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Resumo

Neste trabalho de tese realizamos primeiramente um estudo comparativo do equiĺıbrio

hidrostático de estrelas anãs brancas em diferentes abordagens, a saber, Newtonianas e

relativ́ısticas. Comparando os modelos obtivemos que a estrutura destas estrelas sofrem

efeitos tanto de Relatividade Geral quanto de Relatividade Restrita para massas acima

de 1,3M�, necessitando assim de uma abordagem estritamente relativ́ıstica. Consider-

amos a inclusão do efeito de campos elétricos para anãs brancas, para tal supomos uma

distribuição de carga superficial. Encontramos neste caso que a carga total necessária

para induzir efeitos na estrutura de anãs brancas é da ordem 1019−20C, cujos campos

elétricos de superf́ıcie E ∼ 1017−18V/m são majoritariamente abaixo do limite de campo

cŕıtico de Schwinger 1,3× 1018V/m. Neste caso, mesmo com campos elétricos abaixo do

valor de campo cŕıtico obtemos anãs brancas super-Chandrasekhar com massas da ordem

M ∼ 2M�, desta forma sendo compat́ıveis com as massas estimadas encontradas a par-

tir de observações de supernovas Ia. Consideramos também um modelo de extensão de

Relatividade Geral, no qual na Lagrangiana de Einstein-Hilbert o escalar de curvatura

é substitúıdo por uma função arbitrária do tipo f(R, T ), onde R e T são o escalar de

curvatura e o traço do tensor energia-momento, respectivamente. Mostramos, a partir da

nova equação de equiĺıbrio hidrostático para o funcional espećıfico f(R, T ) = R + 2λT ,

que a massa máxima de anãs brancas é alterada conforme variamos a magnitude do

parâmetro λ. Quanto maior a magnitude de λ estrelas maiores e mais massivas são encon-

tradas. Também encontramos para o modelo sugerido que as densidades centrais das anãs

brancas de massa máxima são bem menores que as densidades centrais encontradas em

Relatividade Geral e em outras teorias modificadas de gravidade. Investigamos também

algumas propriedades do gás de Fermi em D dimensões para mostrar que anãs brancas

são gravitacionalmente instáveis dada a presença de dimensões espaciais extras. Além

disso, mostramos que o campo elétrico induzido devido a fricção magnética em sistemas

binários de anãs brancas pode levar a uma emissão eletromagnética elevada para campos

B > 109G, o que poderia também afetar a evolução orbital de tais sistema binários.



Abstract

In this work we perform, initially, a comparative study of the hydrostatic equilibrium of

white dwarfs (WD) in different approaches, namely, Newtonian and general relativistic.

We obtain that the structure of these stars suffer effects from both special and general

relativistic corrections for stars with mass M > 1.3M�. We also consider the inclusion of

effects in the structure of WD from strong electric fields, for such we suppose a superficial

net charge distribution in those stars. We find that the total charge necessary to appreciate

considerable effects in the structure of WD is of the order of 1019−20C, whose electric

fields at the surface E ∼ 1017−18V/m are mostly below the Schwinger critical field limit

1.3×1018V/m. In this case, even with fields smaller than the critical one we obtain super-

Chandrasekhar WD masses in the order of ∼ 2M�, being in this way consistent with

estimated masses measured from supernova Ia observations. We consider also a modified

gravity model, in which in the Einstein-Hilbert Lagrangian the Ricci scalar is replaced

by an arbitrary function of the form f(R, T ), where R and T represent the Ricci scalar

and trace of the energy-momentum tensor, respectively. We showed from the hydrostatic

equilibrium, for the specific functional form f(R, T ) = R + 2λT , that the maximum

mass of WD is modified according to the variation of the parameter λ. The larger the

magnitude of λ the larger and more massive stars are found. We also find for the suggested

model that the maximum mass stars’ central densities are smaller than the ones obtained

in General Relativity and other modified theories of gravity. We investigated also some

properties of the D-dimensional Fermi gas to show that WD are gravitationally unstable

due the presence of extra spatial dimensions. Moreover, we showed that the electric field

induced by magnetic friction in double WD binaries can power a high electromagnetic

emission (for B > 109G) and it can also change the orbital evolution of the binaries.
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1 Introduction

White dwarf stars, object of study of this work, are stars that have their beginning in

the “death” of ordinary stars of up to 8 − 10M� (WOOSLEY; HEGER, 2015), here M�

represents the mass of the Sun. This “death” is determined by the gravitational collapse of

stars in the so called main sequence phase of evolution, such as the Sun. When this collapse

occurs we have an event named in the literature as supernova (WANG; WHEELER, 2008).

Since the matter that constitutes a white dwarf star is made up of “heavy” elements, such

as carbon and oxygen, fusion reactions do not occur in its interior as it happens in ordinary

stars (main sequence stars), consequently, there is no thermal pressure that supports the

star against the gravitational collapse (HILLEBRANDT; NIEMEYER, 2000).

Indeed, up to 1926, more than a decade after the first detection of a white dwarf, the

physical mechanism that supports such stars against gravitational collapse was unknown

(SHAPIRO; TEUKOLSKY, 1983). Only after the development of the Fermi-Dirac statis-

tics it was possible to understand that white dwarfs can withstand gravitational attraction

due to electron degeneracy pressure, which originates from the Pauli exclusion principle.

Chandrasekhar then theorized that white dwarf stars would be constituted by a

crystalline lattice of fully ionized ions immersed in a degenerate electron gas (CHAN-

DRASEKHAR, 1967). In case of total degeneracy - considering that the star has un-

dergone a long cooling process, i.e., irradiated its residual thermal energy mainly due to

neutrino emission - the star temperature is considered sufficiently small, such that T → 0,

and the star is supported mainly due degeneracy pressure. In this limiting case the de-

generacy pressure could sustain a mass of up to 1.44M�, the so-called Chandrasekhar

mass limit, which Chandrasekhar derived in the 1930s using the Newtonian theory of

gravitation (CHANDRASEKHAR; S., 1935).

Currently, there are no observations or concrete evidence of white dwarfs with masses

exceeding the Chandrasekhar limit, which makes this limit one of the most well-established

theoretical constraints in the field of astrophysics. In the Sloan Digital Sky Survey (SDSS)

catalog, which has several data of white dwarfs, both isolated and in binary systems,

as well as magnetized and nonmagnetized white dwarfs, the most massive white dwarf

quoted has a mass of 1.34M� and a rotation period of 725 seconds (KEPLER et al., 2017;
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KLEINMAN et al., 2013). In reference (VENNES et al., 1997) the most massive white

dwarf reported has a mass M = 1.41 ± 0.04M� and magnetic field B ∼ 109G. With

respect to the study of magnetized white dwarfs, the scientific community has shown

renewed interest in the subject, due to the increasing number of magnetic white dwarfs

observed and the possible description of soft gamma-ray repeaters (SGR) and anomalous

x-ray pulsars (AXP) as white dwarf pulsars with short rotation periods (in the order of

P ∼ 1 − 10 seconds) and high magnetic fields (B ∼ 1012−14G) (LOBATO et al., 2015;

MALHEIRO et al., 2011b; COELHO; MALHEIRO, 2014).

Magnetic white dwarfs have also been used as an attempt to explain some indi-

rect evidence of white dwarfs with mass above the Chandrasekhar mass limit (DAS;

MUKHOPADHYAY, 2013; DAS; MUKHOPADHYAY, 2014; FRANZON; SCHRAMM,

2015), or simply referred in the literature as super-Chandrasekhar white dwarfs (HOW-

ELL et al., 2006; HICKEN et al., 2007; YAMANAKA et al., 2009; SCALZO et al., 2010;

SILVERMAN et al., 2011; TAUBENBERGER et al., 2011; TANAKA et al., 2010). Those

evidence were the detection of type Ia supernovae1 with certain peculiar characteristics,

such as, low velocity curves and high luminosities. In several works those characteristics

are put forward as indicative that super-Chandrasekhar white dwarfs are the most likely

progenitors of such peculiar supernovae (HOWELL et al., 2006; TANAKA et al., 2010).

Supernova events are of great importance for the understanding of our universe. The

events SN1937C, SN1960F , SN1990N , SN1991T , among others, are used as standard

candles serving as a reference for carrying length measurements on cosmological scales, see,

for example, (BRANCH; TAMMANN, 1992) and references therein. In 1998 observations

of type Ia supernovae also led to the discovery that our universe is gradually expanding

faster (RIESS et al., 1998; PERLMUTTER et al., 1999).

The most accepted model currently describing the cosmological history of our universe

- including the current accelerated expansion phase - using General Relativity theory is

the ΛCDM (Cold Dark Matter) model, that associates this accelerated expansion of the

universe to a negative energy density, which in turn would be related to the zero point

energy. This energy responsible for such phenomena is commonly called in the literature

as dark energy (FRIEMAN et al., 2008). However, despite describing well our universe

on cosmological scales, the ΛCDM model has its flaws. The cosmological constant Λ -

often associated with vacuum energy - is not compatible with the values predicted by any

quantum field theory, the so-called “fine-tuning problem of the cosmological constant”, in

addition to having certain discrepancies with observational data, for example, the cosmic

microwave background anomalies (Del Popolo; Le Delliou, 2017).

In this sense new theories have been developed in attempt to solve such problems from

1Type Ia supernovae are the gravitational collapse of a white dwarf, probably due to mass accretion
of a companion star.
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the cosmological point of view, for example: the theory called modified Newton dynamics

(MOND) and extended theories of General Relativity. Extended theories of General Rela-

tivity (EGR) or modified theories of gravity are theories that have as their base the usual

general relativistic formulation, starting from the Einstein-Hilbert Lagrangian. However,

modifications in this Lagrangian are made in order to obtain new field equations that

describe the cosmological history of the universe without the need to introduce the con-

cepts of dark matter and dark energy. In addition, due to certain supernova observations

indicate the existence of super-Chandrasekhar white dwarfs, several theoretical models,

both in General Relativity and modified theories of gravity, were constructed in an at-

tempt to obtain white dwarfs with masses of the order of 2M�, thus being compatible

with observations.

