonant background related to the partonic

amplitudes. The rescattering is responsible for coupling di↵erent decay channels and dis-

tribute CPV among them. Explicitly, the considered decay channels are B± ! ⇡±⇡+⇡�
,

which gives as an outcome the asymmetry in the coupled channel B± ! ⇡±K+K�
, and

B± ! K±⇡+⇡�
, for which an equal amount of CP asymmetry, with opposite sign, arises

in B± ! K±K+K�
. The fit of the CP asymmetry formula is found to be in fair agreement

with the LHCb experimental data (AAIJ et al., 2014).

Several improvements can be done in future studies with the CPV model. A simple

extension is to consider the Bose symmetrization of the decay amplitude by the exchange

of the identical pions or kaons. Moreover, the high-energy region can be explored, where

likely the contribution of the double charm scattering and its coupling to the KK and ⇡⇡

channels might play a role. One possible way of including these scattering amplitudes is

to extend the ideas presented in Sec. 2.1.7, for parametrizing and fixing the T-matrix, as

it corresponds to an essential input of the CPV model. The fit in the low mass region can

also be improved by introducing the s-wave elastic scattering matrix t⇡⇡,⇡⇡, which take

into account, among other e↵ects, the f0(500) (or �) resonance (PELÁEZ, 2016).
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Other two crucial structures, but more challenging to be implemented, are three-body

final state interactions and realistic partonic amplitudes. For the first, the model based

on the inhomogeneous Faddeev-Bethe-Salpeter three-body equation presented in Sec. 2.3

and Ref. (NOGUEIRA; FREDERICO; LOURENÇO, 2017) must be brought into line

with the CP asymmetry formula derived in Sec. 2. The development of realistic partonic

amplitudes for three final state pions could start by considering the pion BS amplitude as

obtained in Chap. 6. When kaons are involved, the fermion-antifermion BSE needs to be

generalized by considering mass unbalanced systems, similarly to what was done for the

fermion-boson bound state in Chap. 5 and Ref. (NOGUEIRA et al., 2019b).

Explicitly taking into account the CPT constraint is rarely done in calculations per-

formed through short distance factorization approaches. The fact that decay channels

are coupled by final state interactions implies, within the CPV model developed in this

thesis, that the asymmetry generated by short distance mechanisms must be suppressed

in specific B decay processes involving one pseudoscalar and one vector meson in the final

state (NOGUEIRA et al., 2016). For testing this strong remark with experimental data,

it is proposed a simple and practical method to extract the CP asymmetry of B ! PV

decays from the experimental three- body phase space. If the CPT constraint is imple-

mented in the way it was presented in the CP violation formulation of Sec. 2.1, one can

expect a strong suppression of the CP asymmetry in B ! PV processes, as suggested by

the toy Monte Carlo simulations performed in Ref. (NOGUEIRA et al., 2016).

An alternative framework to account for three-body final state interactions in heavy

meson decays has been developed, by describing the B+ ! K�⇡+⇡+
decay amplitude

through the s-wave K⇡ scattering amplitude and the Faddeev decomposition of the Bethe-

Salpeter equation (NOGUEIRA; FREDERICO; LOURENÇO, 2017). As the CPV model,

this framework calls for the proper insertion of the short distance physics, which involves

the evaluation of the microscopic decay amplitudes. The most challenging ingredients to

obtain for the calculation are the proper representation of the mesonic vertexes, as their

dynamical content needs to be accessed non-perturbatively and in Minkowski space.

The mesonic bound state vertexes, essential inputs necessary to evaluate the partonic

decay amplitudes, created the demand for deeper understanding of the bound state struc-

ture. Properly representing such bound systems requires a non-perturbative approach

and access to decay amplitudes which are defined in Minkowski space. All this has mo-

tivated the studies which are the backbone of the rest of the thesis. To embody the

non-perturbative physics of the bound states, the homogeneous Bethe- Salpeter equation

is adopted. A spinless two-body system was chosen as the starting point, aiming at ex-

ploring the e↵ects of the truncation of the interaction kernel on the solutions. An ansatz

was introduced for the BS amplitude, the Nakanishi integral representation, that allows

one to make explicit its analytical structure. After that, the whole equation is projected
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onto the light-front to obtain a non-singular integral equation for the Nakanishi weight

function, suitable to be solved numerically. Both the valence light-front and the elastic

electromagnetic form factor are studied in detail after including both ladder and ladder

plus cross-ladder kernels (GIGANTE et al., 2017a).

Although the impact of the inclusion of the cross-ladder is sizable, the valence wave

function is found to be independent of the kernel at low transverse momentum, being de-

termined by the given binding energy. Moreover, it was found that it is possible to naively

factorize the dependencies of the valence wave function in terms of the longitudinal and

transverse momentum distributions for the asymptotic large momentum behavior. For

fixed binding energy and a proper normalization at zero transverse momentum, the de-

pendence on the longitudinal momentum fraction is found to be very well represented by

an universal function in the asymptotic valence wave function. The functional form ap-

proaches the Wick-Cutkosky solution |⇠(1�⇠)|2. As the impact from the generalized ladder

kernel on the coupling constant was computed in Euclidean space in Ref. (NIEUWEN-

HUIS; TJON, 1996), one can predict the asymptotic form for large momentum of the

valence wave function from the proposed conjecture.

Following from the gauging of the cross-ladder kernel, the two-body current contri-

bution is computed for the elastic electromagnetic form factor. Due to the symmetry

under the exchange of initial and final four-momenta in the photoabsorption amplitude,

it was shown that the impulse and two-body contributions to the form factor conserve the

current independently. Calculating the transition form factor, e.g. from the ground to the

excited state, would be an intriguing and non-trivial check of the current conservation,

as the matrix element of the current operator would depend on the overlap of both BS

amplitudes of the initial and final states. Furthermore, the two-body current is found to

be 15% of the elastic form factor at zero momentum transfer for strongly bound systems.

In the large momentum region the behavior for the contributions from the impulse and

two-body current to the form factor was derived analytically through counting rules. The

asymptotic behavior found numerically agrees very well with counting rules, particularly

when the log correction is introduced in the asymptotic formula for the contribution of

the two-body current to the form factor.

The significant e↵ect found by introducing one cross-ladder diagram in the BSE kernel

implies that higher order non-planar graphs should be considered for the interaction kernel

for practical calculations. Nevertheless, turning the approach into a scalar QCD model by

means of the inclusion of the color degrees of freedom brings a completely di↵erent scenario

in that regard (Alvarenga Nogueira et al., 2018). As presented in Sec. 3.2, the impact

of the cross-ladder contribution is highly suppressed for all the considered quantities, i.e

binding energy, valence wave function and electromagnetic form factor. That happens

already for Nc = 3 and by counting the color factors of higher order diagrams one can
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expect even strong suppression beyond the first non-planar diagrams. This finding is

remarkable, as it supports rainbow-ladder truncations for practical calculations within

continuous QCD.

A relatively simple, but extremely interesting, exploration that could be done in the

future would be to consider the cross-ladder impact in unbalanced bosonic mass systems

for di↵erent regimes of the ratio between the constituent boson masses. The Nakanishi

representation for unequal particles was already introduced in Ref. (NOGUEIRA et al.,

2019b) and could be used to represent the BS amplitude of such a system. The limit-

ing case where m1 ! 1 with the other boson mass m2 kept fixed and finite, can be

investigated the fundamental role of the cross-ladder diagrams in order to recover the

one-body limit of BSE, according to the theoretical expectation (GROSS, 1999). Further

understanding of the impact on the spectrum, and momentum distributions of the excited

states, for instance, would bring more robustness for the study.

In perspective, one can think on introducing the color degrees of freedom in the un-

balanced mass system, to study how the suppression of the non-planar diagrams happens

when m1 >> m2 is of interest. It could be investigated numerically the number of colors

Nc needed to recover the one-body limit from the BSE in the ladder approximation. A

more challenging problem, is how to enclose the essential features from confinement in

the BSE kernel. Following Refs. (LOWDON, 2016), one could introduce the spectral rep-

resentation of the interaction kernel with derivatives of the Dirac delta to account for the

behavior in the infrared region. This study is imperative in order to turn the BS approach

into framework able to describe bound state hadronic systems.

After accumulating knowledge on the two-body BSE, the three-body Faddeev-Bethe-

Salpeter equation with zero-range interaction has been for the first time addressed, both

in Euclidean (YDREFORS et al., 2017) and Minkowski (YDREFORS et al., 2019) spaces.

For studying the role of higher Fock-space contributions, the light-front equation has been

also solved. The BSE implicitly incorporates e↵ective three-body forces of relativistic ori-

gin, resulting in a huge attraction with strong e↵ects on the observables, as seen for

the spectrum and transverse momentum amplitudes in Sec. 4.1.4. The result suggests

that valence inspired models hardly have the full dynamical content for practical pur-

poses. Moreover, by tuning the two-body scattering amplitude it is found that, when

it corresponds to a reasonably strong two-body interaction, a deeply bound three-body

Borromean system arises as ground state. This feature was missed in previous light-front

calculations (FREDERICO, 1992; CARBONELL; KARMANOV, 2003), as only interac-

tions producing two-body bound states were considered.

In Minkowski space the three-body BSE has been solved by standard analytical and

numerical methods (CARBONELL; KARMANOV, 2014), where (i) no ansatz or assump-

tion has been introduced to represent the BS amplitude and (ii) the singularities from the
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kernel are treated analytically and numerically directly in the four-dimensional equation.

The outcome for the amplitude is highly peaked, indicating the presence of a singular

behavior as shown in Sec. 4.2.2, very di↵erent from the amplitude found through the

Wick-rotated equation in Sec. 4.1.4. However, although the BS amplitudes from the solu-

tion in Euclidean and Minkowski spaces are fundamentally di↵erent, they can be compared

by means of the transverse amplitude. The comparison shows a notable agreement, giv-

ing more confidence on the reliability of the direct integration method. One interesting

direction for future explorations of the three-body system is to consider particles with

non-equal masses. This allows to explore excited states and, therefore, the Efimov phe-

nomena relativistically. The relativistic e↵ect on the Efimov ratio, very well studied in

non-relativistic approaches, is a promising example. Exploring how the ratio converges to

the non-relativistic limit when higher excited levels are considered could bring interesting

outcomes. Worth mentioning that the three-boson BSE in Minkowski space presents a

kernel similar to the quark exchange diagrams in quark-diquark models (EICHMANN et

al., 2016) in the constituent quark picture. Therefore, the solutions obtained in this thesis

for the Minkowski space equation can be interesting also in that context.

Noteworthy that due to the need of dealing with singularities numerically, the direct

integration method can make challenging the extension of the approach for more sophisti-

cated systems, e.g. involving finite range interactions or spin degrees of freedom. There-

fore, the Faddeev-Bethe-Salpeter equation has been derived through the introduction of

an integral representation in Sec. 4.3. In this case, the task should be numerically less de-

manding than the brute force integration of the Faddeev BSE. The integral representation

of the amplitudes shows the presence of cuts and branching points, which could be re-

sponsible for the singular behavior found in the previous numerical studies (YDREFORS

et al., 2019; YDREFORS et al., 2019). A formal aspect that requires further elaboration

is the relation of the proposed integral representation of the vertex and the NIR of the

full three-body BS amplitude.

The treatment of spin dof is a major step forward while setting a Minkowskian frame-

work, which would allow one to exploit in-depth phenomenological investigations, like

CPV in heavy meson decays. In view of this, the BSE for the unequal mass system com-

posed by a scalar boson and a fermion interacting through a scalar or vector boson was

also solved in Minkowski and Euclidean spaces (NOGUEIRA et al., 2019b). As in the

two-boson case, the NIR together with the light-front projection are adopted to derive

a non-singular integral equation, which is solved numerically. It is the first time that

the NIR is considered for an unbalanced mass system. This formalism can be used to

model baryons by means of an e↵ective three-body quark-diquark system. The compar-

ison between the coupling constants obtained in Euclidean and Minkowski spaces show

fair agreement for B/m̄ / 1.2, for the scalar exchange, and for B/m̄ / 0.5, for the vector
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one. While further investigation is needed in the scalar exchange case, the limit on the

binding where the solution can be obtained in the vector exchange case comes from the

fact that the equation is scale invariant in the ultraviolet regime. As presented in Sec. 5.2,

the scale invariant regime allows one to predict other features original BSE solution with

the vector exchange kernel in the high momentum regime, where the equation becomes

much simpler. For example, in the large transverse momentum region the fermion in the

anti-aligned spin configuration prefers to carry most of the total longitudinal momentum,

as follows from the enhancement of the corresponding Nakanishi weight function for z ! 1

shown in Sec. 5.2.2. Nevertheless, it remains to be investigated the case of the spin aligned

configuration in the asymptotic momentum region. It should be pointed out the appealing

presence of a feature that needs a careful analysis in the future: beyond the maximum

real value of the coupling constant the solutions are log-periodic and proper analytical

and numerical methods are required. Further developments of this study can also bring

interesting outcomes showing an analogous behavior like the Efimov phenomena, but now

in the relativistic context.

Finally, the fermion-antifermion homogeneous BSE is solved for a J⇡ = 0
+

state in

Minkowski space through the same framework used for the two-boson and scalar-fermion

systems. The ladder approximation is adopted, following the suppression found for the

scalar QCD model for Nc = 3. The Dirac structure of the BS amplitude together with the

fermion propagators bring extra end-point singularities that need to be properly treated

while performing the light-front projection. Following the method developed in Ref. (De

Paula et al., 2016) that can be overcome. Since the goal now is to use the approach for

phenomenological purposes, the covariant normalization of the BS amplitude was applied

so that one can recover the probabilistic interpretation of the light-front wave function.

The valence probability found for the fermionic system is very similar to the one found

for the two-boson case (FREDERICO; SALMÈ; VIVIANI, 2014), below 70% for strongly

bound systems (PAULA et al., 2019b). The e↵ect from contributions beyond the valence

component is not as dramatic as seen in the three-boson system, but a correction of about

30% still makes very challenging to apply valence inspired models for practical purposes.

Obviously at the current status the approach still lacks of, e.g., dressed propagators, a

confining kernel and considering the gauge invariance, and including those features, needed

for dealing with realistic systems, could drastically change the conclusions obtained here.

The fermion-antifermion BSE for an unbalanced mass system, by using the NIR for

di↵erent masses implemented for the boson-fermion system, is a natural upcoming prob-

lem to be solved. Although challenging, since the symmetry over the exchange of the

fermions is lost, this is a fundamental step as it would pave the way to explore other

mesons, beyond the pion. Furthermore, one could compute the inelastic form factor for

the fermionic system and implement confinement in the BSE kernel, once the matter is
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clearly understood for the simpler two-boson equation.