In the scope of General Relativity, super-Chandrasekhar white dwarfs were obtained

by taking into account magnetic field effects (DAS; MUKHOPADHYAY, 2013; DAS;

MUKHOPADHYAY, 2014; FRANZON; SCHRAMM, 2015), rotation as a rigid body

(BOSHKAYEV et al., 2013; BOSHKAYEV et al., 2014), differential rotation (OSTRIKER;

BODENHEIMER, 1968) and electric field (LIU et al., 2014). In (LIU et al., 2014) white

dwarfs with a charge distribution in their interior were studied. Such a charge distribu-

tion was assumed to follow a linear relationship with the matter distribution ρe ∝ ρ. For

this distribution a total charge of the order of Q ∼ 1020 C was shown to be able to raise

the gravitational mass of the star up to about 3M�. In (LIU et al., 2014) the stability

condition via virial theorem was generalized by including the electric field energy, thus

demonstrating that charged white dwarfs are stable according to this theorem.

We will consider here that the charge distribution in a white dwarf is similar to a

charge distribution in a conductor, that is, the charge is considered to be concentrated on

the surface of the star. This assumption is reasonable given the fact that it is shown in

the literature that the greater the degree of degeneracy of matter the larger the thermal

and electrical conductivity (YAKOVLEV; URPIN, 1993; BAIKO; YAKOVLEV, 1995).

Therefore, we model the surface charge distribution as a Gaussian distribution on the

surface of the star ρe = ke
(r−R)2

b2 . We find in this case that the amount of charge required

to significantly change the gravitational mass of the star is in the range of 1020C. It is

important to note that this order of magnitude is the same found for several types of

distributions considered for neutron stars and quark stars (NEGREIROS et al., 2009;

RAY et al., 2003; ARBAÑIL et al., 2013; ARBAÑIL; MALHEIRO, 2015; JING et al.,

2015). Instability due to radial oscillations and the electric field screening caused by

vacuum polarization are discussed later in the present work.

Extended Theories of General Relativity have also recently been applied to white

dwarfs in order to theoretically predict the existence of super-Chandrasekhar white dwarfs

(DAS; MUKHOPADHYAY, 2015b; BANERJEE et al., 2017; JAIN et al., 2016; JING;
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WEN, 2016; DAS; MUKHOPADHYAY, 2015a; CARVALHO et al., 2017). At the same

time, due to the variety of observational data, white dwarfs can be used to restrict the

free parameters of these theories (see, for example, (JAIN et al., 2016; BANERJEE et al.,

2017)). In (JING; WEN, 2016) the authors obtained super-Chandrasekhar white dwarfs

for a Born-Infield type theory, as well as the restriction to the maximum value of the model

parameter according to observational data. Super-Chandrasekhar and sub-Chandrasekhar

white dwarfs were also obtained in the Starobinsky’s gravity (DAS; MUKHOPADHYAY,

2015b; DAS; MUKHOPADHYAY, 2015a). In (CARVALHO et al., 2017) we study the

effects of a specific model of modified theory of gravity on the structure of white dwarfs

in order to both restrict the free parameters of the theory and to analyze the possibility

of predicting stable super-Chandrasekhar white dwarfs.

In the next chapter, we will briefly review the equation of state used in this work.

In the chapter 3 we derive the field equations in order to obtain the hydrostatic equi-

librium equations for each approach we used. The solutions for the field equations are:

the Schwarzschild solution and the Reissner-Nordstrom solution, as well as the equilib-

rium equations related to these solutions, which are the Tolman-Oppenheimer-Volkof and

Bekenstein equations, respectively. In the chapter 3 we also derive the equilibrium equa-

tion for an object with spherical symmetry in a spacetime with arbitrary dimension D,

as well as derive the hydrostatic equilibrium equation for a modified theory of gravity,

namely, the f(R, T ) gravity. In chapters 4 and 5 we outline our results for white dwarfs

in the scope of General Relativity and f(R, T ) gravity, respectively. In chapter 6 we

introduce a model of electromagnetic emission in double white dwarf binary systems and

study its consequences for the evolution and gravitational wave emission of those binaries.

Finally, in chapter 7 we conclude and make a prognosis of our work in progress.



2 Review about the Equation of

State of White Dwarfs

Equation of state (EoS) plays a crucial role in determining the macroscopic properties

of compact stars, whether treating white dwarfs, neutron stars or quarks stars. Hydro-

static equilibrium solutions can be constructed if an EoS relating pressure and energy

density of the fluid constituting the star is provided. For white dwarfs, we can find in

the literature several EoS that take into account, for instance, magnetic field effects and

temperature effects (CHAMEL et al., 2013; CARVALHO et al., 2014).

One of the most seminal works about the white dwarf EoS was the work of Fowler

who first introduced the concept of degenerate stars (FOWLER, 1926). Following Fowler’s

work, Chandrasekhar in 1931 took into account relativistic effects for the EoS and showed

that white dwarf stars have a maximum mass value at which degeneracy pressure can

withstand and counterbalance gravity (CHANDRASEKHAR; S., 1931). The EoS derived

by Chandrasekhar is based on a relativistic formulation and the Fermi-Dirac quantum

statistic for an ideal gas.

Corrections due to electrostatic interactions between the gas particles were derived by

Salpeter for a zero temperature plasma (SALPETER; E., 1961). In a later study this EoS

was applied to the study of the macroscopic properties of white dwarfs in (HAMADA;

SALPETER, 1961), in which it was shown that the maximum mass of white dwarfs

depends in a non-trivial way not only on the ratio A/Z between mass number and atomic

number; as Chandrasekhar has shown; but also explicitly depends on the atomic number Z

of the constituent elements present in the white dwarf. The EoS derived by Chandrasekhar

and Salpeter, used hereinafter in this work, are discussed in the following sections.

2.1 Chandrasekhar Equation of State

As fermions, electrons obey the Fermi-Dirac statistis and its pressure is determined

almost solely by the Pauli exclusion principle. As an ideal gas in thermal equilibrium the
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number of electrons in the gas can be calculated as (PATHRIA, 1996)

N ≡
∑
E

f(E), (2.1)

where E represents energy, µ the chemical potential, kB is the Boltzman constant and T

is the temperature. The Fermi-Dirac distributions f(E) is

f(E) =
1

e(E−µ)/kBT + 1
. (2.2)

We can write Eq.(2.1) in its integral form and divide by the volume to obtain the

particle number density n as

n =
N

V
=

g

h3

∫
f(E)d3p, (2.3)

where h3 is the volume of a cell in the phase-space, and g is the spin-degeneracy factor

(g = 2s+ 1 for particles with mass and spin s).

For white dwarf stars that have undergone a long cooling process we can consider that

the Fermi energy EF is much larger than the thermal energy kBT , so that µ−mec
2 >>

kBT , where me is the electron mass and c is the speed of light.

Consequently, the Fermi-Dirac distribution function can be approximated by a step

function for the limit T → 0

f(E) =

{
1, para E ≤ µ,

0, para E > µ.
(2.4)

In this limiting case all energy levels up to the maximum level are fullfilled. As all

energy levels below the Fermi energy are fullfilled, we have by definition EF = µ. Using

(2.3) and (2.4) we have (PATHRIA, 1996)

N =

∫ EF

0

a(E)dE, (2.5)

where a(E) represents the density of states and it is given by (PATHRIA, 1996)

a(E)dE =
gV

h3
d3p. (2.6)
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Then substituting (2.6) into (2.5) we obtain the electron number density

n =

∫ pF

0

g

h3
d3p,

=
p3
F

3π2~3
. (2.7)

As the white dwarf is essentially composed of an ionic lattice immersed in the electron

gas we can calculate the mass density as a contribution only of the ions. This assumption

is valid once the nucleon mass is about a thousand times greater than the mass of the

electron. Then we have

ρ0 =
Nimi

V
, (2.8)

where Ni is the number of ions and mi its mass. The number of ions is

Ni =
Np

Z
(2.9)

where Z is the atomic number and Np is the proton number. The ion mass is

mi = mNA, (2.10)

where mN is the nucleon mass and A is the nucleon number of the ions. Replacing (2.9)

and (2.10) into (2.8), and assuming charge neutrality Np = Ne, we obtain

ρ0 =
NemNA

ZV
,

= nemN
A

Z
,

=
p3
F

3π2~3
mN

A

Z
, (2.11)

the ratio A/Z depends on the internal composition of the star. It is generally assumed

that the star is mainly constituted by elements, such as, 4He, 16O or 12C, hence A/Z = 2

(GLENDENNING, 2000).

On the other hand, since the ions are heavier than electrons their momentum are

negligible when compared to the degenerate electrons’ ones, in this case the energy density

can be calculated as

ε = ρc2 + εele(pF ),

= nmN
A

Z
c2 + εele(pF ). (2.12)
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The electron relativistic energy is

E(p) =
√
p2c2 +m2

ec
4. (2.13)

Hence, the electron energy density εele becomes

εele(p) =
2

(2π~)3

∫ pF

0

E(p)d3p,

=
1

π2~3

∫ pF

0

(p2c2 +m2
ec

4)
1
2p2dp, (2.14)

and making the change of variable x = p/mec, one find

εele(x) =
ε0
8

[
(2x3 + x)(1 + x2)1/2 − asenh(x)

]
, (2.15)

where ε0 is a constant that has the dimension of energy density and is defined as

ε0 =
mec

2

λ3
eπ

2
, (2.16)

being λe the electron Compton wavelength, therefore, ε0 can be physically interpreted as

the electron rest mass energy per wave packet.

The electron degeneracy pressure for zero temperature and isotropic moment distri-

bution can be written as

pe =
1

3

2

(2π~)3

∫ pF

0

pvd3p, (2.17)

this gives pressure as a moment flow, with the factor 1/3 coming from isotropy. The

electron relativistic velocity is

v =
pc2

E
, (2.18)

so the pressure becomes

pe =
1

3

2

(2π~)3

∫ pF

0

ppc2(p2c2 +m2
ec

4)−1/24πp2dp,

=
ε0
24

[
(2x3 − 3x)(1 + x2)1/2 + 3asenh(x)

]
. (2.19)

2.2 Salpeter Equation of State

2.2.1 Electrostatic Corrections

The nature of matter over the wide range of densities that is covered in white dwarfs

can vary largely due to several effects that may be important depending on the density
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regime, such as effects from Coulomb interactions between particles. Considering also that

the constitution of the white dwarf is largely determined by its progenitor star (LIEBERT,

1980; GLENDENNING, 2000), and that effects from Coulomb interactions depend on the

atomic number Z, the white dwarf structure will be affected by the evolution history of

its progenitor star.

At higher densities the atoms become progressively more ionized and the electrons

fill the empty spaces between them. So, the energy is minimized to a clustering of ionic

lattice immersed in the electron gas soup (GLENDENNING, 2000). Originally the idea

of the ionic lattice, applied in the form of Wigner-Seitz cells by Salpeter, was introduced

by Frenkel in (FRENKEL, 1928). This idea basically consists of consider a sphere (cell)

around each nucleus, and as an approximation the spheres do not interact with each

other since it is considered that each sphere has a quantity of electrons that neutralizes

it. It is possible to show that for each interaction energy between electron-electron and

electron-ion we have, respectively (GLENDENNING, 2000)

Ee−e =
3

5

Z2e2

R
, (2.20)

Ee−i = −3

2

Z2e2

R
, (2.21)

where R is the radius of the Wigner-Seitz cell that can be calculated from

ne =
Z

4

3
πR3

, (2.22)

summing equations (2.20) and (2.21) and dividing it by the atomic number Z, one can

calculate the electrostatic energy per electron as

EC
Z

= − 9

10

(
4π

3

)1/3

Z2/3e2n1/3
e . (2.23)

The thermodynamic pressure p = −∂E/∂V associated with the electrostatic interactions

becomes (SHAPIRO; TEUKOLSKY, 1983)

pC = n2
e

∂EC/Z

∂ne
,

= − 3

10

(
4π

3

)1/3

Z2/3e2n4/3
e . (2.24)

The pressure resulting from the Coulomb interaction is negative, which is a reasonable

result, since the attractive force between electrons and ions is greater than the electron-

electron interaction force, because on average the distance between electrons is greater
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than the distance between electrons and nuclei. As total pressure we have

pT = pe + pC , (2.25)

where pe is given by (2.19). We can use (2.7) to find the Coulomb pressure term as a

function of the parameter x, which is

pC = −3.802× 10−4 ε0Z
2/3x4. (2.26)

2.2.2 Inverse beta decay

With increasing density it is also possible to occur neutronization, in which the Fermi

energy of the electrons reaches a value where the process of capture of electrons by the

nuclei may start to happen. The main interest is to know for which values of density the

nuclei are still beta stable. This type of consideration was first analyzed in (SALPETER;

E., 1961), and, more recently, in several works such as (CHAMEL et al., 2013; CAR-

VALHO et al., 2014; OTONIEL et al., 2016).

Inverse beta decay becomes important with increasing energy density of the electrons,

A
ZX + e → A

Z−1Y + νe, (2.27)

the neutronization process is generally ignored, however, the higher the electron energy

density the greater the probability of the inverse beta decay to occur, since the condition

for decaying EF ≥ εZ can be satisfied , where εZ is the beta decay energy for electron

capture (taking into account only the kinetic energy) (SALPETER; E., 1961). For high

energy densities in which inverse beta decay may occur the star will gradually become

unstable and will collapse to a more dense state of matter in which it must be a mixture

of neutron rich nuclei, electrons, and neutrons.

The mass density threshold for the inverse beta decay according to (SHAPIRO; TEUKOL-

SKY, 1983) is

ρN =
µemN

3π2~3c3

(
ε2Z + 2mec

2εZ
)3/2

, (2.28)

the energy εZ is obtained experimentally and is listed in (CAMERON, 1957). For certain

nuclei, the density threshold for neutronization can be calculated from (2.28). The maxi-

mum stellar mass calculated from the equilibrium equations may have very high densities

in its center where inverse beta decay processes may occur. In this case, this process is

expected to decrease the electron number density in the star, which in turn would de-

crease the degeneracy pressure, consequently the star may have a stable maximum mass

configured by the neutronization threshold.
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2.3 Generalization of the Chandrasekhar Equation of

State for a D-dimensional space-time

Let’s consider the equation of state of an ideal fully relativistic degenerate Fermi gas

in the presence of extra dimensions, such that the energy density and particle number

density are written, respectively, as follows

ε =
g

(2π~)D−1

∫ kF

0

E(k)dD−1k,

=
g c (mc)DΩD−2

(2π~)D−1

∫ x
F

0

√
x2 + 1xD−2dx, (2.29)

ε(x
F
) = ε

(D)
0

xD−1
F 2F1(α, β;σ;−x2

F
)

D − 1
,

n =
g

(2π~)D−1

∫ kF

0

dD−1k,

=
ε

(D)
0

mc2

xD−1
F

D − 1
, (2.30)

where ε
(D)
0 = g c (mc)DΩD−2

(2π~)D−1 , α = −1/2, β = (D − 1)/2, σ = β + 1, xF = kF/mc, 2F1 rep-

resents the hyper-geometric function (“Hypergeometric Functions” in Handbook of Math-

ematical Functions with Formulas, Graphs, and Mathematical Tables (ABRAMOWITZ;

STEGUN, 1965, Ch. 15)), kF represents the Fermi momenta and E(k) is the relativistic

energy that depends on the rest mass of the fermion. It is worth to cite that the analytical

expression for the energy density Eq. (2.29) is a new expression to calculate the energy

density of a Fermi gas in the presence of extra dimensions, and it is the energy calculated

in respect to the vacuum since the integral goes from k = 0 to k = kF. The above relations

can be used to study white dwarfs and pure neutron stars once they can be modeled with

the Fermi gas equation of state. For D = 4, i.e., the usual four dimensional spacetime,

equations (2.29) and (2.30) give the standard Chandrasekhar EoS (CHANDRASEKHAR,

1964).

In the case of white dwarfs the contribution for the total energy density from ions can

be calculated by supposing local charge neutrality, such that, we have

εion = nmNµec
2, (2.31)

being mN the nucleon mass and µe the ratio between the atomic and baryon numbers.

The fluid pressure can be calculated from thermodynamics as
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p = n
dε

dn
− ε,

p =
g c (mc)DΩD−2

(2π~)D−1 (D − 1)

∫ x
F

0

xD√
x2 + 1

dx,

p(x
F
) = ε

(D)
0

xD+1
F 2F1(−α, σ;σ + 1;−x2

F
)

(D − 1)2
. (2.32)

The analytical expression above gives the degeneracy pressure of a D-dimensional free

relativistic Fermi gas, and it has been also obtained here for the first time. It is worth

to cite that although the energy density of the ions εion, to be non-negligible for the star

mass, it does not contribute for the thermodynamic pressure as one can check from (2.32).

From our assumptions the realization of extra dimensions imply that energy density

and pressure of the fluid are drastically changed depending on the number of dimensions

D of the space-time. The generalized energy density and pressure of an ideal Fermi gas

in D dimensions were casted into the form of Eqs. (2.29) and (2.32). The pressure versus

energy density is presented in Fig. 2.1 for different values of D showing that the pressure

decreases as the number of dimensions increase (the change of pressure in terms of D was

already discussed in the context of charged gravastars (GHOSH et al., 2017), see figure 1

of this reference).
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FIGURE 2.1 – Pressure as function of the energy density for fully degenerate relativistic
Fermi gas in D-dimensions. As one can see the pressure decreases as the number of
dimensions increase, which can be see also from Eqs. (2.37) and (2.38).

It is also possible to obtain a correlation between the sound velocity vs and the number

of space-time dimensions in the ultra-relativistic regime (when x >> 1 or k >> mc), which

is (vs
c

)2

=
1

D − 1
. (2.33)
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Another important limit is when the fermions are non-relativistic, which is character-

ized by x << 1 or k << mc, i.e., a limit of low particle energy. The above limits yield to

a simplification of the equation of state (EOS), thus being rewritten in an adiabatic form

p = Kργ, (2.34)

where γ is the adiabatic index, K is the proportionality constant and ρ represents the

mass density. In general, the adiabatic index can be rewritten as γ = 1 + 1/n, where

n is the so-called polytropic index. The generalized form in D-dimensions of the non

and ultra-relativistic approximations of the degenerate relativistic free Fermi gas can be

showed to be written, respectively as

p = Kρ
D+1
D−1 , (2.35)

p = Kρ
D
D−1 . (2.36)

Eqs. (2.35) and (2.36) provide, respectively, the well-known non and ultra-relativistic

limits p = Kρ5/3 and p = Kρ4/3, for the standard four dimensional space-time. We

highlight that this result is similar to that ones of (BECHHOEFER; CHABRIER, 1993)

which have used energy minimization and dimensional analysis.