Following the several aforementioned advancements, mostly formal, within the BS

approach, a phenomenological model of the pion was further developed (PAULA et al.,

2019a), following the first steps made in Ref. (PAULA et al., 2017). As the BSE equation

for two fermions interacting through a vector boson exchange is also scale invariant in the

asymptotic regime, introducing a new scale through a form factor to account for the vertex

interaction is essential. This new parameter is chosen to be around ⇤QCD. The e↵ective

constituent masses are fixed from lattice QCD calculations available in the literature. The

decay constant is found to be f⇡ = 94 MeV, in fair agreement with the experimental value.

Moreover, the transverse and longitudinal amplitudes, the general parton distribution in

the DGLAP region and the elastic electromagnetic form factor are computed, all from the

valence light-front wave functions. The form factor is computed from the GPD, normalized

to one at zero momentum transfer and compared with experimental data, showing a fair

agreement. Although still rudimentary, the model presents a nice description of the pion

and can be used as first dynamical input for the partonic decay amplitudes which enters

the model for the CP violation. An important breakthrough would be to evaluate the

partonic decay amplitudes using the BS amplitudes computed in Minkowski space, insert

the result in the three-body FSI model presented in Sec. 2.3 and make the resulting decay

amplitude compatible with the CPT invariant formalism for the CP asymmetry developed

in Sec. 2.1. This model would enclose a quite complete description of heavy meson decays

and could be used to analyzed various three-body phase spaces.

One essential point is the proper consideration of the dressed propagators and the

vertex interaction through the gap-equation in Minkowski space, using spectral represen-

tations (see e.g. Refs. (FREDERICO et al., 2019; ŠAULI; ADAM; BICUDO, 2007)).

Coupling gap-equation and BS equations in a framework fully established in Minkowski

space, would bring the BS approach into a completely di↵erent level, i.e. analogous to the

one already reached in the Euclidean space (BEANE et al., 2011; CLOËT; ROBERTS,

2014). This goal could make wider and sounder the application of the so-called continuous

QCD, making possible to set a common playground with the lattice QCD community.





























Appendix A - CPV formulas

The real and imaginary parts of FBW
R

(s) are given, respectively, by

<
⇥
FBW
R

⇤
=

m2
R
� s

(m2
R
� s)2 + m2

R
�R(s)2

, (A.1)

and

=
⇥
FBW
R

⇤
=

mR�R(s)

(m2
R
� s)2 + m2

R
�R(s)2

. (A.2)

The square modulus is

|FBW
R

|2(s) =
1

(m2
R
� s)2 + m2

R
�R(s)2

. (A.3)

By using the relations

=(iz) = <(z), =(z1z + z2z
⇤
) = <(z)=(z1 + z2) + =(z)<(z1 � z2),

<(z⇤1z2) = <(z1)<(z2) + =(z1)=(z2), and=(z⇤1z2) = <(z1)=(z2)�=(z1)<(z2),
(A.4)

together with Eqs. (A.2)-(A.3), one can finally write Eq. (2.31) as it was written in

Eq. (2.35).

An alternative to parametrize the decay amplitude, convenient for Monte-Carlo sim-

ulations, is to write Eq. (2.30) as

A±
0� = a⇢±ei�

⇢
±FBW

⇢
k(s) cos ✓ + af

±ei�
f
±FBW

f
+

anr

±�e
i�

nr
±�

1 +
s

⇤2
�

,

(A.5)

where �⇢± and �f± contain both the fixed weak and strong phases, with the Breit-Wigner

functions introducing additional mass dependent strong phases as sketched above. The

phase �nr± comes from the partonic amplitude producing the three-body final state, exclud-

ing the strong phase from the rescattering process. The relation between the parameters

is a⇢±ei�
⇢
± = a⇢0 + b⇢0e

±i�
, af

±ei�
f
± = af

0 + bf0e
±i�

, and anr

±�e
i�

nr
±� = anr

0� + bnr0�e
±i�
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The parameters of the model can be written in terms of those in Eqs. (2.30) or (A.5),

as explicitly presented below

A = 4(sin �)= [anr

0�b
nr⇤
0� ] = (anr

+�)
2 � (anr

��)
2, (A.6)
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0�0b
nr⇤
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0�b
nr⇤
0�0 ] , (A.7)
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0�0 ] , (A.8)
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Appendix B - Three-body FSI in the

LF framework

B.1 Parametrization of the S-matrix

The parametrization for the S-matrix, S1/2

K⇡
, is written as

S1/2
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(B.1)

where zr = k M2
r
/(kr MK⇡). The center-of-mass momentum of the mesons in the K⇡ pair,

following the system kinematics, is

k2
=

✓
M2

K⇡
+ m2

⇡
�m2

K

2 MK⇡

◆2

�m2
⇡

. (B.2)

The K⇤
0(1430), K⇤

0(1630) and K⇤
0(1950) resonances fix the parameters through the experi-

mental data, i.e. (Mr,�r, �̄r), and quantitatively given by (1.48, 0.25, 0.25), (1.67, 0.1, 0.1)

and (1.9, 0.2, 0.14), respectively (GUIMARÃES et al., 2010).

From the S-matrix of Eq. (B.1), including the proper kinematical factors, the ⌧ am-

plitude entering in Eq. (2.52) reads

⌧IK⇡

�
M2

K⇡

�
= 4⇡

MK⇡

k
(SIK⇡

K⇡
� 1) . (B.3)

The non-resonant part is parameterized through a simple e↵ective range expansion, i.e.

k cot � =
1
a
+

1
2r0 k2

, where a = 1.6 GeV
�1

and r0 = 3.32 GeV
�1

are the fixed parameters.

This parametrization gives a fair agreement when compared to the LASS experimental

data for both modulus and phase shift, as discussed in detail in Ref. (GUIMARÆS et

al., 2014). The I = 3/2 state is a non-resonant s-wave K⇡ amplitude, and will also be
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parametrized by an e↵ective range expansion as follows

S3/2

K⇡
=

k cot � + i k

k cot � � i k
=

1
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+
1
2r0,I=3/2 k2

+ ik
1
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2r0,I=3/2 k2 � ik

,

with the e↵ective range expansion parameters for this case fixed by aI=3/2 = �1.00 GeV
�1

and r0,I=3/2 = �1.76 GeV
�1

, from Ref. (ESTABROOKS et al., 1978).

B.2 Further details on the LF equation

After the projection onto the LF hyperplane and some convenient manipulations,

discussed in great detail in Ref. (GUIMARÆS et al., 2014), the LF integral equation

(2.52) reads
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. The free LF three-body squared mass

is given by
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Moreover, in the LF, the argument of the two-body amplitude ⌧j (M2
ik

(x, q?)) is written

as

M2
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The driving term of Eq. (2.53) is rewritten in the LF as

⇠i0(y,~k?) = (B.7)

=
i

2(2⇡)3

Z 1�y

0

dx
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= B0 ⇠0(y, k?),

where B0, the short-distance amplitude, is naively assumed to be a constant.

The integral in Eq. (B.8), over the transverse momentum, ~q? = (q1, q2), is not finite

and needs to be regularized. Therefore, a finite subtraction is made in the integration

kernel and a finite parameter, �(µ2
), introduced at the subtraction point. Applying this
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method one gets the following finite expression for the driving term,
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where the free squared-mass of the K⇡ system is given by
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Now one can perform the integrations over ✓ and q? on Eq. (B.8) and finally obtain the

following for the driving term

⇠0(y, k?) = �(µ2
) +

i

4

Z 1

0

dx

(2⇡)2
ln

(1� x)(xM2
K⇡

(y, k?)�m2
⇡

+ ix")� xm2
K

(1� x)(xµ2 �m2
⇡
)� xm2

K

.

(B.9)

Notice that the parameter ✏ is kept finite, to naively consider the absorption to other

decay channels. This parameter also helps to achieve numerical stability more easily.

The last step before going through the numerical calculations is to perform the isospin

decomposition of the decay amplitude. There are two possible total isospin states, namely,

IT = 5/2 and 3/2. In the adopted notation, the bachelor amplitude has the total, IT , the

projection, Iz

T
, and the interacting pairs, IK⇡(K⇡0) isospin indexes, i.e. ⇠

I
z
T

IT ,IK⇡
(y, k?). The

state vector decomposed in terms of the source amplitude (K⇡) isospin states, reads
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As said, there is no dependence on the momentum variables and the normalization is

arbitrary. One can introduce re-coupling coe�cients , defined as
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KIK⇡0 (y, k?; x, q?) ⇠
I
z
T

IT ,IK⇡0 (x, q?),

(B.11)



APPENDIX B. THREE-BODY FSI IN THE LF FRAMEWORK 212

where the free squared mass explicitly for the K⇡⇡ system reads

M2
0,K⇡⇡(x, q?, y, k?) =

k2
? + m2

⇡

y
+

q2? + m2
⇡

x
+

q2? + k2
? + 2q?k? cos ✓ + m2

K

1� x� y
,

(B.12)

and the squared-mass of the virtual K⇡ system is

M2
K⇡

(z, p?) = (1� z)

✓
M2

B
� p2? + m2

⇡

z

◆
� p2?.

And, finally, the kernel carrying the K⇡ interaction amplitude takes the following form

KIK⇡0 (y, k?; x, q?) =

Z 2⇡

0

d✓
q? ⌧IK⇡0 (M2

K⇡0(x, q?))

M2
B
�M2

0,K⇡⇡(x, q?, y, k?) + i"
. (B.13)



Appendix C - Derivation of the

two-body scattering amplitude

The derivations presented in this appendix are based on Ref. (YDREFORS et al.,

2019). For the contact interaction (with the vertex �), the two-body amplitude F(M2
12)

is given by the infinite sum of graphs shown in Fig. 1(a) in (FREDERICO, 1992). The

first contribution is simply i�, the second one is (i�)
2B, where B is the amputated from

(i�)
2

the bubble graph, etc. That is:

iF(M2
12) = i�+ (i�)

2B + (i�)
3B2

+ . . . =

i�

1� (i�)B(M2
12)

=
1

(i�)�1 � B(M2
12)

,
(C.1)

or

F(M2
12) =

1

i[(i�)�1 � B(M2
12)]

(C.2)

where

B(M2
12) =

Z
d4k

(2⇡)4

i

(k2 �m2 + i✏)

i

[(k � p)2 �m2 + i✏]
.

(C.3)

Here m denotes the boson mass, and p now is the total 4-momentum of the two-body

subsystem, p2 = M2
12. One way to calculate B(M2

12) is to use the standard Feynman

parametrization, i.e.

1

a b
=

Z 1

0

dv

[va + (1� v)b]2
,

with a = k2 � m2
+ i✏, b = (k � p)

2 � m2
+ i✏, and then compute the 4D integral in

the Euclidean space. However, for M2
12 � 4 m2

, the integrand of this integral becomes

singular and this method is not so convenient.

Therefore, to calculate the amplitude (especially for M2
12 > 4 m2

) in the most simple

way, it can be used another method, not related to the Feynman parametrization, and

the integration in the 4D Euclidean space. Namely, in the initial integral (C.3) (written
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in the c.m.-frame ~p = 0) the integration over dk0 will be carried out by residues, i.e.

B(M2
12) = �

Z
dk0d3k

(2⇡)4

1

(k2
0 � ~k 2 �m2 + i✏)

⇥ 1

[(k0 �M12)
2 � ~k 2 �m2 + i✏]

=

2⇡i(res1 + res2).

(C.4)

Here res1,2 are the residues of the integrand in one of the two poles in the upper half

plane of the complex variable k0. The positions of the poles are

k(1)
0 = �"k + i✏, k(2)

0 = M12 � "k + i✏

and the corresponding residues are given by

res1 =

Z
L

0

k2
v
dkv

(2⇡)3

1

"k

1

[("k + M12)
2 � "2

k
+ i✏]

, (C.5)

res2 =

Z
L

0

k2
v
dkv

(2⇡)3

1

("k)

1

[M12(M12 � 2"k) + i✏]
, (C.6)

where the integrals were regularized by introducing the upper limit L. If �1 < M2
12 <

4m2
, the integrals (C.5), (C.6) are non-singular ones. On the other hand, if M12 > 2m,

the second residue is represented as a sum of two contributions. Namely, the principal

value of the integral over dkv and the delta-function contribution, i.e.

res2 = res2a + res2b
Z

L

0

k2
v
dkv

(2⇡)3

1

[M12(M12 � 2"k) + i✏]

1

"k

= PV

Z
L

0

k2
v
dk

(2⇡)3

1

M12(M12 � 2"k)

1

"k

+

Z
L

0

k2
v
dk

(2⇡)3
(�i⇡)�[M12(M12 � 2"k)]

1

"k
=

1

2⇡i

y00

16⇡
.

(C.7)

As the integral in kv diverges, it is necessary to perform a regularization process. By

renormalizing one can express the bare parameters (in this context, the coupling constant

�) by observables (usually, in the field theory, via the ”physical” coupling constant). From

the condition that the two-body system has a bound state with the mass M2B and the

amplitude (C.2) has a pole at M12 = M2B, one finds for the coupling constant �

(i�)
�1

= B(M2
2B) = 2⇡i(res1 + res2). (C.8)
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The denominator in (C.2 ) then becomes

i[(i�)
�1 � B(M2

12)] = i[B(M2
2B)� B(M2

12)] =

i[2⇡i res1(M12 = M2B) + 2⇡i res2(M12 = M2B)]

� i[2⇡i res1(M12) + 2⇡i res2(M12)] =

i PV

Z 1

0

(M2
2B �M2

12)k
2
v
dkv

32⇡2 "k
⇥
k2
v
�
�
1
4M

2
12 �m2

�⇤

⇥ 1⇥
k2
v
+
�
m2 � 1

4M
2
2b

�⇤ � 2⇡i res2b

(C.9)

In Eq. (C.9), the principal value integral takes into account the singularity at kv =q
1
4M

2
12 �m2.

The integral (C.9) is convergent in the limit kv ! 1. Its calculation in di↵erent

domains of the variable M12 results in Eq. (4.3). It should be noticed that above threshold

M12 > 2 m, the amplitude obtains a imaginary part, i.e.

F(M2
12) =

1

1
8⇡2

⇣
y00

2 log
1+y00

1�y00 �
arctan yM2B

yM2B

⌘
� i y00

16⇡

(C.10)

where

y00
=

p
M2

12 � 4m2

M12
.