It is worth noting that the above non and ultra-relativistic polytropic EOS limits, by

the first law of thermodynamics can be written always as a linear relation between the

pressure and the energy density p = (γ − 1)ε, that yields to,

p =
2

D − 1
ε, (2.37)

p =
ε

D − 1
, (2.38)

respectively, where ε is the energy density of the fermions. The first equation also gives

us the sound velocity in the non-relativistic regime as(vs
c

)2

=
dp

dε
=

2

D − 1
. (2.39)

Thus, comparing Eqs. (2.39) and (2.33) we conclude that in the non relativistic limit,

the value of the constant sound velocity in D-dimensions is always the double of the ultra-

relativistic one, because in the dispersion relation of the non-relativistic case the energy

is quadratic in the momentum and not linear as in the relativistic case.



3 Field Equations from a Variational

Principle

The Lagrangian formalism can be applied in several areas of physics, from the de-

scription of motion of particles in classical and quantum systems to the description of the

motion of astrophysical and astronomical systems. Therefore, in the following subsections

we use the Lagrangian formalism to derive the field equations. It is worth mentioning that

throughout this chapter we will use the CGS unit system where 4πε0 = 1, where ε0 is the

vacuum permittivity constant, together with the natural unit system, where c = G = 1.

3.1 General Relativity

The General Relativity theory (GR) formulated by Einstein in 1916, as well as any

other classical field theory, can be derived from a Lagrangian formalism. The Lagrangian

formulation of the Einstein field equations was performed by Hilbert and consists of the

development of a Lagrangian density that describes the gravitational field as

δs = δ

∫
d4xL = 0. (3.1)

In the absence of matter the Lagrangian is represented only by the curvature scalar,

so we have L =
√
−gR, where R is the curvature scalar and g is the determinant of the

metric tensor gµν . Our notation of tensor indices will always follow the pattern: Latin

indices are representative only for spatial coordinates and Greek indices for space-time.

Taking the variation of the action we obtain

δs = δ

∫
d4x
√
−gR =

∫
d4x

(√
−gRµνδg

µν +
√
−ggµνδRµν + gµνRµνδ

√
−g
)
, (3.2)

where in (3.2) we adopt the Einstein’s sum convention and Rµν is the Ricci tensor.

Since the Ricci tensor can be set as Rµν = ∇αΓαµν −∇νΓ
α
µα, where Γαµν represent the
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Christoffel symbols, the equation (3.2) becomes

δs = δ

∫
d4x
√
−gR =∫

d4x
(√
−gRµνδg

µν +
√
−ggµν

(
∇αδΓ

α
µν −∇νδΓ

α
µα

)
+ gµνRµνδ

√
−g
)
, (3.3)

taking into account that the metric gµν commutes with the covariant derivative ∇ν , we

obtain for the second term of (3.2)

√
−ggµνδRµν =

√
−g
(
∇α(gµνδΓαµν)−∇ν(g

µνδΓαµα)
)

(3.4)

=
√
−g
(
∇α(gµνδΓαµν)−∇α(gµαδΓνµν)

)
(3.5)

=
√
−g∇αJ

α, (3.6)

where in (3.6) we define Jα = gµνδΓαµν−gµαδΓνµν , being ∇αJ
α the divergence of the vector

field J , we can use the Stokes theorem∫
d4x
√
−g∇αJ

α =

∫
d4x
√
−g∂αJα =

∫
dΣα

√
−gJα = 0, (3.7)

where dΣα represents the hyper-surface of d4x. Since this hyper-surface is set at infinity we

can assume that the contribution of the vector field Jα is zero for the boundary condition

of dΣ, such that the term proportional to δRµν can be neglected (D’INVERNO, 1992).

In this case we obtain for the variation of the action

δs =

∫
d4x

(√
−gRµνδg

µν + gµνRµνδ
√
−g
)
. (3.8)

Now considering that the variation δg can be given by δg = ggµνδgµν (D’INVERNO,

1992), we have

δs =

∫
d4x

(√
−gRµνδg

µν − gµνRµν
1

2
√
−g

δg

)
(3.9)

=

∫
d4x

(√
−gRµνδg

µν −R 1

2
√
−g

ggµνδgµν

)
(3.10)

=

∫
d4x

(√
−gRµνδg

µν +R 1

2
√
−g

(−g)gµνδgµν

)
(3.11)

=

∫
d4x

(√
−gRµνδg

µν +R
√
−g
2

gµνδgµν

)
(3.12)

=

∫
d4x

(√
−gRµνδg

µν −R
√
−g
2

gµνδg
µν

)
(3.13)

=

∫
d4x
√
−g
(
Rµν −R

1

2
gµν

)
δgµν = 0 (3.14)
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where we use the following properties gµν = gνµ and δ(gµνgµν) = δ(δµµ) = 0, where δαγ is

the Kronecker Delta. From (3.14) we obtain the gravitational field equation for vacuum

as

Rµν −
1

2
gµνR = 0. (3.15)

Considering now that the Lagrangian has a source term Lm

s =

∫
d4x
√
−g
(
R

16π
+ Lm

)
, (3.16)

and that the derivative of the action satisfies the relation

δs =

∫
d4xΣi

(
δs

δφi
δφi
)
, (3.17)

we can take the variation of s with respect to the metric and divide it by
√
−g to obtain

1√
−g

δs

δgµν
=

∫
d4x

[
1

16π

(
Rµν −

1

2
gµνR

)
+

1√
−g

δ(
√
−gLm)

δgµν

]
= 0, (3.18)

and introducing the definition of the energy-momentum tensor

Tµν ≡ −
2√
−g

δ(
√
−gLm)

δgµν
(3.19)

we obtain the field equations of General Relativity as

Rµν −
1

2
gµνR = 8πTµν . (3.20)

3.1.1 Schwarzschild Solution

The most widely used exact solution of (3.20) is the Schwarzschild one. This solution

describes the space-time around a spherically symmetry static object. Below we will make

a very strict derivation of this solution.

To derive the Schwarzschild solution we assume that the metric is given by

ds2 = Adt2 −Bdr2 − Cr2dθ2 −Dr2sen2θdφ2, (3.21)

and that due to spherical symmetry the coefficients A and B can be considered as a

function of only the radial coordinate r, and also that C = D = 1.

Given the arbitrariness of referential we can rewrite the metric in its canonical form

as

ds2 = eνdt2 − eλdr2 − r2dθ2 − r2sen2θdφ2, (3.22)
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where ν and λ are functions of the radial coordinate r.

Assuming that the definition of the energy-momentum tensor (3.19) allows us to de-

scribe a perfect fluid, i.e., that the matter Lagrangian is such that we can write Tµν as

Tµν = (p+ ρ)uµuν − pgµν , (3.23)

where p and ρ represent the pressure and energy density of the fluid, respectively, and uξ

is the fluid four-velocity.

Taking now the Einstein-Hilbert field equations (3.20), its components tt and rr be-

comes, respectively

e−λ

r2
(eλ + λ′r − 1) = 8πρ, (3.24a)

e−λ

r2
(eλ − ν ′r − 1) = −8πp, (3.24b)

where the comma represents derivative with respect to the radial coordinate.

We can rewrite (3.24a) as

d

dr

(
r − re−λ

)
= 8πρr2, (3.25)

and integrating (3.25) we obtain

eλ =
1(

1− 2m
r

) , (3.26)

where we define the gravitational mass m(r) as

m =

∫ r′

0

4πr2ρdr. (3.27)

Given the arbitrariness of the upper limit of integral in (3.27) we can interpret the gravi-

tational mass m(r) as the mass contained within a sphere of radius r′, i.e., this solution for

the metric coefficient grr is valid for both the interior and exterior of the object. However,

in the absence of sources, we obtain by subtracting (3.24a) from (3.24b)

(λ+ ν)′ = 0, (3.28)

or simply

λ+ ν = 0. (3.29)
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Finally we obtain the external Schwarzschild solution as

ds2 =

(
1− 2M

r

)
dt2 − 1(

1− 2M
r

)dr2 − r2dθ2 − r2sen2θdφ2, (3.30)

where M is the total mass of the object.

3.1.2 Tolman-Oppenheimer-Volkoff Equation

Tolman, Oppenheimer and Volkoff derived the general relativistic corrections for the

hydrostatic equilibrium equation of an object with spherical symmetry (TOLMAN, 1939;

OPPENHEIMER; VOLKOFF, 1939).

Knowing that the covariant divergence of the Einstein tensor Gµν = Rµν − 1
2
Rgµν is

null due to geometric properties (D’INVERNO, 1992), i.e., ∇µGµν = 0, we obtain directly

that

∇µTµν = 0. (3.31)

Using the energy-momentum tensor for a perfect fluid and choosing ν = 1, we find (more

details, see appendix A)

p′ = −(p+ ρ)
ν ′

2
. (3.32)

Using (3.24b) and (3.26) one can eliminate ν ′ and after some algebra obtain

p′ = −mρ
r2

[
1 +

p

ρ

] [
1 +

4πr3p

m

] [
1− 2m

r

]−1

, (3.33)

The above equation is often called Tolman-Oppenheimer-Volkoff (TOV) equation, in

honor to its authors. The terms in brackets are exclusively terms derived from GR and

their effects on the structure of white dwarfs will be described in detail in the next chap-

ter. The TOV equation can be solved if coupled to the diferential form of (3.27), and for

a given EoS.

3.1.3 Reissner-Nordström Solution

The electromagnetic energy-momentum tensor is described by

Tµν = (ρ+ p)uµuν − pgµν +
1

4π

(
−F γ

µ Fνγ +
1

4
gµνFγβF

γβ

)
, (3.34)

being F µγ the Faraday-Maxell tensor, defined as Fµν ≡ ∂µAν − ∂νAµ, being Aµ the four-

vector potential.

The metric is again written in its canonical form (3.22) and the field equations are
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often called Einstein-Maxwell field equations.

For an electrically charged, static particle placed at the origin of the coordinate system

the Faraday-Maxwell tensor Fµν will be given by

Fµν = E(r)


0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 , (3.35)

being E(r) the electric field. Eq.(3.35) above is obtained from an ansatz that is after

showed to work (see section 12.4 of (D’INVERNO, 1992)).

For vacuum the covariant derivative of the Faraday-Maxwell tensor is ∇µF
µν = 0,

which gives us by using (3.22) and taking the indice ν = 0 (see appendix A)

d

dr

(
e−

1
2

(ν+λ)r2E
)

= 0, (3.36)

and integrating we obtain

E = e
1
2

(ν+λ)ε/r2, (3.37)

where ε is an integration constant. For the asymptotic conditions limr→∞ν, λ → 0 the

electric field becomes

E =
ε

r2
, (3.38)

and now we identify the quantity ε as the charge Q of the object.

Again in the absence of sources we have ν ′+λ′ = 0, and, using (3.37), we can find the

component θθ of the field equations as

d

dr
(reν) = 1− Q2

r2
, (3.39)

which integrating gives us

eν = 1− 2M

r
+
Q2

r2
, (3.40)

where M is an integration constant and it is introduced, such that, this solution can be

reduced to the Schwarzschild one (3.40). From ν = −λ we obtain the exterior Reissner-

Nordström solution as

ds2 =

(
1− 2M

r
+
Q2

r2

)
dt2 +

1(
1− 2M

r
+ Q2

r2

)dr2 + r2dΩ2, (3.41)

where M and Q represent the total mass and total charge of the object, respectively.
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3.1.4 Bekenstein Equation

Similar to the Schwarzschild solution the metric coeficient eλ can be supposed to be

given such as (3.40)

eλ =

(
1− 2m

r
+
q2

r2

)−1

, (3.42)

with m and q representing now the mass and charge within a sphere of radius r, respec-

tively. The covariant derivative of the Faraday-Maxwell tensor now is ∇µF
µν = 4πjν ,

which gives, for the indice ν = 0

∇1F
10 =

d

dr

(
Ee−(λ+ν)/2r2

)
= 4πr2e(λ+ν)/2j0, (3.43)

and by considering the charge density to be ρe = uµj
µ = eν/2j0, we obtain the electric

field F10 = E, as

E =
e(λ+ν)/2q

r2
, (3.44)

where q ≡
∫

4πr2eλ/2ρedr.

The energy-momentum tensor becomes,

Tµν = diag
(
eν(ρ+ E2

c /8π), eλ(−p+ E2
c /8π), r2(−p− E2

c /8π), r2 sin2 θ(−p− E2
c /8π)

)
,

(3.45)

where Ec = q/r2. Using (3.45) the tt and rr components of the field equations become,

respectively

e−λ

r2
(eλ + λ′r − 1) = 8π

(
ρ+

E2
c

8π

)
, (3.46a)

e−λ

r2
(eλ − ν ′r − 1) = −8π

(
p− E2

c

8π

)
, (3.46b)

From the conservation of the energy-momentum tensor ∇µT
µν = 0 we have

dp

dr
= −(p+ ρ)

ν ′

2
+

q

4πr4

dq

dr
. (3.47)

Replacing (3.42) into (3.46a) and using (3.46b) and (3.47) we can finally obtain the
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equilibrium equations for the charged case as

dq

dr
= 4πρer

2eλ/2, (3.48)

dm

dr
= 4πr2ρ+

q

r

dq

dr
, (3.49)

dp

dr
= −(p+ ρ)

(
4πrp+

m

r2
− q2

r3

)
eλ +

q

4πr4

dq

dr
, (3.50)

dφ

dr
= − 2

(p+ ρ)

dp

dr
+

2q

4πr4(p+ ρ)

dq

dr
. (3.51)

3.1.5 Field equations for a D-dimensional space-time with spher-

ical symmetry

In a spherical D-dimensional matter distribution, with energy density ε and radial

pressure p, the space-time line element is represented as (KRORI et al., 1988)

ds2 = ea(r)dt2 − eb(r)dr2 − r2dΩ2
D−2, (3.52)

where

dΩ2
D−2 = dθ2

1 + sin2 θ1dθ
2
2 + · · ·+ sin2 θ1 · · · sin2 θD−3dθ

2
D−2

is the line element on the SD−2-sphere, with x0 = t and xi = ~r in D − 1-dimension, with

domain (WOLF, 1991).

0 ≤ r <∞ (3.53)

0 ≤ θi ≥ π (3.54)

0 ≤ φ < 2π, (3.55)

The Einstein equations are

Gµν = κTµν , (3.56)

where κ = (D−2)
(D−3)

ΩD−2GD is the coupling constant (LEMOS; ZANCHIN, 2008), being GD

the generalized Newton’s constant and ΩD−2 the surface area of a unit sphere in the D−1

dimensional space, which is given by

ΩD−2 =
2π

D−1
2

Γ
(
D−1

2

) . (3.57)

The energy-momentum tensor is given by (3.23), but here uµ represents the D-velocity

of the fluid.

Considering the above metric (3.52) the field equations are (WOLF, 1991; HARKO,
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1992)

(D − 2)b′eb

2r
− (D − 2)(D − 3)(e−b − 1)

2r2
= κε (3.58)

(D − 2)a′eb

2r
+

(D − 2)(D − 3)(e−b − 1)

2r2
= κp (3.59)

e−b
[
a′′

2
+
a′2

4
− a′b′

4
+

(D − 2)(a′ − b′)
4r

]
+

(D − 3)(D − 4)(e−b − 1)

2r2
= κp. (3.60)

as before primes indicate derivatives with respect to r.

The D-divergence of Tµν leads to

a′ = − 2p′

ε+ p
. (3.61)

Equation (3.58) can be integrated to give

e−b = 1− 2κ

(D − 2)(rD−3)

∫ r

0

εrD−2dr. (3.62)

The mass within a hypersphere of radius r, in a D − 1 dimensional space, is defined

as follows

m = ΩD−2

∫ r

0

εrD−2dr, (3.63)

such that, Eq. (3.62) becomes

e−b = 1− 2κm

(D − 2)ΩD−2rD−3
. (3.64)

For D = 4 one obtain from (3.64) the standard interior solution for e−b, thus consistent

with the four dimensional case.

Isolating a′ and replacing it into (3.61) one can obtain the hydrostatic equilibrium

equation as

dp

dr
= −

κ(ε+ p)
[
prD−1 + (D − 3) m

ΩD−2

]
(D − 2)rD−2

[
1− 2κm

(D−2)ΩD−2rD−3

] , (3.65)

such that for D = 4 the usual Tolman-Oppenheimer-Volkoff (TOV) equation is recovered.

As we saw, there is no restriction in the field equations to have compact star in higher

dimensions, everything that we need is to specify the matter-energy content to solve the

system.

From (3.65) we can note the necessity of the inclusion of GD by dimensional analyses.
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More clearly, one can note that GD may be rewritten as

GD = lD−4G, (3.66)

which means G4 = G, G5 = lG, G6 = l2G, and so on, being l a free parameter that has

dimension of length. According to (ZWIEBACH, 2009) l is related to the scale of the

extra dimensions to be considered.

3.2 f (R, T ) Gravity

Proposed by Harko et al. (HARKO et al., 2011), the f(R, T ) gravity is a generalization

of the f(R) theories (check, for instance, (NOJIRI; ODINTSOV, 2011)). Its gravitational

action depends on an arbitrary function of both the Ricci scalar R and the trace of the

energy-momentum tensor T . The dependence on T is inspired by the consideration of

quantum effects (Lobato et al., 2018).

The f(R, T ) action reads (HARKO et al., 2011)

s =

∫
d4x
√
−g
[
f(R, T )

16π
+ Lm

]
. (3.67)

In (3.67), f(R, T ) is the general function of R and T .

The field equations of the theory are obtained by varying the action with respect to

the metric gµν (HARKO et al., 2011) (see also appendix A), yielding

fR(R, T )Rµν −
1

2
f(R, T )gµν + (gµν�−∇µ∇ν)fR(R, T ) =

8πTµν − fT (R, T )(Tµν + Θµν), (3.68)

where

fR(R, T ) ≡ ∂f(R, T )

∂R
, fT (R, T ) ≡ ∂f(R, T )

∂T
, (3.69)

Θµν ≡ gαβ
δTαβ
δgµν

, Tµν = − 2√
−g

∂(
√
−gLm)

∂gµν
. (3.70)

Still in Equation (3.68) above, Rµν represents the Ricci tensor, �=∇µ∇µ is the D’Alembertian

and ∇µ is the covariant derivative.

From the contravariant derivative of the field equation (3.68), one obtains (ALVARENGA
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et al., 2013; BARRIENTOS; RUBILAR, 2014) (again, see also appendix A)

∇µTµν =
fT (R, T )

8π − fT (R, T )

[
(Tµν + Θµν)∇µ ln fT (R, T )− 1

2
gµν∇µT +∇µΘµν

]
. (3.71)

We will consider the energy-momentum tensor of a perfect fluid given by (3.23). The

energy-momentum tensor and the conditions aforementioned imply that

Lm = −p, (3.72)

Θµν = −pgµν − 2Tµν . (3.73)

In order to obtain exact solutions in the f(R, T ) theory, it is necessary to consider

a specific form for the function f(R, T ). Following a previous work (MORAES et al.,

2016), we will consider the functional form f(R, T ) = R + 2 f(T ) with f(T ) = λT and

λ a constant. Such a functional form has been broadly applied in f(R, T ) models (AL-

VARENGA et al., 2013; MORAES, 2014; MORAES, 2015; SHAMIR, 2015; MORAES;

SANTOS, 2016) and allows the recovering of GR by simply taking λ = 0.

By considering f(R, T ) = R+ 2λT in Eqs. (3.68) and (3.71), it follows that

Gµν = 8πTµν + λ[T gµν + 2(Tµν + pgµν)], (3.74)

∇µTµν = − 2λ

8π + 2λ

[
∇µ(pgµν) +

1

2
gµν∇µT

]
, (3.75)

with Gµν in Eq. (3.74) representing the usual Einstein tensor.