C.1 Unitarity check

The amplitude (C.10), if correct, must be unitary. More precisely, the partial wave

amplitude corresponding to (C.10), must be unitary, i.e., it can be represented via a real

phase shift �. This property is checked in the following.

In the derivation of the two-body amplitude, it was followed the definitions and nor-

malization of Ref. (ITZYKSON; ZUBER, 2006). According to it, the partial wave is

defined as

FL(k) =
1

32⇡

Z 1

�1

dz PL(z)F (k, z). (C.11)

From Eq. (C.10) it is obtained for the s-wave scattering amplitude (i.e M12 > 2m)
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that

F0 =
1

16⇡
F(M2

12) =

1

2
⇡

⇣
y00

2 log
1+y00

1�y00 �
arctan yM2B

yM2B

⌘
� iy00

⌘ 1

g(y00)� iy00 ,

(C.12)

where g(y00
) is a real function given by

g(y00
) ⌘ 2

⇡

✓
y00

2
log

1 + y00

1� y00 �
arctan yM2B

yM2B

◆
. (C.13)

The scattering amplitude is related to the phase shift by (CARBONELL; KAR-

MANOV, 2014))

F0 =
"k
k

exp(i�0) sin �0, (C.14)

which is unitarity if the phase shift �0 is real. That is,

�0 =
1

2i
log

✓
1 +

2ik

"k
F0

◆
. (C.15)

Since
k

"k
= y00, (C.16)

one gets that

�0 =
1

2i
log (1 + 2iy00F0) =

1

2i
log

g(y00
) + iy00

g(y00)� iy00 , (C.17)

and by complex conjugation:

�⇤0 =
1

�2i
log

g(y00
)� iy00

g(y00) + iy00 =
1

2i
log

g(y00
) + iy00

g(y00)� iy00 = �0. (C.18)

Therefore, the two-body scattering amplitude is thus unitary.

C.1.1 Scattering length and the e↵ective radius

In non-relativistic quantum mechanics one deals with the s-wave amplitude f0(k) re-

lated to the phase shift by

f0(k) =
1

2ik
(exp(2i�0(k)� 1) =

1

k
exp(i�0(k) sin �0(k), (C.19)
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which also can be represented as

f0(k) =
1

g0(k)� ik
. (C.20)

From Eqs. (C.19) and (C.12), it can be written

f0(k) =
1

"k
F0 =

1

"k

1

[g(y00)� iy00]
=

1

g0(k)� ik
, (C.21)

where g(y00
) is given by Eq. (C.13) and g0(k) = "kg(y00

). Here it was used that y00"k = k.

Next, the function g0(k) = "kg(y00
) can be decomposed in a series in k

g0(k) ⇡ �1

a
+

1

2
r0k

2, (C.22)

with

a =
⇡yM2B

2m arctan(yM2B)
,

r0 =

2

h
2yM2B � arctan(yM2B)

i

⇡m yM2B

,

(C.23)

where a and r0 are correspondingly the scattering length and the e↵ective radius. Since

both are proportional to 1/m they have a relativistic origin. However, for small binding

energy B ⌧ m the variable yM2B increases as yM2B ⇠
p

m/B. The scattering length a

also increases, whereas the e↵ective radius r0 tends to a constant:

B ! 0 : a =
1p
Bm

, r0 =
4

⇡m
. (C.24)

C.2 Renormalization via scattering length

Above it was required that the two-body scattering amplitude (4.3) has a pole at

M12 = M2B. Indeed, the expression given by the second line of (4.3) has this pole. This

singularity complicates the numerical calculations and requires a special treatment. To

avoid this di�culty, it will be put a di↵erent condition: the requirement that the scattering

amplitude at zero energy is equal to �a, where a is the two-body scattering length. For

some values of a the two-body system has no bound state and the amplitude has no pole.

Whereas, the three-body system still can be bounded.

The (non-renormalized) two-body amplitude F(M2
12) still have the form (C.2). Its

argument can be written as M12 = 2"k = 2
p

k2 + m2. For simplicity, one can write

F = F(k). According to (C.12) and (C.21), the s-wave amplitude f0(k) can be introduced,
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i.e.

f0(k) =
1

16⇡"k
F(k), (C.25)

and the new renormalization condition then reads

f0(k = 0) =
1

16⇡m
F(k = 0) = �a, (C.26)

where a is the scattering length. By using (C.2), one obtains

1

16⇡m

1

i[(i�)�1 � B(k = 0)]
= �a, (C.27)

and therefore

(i�)
�1

= B(k = 0)� 1

16i⇡ma
. (C.28)

The amplitudes are then given by

f0(k) =
1

16⇡"ki
h
B(k = 0)� B(k)

i
� "k

ma

,

F(k) =
1

i
h
B(k = 0)� B(k)

i
� 1

16⇡ma

.
(C.29)

For safety and a smooth transition to the case k = 0, instead of B(0)�B(k) it will be

first calculated the auxiliary function

h(k00, k) ⌘ i[B(k00
)� B(k)] (C.30)

and then take the limit k00 ! 0. From the expressions (C.4), (C.5), (C.6), one gets

h(k00, k) = i[B(k00
)� B(k)] =

i
(2⇡i)(4⇡)

(2⇡)4
PV

Z 1

0

4(k002 � k2
)

(k02 � k2)(k02 � k002)

k02dk0
p

k02 + m2
.

(C.31)

This expression (up to a factor) can be also obtained from the first term in Eq. (C.9), if the

integration variable is replaced as k ! k0
and, then, putting M2

12 = "2
k

and M2
2B = "2

k00 .

The principal value takes into account two singularities at k0
= k and k0

= k00
. By

calculating this integral, one finds that

h(k00, k) =
1

16⇡2

k

"k
log

"k + k

"k � k
� i

16⇡

k

"k

� 1

16⇡2

k00

"k00
log

"k00 + k00

"k00 � k00 +
i

16⇡

k00

"00
k

(C.32)
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Then, by taking k00
= 0 and substituting it in (C.29), one obtains

f0(k) =
1

k

⇡
log

"k+k

"k�k
� "k

ma
� ik

,

F(k) =
1

1
16⇡2

k

"k
log

"k+k

"k�k
� 1

16⇡ma
� i

16⇡
k

"k

(C.33)

The amplitude f0(k) still has the form (C.12) with

g(k) =
k

⇡
log

"k + k

"k � k
� "k

ma
, (C.34)

and it is thus unitary. At small k it has the following decomposition

g(k) ⇡ �1

a
+

1

2
r0k

2
(C.35)

where

r0 =
4am� ⇡
am2⇡

(C.36)

The above expression was derived for the region M2
12 > 4m2

. Furthermore, the term

1

16⇡2

k

"k
log

"k + k

"k � k
(C.37)

coincides with the term
1

8⇡2

y00

2
log

1 + y00

1� y00 , (C.38)

in Eq. (4.3), which is also valid for M2
12 > 4m2

.

For the other intervals of M2
12, the corresponding analytical expressions are given by

If 0 M2
12  4 m2, y0

=
M12p

4m2 �M2
12

,

(0  y0 <1), then:

1

16⇡2
y00

log
1 + y00

1� y00 )
1

8⇡2

arctan y0

y0 ,

and

If �1 < M2
12  0, y =

p
�M2

12p
4m2 �M2

12

,

(1  y  0), then:

1

16⇡2
y00

log
1 + y00

1� y00 )
1

16⇡2

1

y
log

1 + y

1� y
.

(C.39)
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The two-body scattering amplitude is thus given by

If �1 < M2
12  0, y =

p
�M2

12p
4m2�M2

12

,

(1  y  0), then :

F(M2
12) =

1
1

16⇡2y
log 1+y

1�y�
1

16⇡ma

,

If 0 M2
12  4 m2, y0

=
M12p

4m2�M2
12

,

(0  y0 <1), then :

F(M2
12) =

1
1

8⇡2
arctan y0

y0 � 1
16⇡ma

.

If 4m2 M2
12 <1, y00

=

p
M2

12�4m2

M12
,

(0  y00  1), then:

F(M2
12) =

1
y00

16⇡2 log 1+y00
1�y00�

1
16⇡ma�i

y00
16⇡

,

(C.40)

and for negative scattering length a this amplitude has no poles.

C.3 Behavior of F(M 2
12
)

For negative a, the function F(M2
12) is non-singular and continuous. However, the

function may change rapidly in the neighbourhood of the transition points M2
12 = 0 and

M2
12 = 4 m2

. In terms of q0 (for a given qv) these are

q0 = M3 ± qv, q0 = M3 ±
p

q2
v

+ 4m2 (C.41)

In Fig. C.1 the real and imaginary parts of F are shown as functions of q0 (for selected

values of qv) in the case of M3/m = 2.605 corresponding to am = �1.5. It is seen in

the figures that close to q0 = M3 ±
p

q2
v

+ 4m2 (i.e. M2
12 = 4 m2

), the amplitude has a

non-smooth behavior.

Although the non-smoothness exists, this was shown to not be problematic in solving

the equation. To show that, one can test solving the problem proposing a factorization of

the form

v(q0, qv) = F(M2
12(q0, qv)) ṽ(q0, qv), (C.42)
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FIGURE C.1 – Real and imaginary parts of F(M2
12) with respect to q0 for di↵erent fixed

values of qv.

by introducing

⇧̃(q0, qv; k0, kv) = F(M2
12(q0, qv))⇧(q0, qv; k0, kv), (C.43)

and obtaining an integral equation in terms of the function ṽ instead of v. The resulting

equation was solved by expanding ṽ in splines. The result showed no significant di↵erence

between the solutions with and without the decomposition, with the convergence being

achieved with a similar set of basis functions and integration points.



Appendix D - Spline decomposition

This appendix is based on Ref. (YDREFORS et al., 2019).

Eqs. (4.9), (4.12) and (4.23) are solved by expanding the amplitude v(q0, qv) in a

bicubic spline basis, on a finite domain ⌦ = Iq0 ⇥ Iqv = [�qmax
0 , qmax

0 ]⇥ [0, qmax
v

], i.e.

v(q0, qv) =

2Nq0+1X

k=0

2Nqv+1X

l=0

AijSk(q0)Sl(qv), (D.1)

where the unknown coe�cients Aij are to determined. In the numerical implementation,

the interval Ix (x = q0, qv) is partioned into Nx subintervals, so that the convergence is

reached. The adopted spline functions, Sj(x) are given by (CARBONELL; KARMANOV,

2011b)

S2i(x) =

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

3

⇣
x�xi�1

hi

⌘2

� 2

⇣
x�xi�1

hi

⌘3

if x 2 [xi�1, xi]

3

⇣
xi+1�x

hi+1

⌘2

� 2

⇣
xi+1�x

hi+1

⌘3

if x 2 [xi, xi+1]

0 if x 62 [xi�1, xi+1]

S2i+1(x) =

8
>>>>>>>>>>>><

>>>>>>>>>>>>:


�
⇣

x�xi�1

hi

⌘2

+

⇣
x�xi�1

hi

⌘3
�

hi

if x 2 [xi�1, xi]

⇣
xi+1�x

hi+1

⌘2

�
⇣

xi+1�x

hi+1

⌘3
�

hi+1

if x 2 [xi, xi+1]

0 if x 62 [xi�1, xi+1]

(D.2)

with hi = xi � xi�1.

By using (D.1), Eq. (4.23) can be transformed to a generalized eigenvalue problem of
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the form X

i0j0

Fiji0j0Ai0j0 = �(M3)

X

i0j0

Viji0j0Ai0j0 , (D.3)

where

Fiji0j0 = Si0(q
(i)
0 )Sj0(q

(j)
v

), (D.4)

and the array Viji0j0 is the right-hand side of (4.23) with v replaced by Si0(q
(i)
0 )Sj0(q

(j)
v ).

The variable q0 (qv) has been here discretized on a mesh consisting of 2Nq0 + 2 (2Nqv + 2)

points. The three-body mass M3, or equivalently the three-body binding energy B3, can

subsequently be obtained from the condition

�(M3) = 1. (D.5)

Eq. (D.5) constitutes a non-linear equation and is rather time-consuming to solve. For

simplicity, it is used thus instead as inputs in the calculations the scattering length a and

the M3, obtained from the solution of the Euclidean BSE. Equation (D.3) is then solved

for the eigenvalue � and the coe�cents Aij.

The kernel ⇧(q0, qv, k0, kv) (see Eq. (4.20)), which enters Eq. (4.23) has logarithmic

singularities, and the analytic expressions for the singular points are given by Eqs. (4.24)

and (4.25). The integrals over k0 and kv are computed by dividing a given integration

interval into subintervals Ii = [ai, bi], so that each subinterval contains at most one singular

point that is at one of the end points. For each subinterval, the integrand is subsequently

weakened by adopting a change of variables of the form

Z
bi

ai

f(x)dx =

Z p
bi�ai

0

2tf(a + t2)dt, (D.6)

for a subinterval with a singularity at ai, and

Z
bi

ai

f(x)dx =

Z p
bi�ai

0

2tf(b� t2)dt, (D.7)

if the singularity is at the end point bi. The resulting integrals involving smooth functions

can then be performed by Gauss-Legendre integration.



Appendix E - Deriving the

transverse amplitudes

E.1 Euclidean transverse amplitude

The expressions for the transverse amplitudes in the Euclidean space will be derived

in more detail in this appendix. As mentioned, the following change of variables was

performed,

ki = k0
i
+

M3

3
, (i = 1, 2, 3), (E.1)

in order to allow the Wick-rotation without crossing any singularities. The primed mo-

menta satisfy the relation

k0
1 + k0

2 + k0
3 = 0. (E.2)

The BS amplitude in Minkowski space can be written as

i�̃M(k0
1, k

0
2, k

0
3; M3) =

= i3
ṽM(k0

1) + ṽM(k0
2) + ṽM(k0

3)

[(k0
1 +

p

3)
2 �m2 + i✏][(k0

2 +
p

3)
2 �m2 + i✏][(k0

3 +
p

3)
2 �m2 + i✏]

=

= i3
ṽM(k0

1) + ṽM(k0
2) + ṽM(�k0

1 � k0
2)

[(k0
1 +

p

3)
2 �m2 + i✏][(k0

2 +
p

3)
2 �m2 + i✏]

1

(k0
1 + k0

2 � p

3)
2 �m2 + i✏

,

(E.3)

where

�̃M(k0
1, k

0
2, k

0
3; p) = �M

⇣
k0
1 +

p

3
, k0

2 +
p

3
, k0

3 +
p

3
; p
⌘

, (E.4)

and ṽ(k0
i
) = v

�
k0
i
+

p

3

�
.