3.2.1 Stellar structure equations in f(R, T ) gravity

The line element used to describe spherical objects in the f(R, T ) gravity is written

once again as

ds2 = ea(r)dt2 − eb(r)dr2 − r2(dθ2 + sin2 θdφ2), (3.76)

where (t, r, θ, φ) are the Schwarzschild-like coordinates and the exponents a(r) and b(r)

are functions of the radial coordinate r.

Considering the space-time metric (3.76) in the field equation (3.74) we obtain

e−b

r2

(
b′r + eb − 1

)
= 8πρ+ λ(3ρ− p), (3.77)

−e
−b

r2

(
a′r − eb + 1

)
= −8πp+ λ(ρ− 3p), (3.78)

e−b

4r

((
a′b′ − 2a′′ − a′2

)
r + 2(b′ − a′)

)
= −8πp+ λ(ρ− 3p), (3.79)
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in which primes (′) indicate derivatives with respect to r.

By integrating (3.77) one can obtain

e−b = 1− 2m

r
. (3.80)

where the gravitational mass is given by

m =

∫ r

0

(
4πρr2 +

λ

2
(3ρ− p)r2

)
dr, (3.81)

for which the function m = m(r) represents the gravitational mass enclosed in a surface

of radius r according to the f(R, T ) gravity.

An additional equation is derived from (3.75) and reads

dp

dr
+ (ρ+ p)

a′

2
= − λ

8π + 2λ
(p′ − ρ′). (3.82)

Considering the relation ρ = ρ(p) and Eqs. (3.78) and (3.80) in (3.82), the hydrostatic

equilibrium equation for the f(R, T ) = R + 2λT gravity is obtained as

dp

dr
= −(p+ ρ)

[
4πpr +

m

r2
− λ(ρ− 3p)r

2

](
1− 2m

r

)−1

×[
1 +

λ

8π + 2λ

(
1− dρ

dp

)]−1

. (3.83)

It is quite simple to recover the usual TOV equation (TOLMAN, 1939; OPPEN-

HEIMER; VOLKOFF, 1939) in (3.83) by making λ = 0.

We remark that stellar equilibrium configurations are found only for:

λ

8π + 2λ

(
1− dρ

dp

)
> −1. (3.84)

If Eq.(3.84) is not satisfied, the sign of the pressure gradient is changed, what makes the

pressure to grow up from the center of the star to its surface, instead of decreasing, which

is necessary for the star hydrostatic equilibrium. Since the sound velocity v2
s = dp/dρ

is in the interval 0 < dp/dρ < 1, |dρ/dp| becomes much larger than unity, thus we can

rewrite (3.84) as
λ

8π + 2λ
<
dp

dρ
. (3.85)

Considering that dp/dρ tends to zero at the surface of the WD, we have from (3.85) that

only negative values for λ are allowed.



4 White Dwarfs in General

Relativity

Usually white dwarfs are not considered as a“laboratory”of test for strong field regime.

However, general relativistic effects were not negligible in the case of massive white dwarfs

and white dwarfs with strong magnetic fields (BERA; BHATTACHARYA, 2014; WEN

et al., 2014; CARVALHO et al., 2017; CARVALHO et al., 2016). In particluar, in (WEN

et al., 2014) it was shown that general relativistic effects tend to reduce the maximum

stable mass of highly magnetized WD. Chandrasekhar and Tooper have also shown that

the general relativistic stability criteria changes the maximum stable mass. Those general

relativistic effects predict by Chandrasekhar yields also to different values of minimum

radius as showed in (CARVALHO et al., 2017), and these effects on the radius are im-

portant, because in the relativistic case the minimum radius predicted by the General

Relativity is about three times greater than in the Newtonian case. Therefore, we show

below our results of a comparative study between the stellar structure derived by Newto-

nian and general relativistic calculations (details about the mathematical formalism see

(CARVALHO et al., 2018)), details about the equations of state and Newtonian equi-

librium equations can be consulted in (CHANDRASEKHAR, 1967; CARVALHO et al.,

2018).

4.1 Comparison between Newtonian and general rel-

ativistic cases

Using several values of central pressure pc we construct the mass-radius and mass-

central density relations which are shown in Fig. 4.1. From Fig. 4.1 it can be seen that

the purely Newtonian case does not have the secular instability ∂M/∂R > 0 (more de-

tails, see (CHANDRASEKHAR; TOOPER, 1964; HERRERA, 2003; PENROSE, 2002;

KNUTSEN, 1988)), while in the special relativistic (SR) case - i.e., including the relativis-

tic energy of the degenerate electrons for the EoS - presents instability when the electrons

are highly relativistic. This aspect is easier to see in Fig. 4.2, where we highlight the region
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FIGURE 4.1 – a) Mass-radius relation and b) mass-central mass density relation for gen-
eral relativistic and Newtonian cases. In both plots the solid black line represents the
outcomes for general relativistic WD, the dashed-dotted magenta line represents New-
tonian results with special relativistic corrections and the dashed gray line represents
the Newtonian results. It is also displayed in a) the non-relativistic mass-radius relation
(dotted orange line), in which M ∝ 1/R3.

of massive WD for the mass-radius relation. We also display in Fig. 4.2 the observational

data of the most massive white dwarf (M = 1.41M�±0.04) found in literature (VENNES

et al., 1997).

From Fig. 4.2 it is worth to note that GR does not affect greatly the maximum mass,

rather it diminishes the maximum stable mass a few percents ∼ 3% (see also Tab. 4.1).

However, it is worthwhile to cite that the minimum radii, i.e., the radii corresponding

to the predicted maximum masses, are very different. For instance, the minimum radius

predicted by general relativistic calculations is about three times larger than Newtonian
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FIGURE 4.2 – Mass-radius relation of massive WD. The curves follow the same repre-
sentation as in Fig. 4.1. The full blue circles mark the maximum masses. The dotted red
line represents the measured mass of the most massive white dwarf (M = 1.41M�± 0.04)
found in literature (VENNES et al., 1997) and the shaded orange region corresponds to
its estimated error.

TABLE 4.1 – Maximum mass and minimum radius for the static models of WD stars.

Model Mass/M� Radius(km)
Newtonian P = P (ρ) 1.4546 329
Special Relativity (SR) P = P (ε) 1.4358 739
General Relativity (GR) P = P (ε) 1.4154 1021
Non-relativistic Newtonian P = Kρ5/3 1.4564 7833

ones (see Tab. 4.1). Similar results can be found in (CARVALHO et al., 2015; CARVALHO

et al., 2015; CARVALHO et al., 2016; CARVALHO et al., 2017).

4.1.1 Fixed total star mass

From Fig. 4.2 it can also be seen that for a fixed total star mass between 1.3−1.415M�

the values of radii are very sensitive depending on the case. Tab. 4.2 shows the calculated

radii for several values of total mass from Newtonian and general relativistic calculations.

Tab. 4.3 presents the values of central mass density for some values of fixed total mass

for the three cases, in which we can see that the GR central densities are larger than the

one obtained from Newtonian calculations. In Fig. 4.3 we show, for a fixed total mass

of M = 1.415M�, the profiles of mass, gradient of pressure and energy density for the

three cases. We remark from Fig. 4.3, that in order to obtain the same total mass in
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TABLE 4.2 – Corresponding radii to fixed total star masses in Newtonian and general
relativistic cases. RNewton means the radius predicted by Newtonian case, RSR is the
radius given by special relativistic case, and RGR is the radius calculated in the general
relativistic case and the RNR is the radius supplied by non-relativistic approximation,
where the mass follows the relation M/M� ∝ 1/R3.

Mass/M� RNewton(km) RSR(km) RGR(km) RNR(km)
1.300 3241 3222 3185 8140
1.312 3107 3081 3030 8114
1.325 2969 2937 2878 8087
1.338 2823 2788 2724 8062
1.351 2671 2633 2562 8036
1.364 2509 2467 2384 8011
1.376 2336 2286 2179 7986
1.389 2148 2085 1942 7961
1.402 1942 1859 1656 7937
1.415 1708 1595 1145 7913

TABLE 4.3 – Corresponding central mass densities to fixed total masses in Newtonian
and general relativistic cases. ρNewton

C means the central density achieved in Newtonian
case, ρSR

C is the central density given by SR case, ρGR
C is the central density found for the

general relativistic case.

Mass/M� ρNewton
C (g/cm3) ρSR

C (g/cm3) ρGR
C (g/cm3)

1.376 3.76× 108 9.85× 108 1.91× 109

1.389 2× 109 2.05× 109 2.28× 109

1.402 2.28× 109 2.82× 109 4.51× 109

1.415 4.08× 109 5.05× 109 1.61× 1010

all cases the structure of the stars are very distinct. From Fig. 4.3 we can note that in

general relativistic case the energy density in the central region of the star is larger than

in Newtonian cases. This effect at same time makes the WD’s mass more concentrated at

the star center and the pressure gradient to decay more sharply for the general relativistic

calculations. One can calculate the Newtonian gravitational field as

gNewton = −Gm
r2

, (4.1)

and the general relativistic gravitational field is gGR = −φ′/2 (see Eq.(3.32)), thus we

have

gGR = −Gm
r2

[
1 +

4πr3p

mc2

] [
1− 2Gm

c2r

]−1

. (4.2)

Fig. 4.4 displays the gravitational fields of the stars with total mass 1.415M� as a
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FIGURE 4.3 – From top to bottom: a) mass profiles, b) energy density profiles and
c) gradient of pressure profiles. All profiles correspond to a fixed total star mass of
M = 1.415M�.

function of radial coordinate, we can note that the gravitational fields are initially very

different, however, outside the star the fields match each other, thus implying that the

gravitational field outside the star can be regarded as Newtonian. In addition, inside the
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star, where the gravitational fields are very different, it can be observed that there is a

deviation of about ∼ 200% between the correspondent highest values of the gravitational

field (the minima of the curves in Fig. 4.4), this is due to the very different central densities

of the three cases (see Tab. 4.3 and Fig. 4.3b). In particular, the central density ρGR
C is

about 4 times larger than ρNewton
C , for the fixed total mass of 1.415M�. We also display

in Fig. 4.5 the gravitational potentials of WD with total mass M = 1.415M�, from which

we can note a fairly difference between them.
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FIGURE 4.4 – General relativistic and Newtonian gravitational fields as a function of
radial coordinate for a fixed total star mass of 1.415M�.
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FIGURE 4.5 – General relativistic and Newtonian gravitational potentials as a function
of radial coordinate for a fixed total star mass of 1.415M�.