One can now perform a two-dimensional Wick-rotation in the variables k0
1 and k0

2, i.e.

k0
10 = ik0

14 and k0
20 = ik0

24, to get

i�̃E(k0
14, k

0
1z,~k

0
1?; k0

24, k
0
2z,~k

0
2?) = �i3

ṽE(k0
14, k

0
1v) + ṽE(k0

24, k
0
2v) + ṽE(k0

34, k
0
3v)

(k0
14 � iM3

3 )2 + k02
1z + m2

1

⇥ 1

(k0
24 � iM3

3 )2 + k02
2z + m2

2

1

(k0
14 + k0

24 + iM3
3 )2 + (k0

1z + k0
2z)

2 + m2
3

,
(E.5)
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where

k0
iv

=

q
k02
i? + k02

iz
, m2

i
= k02

i? + m2
(i = 1, 2, 3) and ~k0

3? = �(~k0
1? + ~k0

2?). (E.6)

The full Euclidean transverse amplitude, corresponding to the Minkowski one given

by (4.27), reads

L(~k0
1?,~k0

2?) = L1(
~k0
1?,~k0

2?) + L2(
~k0
1?,~k0

2?) + L3(
~k0
1?,~k0

2?) =

�
Z 1

�1
dk0

10

Z 1

�1
dk0

1z

Z 1

�1
dk0

20

Z 1

�1
dk0

2zi�̃E(k0
14, k

0
1z, k

0
24, k

0
2z;
~k0
1?,~k0

2?).
(E.7)

By insertion of Eq. (E.5) in (E.7), it is found that one of the contributions to the

transverse amplitude is given by

L1(
~k0
1?,~k0

2?) = �i

Z 1

�1
dk0

1z

Z 1

�1
dk0

10

�(k0
14, k

0
1z;
~k0
1?,~k0

2?)

(k0
14 � iM3

3 )2 + k02
1z + m2

1

ṽ(k0
1v, k

0
14), (E.8)

with

�(k0
14,k

0
1z;
~k0
1?,~k0

2?) =

Z 1

�1
dk0

20

Z 1

�1
dk0

2z

i

(k0
24 � iM3

3 )2 + k02
2z + m2

2

⇥ i

(k0
14 + k0

24 + iM3
3 )2 + (k0

1z + k0
2z)

2 + m2
3

.
(E.9)

The two propagators in (E.9) can then be put together by using the Feynman parametriza-

tion

1

A1A2
=

Z 1

0

dy

[yA1 + (1� y)A2]
2
, (E.10)

leading to the result

i

(k0
24 � iM3

3 )2 + k02
2z + m2

2

i

(k0
14 + k0

24 + iM3
3 )2 + (k0

1z + k0
2z)

2 + m2
3

= �
Z 1

0

dy

D2
, (E.11)

where the denominator reads

D = k02
24 + k02

2z + (1� y)
⇥
k02
14 + k02

1z

⇤
+

2

3
iM3k

0
24

+ 2(1� y)k0
1zk

0
2z +

2

3
(1� y)k0

14(3k
0
24 + iM3)

� 4

3
iyM3k

0
24 + (1� y)m2

3 + ym2
2 �

M2
3

9
=

= k02
24 + k02

2z + (1� y)
⇥
k02
14 + k02

1z

⇤
+ 2

h
(1� y)k0

14 �
iM3

3
(�1 + 2y)

i
k0
24

+ 2(1� y)k0
1zk

0
2z +

2

3
iM3(1� y)k14 + (1� y)m2

3 + ym2
2 �

M2
3

9
.

(E.12)
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Now one can eliminate the terms linear in k0
24 and k0

2z, by performing in Eqs. (E.9),

(E.11) and (E.12) the transformations

k0
24 �! k0

24 � ↵,

k0
2z �! k0

2z � �,
(E.13)

with

↵ = (1� y)k0
14 �

iM3

3
(�1 + 2y) and � = (1� y)k0

1z. (E.14)

After these transformations the denominator (E.12) is changed into

D �! D̃ = k02
24 + k02

2z + A (E.15)

where

A = y(1� y)
⇥
k02
14 + k02

1z

⇤
+ (1� y)m2

3 + ym2
2 +

4

3
iM3y(1� y)k0

14 �
4

9
M2

3 y(1� y).

(E.16)

The integrals over k0
24 and k0

2z in (E.9) can now be performed analytically, and the

result is

�(k0
14,k

0
1z;
~k0
1?,~k0

2?) = �
Z 1

0

dy

Z 1

�1
dk0

20

Z 1

�1
dk0

2z

1

(k02
24 + k02

2v + A)2
=

= �2⇡

Z 1

0

dy

Z 1

0

k0dk0

(k02 + A)2
= �⇡

Z 1

0

dy

A
.

(E.17)

Alternatively, one can write the quantity A in the form

A = ay2
+ by + c, (E.18)

with

a = �k02
1z �

⇣
k0
14 +

2

3
iM3

⌘2

, b = k02
1z +

⇣
k0
14 +

2

3
iM3

⌘2

+ m2
2 �m2

3, c = m2
3. (E.19)

E.2 Minkowskian transverse amplitude

In this appendix the derivation of the transverse amplitude is presented in details.

Furthermore, important properties of the equation are discussed. As said before, one of

its components is enough for the comparison for the three identical bosons case. The
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Faddeev component is given by

L1(
~k1?,~k2?) = i

Z 1

�1
dk10

Z 1

�1
dk1z

vM(k10, k1v)

k2
1 �m2

1 + i✏
�(k10, k1z;

~k1?,~k2?), (E.20)

with

�(k10, k1z;
~k1?,~k2?) = i2

Z
d2k2

(k2
2 �m2

2 + i✏)[(p0 � k2)
2 �m2

3 + i✏]
(E.21)

where the following quantities enter ki = (ki0, kiz) (i = 1, 2) and d2ki = dki0dkiz, with

i = 1, 2. Moreover, m2
2 = m2

+ ~k2
2?, m2

3 = m2
+ (~p? � ~k1? � ~k2?)

2
. and p0 = (p00, p

0
z
) =

p� k1 = (p0 � k10, pz � k1z).

One can now perform the two-dimensional integral in (E.21), starting by introducing

the Feynman parametrization as given in Eq. (E.10) and then making the transformation

k2 ! k2 + (1� u)p0 to eliminate the linear term in k2, what makes Eq. (E.21) turn into

�(k10, k1z;
~k1?,~k2?) = i2

Z 1

0

du

Z
d2k2

(k2
2 + D + i✏)2

, (E.22)

with

D = u(1� u)p02 �m2
2u� (1� u)m2

3. (E.23)

One can now analytically perform the integral over k2 in (E.17), starting by carrying out

a Wick-rotation as k0 = ik4, leading to the result

�(k10, k1z;
~k1?,~k2?) = ⇡i3

Z 1

0

du

Z 1

0

ds

(�s + D + i✏)2
= �⇡i3

Z 1

0

du

D + i✏
, (E.24)

where it was defined the quantity s = k2
24 + k2

2z.

The denominator D (E.23) is zero at

u⌥ =
1

2p02
⇥
p02 �m2

2 + m2
3 ⌥

p
((m2 �m3)

2 � p02)((m2 + m3)
2 � p02)

i
, (E.25)

but for p02 < (m2 + m3)
2, the conditions above never happen in the interval 0 < u < 1, so

the term i✏ can be dropped out in Eq. (E.24) and the integral over the Feynman parameter

u can be performed safely analytically, giving the following

�(k10, k1z;
~k1?,~k2?) =

⇡i3

p02(u� � u+)

Z 1

0

du


1

u� u�
� 1

1� u+

�
=

= � i⇡

p02(u� � u+)
[log(1� u�)� log(�u�)� log(�1 + u+) + log(u+)]

(E.26)

with u± give by (E.25).
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In the situation where p02 > (m2 +m3)
2
, the zeroes of the denominator, u±, are placed

on the real axis for the interval u 2 [0, 1]. For that reason, one can separate � in two

terms, analogously to what was done in (4.18), i.e.

�(k10, k1z;
~k1?,~k2?) = �0

(k10, k1z;
~k1?,~k2?) + �00

(k10, k1z;
~k1?,~k2?) (E.27)

where

�0
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⇡i3
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
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0
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u� u�
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u� u+

�
, (E.28)

and

�00
(k10, k1z;

~k1?,~k2?) =
⇡i3

p02(u� � u+)


�i⇡

Z 1
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du�(u� u�)� i⇡
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0

du�(u� u+)

�

=
2⇡2

p
[p02 � (m2 �m3)

2][p02 � (m2 + m3)
2]

.
(E.29)

The principal value integrals in Eq. (E.28) can be carried out analytically and one obtains

for �0
the following expression

�0
(k10, k1z;

~k1?,~k2?) = i⇡
log

m
2
2+m

2
3�p

02�
p

[p02�(m2�m3)2][p02�(m2+m3)2]

m2
2+m2

3�p02+
p

[p02�(m2�m3)2][p02�(m2+m3)2]p
[p02 � (m2 �m3)

2][p02 � (m2 + m3)
2]

. (E.30)

The expression for �00
is non-singular and can be treated numerically as presented in

Eq. (E.29).

In the main text the contribution L1 is given in its final form, after following the

derivations of this appendix. Similarly to the treatment of the BS equation in Sec. 4.2.1,

the propagators like [k2
1 �m2

1 + i✏]�1
were expressed in the form (4.18) and subtractions

were made to eliminate the principal value singularities at k0 = ±k̃10.

It should be noticed that the kernel � in Eq. (4.28) has square-root singularities at

p02 = (m2 ± m3)
2
. The kernels �(±k̃10, k1z;

~k1?,~k2?) are thus singular at

k1z = ± 2

M3

p
[(M3 + m1)

2 � (m2 + m3)
2][(M3 �m1)

2 � (m2 + m3)
2]. (E.31)

Furthermore, for fixed k1z, the positions of the singular points of the kernels

�(�k10, k1z;
~k1?,~k2?) and �(k10, k1z;

~k1?,~k2?) are given by

k10 = �M3 +

q
k2
1z + (m2 + m3)

2 (E.32)
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and

k10 = M3 ±
q

k2
1z + (m2 + m3)

2, (E.33)

respectively. In this case only the singular points located on the positive k0 axis need

to be considered (see (4.28)). In fact, it turns out that the integrands in Eq. (4.28) are

symmetric with respect to k1z ! �k1z. Therefore, one only needs to consider only the

region where k1z > 0 and multiply the equation by a factor 2. Furthermore, only the

positive solutions of Eq. (E.31) are needed.



Appendix F - Non-relativistic limit

In this section, the non-relativistic limits of the three-body Euclidean BS and va-

lence LF equations, Eqs. (4.9) and (4.12), respectively, are considered. The derivations

presented in this appendix are based on Ref. (YDREFORS et al., 2019). The first anal-

ysis will be for the Euclidean BS equation. Representing the three-body mass M3 as

M3 = 3m � B3, with B3 denoting the three-body binding energy, and truncating the

denominator of Eq. (4.9), and the terms in the fraction of the argument of the log in Eq.

(4.10), to the leading terms of momenta and the binding energies, one gets

K =

e⇧0
E(q4, qv, k4, kv)�

k4 � i

3M3

�2
+ k2

v
+ m2

=

1
2 log

(k4+q4+
i
3M3)

2
+(qv+kv)2+m

2

(k4+q4+
i
3M3)

2
+(qv�kv)2+m2

�
k4 � i

3M3

�2
+ k2

v
+ m2

) Knr ⇡
1
2 log

2
3B3+

(kv+qv)
2

2m +i(k4+q4)

2
3B3+

(kv�qv)2

2m +i(k4+q4)

2m
�
1
3B3 � ik4

� .

(F.1)

At a first glance, one could neglect
(kv±qv)2

2m in comparison to (k4+q4), however, this would

results in Knr ⌘ 0, therefore it is necessary to keep them.

The two-body amplitude F(M2
12) in the physical domain (0  M2

12  4m2
) reads, in

terms of the two-body bound state mass M2

F(M2
12) =

8⇡2

✓
arctan y0

y0 � arctan yM2

yM2

◆ ,

where y0
=

M12p
4m2�M2

12

and yM2 =
M2p

4m2�M2
2

(see Eq. (4.3)). Following Ref. (FREDERICO,

1992), one can introduce E2 through M2
12 = (2m � E2)

2
and write the two-body bound

state mass as M2 = 2m�B2. In the non-relativistic limit, m!1, the F(M2
12) amplitude

becomes

F(M2
12) =

16⇡
p

mp
E2 �

p
B2

(F.2)
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or, alternatively,

F(�M2
12) =

16⇡
p

mq
2m�

p
�M2

12 �
p

B2

. (F.3)

Since M2
12 =

�
2
3P � iq4

�2 � q2
v

= �(
2
3iM3 + q4)2 � q2

v
, in the limit m!1 one gets

E2 = 2m�

s

�

2

3
i(3m� B3) + q4

�2
� q2

v
⇡ 3

2
B3 + iq4 +

~q 2

4m
. (F.4)

Substituting it in (F.2), one finds for the scattering amplitude

F(M2
12) =

16⇡
p

mq
3
2B3 + iq4 +

~q 2

4m �
p

B2

(F.5)

After these manipulations, equation (4.9) reads

ṽ0(q4, qv) =
1

⇡2
p

m

1q
3
2B3 + iq4 +

q2v
4m �

p
B2

Z ⇤

0

dkv

Z 1

�1

dk4�
1
3B3 � ik4

�

⇥ log
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(kv+qv)2

2m + i(k4 + q4)
2
3B3 +

(kv�qv)2

2m + i(k4 + q4)
ṽ0(k4, kv),

(F.6)

where it was introduced a cuto↵ ⇤ to prevent the Thomas collapse (THOMAS, 1935).

In order to obtain the time independent equation, the integration over k4 needs to be

performed. Since this is a non-trivial task, this will not be done here.

For the three-body LF equation, given by Eq. (4.12), the non-relativistic limit, ob-

tained by following the same steps as before, reads

�nr(~q) =
1

⇡2m3/2

1p
E2 �

p
B2

Z
�nr(

~k)d3k

B3 +
~q 2

2m
+

~k 2

2m
+

(~q + ~k)
2

2m

,
(F.7)

where

E2 = 2m�M12 ⇡ B3 +
3

4

~q 2

m
and

M2
12 = (1� x)M2

3 �
k2
? + (1� x)m2

x
.

(F.8)

Here, the factor
1p

E2�
p
B2

is originated from the two-body amplitude (F.2) when m!1.

Equation (F.7) is the same as the one obtained in Eq. (18) of Ref. (FREDERICO, 1992).

This equation is known as the Skornyakov-Ter-Martirosyan equation (SKORNYAKOV;

TER-MARTIROSYAN, 1957). The non-relativistic equation can be also written in the
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form

�nr(~q) =
1

⇡2
p

m

1q
B3 +

3
4
~q 2

m
�
p

B2

Z
�nr(

~k)d3k
~k 2 + ~k · ~q + ~q 2 + mB3

, (F.9)

and, for the s-wave, after integrating over the angles, it reads

�nr(qv) =

2
⇡
p
mq

B3 +
3
4
q2v
m
�
p

B2

Z ⇤

0

log

✓
k2
v
+ kvqv + q2

v
+ mB3

k2
v
� kvqv + q2

v
+ mB3

◆
�nr(kv)

kvdkv

qv
(F.10)

Equation (F.10), like Eq. (F.6), requires a cuto↵ in order to find a physical solution by

avoiding the Thomas collapse.



Appendix G - Derivation of the

three-body BSE: ansatz and

uniqueness

This chapter aims to derive in detail the Faddeev-Bethe-Salpeter equation by means

of an ansatz for the integral representation and the uniqueness conjecture of its spectral

function, analogous to the conjecture for the Nakanishi weight function (FREDERICO;

SALMÈ; VIVIANI, 2012). The content of this appendix is based on Ref. (YDREFORS

et al., ).

From Eq. (4.34) one can define, after using Feynman parametrization, the kernel as

I(q, �0, z0; p) =

Z
d4k

(2⇡)4

i

(
p
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⇥ i
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= 2
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D3
,

(G.1)

where the denominator D is given by

D = [(1� ↵2 � ↵3)((
p

3
+ k)

2 �m2
) + ↵2((

p

3
� q � k)

2 �m2
)

� ↵3(�
0 � k2 � (p · k)z0) + i✏].

(G.2)
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The denominator in Eq. (G.1) can be re-written as
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(G.3)

Subsequently, the term linear in k is eliminated by doing the transformation

k �! k +
1

2

h⇣
2

3
(1� 2↵2 � ↵3) + ↵3z

0
⌘
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i
, (G.4)

and perform the loop integral using

Z
d4k
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with
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(G.6)

In Eq. (G.6) it was defined the following quantities

q� =
2

3
p� q, (G.7)
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0
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, (G.8)
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(G.9)
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The result for the integral I(q, �0, z0; p) thus is

I(q, �0, z0; p) =
i

(4⇡)2

Z 1

0
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Z 1�↵2

0

d↵3
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, (G.10)

where the denominator D1 is defined as

D1 = q2� + z00(↵2,↵3, z
0
)p · q� � �(↵2,↵3, �

0, z0; p) + i✏ (G.11)

The next step is to introduce the scattering two-body amplitude and define the following

integral

Ī(q, �0, z0; p) = F(M2
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.

(G.12)

One can now use Feynman parametrization to put the denominators together and, then,

Eq. (G.12) can be re-written as

Ī(q,�0, z0; p) =
i

(4⇡)2
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(G.13)

where

�̄(↵1,↵2,↵3, �
00, �0, z0; p) = ↵1�

00
+ (1� ↵1)�(↵2,↵3, �

0, z0; p), (G.14)

and

z000(↵1,↵2,↵3, z
0
) = (1� ↵1)z

00
(↵2,↵3, z

0
). (G.15)

From Eqs. (4.34) and (G.13), one can obtain the following integral equation for g(�, z)
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2
3 � q)� i✏]2

(G.16)

To be able to apply the uniqueness conjecture, the denominator on the right-hand side

needs to be manipulated into the same form as the one on the left-hand side. To this end,
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it is defined
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and
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(G.18)

With these definitions, Eq. (G.16) then takes the form
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(G.19)

By assuming that the uniqueness conjecture (NAKANISHI, 1963; FREDERICO; SALMÈ;

VIVIANI, 2012) (which was proved for transition amplitudes for bosonic systems in the

perturbative regime in Ref. (NAKANISHI, 1963)) holds for the weight function g(�, z) of

the ansatz for the integral representation introduced here, one can simplify the LH-side

of the equation. The conjecture implies that the weight function of the integral represen-

tation, gi(�, z), is unique, encoding all the non-perturbative dynamical information. This

enables to solve it as a standard eigenvalue problem. Therefore, one finally obtain the
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following

g(�, z) = � 2
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(G.20)

where z0000 and �̄0
are defined by Eqs. (G.17) and (G.18), respectively.

Kernel for the three-body integral equation

The arguments of the � functions can be written in such a way that the kernel of the

integral equation in (G.20) reads

K(�, z, �0, z0; p) = � 2
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(G.21)

The integration over ↵2 is straightforward to carry out, by using that
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⇣
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(G.22)

One then obtains that
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(G.23)
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where the transformation (1�↵1) �! ↵1 was done and the following quantity was defined
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The ✓ functions in Eq. (G.23) lead to the following constraints on ↵1 and ↵3
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(G.25)

Furthermore, one can simplify the argument of the � function, perform the integration

over �00 in (G.23) and transform ↵3 �! ↵3/↵1, which leads to
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with �0 given by
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Moreover, the condition �0 > 4m2
leads to the following constrain on �0
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(G.28)

It should also be noticed that the derivative
@

@�
[⇢(�0)] is weakly singular at �0 = �0max,

corresponding to the lower threshold �0 = 4 m2
.

It turns out that the numerical calculation of the kernel given by Eq. (G.26) can

present some di�culties due to the singular behavior as ↵1 ! 1. One can therefore derive

an alternative equation by simply performing the integration over �0 in Eq. (G.20) instead

of over �00, as done in Eq. (G.26).
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After integration over �0 and performing the transformation ↵3 ! ↵3/↵1, Eq. (G.20)

can be re-written in a more suitable way to be solved numerically. The final equations to

be solved are presented in Eqs. (4.35) and (4.36).



Appendix H - Derivations for the

boson-fermion BSE

The derivations presented in this appendix are based on Refs. (NOGUEIRA et al.,

2019a; NOGUEIRA; FREDERICO, 2019).

H.1 Coe�cients of the BSE in Minkowski space

After performing the traces, following the derivations given in Refs. (NOGUEIRA et

al., 2019b; GHERARDI, 2017), one finds for the coe�cients of the scalar boson exchange

BSE:

Cs
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Cs
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2M)�M(p · k)(k · k0
)

M2k2�(p · k)
2

(H.1)
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while for the vector exchange (5.5) they read
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(H.2)

The superscript s(v) will be kept for the moment to indicate the coe�cients in the kernel

of the bound state equation for the scalar (vector) exchange.

H.1.1 Final coe�cients with NIR and LF projection

The final form of the coe�cients, after introducing the NIR, the LF variables and

performing the integration on k�
, is given below. For the scalar case one has that the

coe�cients in Eq. (5.10) are given by
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while for the vector exchange the final coe�cients read
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(H.4)

where a = 1 + 2mF/M .

H.2 Wick-rotated coe�cients for the boson-fermion

BSE

The Wick-rotated equation for the boson-fermion BSE with a vector boson exchanged

is derived in this appendix. The first step is to carry out the Wick-rotation in Eq. (H.2),

by performing the following transformations: k2 ! k2
E

= �(k2
4+~k2

), p·k ! p·kE = iMk4,

p · k0 ! p · k0
E

= iMk0
4, k · k0 ! kE · k0

E
= �(k4k0

4 + ~k · ~k0) and k
02 ! k

02
E

= �(k
02
4 + ~k

02
),
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what gives
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(H.5)

H.2.1 Angular integration

Since ~k · ~k0 = |~k||~k0| cos ✓ and considering the angular dependence in the interaction

kernel, i.e.

1

(k � k0)2 + µ2
=

1

(k4 � k0
4)

2 + ~k2 + ~k02 � 2 |~k||~k0| cos ✓ + µ2
, (H.6)

leading to the definitions of the auxiliary functions a and b,

a = (k4 � k0
4)

2
+ ~k2

+ ~k02 + µ2

and b = 2 |~k||~k0|. (H.7)

These expressions are introduced since the angular integration can be performed through

the following compact formulas

Z 1

�1

d cos ✓
1

a� b cos ✓
=

1

b
ln

a + b

a� b

and

Z 1

�1

d cos ✓
cos ✓

a� b cos ✓
= �2

b
+

a

b2
ln

a + b

a� b
. (H.8)

For the sake of simplicity, from now on it will be adopted ~k ! k and ~k0 ! k0
for the

notation, since here no more four-vectors are involved.

After performing the angular integrations, i.e. the one over ✓ and the one over the
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azimuthal angle (which trivially leads to a factor of 2⇡), the integral equation reads

�i(k4, k) = � ↵

(2⇡)2

⇥
X

j=1,2

Z
dk0

4dk0
b
⇣
c(0)
ij

+
a

2c
(1)
ij

⌘
ln

a+b

a�b
� b2c(1)

ij

k2 [m2
F

+ k2 + (k4 � iM/2)2] [m2
S

+ k2 + (k4 + iM/2)2]
�j(k

0
4, k

0
)

(H.9)

and the final coe�cients are

c(0)11 = �k2 � k2
4 + ik4M + iM(k0

4 + iM)

✓
1

2
+

mF

M

◆
,

c(1)11 =
�k2 � k2

4 + ik4M
�
1
2 �

mF
M

�

k2
;

c(0)12 = �
✓

i
k0
4

M
(k2

+ k2
4) + k4k

0
4 + (k

02
+ k

02
4 + ik0

4M)

✓
1

2
+

mF

M

◆◆
,

c(1)12 = i
k4

M
�
✓

3

2
+

mF

M

◆
+

k4

k2
(k4 + iM)

✓
i
k4

M
+

✓
1

2
� mF

M

◆◆
;

c(0)21 = M


ik0

4 �M

✓
3

2
� mF

M

◆�
, c(1)21 = �M

k2


ik4 + M

✓
1

2
� mF

M

◆�
;

c(0)22 = �(k
02
4 + k

02
)� ik0

4M

✓
3

2
� mF

M

◆
,

c(1)22 = �1� 1

k2
(k4 + iM)

✓
k4 � iM

✓
1

2
� mF

M

◆◆
.

(H.10)

This equation is non-singular and therefore suitable to be solved numerically.

H.3 Manipulations for the Wick-rotated asymptotic

equation

With the ansatz presented in Eq. (5.22), the set of integral equations becomes

K⌘+7 F1(') = � ↵

(2⇡)2

Z 1

0

dK 0 K 0⌘+2

Z
⇡

0

d'0

sin
2 '0

⇢
b
⇣
c̄(0)11 +

a

2
c̄(1)11

⌘
L� b2c̄(1)11

�
F1('

0
)

+ K 0�1


b
⇣
c̄(0)12 +

a

2
c̄(1)12

⌘
L� b2c̄(1)12

�
F2('

0
)

�

K⌘+6 F2(') = � ↵

(2⇡)2

Z 1

0

dK 0 K 0⌘+1

Z
⇡

0

d'0

sin
2 '0

⇢
b
⇣
c̄(0)22 +

a

2
c̄(1)22

⌘
L� b2c̄(1)22

�
F2('

0
)

+ K 0

b
⇣
c̄(0)21 +

a

2
c̄(1)21

⌘
L� b2c̄(1)21

�
F1('

0
)

�
, (H.11)
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where

L = ln
a + b

a� b
= ln

1 + y2 � 2y cos' cos'0
+ 2y sin' sin'0

1 + y2 � 2y cos' cos'0 � 2y sin' sin'0

= ln
1 + y2 � 2y cos('+ '0

)

1 + y2 � 2y cos('� '0)
. (H.12)

Substituting the coe�cients (5.21) in Eq. (H.11), one obtains the following set of

coupled integral equations

K⌘+7 F1(') = � ↵

(2⇡)2

Z 1

0

dK 0 K 0⌘+2

Z
⇡

0

d'0

sin
2 '0

⇢
H 0

11F1('
0
) + ı H 0

12F2('
0
)

�
,

K⌘+6 F2(') = � ↵

(2⇡)2

Z 1

0

dK 0 K 0⌘+1

Z
⇡

0

d'0

sin
2 '0

⇢
H 0

21F1('
0
)� ı H 0

22F2('
0
)

�
,

(H.13)

where

H 0
11 = �KK 0

sin' sin'0 �
csc

2 '
�
�2KK 0

cos' cos'0
+ K2

+ K 02�
+ 2K2

�
L

+ 4K2K 02
sin'02

H 0
12 = K2

csc' sin'0 �
(K2

+ K 02
) cos'� 2KK 0

cos'0� L� 4K3K 0
cos' sin

2 '0

H 0
21 = K 02

csc' sin'0
✓

(K2
+ K 02

) cos'� 2KK 0
cos'0

◆
L� 4KK 03

cos' sin
2 '0

H 0
22 = �KK 0

sin' sin'0
✓

2K 02
+ (K2

+ K 02 � 2KK 0
cos' cos'0

) csc
2 '

◆
L

+ 4K2K 02
sin

2 '0

(H.14)

Then, by the transformation K 0 ! K y the equation simplifies to:

F1(') = � ↵

(2⇡)2

Z 1

0

dy y⌘+2

Z
⇡

0

d'0

sin
2 '0

⇥
⇢
� y sin' sin'0 �

csc
2 '

�
�2y cos' cos'0

+ 1 + y2
�

+ 2
�

L + 4y2
sin

2 '0
�
F1('

0
)

+ ı


csc' sin'0 �

(1 + y2
) cos'� 2y cos'0� L� 4y cos' sin

2 '0
�
F2('

0
)

�

F2(') = � ↵

(2⇡)2

Z 1

0

dy y⌘+1

Z
⇡

0

d'0

sin
2 '0

⇥
⇢
� y sin' sin'0

✓
2y2

+ (1 + y2 � 2y cos' cos'0
) csc

2 '

◆
L + 4y2

sin
2 '0

�
F2('

0
)

� ı


y2

csc' sin'0
✓

(1 + y2
) cos'� 2y cos'0

◆
L� 4y3

cos' sin
2 '0

�
F1('

0
)

�
. (H.15)

Introducing ıF2 ! F2 and further simplifying the equations one gets Eq. (5.23).
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H.4 High momentum limit in Minkowski space

The coe�cients of the BSE in Minkowski space, presented in Eq. (H.4), become, in

the high momentum limit,

c(0)11 = (2� v)�, (H.16)

c(1)11 = �M

2
(2� v) (1� z) ,

c(0)12 =
a

2
{�(1� v)(2 + v) + 2v�0} + �

⇣
1� v � z0

v

2

⌘
,

c(1)12 =
M

2

n
a(1� v)

h
1 + z + (z � z0)

v

2

i
� (1� z)

⇣
1� v � z0

v

2

⌘o
,

c(0)21 =
M2

2
[(2� v)(2� a) + 2 + z0v] ,

c(0)22 = �(1� v)(2 + v) + 2 v �0,

c(1)22 =
M

2
(1� v) [v(z � z0) + 2(1 + z)] .