In Fig. 4.6 we show for the same mass of 1.415M� the general relativistic gravitational
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FIGURE 4.6 – General relativistic gravitational fields as a function of radial coordinate
for a total mass of 1.415M�, calculated with and without correction terms.

field, calculated in three different ways: with all corrections terms, with no curvature term

and without any correction term. A priori, from the Fig. 4.6 the correction terms seem to

be not relevant at all, however, they yield to the important effect observed in the case of

fixed total masses, thus allowing larger densities near to the center of the star r < 300km

(see Fig. 4.3b).

4.1.1.1 Radius relative difference

Henceforth, in the present work we compare just the results of the purely Newtonian

case (i.e., without special relativistic corrections) with the general relativistic outcomes

for the equilibrium configurations of WD. For this purpose, we firstly define the quantity

∆R =
RNewton −RGR

RGR

, (4.3)

being RNewton and RGR the radii given, respectively, by the Newtonian and general rela-

tivistic cases. Therefore, ∆R means the relative difference between the values of radii for

fixed total masses.

In Fig. 4.7 we plot the quantity ∆R for some values of fixed total mass between

1.3 − 1.415M�. We can see that this quantity increases very fast when approaching

1.41M�. In fact, when the mass is about 1.41M� we can see that the relative difference

in radius is nearly 50%. It is worth to mention that the relative difference in radius is

about 37% for a mass of exactly 1.41M�, i.e., the measured mass of the white dwarf

EUV E J 1659 + 440 (VENNES et al., 1997).
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FIGURE 4.7 – Radius relative difference ∆R versus fixed total star mass.

4.1.1.2 Surface Gravity

It is worth to study the general relativistic effects on the surface gravity of the stars

since this quantity can be observationally found. We calculate the surface gravity g in a

Newtonian framework as

gNewton = −GM
R2

. (4.4)

To calculate the general relativistic surface gravity we use the expression given by (R.

ADLER, 1975; JI et al., 2008)

g = −
(
GM

R2

)
1

1− 2GM
c2R

, (4.5)

in which is merely Eq.(4.2) for the case of zero pressure.

Using the values of Tab. 4.2 we calculate the Newtonian surface gravity and general

relativistic surface gravity. In Fig. 4.8 is plotted the surface gravity against fixed total

masses together with the observational data of the white dwarf EUV E J 1659 + 440. It

is easy to see that using Newtonian results we are sub-estimating the surface gravity of

the stars in comparison with general relativistic outcomes.

4.1.1.3 Surface gravity relative difference

Since the values for general relativistic surface gravity are much higher than Newtonian

ones we define the quantity

∆g =
gNewton − gGR

gGR

. (4.6)
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FIGURE 4.8 – Surface gravity versus fixed total star mass. The dotted red line is the
measurement of mass of the most massive white dwarf (EUV E J 1659 + 440) found in
literature (VENNES et al., 1997) and the shaded orange region is its estimated error.
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FIGURE 4.9 – Relative difference between Newtonian surface gravity and general rela-
tivistic surface gravity against fixed total star mass.

The relative difference ∆g is shown in Fig. 4.9. It is interesting to note that in Fig. 4.9,

for a mass of 1.415M�, we have about 55% of relative difference for the values of surface

gravity.
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TABLE 4.4 – Values of the constants for the analytic mass-radius relations.

Model a [km] b c
[
km−1

]
d
[
km−2

]
µe = 2 20.86 0.66 2.48× 10−5 2.43× 10−9

µe = 2.154 15.05 0.79 3.56× 10−6 4.9× 10−9

He 18.95 0.68 1.84× 10−5 −9.85× 10−10

C 0.79 0.69 1.22× 10−5 6.7× 10−12

O −27.06 0.76 −1.21× 10−5 3.1× 10−9

4.2 Fit of the general relativistic mass-radius relation

Keeping in mind the importance of GR for WD, we fit the general relativistic mass-

radius relation in order to obtain an analytic expression that better estimate the WD

radius, rather than the non-relativistic Newtonian expression

M

M�
= 2.08× 10−6

(
R

R�

)−3

, (4.7)

where R� is the radius of the Sun.

The expression we use to fit the general relativistic curve in Fig. 4.1 is given by

M

M�
=

R

a+ bR + cR2 + dR3 + kR4
, (4.8)

where k is the inverse of the constant in the non-relativistic Newtonian mass-radius rela-

tion k = (2.08× 10−6R3
�)−1.

The constants a, b, c and d are parameters that depend on the interior fluid EoS of

the star, such that, using the Chandrasekhar EoS for µe = A/Z = 2 (Fig. 4.10) we find

a = 20.86 km

b = 0.66

c = 2.48× 10−5 km−1

d = 2.43× 10−9 km−2. (4.9)

We employed Eq.(4.8) to depict analytically other mass-radius relations derived using

the Salpeter EoS (for He, C and O stars) and the Chandrasekhar EoS forµe = 2.154,

for details about those EoS, see chapter 2. The values of fitted parameters are given in

Tab. 4.4.
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FIGURE 4.10 – Fit of the general relativistic mass-radius diagram with Eq.(4.8) (red
dashed line) and the non-relativistic limit (dotted orange line).

4.3 Stellar equilibrium configurations of charged white

dwarfs

Effects of strong electric fields on compact objects such as neutron stars, quarks stars

and black holes have been intensively investigated, for example, in the references (SUNZU

et al., 2014; RAY et al., 2003; ARBAÑIL et al., 2013; NEGREIROS et al., 2009). However,

white dwarfs with high electric fields were studied only in (LIU et al., 2014). As we have

argued in chapter 1 the charge distribution on the star in (LIU et al., 2014) is supposed to

follow a linear relationship with the barium density, i.e., ρe = αρ, where α is a constant

of proportionality, ρe is the charge density, and ρ is the matter energy density.

However, in the context of degenerate matter’s EoS several studies show that the

thermal and electrical conductivity are larger the greater the degree of degeneracy of the

matter, which would imply in turn, as quoted in (MADSEN, 2008), that any existing

charge in the interior of white dwarfs and in the outer crust of neutron stars would be

arranged in order to be concentrated on the surface of these stars. Therefore, in this

section of the present work we will analyze the effects of intense electric fields on the

structure of white dwarfs, modeling the charge distribution as a surface distribution that

follows the relation

ρe = C exp

[
−(r −R)2

b2

]
, (4.10)

being C a constant, R the star’s radius as calculated without charge contribution by using

(3.61), the constant b is width of the electric charge distribution, in which we consider

b = 10km, which represents order of magnitude of the WD’s atmosphere length. For
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smaller b the WD’s structure is not significantly changed.

To determine the constant C we use

σ =

∫ ∞
0

4πr2ρedr, (4.11)

with σ being the magnitude proportional to the electric charge distribution. σ would

represent the total charge of the star if we were working in a flat space-time situation,

however, due to the effects of General Relativity as quoted earlier, we calculated the

structure of charged white dwarfs using General Relativity theory. In this case, the total

star charge must be computed self-consistently from Equations (3.48), (3.49), (3.50) and

(3.51).

It is noteworthy that neutron stars and quark stars with a surface charge distribution,

such as (4.10), were studied, respectively, in (JING et al., 2015; NEGREIROS et al.,

2009). In both works, we see that the structure of these stars depends on the amount

of total charge present on the stars, being a total charge of the order 1020C necessary to

produce considerable effects in their structure. Substituting (4.10) into (4.11) we obtain

a relation between the constant C and σ

8πC = σ

(√
πbR2

2
+

√
πb3

4

)−1

, (4.12)

varying σ we can find different equilibrium configurations as a solution of Bekenstein’s

equations, in which we show below.

Fig. 4.11 shows the behavior of the total mass M/M� with the central energy density,

for six values of σ. The considered central energy densities are in the interval 2×106[g/cm3]

to 4 × 1011[g/cm3]. The lower limit ρc = 2 × 106[g/cm3] is the mean density for white

dwarfs and in the upper limit ρc = 4× 1011[g/cm3] the neutron drip limit is reached, i.e.,

at this point, the white dwarf becomes to turn into a neutron star. In the cases where

σ ≤ 1.6× 1020[C], we note that the total mass grows with the central energy density until

attain a maximum mass point, after that point, the mass starts to decrease with the grows

of the density of energy center. In turn, in the case σ = 2.0 × 1020[C] the mass grows

monotonically with the central energy density, i.e., we do not found a turning point.