Moreover, Eq.(5.11) now reads

k�
u

= � 2 �

(1 + z)M
, k�

d
=

2 �

(1� z)M
. (H.17)

and for Eq. (5.10) one has that

B11(k
�
u(d)) = c(0)11 + c(1)11 k�

u(d) , B12(k
�
u(d)) = c(0)12 + c(1)12 k�

u(d)

B21(k
�
u(d)) = c(0)21 , B22(k

�
u(d)) = c(0)22 + c(1)22 k�

u(d)

, (H.18)

Finally, one should consider here that the equations decouple, based on the conclusion

found in Sec. 5.2.1 for the Wick-rotated equation. Consequently, the BSE (5.8) for �2

becomes

Z 1

0

d�0
g2(�0, z)

[�0 + � � i✏]2
=

↵

4⇡

1

�

Z 1

0

dv v2

Z 1

0

d�0
Z 1

�1

dz0 g2(�
0, z0)

⇥
⇢

�(1� v)v � �(1� v)v
z � z0

1 + z
+ 2 v �0

�
(1 + z)

2 ✓(z0 � z)

D2
u
(z0, z)

+


�(1� v)(2 + v) + 2 v �0 +

�

1� z
(1� v) [v(z � z0) + 2(1 + z)]

�
(1� z)

2 ✓(z � z0)

D2
d
(z0, z)

�

=
↵

4⇡

1

�

Z 1

0

dv v2

Z 1

0

d�0
Z 1

�1

dz0 g2(�
0, z0)

⇢
�(1� v)v

1 + z0

1 + z
+ 2 v �0

�
(1 + z)

2 ✓(z0 � z)

D2
u
(z0, z)

+


�(1� v)

4 + v(1� z0)

1� z
+ 2 v �0

�
(1� z)

2 ✓(z � z0)

D2
d
(z0, z)

�
, (H.19)
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where the value of the coupling constant ↵ was already obtained through the Wick-rotated

equation given by (5.32). The denominator Du (for z0 > z) is

Du(z
0, z) = v(1� v) (z0 � z) � + (1 + z) [v(1� v)� + v �0]

= v(�0(1 + z) + �(1� v)(1 + z0)), (H.20)

Considering the scale invariance of Eqs. (H.19) and (5.35), one can use the ansatz

for the Nakanishi weight function presented in Eq. (5.40), i.e. g2(�, z) = �rf(z), where

r = 2 +
⌘

2 with the constraint that

�1 < r < 0 ,

which is equivalent to (5.27).

Substituting (5.40) in (5.8) and making the transformation �0 ! � y:

⇡r csc(⇡r) f(z) =
↵

4⇡

Z 1

�1

dz0f(z0)

Z 1

0

dv

Z 1

0

dy yr

⇥
⇢

(1� v)v
1 + z0

1 + z
+ 2 v y

�
(1 + z)

2 ✓(z0 � z)

(y(1 + z) + (1� v)(1 + z0))2

+


(1� v)

4 + v(1� z0)

1� z
+ 2 v y

�
(1� z)

2 ✓(z � z0)

(y(1� z) + (1� v)(1� z0))2

�

=
↵

4⇡

Z 1

�1

dz0f(z0)

Z 1

0

dv

Z 1

0

dy yr

⇥
⇢

v [(1� v)(1 + z0) + 2 y(1 + z)]
(1 + z) ✓(z0 � z)

(y(1 + z) + (1� v)(1 + z0))2

+ [(1� v)(4 + v(1� z0)) + 2 v y(1� z)]
(1� z) ✓(z � z0)

(y(1� z) + (1� v)(1� z0))2

�

=
↵

4⇡

Z 1

�1

dz0f(z0)

Z 1

0

dv

Z 1

0

dy yr

⇥
⇢

v

1 + z
[(1� v)(1 + z0) + 2 y(1 + z)]

✓(z0 � z)

(y + (1� v)
1+z0

1+z
)2

+
1

1� z
[(1� v)(4 + v(1� z0)) + 2 v y(1� z)]

✓(z � z0)

(y + (1� v)
1�z0

1�z
)2

�
, (H.21)

where it was used the following integral,

Z 1

0

dx
xa

(x + y)2
= ya�1⇡a csc(⇡a). (H.22)
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After some manipulations, one has that

f(z) =
↵

4⇡r

Z 1

�1

dz0f(z0)

Z 1

0

dv

⇢
v

1 + z
K 0

(z0�z)✓(z
0 � z) +

1

1� z
K 0

(z�z0)✓(z � z0)

�

=
↵

4⇡r

Z 1

�1

dz0f(z0)

Z 1

0

dv

⇢
� v


(1� v)

1 + z0

1 + z

�r
[2 + r] ✓(z0 � z)

+


(1� v)

1� z0

1� z

�r 
4r

1� z0
� v(2 + r)

�
✓(z � z0)

�
, (H.23)

where

K 0
(z0�z) = r


(1� v)

1 + z0

1 + z

�r�1

(1� v)(1 + z0)� 2(1 + r)(1 + z)


(1� v)

1 + z0

1 + z

�r

K 0
(z�z0) = r(1� v)


(1� v)

1� z0

1� z

�r�1

(4 + v(1� z0))

� 2 v(1 + r)(1� z)


(1� v)

1� z0

1� z

�r

(H.24)

and after integrating over v, one obtains

f(z) =
↵

4⇡|r|

Z 1

�1

dz0f(z0)

⇢
1 + z

1 + z0

�|r|
2 + r

2 + 3r + r2
✓(z0 � z)

+


1� z

1� z0

�|r| 
2 + r

2 + 3r + r2
+

4|r|
(1 + r)(1� z0)

�
✓(z � z0)

�
. (H.25)

Eq. (H.25) can be further simplified to

f(z) =
↵

4⇡|r|(1 + r)

⇥
Z 1

�1

dz0f(z0)

⇢
1 + z

1 + z0

�|r|
✓(z0 � z) +


1� z

1� z0

�|r| 
1 +

4|r|
(1� z0)

�
✓(z � z0)

�
, (H.26)

where the value of ↵ depends on r according to (5.32) and can be written as

↵ = �2⇡r(1� r2)

1� 2r
. (H.27)

An analogous development could be done for �1 and the corresponding g1.



Appendix I - Fermion-antifermion

BSE: Kernel and numerics

The formalism for the solution of the fermion-antifermion (0
�
) Bethe-Salpeter equation

is briefly summarized, focusing on the numerical treatment of the problem. The LF

projection and NIR are used to obtain a non-singular generalized eigenvalue problem,

which when can be solved by adopting a basis expansion. The content of this appendix

is based on Ref. (YDREFORS; NOGUEIRA, 2018).

I.1 Non-singular contribution to the kernel

The non-singular contribution to the kernel in Eq. (6.8) is for the scalar exchange

given by

L(ns)
ij

(�, z, �0, z0) =
m2

(µ2 � ⇤2
)
2

2⇡[� + z2m2 + (1� z2)2]

Z 1

0

dvv2
(1� v)

2

⇥
n
✓(�k+

D
)

Cij(�, z; v)
⇥
3k�

d
k+
D

+ 3`D + (1� v)(µ2 � ⇤2
)
⇤

⇥
k+
D
k�
d

+ `D + (1� v)(µ2 � ⇤2) + i✏
⇤3⇥

k+
D
k�
d

+ `D + i✏
⇤2

+ �ij[z ! �z; z0 ! �z0]
o

.

(I.1)

Moreover, in the case of pseudo-scalar exchange one has

(L(ns)
14 )

(PS)
= �L(ns)

14 , (L(ns)
22 )

(PS)
= L(ns)

22 , (L(ns)
24 )

(PS)
= �L(ns)

24

(L(ns)
33 )

(PS)
= L(ns)

33 , (L(ns)
23 )

(PS)
= L(ns)

23

(I.2)

and for the massless vector exchange

(L(ns)
14 )

(V )
= 0, (L(ns)

22 )
(V )

= �2L(ns)
22 , (L(ns)

24 )
(V )

= 0

(L(ns)
33 )

(V )
= �2L(ns)

33 , (L(ns)
23 )

(V )
= �2L(ns)

23 .
(I.3)
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In Eq. (I.1) it was also introduced the quantities

k+
D

= v(1� v)M(z0 � z)/2, (I.4)

`D = �v(1� v)
⇥
� +

M2

4
z0(z � z0)

⇤
� v

⇥
�0 + z02m2

+ (1� z02)2
⇤
� (1� v)µ2, (I.5)

k�
d

= �M

2
+

2

M(1� z)
(� + m2

), (I.6)

and

k�
u

=
M

2
� 2

M(1 + z)
(� + m2

), (I.7)

which under the transformation (z ! �z, z0 ! �z0) obey the relations

k+
D
! �k+

D
, (I.8a)

`D ! `D, (I.8b)

k�
d
! �k�

u
. (I.8c)

(I.8d)

Furthermore, the matrix � is defined as

� =

0

BBBB@

1 1 �1 1

1 1 �1 1

�1 �1 1 �1

1 1 �1 1

1

CCCCA
. (I.9)

The denominator D(�, z, �0, z0, v) used in (CARBONELL; KARMANOV, 2010) is

given by

D(�, z, �0, z0, v) = �(1� z)(k+
D

k�
d

+ `D) =

v(1� z0)� + vm2[(1� v)(1� z0)z2 + vz02(1� z)]

+ v2(1� z)(1� z0)[1 + z � v(z � z0)] + (1� z)[(1� v)µ2 + v�0] =

v(1� v)(1� z0)[� + z2m2 + (1� z2)2]+

v2(1� z)[z02m2 + (1� z02)2] + (1� z)[v�0 + (1� v)µ2].

, (I.10)
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The coe�cients Cij in Eq. (I.1) which are non-vanishing read

C11(�, z; v) =
Q+

4m2(1� z)
(I.11a)

C12(�, z; v) =
M

4m
(I.11b)

C14(�, z; v) = � (1� v)

(1� z)2

⇥
Q2

+ �m2M2
(1� z)

2
⇤

4m2M2
(I.11c)

C21(�, z; v) = C12(�, z; v) (I.11d)

C22(�, z; v) = �
⇥
Q+ Q� � (1� z)

2m2M2
⇤

2m2M2(1� z)2
(I.11e)

C23(�, z; v) = � (1� v)

(1� z)3

Q�
⇥
Q2

+ � (1� z)
2m2M2

⇤

2m2M4
(I.11f)

C24(�, z; v) =
2m

M
C14(�, z; v) (I.11g)

C32(�, z; v) =
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2m2(1� z)
(I.11h)

C33(�, z; v) =
(1� v)

(1� z)2

Q+ Q�

2m2M2
(I.11i)

C34(�, z; v) = (1� v)
m

M
C32(�, z; v) (I.11j)

C41(�, z; v) =
M

m
C12(�, z; v) (I.11k)

C42(�, z; v) = 2C12(�, z; v) (I.11l)

C43(�, z; v) = C34(�, z; v) (I.11m)

C44(�, z; v) = �(1� v)

(1� z)

⇥
Q+ � 2m2

(1� z)
⇤

4m2
(I.11n)

with

Q+ =� + m2
+
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4
(1� z)

2
=
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k�
d
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4
(1� z) (2� z) =
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⇣
k�
d
� M

2
z + M

⌘ (I.12)

and

Q� =� + m2 � M2

4
(1� z2) = � + z2m2

+ (1� z2)2 =

M(1� z)

2
k�
d
� M2

4
z(1� z) =

M(1� z)

2

⇣
k�
d
� M

2
z
⌘
.

(I.13)

From the numerical point of view, to avoid instabilities from the end-point behavior
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close to z = 1, it can be advantageous to instead introduce the coe�cients

C̃11(�, z) =
(1� z)

3

4m2
Q+ (I.14a)

C̃12(�, z) =
M

4m
(1� z)

4
(I.14b)

C̃14(�, z) = �(1� z)
2

4m2M2

⇥
Q2

+ �m2M2
(1� z)

2
⇤

(I.14c)

C̃21(�, z) = C̃12(�, z) (I.14d)

C̃22(�, z) = �(1� z)
2

2m2M2

⇥
Q+ Q� � (1� z)

2m2M2
⇤

(I.14e)

C̃23(�, z) = � (1� z)

2m2M4
Q�

⇥
Q2

+ � (1� z)
2m2M2

⇤
(I.14f)

C̃24(�, z) =
2m

M
C̃14(�, z) (I.14g)

C̃32(�, z) =
(1� z)

3

2m2
Q� (I.14h)

C̃33(�, z) =
(1� z)

2

2m2M2
Q+ Q� (I.14i)

C̃34(�, z) =
m

M
C̃32(�, z) (I.14j)

C̃41(�, z) =
M

m
C̃12(�, z) (I.14k)

C̃42(�, z) = 2C̃12(�, z) (I.14l)

C̃43(�, z) = C̃34(�, z) (I.14m)

C̃44(�, z) = �(1� z)
3

4m2

⇥
Q+ � 2m2

(1� z)
⇤
, (I.14n)

which are related to the coe�cients Cij according to

C11 =
1

(1� z)4
C̃11, C12 =

1

(1� z)4
C̃12, C14 =

(1� v)

(1� z)4
C̃14,

C21 =
1

(1� z)4
C̃21, C22 =

1

(1� z)4
C̃22, C23 =

(1� v)

(1� z)4
C̃23,

C24 =
(1� v)

(1� z)4
C̃24C32 =

1

(1� z)4
C̃32, C33 =

(1� v)

(1� z)4
C̃33,

C34 =
(1� v)

(1� z)4
C̃34, C41 =

1

(1� z)4
C̃41, C42 =

1

(1� z)4
C̃42,

C43 =
(1� v)

(1� z)4
C̃43, C44 =

(1� v)

(1� z)4
C̃44.

(I.15)
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The non-singular part can then be written in the form

L(ns)
ij

(�, z, �0, z0) =
m2

(µ2 � ⇤2
)
2

2⇡[� + z2m2 + (1� z2)2]

⇥
�
✓(�k+

D
)C̃ij(�, z)�(k)

(�, z, �0, z0) + �ij[z �! �z; z0 �! �z0]
 
,

(I.16)

where it was defined the integrals

�(1)
(�, z, �0, z0) =

Z 1

0

dvv2
(1� v)

2
⇥
3D(�, z, �0, z0, v)� (1� v)(1� z)(µ2 � ⇤2

)
⇤

⇥
D(�, z, �0, z0, v)� (1� v)(1� z)(µ2 � ⇤2)

⇤3
D2(�, z, �0, z0, v)

,

(I.17)

and

�(2)
(�, z, �0, z0) =

Z 1

0

dvv2
(1� v)

3
⇥
3D(�, z, �0, z0, v)� (1� v)(1� z)(µ2 � ⇤2

)
⇤

⇥
D(�, z, �0, z0, v)� (1� v)(1� z)(µ2 � ⇤2)

⇤3
D2(�, z, �0, z0, v)

,

(I.18)

where D(�, z, �0, z0) is defined by Eq. (I.10).

The index k in Eq. (I.16) depends on i and j as is shown in Table I.1.

Furthermore, by introducing the coe�cients

Ĉij(�, z) =
m2

(µ2 � ⇤2
)
2

2⇡[� + z2m2 + (1� z2)2]
C̃ij(�, z), (I.19)

the expression for the non-singular part of the kernel can be written in the compact form

L(ns)
ij

(�, z, �0, z0) = ✓(�k+
D
)Ĉij(�, z)�(k)

(�, z, �0, z0) + �ij[z �! �z; z0 �! �z0]. (I.20)
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i j k

1 1 1

1 2 1

1 4 2

2 1 1

2 2 1

2 3 2

2 4 2

3 2 1

3 3 2

3 4 2

4 1 1

4 2 1

4 3 2

4 4 2

TABLE I.1 – Values of k for the di↵erent combinations of i and j.

I.1.1 Singular contribution

For the singular part L(s)
ij

in Eq. (6.8) one has in the scalar case the following non-

vanishing contributions

L(s)
14 (�, z, �0, z0) = �(µ2 � ⇤2

)
2

2⇡M2

�(z0 � z)

2(1� z2)

Z 1

0

dv
v(1� v)

2

D`

, (I.21a)

L(s)
22 (�, z, �0, z0) = �(µ2 � ⇤2

)
2

2⇡M2

�(z0 � z)

(1� z2)

Z 1

0

dv
v(1� v)

D`

, (I.21b)

L(s)
24 (�, z, �0, z0) = �(µ2 � ⇤2

)
2

2⇡M2

m

M

�(z0 � z)

(1� z2)

Z 1

0

dv
v(1� v)

2

D`

, (I.21c)

L(s)
33 (�, z, �0, z0) =

(µ2 � ⇤2
)
2

2⇡M2

�(z0 � z)

(1� z2)

Z 1

0

dv
v(1� v)

2

D`

, (I.21d)

L(s)
23 (�, z, �0, z0) = L(s,a)

23 (�, z, �0, z0) + L(s,b)
23 (�, z, �0, z0), (I.21e)

where

L(s,a)
23 (�, z, �0, z0) = �(µ2 � ⇤2

)
2

2⇡M2

2z�(z0 � z)

M2(1� z2)2

hM2
(1� z2)

8
+ � + m2

i Z 1

0

dv
v(1� v)

2

D`

,

(I.22)

and

L(s,b)
23 (�, z, �0, z0) =� 1

2⇡M4(1� z2)

h @
@z0

�(z0 � z)

i Z 1

0

dv

(1� v)

⇥


(1� v)(µ2 � ⇤2
)

`D + (1� v)(µ2 � ⇤2)
+ log

⇣ `D
`D + (1� v)(µ2 � ⇤2)

⌘�
.

(I.23)



APPENDIX I. FERMION-ANTIFERMION BSE: KERNEL AND NUMERICS 255

In the above expressions it was defined

D` = ˜̀
D[˜̀D + (1� v)(µ2 � ⇤2

) + i✏]2 (I.24a)

˜̀
D = �v(1� v)� � v(�0 + z2m2

+ (1� z2)2)� (1� v)µ2, (I.24b)

i.e ˜̀
D = `D|z=z0 .

Furthermore, for the pseudo-scalar exchange one has

(L(s)
14 )

(PS)
= �L(s)

14 , (L(s)
22 )

(PS)
= L(s)

22 , (L(s)
24 )

(PS)
= �L(s)

24

(L(s)
33 )

(PS)
= L(s)

33 , (L(s)
23 )

(PS)
= L(s)

23

(I.25)

and for the massless vector exchange

(L(s)
14 )

(V )
= 0, (L(s)

22 )
(V )

= �2L(s)
22 , (L(s)

24 )
(V )

= 0

(L(s)
33 )

(V )
= �2L(s)

33 , (L(s)
23 )

(V )
= �2L(s)

23

(I.26)

I.2 Numerical methods

I.2.1 Explicit removal of the theta and delta functions

From the numerical point of view, it is important to explicitly remove the theta func-

tions in Eq. (I.1), and the delta functions in Eqs.(I.21). This can be easily done by

carefully considering the integrations over z0 in Eq. (6.8).

Starting by considering the non-singular contribution, by using the relations (I.8), one

can rewrite (I.1) as

L(ns)
ij

(�, z, �0, z0) = ✓(z � z0)L(ns,1)
ij

(�, z, �0, z0) + �ij✓(z
0 � z)L(ns,2)

ij
(�, z, �0, z0), (I.27)

where

L(ns,1)
ij

(�, z, �0, z0) =
m2

(µ2 � ⇤2
)
2

2⇡[� + z2m2 + (1� z2)2]

Z 1

0

dvv2
(1� v)

2

⇥
Cij(�, z; v)

⇥
3k�

d
k+
D

+ 3`D + (1� v)(µ2 � ⇤2
)
⇤

⇥
k+
D
k�
d

+ `D + (1� v)(µ2 � ⇤2) + i✏
⇤3⇥

k+
D
k�
d

+ `D + i✏
⇤2 ,

(I.28)

and

L(ns,2)
ij

(�, z, �0, z0) =
m2

(µ2 � ⇤2
)
2

2⇡[� + z2m2 + (1� z2)2]

Z 1

0

dvv2
(1� v)

2

⇥
Cij(�,�z; v)

⇥
3k�

u
k+
D

+ 3`D + (1� v)(µ2 � ⇤2
)
⇤

⇥
k+
D
k�
u

+ `D + (1� v)(µ2 � ⇤2) + i✏
⇤3⇥

k+
D
k�
u

+ `D + i✏
⇤2 .

(I.29)
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Consequently,

H(ns)
ij

(�, z) =

Z 1

�1

dz0
Z 1

0

d�0L(ns)
ij

(�, z, �0, z0)gj(�
0, z0) =

Z 1

0

d�0
hZ z

�1

dz0L(ns,1)
ij

(�, z, �0, z0)gj(�
0, z0) +

Z 1

z

dz0�ijL(ns,2)
ij

(�, z, �0, z0)gj(�
0, z0)

i
,

(I.30)

It should be noted here that one has to avoid the point z = z0. This can be done by

replacing z in the upper limit in the first term and the lower limit in the second term, by

z� ✏ and z + ✏ respectively. But since the integration over z0 using Gaussian quadrature,

it is not needed.

It is seen from Eqs. (I.21) one has a singular contribution for (i, j) = (1, 4), (2, 2),

(2, 4), (3, 3), (2, 3) when z = z0. The first four cases are straightforward and one can write

H(s)
14 (�, z) =

Z 1

�1

dz0
Z 1

0

d�0L(s)
14 (�, z, �0, z0)g4(�

0, z0) =

� (µ2 � ⇤2
)
2

2⇡M2

1

2(1� z2)

Z 1

0

d�0
Z 1

0

dv
v(1� v)

2

D`

g4(�
0, z),

(I.31)

H(s)
22 (�, z) =

Z 1

�1

dz0
Z 1

0

d�0L(s)
22 (�, z, �0, z0)g2(�

0, z0) =

� (µ2 � ⇤2
)
2

2⇡M2

1

(1� z2)

Z 1

0

d�0
Z 1

0

dv
v(1� v)

D`

g2(�
0, z),

(I.32)

H(s)
24 (�, z) =

Z 1

�1

dz0
Z 1

0

d�0L(s)
24 (�, z, �0, z0)g4(�

0, z0) =

� (µ2 � ⇤2
)
2

2⇡M2

m

M

1

(1� z2)

Z 1

0

d�0
Z 1

0

dv
v(1� v)

2

D`

g4(�
0, z),

(I.33)

and

H(s)
33 (�, z) =

Z 1

�1

dz0
Z 1

0

d�0L(s)
33 (�, z, �0, z0)g3(�

0, z0) =

(µ2 � ⇤2
)
2

2⇡M2

1

(1� z2)

Z 1

0

d�0
Z 1

0

dv
v(1� v)

2

D`

g3(�
0, z).

(I.34)

Similarly, for the contribution coming from L(s,a)
23 :

H(s,a)
23 (�, z) =

Z 1

�1

dz0
Z 1

0

d�0L(s,a)
23 (�, z, �0, z0)g3(�

0, z0) =

� (µ2 � ⇤2
)
2

2⇡M2

2z

M2(1� z2)2

hM2
(1� z2)

8
+ � + m2

i

⇥
Z 1

0

d�0
Z 1

0

dv
v(1� v)

2

D`

g3(�
0, z).

(I.35)

On the contrary, the contribution coming from L(s,b)
23 is proportional to

@

@z0 �(z
0 � z)
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and has to be handled with more care. By a partial integration one obtains

H(s,b)
23 (�, z) =

Z 1

�1

dz0
Z 1

0

d�0L(s,b)
23 (�, z, �0, z0)g3(�

0, z0) =

� 1

2⇡M4(1� z2)

Z 1

0

dv

(1� v)

Z 1

0

d�0
("

�(z0 � z)

⇥


(1� v)(µ2 � ⇤2
)

`D + (1� v)(µ2 � ⇤2)
+ log

⇣ `D
`D + (1� v)(µ2 � ⇤2)

⌘�
g3(�

0, z0)

#1

�1

�
Z 1

�1

dz0�(z0 � z)

"
@g3(�0, z0)

@z0


(1� v)(µ2 � ⇤2

)

`D + (1� v)(µ2 � ⇤2)

+ log

⇣ `D
`D + (1� v)(µ2 � ⇤2)

⌘�
+ g3(�

0, z0)
@

@z0


(1� v)(µ2 � ⇤2

)

`D + (1� v)(µ2 � ⇤2)

+ log

⇣ `D
`D + (1� v)(µ2 � ⇤2)

⌘�#)
.

(I.36)

The surface term in (I.36) vanish since

[�(z0 � z)g3(�
0, z0)]1�1

= �(1� z)g3(�
0, 1)� �(�1� z)g3(�

0,�1) = g3(�
0, 1)[�(1� z) + �(�1� z)],

(I.37)

and g3(�0, 1) = 0. Here it was used the property g3(�0,�z0) = �g3(�0, z0). Moreover, the

required derivative in (I.36) is

@

@z0


(1� v)(µ2 � ⇤2

)

`D + (1� v)(µ2 � ⇤2)
+ log

⇣ `D
`D + (1� v)(µ2 � ⇤2)

⌘�
=

@`D
@z0


�(1� v)(µ2 � ⇤2

[`D + (1� v)(µ2 � ⇤2]2
+

(1� v)(µ2 � ⇤2
)

`D[`D + (1� v)(µ2 � ⇤2)]

�
=

�v(1� v)
2
(µ2 � ⇤2

)
2
[z(1� v) + 2z0v]M2

4`D[`D + (1� v)(µ2 � ⇤2]2
.

(I.38)

Consequently,

H(s,b)
23 (�, z) =

1

2⇡M4(1� z2)

Z 1

0

d�0
(
@g3(�0, z)

@z

⇥
Z 1

0

dv

(1� v)


(1� v)(µ2 � ⇤2

)

˜̀
D + (1� v)(µ2 � ⇤2)

+ log

⇣ ˜̀
D

˜̀
D + (1� v)(µ2 � ⇤2)

⌘�

� zM2

4
(µ2 � ⇤2

)
2g3(�

0, z)

Z 1

0

dv
v(1� v2

)

Dl

)
.

(I.39)
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I.2.2 Basis expansion

The Nakanishi weight function of each component i is expanded in the following form

gi(�, z) =

NzX

k=1

N�X

n=1

Ai

kn
G�i

2(k�1)+ri
(z)Ln�1(�), (I.40)

where Ai

kn
are the coe�cients to be determined and the functions G�i

2m+ri
, and Ln are

defined by

G�

n
(z) = (1� z2)(2��1)/4�(�)

s
n!(n + �)

21�2�⇡�(n + 2�)
C�

n
(z),

Ln(�) =
p

aLn(a�)e
�a�/2,

(I.41)

where C�

n
denotes Gegenbauer polynomial and Ln is a Laguerre polynomial. It should be

noticed that because of the symmetry under z ! �z one has

ri =

8
<

:
0 ; i = 1, 2, 4,

1 ; i = 3.
(I.42)

The basis functions defined by (I.41) obey the orthogonality relations

Z 1

�1

dzG�i
l

(z)G�i
n

(z) = �ln
Z 1

0

d�Lj(�)Ll(�) = �jl.

(I.43)

Furthermore, in the applications � = �i will be a half-integer, i.e. � = l + 1/2.

Therefore,

G(l+1/2)
n

(z) = (2l � 1)!!

s
(n + l + 1/2)
Q2l

j=1(n + j)
(1� z2)l/2C(l+1/2)

n
(z). (I.44)

In the calculation of the singular contribution L(s)
one needs also the derivative of

Gl+1/2
n , which is given by

@G(l+1/2)
n

@z
= (2l�1)!!

s
(n + l + 1/2)
Q2l

j=1(n + j)
(1�z2)l/2

h
(2l+1)C(l+3/2)

n�1 (z)� lzC(l+1/2)
n (z)

(1� z2)

i
, (I.45)

with C l+3/2
�1 (z) = 0 if n = 0.
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Additionally, the second derivative of the Gl+1/2
n (z) takes the form

@2G(l+1/2)
n

@z2
=(2l � 1)!!

s
(n + l + 1/2)
Q2l

j=1(n + j)
(1� z2)l/2�2

⇥
(l(l � 1)z2 � n(n + 1)(1� z2)

� l(1 + 2n(1� z2)))C(l+1/2)
n

(z) + 2z(1� z2)(2l + 1)C(l+3/2)
n�1 (z)

⇤
,

(I.46)

which can be derived from the Gegenbauer di↵erential equation

(1� z2)
@2C(�)

n (z)

@z2
� (2�+ 1)z

@C(�)
n (z)

@z
+ n(n + 2�)C(�)

n
(z) = 0. (I.47)

I.2.3 Eigenvalue equation for the Nakanishi weight functions

The next step is to write Eq. (6.8) in matrix form by using the basis introduced in the

previous subsection. For this purpose one can define

A(i)
kn

(�, z) = G(li+1/2)
2(k�1)+ri

(z)

Z 1

0

d�0
Ln�1(�0)

[� + �0 + m2z2 + (1� z2)2]2
, (I.48)

and

B(ij)
kn

(�, z) = B(ij,ns)
kn

(�, z) + B(ij,s)
kn

(�, z), (I.49)

where

B(ij,ns)
kn

(�, z) =

Z 1

0

d�0Ln�1(�
0
)

Z
z

�1

dz0L(ns,1)
ij

(�, z, �0, z0)G
(lj+1/2)
2(k�1)+rj

(z0)+

�ij

Z 1

0

d�0Ln�1(�
0
)

Z 1

z

dz0L(ns,2)
ij

(�, z, �0, z0)G
(lj+1/2)
2(k�1)+rj

(z0),

(I.50)

B(14,s)
kn

(�, z) = �(µ2 � ⇤2
)
2

2⇡M2

1

2(1� z2)
G(l4+1/2)

2(k�1) (z)

Z 1

0

d�0Ln�1(�
0
)I1(�, z, �0), (I.51)

B(22,s)
kn

(�, z) = �(µ2 � ⇤2
)
2

2⇡M2

1

(1� z2)
G(l2+1/2)

2(k�1) (z)

Z 1

0

d�0Ln�1(�
0
)I2(�, z, �0), (I.52)

B(24,s)
kn

(�, z) = �(µ2 � ⇤2
)
2

2⇡M2

m

M

1

(1� z2)
G(l4+1/2)

2(k�1) (z)

Z 1

0

d�0Ln�1(�
0
)I1(�, z, �0), (I.53)

B(33,s)
kn

(�, z) =
(µ2 � ⇤2

)
2

2⇡M2

1

(1� z2)
G(l3+1/2)

2(k�1)+1(z)

Z 1

0

d�0Ln�1(�
0
)I1(�, z, �0), (I.54)
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and
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(I.55)

In the above equations the integrals I1, I2, I3 and I4 are defined by

I1(�, z, �0) =

Z 1

0

dv
v(1� v)

2

D`(�, z, �0)
, (I.56a)

I2(�, z, �0) =

Z 1

0

dv
v(1� v)

D`(�, z, �0)
, (I.56b)
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(I.56c)

I4(�, z, �0) =

Z 1
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. (I.56d)
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The Eqs. (I.51)-(I.55) can then be written in the more compact form
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)Ĩ3(�, z, �0)

�G(l3+1/2)
2(k�1)+1(z)

Z 1

0

d�0Ln�1(�
0
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Equation (6.8) can subsequently be rewritten as
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One then act on each side by the operator
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By defining the tensors

Ãij
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and

B̃ij
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the following equation is obtained for the coe�cents

X

j

X

kn

Ãij

k0n0,knA
j

kn
= ↵

X

j

X

kn

B̃ij

k0n0,knA
j

kn
. (I.67)

Here �ij was introduced in (I.65) in order to write the left-hand and right-hand sides

of the same form.

For a given j, the numbers Aj

kn
form a two-dimensional array of size Nz ⇥ N�. By

defining the new index

l = (k � 1)N� + n, (I.68)

the coe�cients for one value of j can be stored in a one-dimensional vector Âj

k0 . Here
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k = 1, ..., Nz and n = 1, ..., N� and therefore k0
= 1, ..., NzN�. This process can be then

repeated and the following can be introduced

l0 = (j � 1)NzN� + l = (j � 1)NzN� + (k � 1)N� + n, (I.69)

where l0 = 1, ..., 4NzN� since j = 1, ..., 4. In this way, all the coe�cients Aj

kn
can be stored

in a one-dimensional vector al0 . The same ”trick” can be done for the triples (i, k0, n0
) and

(j, k, n), i.e.

Ãij

k0n0,mn
�! Âl0l00 , B̃ij

k0n0,mn
�! B̂l0l00 , (I.70)

where the index l00 is obtained by doing the replacements (k ! k0, n ! n0, j ! i) in

Eq. (I.69).

The coe�cients for the Nakanishi weight functions and the coupling constant ↵ are

thus obtained by solving a generalized eigenvalue problem of the form

Âa = ↵B̂a, (I.71)

where the one-dimensional vector a contains the unknown coe�cients.

I.3 Pion Decay Constant

As mentioned in the main text, the pion decay constant in terms of the BS amplitude

is defined by

i p2f⇡ = NC

Z
d4k

(2⇡)4
Tr[ /p �

5�(p, k)] , (I.72)

where NC is the number of colors. Using the decomposition of BS amplitude given by

Eq. (6.5), one can perform the trace and obtain

i M2f⇡ = �4 M NC

Z
d4k

(2⇡)4
�2(k, p) (I.73)

The amplitude �2(k, p) is then written in terms of the Nakanishi integral representation

�2(k, p) = Ñ

Z 1

�1
dz0

Z 1

0
d�0 g2(�0, z0; 2)

[k2 + z0p · k � �0 � 2 + i✏]3
,

where the factor Ñ comes from the covariant normalization of the BS amplitude. Intro-

ducing Eq. (I.74) in (I.73) one gets

i Mf⇡ = �4 NCÑ

Z 1

�1

dz0
Z 1
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d�0g2(�
0, z0;2)

Z
d4k

(2⇡)4

1
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(I.74)
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Then the four-dimensional integration can be performed as follows

Z
d4k

(2⇡)4

1

[k2 + z0p · k � �0 � 2 + i✏]3
=

Z
d4q
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=
i

(2⇡)4

⇡2

2

1

[��0 � 2 � z02 M2/4]
,

(I.75)

where it was used the following change of variables: q = k + p/2 z0.

The final expression for the pion decay constant is given by

f⇡ =
NCÑ

8⇡2 M

Z 1

�1

dz0
Z 1

0

d�0
g2(�0, z0;2)

[�0 + 2 + z02 M2/4]
(I.76)

Where M = M⇡ is the pion mass and Ñ comes from the normalization of the Bethe-

Salpeter amplitude.



 
FOLHA DE REGISTRO DO DOCUMENTO 

 
1. CLASSIFICAÇÃO/TIPO 

TD 

2. DATA 

29 de janeiro de 2020 

3. REGISTRO N° 

DCTA/ITA/TD-047/2019 

4. N° DE PÁGINAS 

263 
5. TÍTULO E SUBTÍTULO: 
 
Relativistic few-body systems: from b decays to bound states in minkowski space. 
6. AUTOR(ES): 

Jorge Henrique de Alvarenga Nogueira 
7. INSTITUIÇÃO(ÕES)/ÓRGÃO(S) INTERNO(S)/DIVISÃO(ÕES): 
 
Instituto Tecnológico de Aeronáutica – ITA  
8. PALAVRAS-CHAVE SUGERIDAS PELO AUTOR: 

1. Relativistic Few-Body Systems. 2. Bethe-Salpeter Equation. 3. CP Violation. 4. Hadron Structure. 5. Particle 
Physics. 6. Quantum Field Theory. 

 

9.PALAVRAS-CHAVE RESULTANTES DE INDEXAÇÃO: 

Teoria relativística; Equação de Bethe-Salpeter; Hadrons; Teoria quântica de campos; Física de partículas; Física.  
10. APRESENTAÇÃO:     (X) Nacional ( ) Internacional 
ITA, São José dos Campos. Curso de Doutorado. Programa de Pós-Graduação em Física. Área de Física Nuclear. 
Orientador: Prof. Dr. Tobias Frederico; Dr. Giovanni Salmè; Defesa em 06/11/2019. Publicada em 2019. 
11. RESUMO: 

Few-body degrees of freedom (dof) have their hallmark in hadron and nuclear physics, even before 
quantum chromodynamics was established, and still today are used to guide phenomenological 
interpretations of hadronic observables. The aim of the thesis is the attempt to develop a relativistic 
framework where the aforementioned dof can be phenomenologically investigated, still retaining as 
many general principles as possible and living in Minkowski space. An appealing motivation for 
elaborating such an effort is given by the challenging analysis of the charge-parity violation (CPV) in the 
three-body decay of the B meson, as illustrated in the thesis. In particular, the phenomenological 
study of CPV, using only hadronic degrees of freedom, is carefully carried out in the B decay, 
obtaining the remarkable outcomes of (i) an explicitly CPT invariance formalism for addressing final 
state interactions, which satisfactorily describes the CPV in the three-body phase space of coupled decay 
channels; and (ii) a simple method which predicts a substantial CPV suppression in two-body decays 
involving pseudoscalar and vector mesons, that in turn is a quantitative outcome to be investigated in 
forthcoming experiments planned at the several B-factories all over the world. The necessity of repre- 
senting the meson vertexes in the quark-level diagrams paved the way to the study of the Bethe-Salpeter 
equation for bound states. A non-perturbative framework was developed to deal with two- and three-body 
bound states. Firstly, the two-boson equation is solved in Minkowski space by means of the Nakanishi 
integral representation and light-front projection, and then the effect of truncating the interaction kernel 
of the Bethe-Salpeter equation is explored, assessing the impact of the cross-ladder diagrams on several 
dynamical observables. The evaluation of their effect when color dof are present has been also 
performed, obtaining a clear support for the rainbow-ladder truncation widely adopted in the investigation 
of strongly interacting systems. Furthermore, the three-boson Faddeev-Bethe-Salpeter equation with 
zero-range interaction is solved, for the first time, both in Euclidean and Minkowski spaces, without 
relying on a three-dimensional reduction or any ansatz for representing the Bethe-Salpeter amplitude. 
The variation of two-body scattering length enables to find a Borromean ground state, missed in previous 
relativistic calculations. Finally, a substantial improvement, has been achieved by including spin dof. It has 
been investigated a system composed by a fermion and a scalar particle, as well as a fermion-
antifermion bound state. Applications to several dynamical observables are presented and discussed, in 
view of the possible extension of the relativistic framework, whose development has contributions from 
this thesis, to the analysis of decays where the relativistic effects can play a relevant role, as it happens in 
the CPV three-body decays of the B-meson. 
12. GRAU DE SIGILO: 
 
                                   (X )  OSTENSIVO (  )  RESERVADO (  )  SECRETO 
 
 


	Face Page
	Cataloging-in-Publication
	Thesis Committee Composition:
	Dedication
	Acknowledgments
	Epigraph
	Resumo
	Abstract
	List of Figures
	List of Tables
	Contents
	1 Introduction
	2 B-decays: CP violation and FSI
	2.1 CP violation and the CPT constraint
	2.1.1 Resonances, interferences and CPV formula
	2.1.2 Analyzing the CPV experimental data
	2.1.3 B  decay
	2.1.4 B KK decay
	2.1.5 B K decay
	2.1.6 B KKK decay
	2.1.7 The main input: scattering matrix

	2.2 CPT and CP asymmetry suppression in BPV decays
	2.2.1 A method to extract ACP for BP V decays

	2.3 Three-body FSI in B decays
	2.3.1 B+K-++ decay amplitude with FSI
	2.3.2 Perturbative solution
	2.3.3 Results for the B+K-++ decay amplitude
	2.3.4 Concluding remarks and perspectives


	3 Two-boson BSE in Minkowski space
	3.1 The bound state structure within the BSE
	3.1.1 Bethe-Salpeter Equation and Nakanishi Integral Representation
	3.1.2 Coupling constant and valence LFWF 
	3.1.3 Space-like elastic EM Form factor
	3.1.4 Asymptotic behavior of the form factor

	3.2 The color dof and its suppression on non-planar diagrams
	3.2.1 Scalar QCD model
	3.2.2 Sensitivity under finite Nc


	4 Bethe-Salpeter approach to three-boson bound states
	4.1 Euclidean space and LF dynamics: beyond the valence effects
	4.1.1 Bethe-Salpeter-Faddeev equation
	4.1.2 Light-front Faddeev-Bethe-Salpeter equation
	4.1.3 Transverse amplitudes
	4.1.4 Spectrum and transverse amplitudes

	4.2 BSE in Minkowski space by direct integration
	4.2.1 Three-body Bethe-Salpeter equation in Minkowski space
	4.2.2 Transverse amplitude in Minkowski space
	4.2.3 Numerical solution

	4.3 Minkowski space equation: integral representation and uniqueness

	5 Boson-fermion bound state
	5.1 Boson-fermion BSE
	5.1.1 Numerical outcomes

	5.2 Scale invariance in the fermion-boson system
	5.2.1 High momentum limit
	5.2.2 High momentum limit in the Minkowski space
	5.2.3 Concluding remarks


	6 Fermion-antifermion bound state: Pion phenomenology
	6.1 The BSE for a 0- state
	6.1.1 LF distributions and pion decay constant
	6.1.2 GPD and elastic form factor


	7 Summary and Outlook
	Bibliography
	A CPV formulas
	B Three-body FSI in the LF framework
	B.1 Parametrization of the S-matrix
	B.2 Further details on the LF equation

	C Derivation of the two-body scattering  amplitude
	C.1 Unitarity check
	C.1.1 Scattering length and the effective radius

	C.2 Renormalization via scattering length
	C.3 Behavior of F(M212 )

	D Spline decomposition
	E Deriving the transverse amplitudes
	E.1 Euclidean transverse amplitude
	E.2 Minkowskian transverse amplitude

	F Non-relativistic limit
	G Derivation of the three-body BSE: ansatz and uniqueness
	H Derivations for the boson-fermion BSE
	H.1 Coefficients of the BSE in Minkowski space
	H.1.1 Final coefficients with NIR and LF projection

	H.2 Wick-rotated coefficients for the boson-fermion BSE
	H.2.1 Angular integration

	H.3 Manipulations for the Wick-rotated asymptotic equation
	H.4 High momentum limit in Minkowski space

	I Fermion-antifermion BSE: Kernel and numerics
	I.1 Non-singular contribution to the kernel
	I.1.1 Singular contribution

	I.2 Numerical methods
	I.2.1 Explicit removal of the theta and delta functions
	I.2.2 Basis expansion
	I.2.3 Eigenvalue equation for the Nakanishi weight functions

	I.3 Pion Decay Constant

	Folha de Registro do Documento