On the other hand, we observe that exist a dependency of the total mass with the pa-

rameter σ. For a larger σ more massive stars are obtained. As can be noted in Fig. 4.11,

we obtain more massive white dwarfs using σ = 2.0×1020[C]. In this case, the mass whose

respective electric field saturates the Schwinger limit (∼ 1.3 × 1016[V/cm]) is 2.199M�,

this is attained in the central energy density 1.665 × 1011[g/cm3]. This mass is between

the masses estimated for the super-Chandrasekhar white dwarfs, 2.1-2.8M� (TAUBEN-

BERGER et al., 2011; SILVERMAN et al., 2011). From this, we understand that a
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FIGURE 4.11 – Total mass, in Solar masses M�, versus central mass density of the star
for six values of σ. The unit for the constant σ is [C].
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FIGURE 4.12 – The radius of the charged white dwarf as a function of the mass for
different values of σ.

surface electric field produces considerable effects in the masses of white dwarfs. In ad-

dition, it is important to mention that the grow of the mass with σ can be understood

since σ is related with the total charge contained in the star. The charge produces a force

which helps to the one generated by the radial pressure to support more mass against the

gravitational collapse.

In Fig. 4.12 the total mass as a function of the radius for few values of σ is observed.

In the uncharged case σ = 0.0 the curve is close to attain the typical Chandrasekhar limit,

1.44M� (CHANDRASEKHAR; MILNE, 1931; CHANDRASEKHAR; S., 1935), however,
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σ[C] M/M� R[km] ρc[g/cm3] Q[C] E[V/cm]
0.0× 1020 1.416 1021 2.307× 1010 - -
0.4× 1020 1.441 1299 3.043× 1010 4.055× 1019 2.158× 1015

0.8× 1020 1.532 1539 3.456× 1010 8.109× 1019 3.078× 1015

1.2× 1020 1.698 1336 6.613× 1010 1.222× 1020 6.149× 1015

1.6× 1020 1.928 1166 1.942× 1011 1.637× 1020 1.081× 1016

2.0× 1020 2.203 916.8 4.000× 1011 2.058× 1020 2.200× 1016

TABLE 4.5 – The constant σ and the maximum masses of the electrically charged white
dwarfs with their respective radii, central densities, charges and electric fields at the
surface of the stars.

in the charged case σ 6= 0 we found masses that overcome this typical limit. For instance,

in the case σ = 2.0× 1020[C] the mass whose electric field saturates the Schwinger limit is

around 2.199M�. Again, we mention that high values of white dwarf masses (around the

super-Chandrasekhar white dwarf masses) can be achieved taking into account a surface

electrical charge at the white dwarf.
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FIGURE 4.13 – Profile of the pressure inside the star as a function of the radial pressure
for five different values of σ and for ρc = 1010[g/cm3].

With the purpose to observe that the electric charge is only distributed near the star’s

surface, the pressure profile inside the white dwarf as a function of the radial coordinate is

plotted in Fig. 4.13, where few values of σ and ρc = 1010[g/cm3] are considered. In figure

we can note that the pressure decays monotonically toward the baryonic surface, when this

is attained the pressure grows abruptly due to the beginning of the electrostatic layer,

after this point the pressure decrease with the radial coordinate until attain the star’s

surface (p = 0). Thus, through this result, we can clearly note that the electric charge is

distributed as a spherical shell close to the surface of the white dwarf.
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The behavior of the electric field in the star is showed in Fig. 4.14. On figure is

employed five different values of σ and ρc = 1010[g/cm3]. As can be seen, in each case

presented, the electric field exhibit a very abrupt increase from zero to 1015−16[V/cm],

thus indicating that the baryonic surface ends and starts the electrostatic layer. Once the

electric surface is distributed like a thin layer close to the surface, the electric field sharply

weaken with the grow of the radial coordinate such as is showed in figure.

It is important to emphasize that the electric field could be reduced, once taking into

account the change that the electric potential screening may suffer with the increment

of the radial distance (see (AKBARI-MOGHANJOUGHI, 2014)). The analysis of such a

situation is left for future investigation.
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FIGURE 4.14 – Electric field as a function of the radial coordinate inside the charged
white dwarf, for five values of σ and one of ρc. The central energy density 1010[g/cm3] is
considered.

It is worth mentioning that the electric field found in the charged white dwarfs cases are

104 times lower than those found in charged strange stars ones (see, e.g., (NEGREIROS

et al., 2009; MALHEIRO et al., 2011a; ARBAÑIL; MALHEIRO, 2015)). This can be

understood since white dwarfs have very larger radii than the strange stars.

The values for σ employed, the maximum mass values found in the range of central

energy densities considered, with their respective central energy densities, total radius,

total charge and electric field are shown in Table 4.5.
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FIGURE 4.15 – Total electric charge against the central energy density for some values
of σ.

4.4 About the radial stability of charged white dwarf

Inspired in the study of the turning-point method for axisymmetric stability of uni-

formly rotating relativistic stars with the angular momentum fixed (FRIEDMAN et al.,

1988) (see also (TAKAMI et al., 2011) for a detailed discussion about that theme), in

(ARBAÑIL; MALHEIRO, 2015) is shown that the stability of charged objects could be

investigated using the results obtained from the hydrostatic equilibrium equation. The

authors in (ARBAÑIL; MALHEIRO, 2015) found that along a sequence of charged stars

with increasing central energy density and with fixed total charge, the maximum mass

equilibrium configuration states the onset of instability. Thus, likewise, in this section we

use the results derived from the equilibrium configurations to determine the maximum

mass point which marks the start of the instability.

The total charge of white dwarf as a function of the central energy density is plotted

in Fig. 4.15, taking into account five different values of σ. In figure we can see that

along the sequence of equilibrium configurations with increasing central energy density

the total charge is nearly constant. In this case, we understand that the maximum mass

point must marks the onset of instability. In other words, the regions made of stable and

unstable charged white dwarfs shall be distinguished through the relations dM/dρc > 0

and dM/dρc < 0, respectively.

Additionally, in Fig. 4.15, it can be observed also that the electrical charge that produce

considerable effects in the structure of white dwarfs is around 1020[C]. This amount of

charge is similar to those found in the studies, for instance, of polytropic stars (RAY et

al., 2003), incompressible stars (FELICE et al., 1995; FELICE et al., 1999; ANNINOS;
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ROTHMAN, 2001; ARBAÑIL et al., 2014), strange stars (ARBAÑIL; MALHEIRO, 2015;

NEGREIROS et al., 2009; MALHEIRO et al., 2011a) and white dwarfs (LIU et al., 2014),

where, certainly, the electric charge is considered.

4.5 Universal charge-radius relation and maximum

total charge of white dwarfs

In (MADSEN, 2008), Madsen demonstrates that the electrical charge of a spherically

symmetrical static object is limited by the creation of electron-positron pairs in super

critical electric fields. Taking into account a timescale τ << ∞, the net positive charge

Q is directly proportional to the square of the star’s radius Rkm, i.e.,:

Q = βeR2
km, (4.13)

with β and e being the proportionality constant and charge of a proton, respectively.

The proportionality constant β is directly related with the timescale chosen τ , for lower

timescale a larger β is derived. Madsen found that for a timescale τ = 1.0 s is obtained

β = 7.0 × 1031, and for τ = 1.0 × 10−10 s, i.e., a typical weak interaction timescale,

β = 1.68× 1032.

For white dwarfs we can consider the electromagnetic interaction, consequently, the

timescale can be regarded to be around 10−18 s, thereby the constant β becomes equal to

3.34×1033. In this case, we obtain that the more massive white dwarf (see Table I) would

allow the maximum charge:

Qmax ≈ 5.0× 1020 [C]. (4.14)

Thus, the quantity of charge found in the most massive white dwarf (Q = 2.045×1020[C])

is under the maximum charge limit of Eq.(4.14).

4.6 Gravitational instability of white dwarfs in D-

dimensions

Using the EoS for an ideal Fermi gas in D-dimensions, we investigated the hydrostatic

equilibrium by using the TOV equation previously showed. To solve the equilibrium

equations, we also need to define new variables to normalize the TOV. The new variables

are m′ = GDm, ρ′ = GDρ and p′ = GDp. In order to solve the differential equations

we need to define the value of GDε
(D)
0 , when defining the value of this quantity we are

at the same time defining the value of GD, in which we suppose that the gravitational
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constant GD may varies according to GD = lDG4, where G4 is the Newtonian gravitational

constant, which we set equal to 1, thus working with natural units, and lD is a parameter

that has dimension of kmD−4. When we calculate the TOV we obtain the variables m′,

ρ′ and p′, and those quantities depend on the choice of the constant GD. However, after

obtained the solutions one can find quantities that do not depend on GD, i.e, quantities

that remains the same for any value of GD. In the 4D case the independent mass, for

example, is MG
3/2
D . The independent mass in the 5D case is MG2

D, and for D = 6 it is

MG
5/2
D . Following the pattern one can see that the quantity associated with mass that is

independent on the value of GD is MG
(D−1)/2
D .
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FIGURE 4.16 – Independent total mass MG
(D−1)/2
D as function of the central energy

density for white dwarfs in D-dimensions, for D = 4 (4.16a) and D = 5 (4.16b). As one
can see the case D = 5 does not present any stability region. It is worth to cite that
GD = lDG4, where lD is a parameter with dimension kmD−4 and G4 is the Newton’s
gravitational constant. We also have used natural units c = 1 = G4 with M� = 1.47km.
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The Fig. 4.16a shows the mass-central density relation that is independent of the

choice of GD for D = 4 and D = 5. Since the values of energy density and pressure

change drastically depending on the number of space-time dimensions the EoS becomes

softer, see Fig. 2.1. After integration we found no stable solutions for D > 4, as one can

check from the Fig. 4.16b, where we presented the case for D = 5. We have checked

that for D ≥ 5 we always find a Mass x ρc curve where ∂M/∂ρc < 0, which implies that

fermion stars are always unstable for extra dimensions, and will collapse to a black hole.

The energy conditions of the system are respected, as we will see in the next subsection,

being feasible physical solutions, i.e., this matter follows the well-know criteria for normal

matter.

4.6.1 Energy conditions

Here we will investigate the energy conditions and see the constrains imposed by the

null energy condition (NEC), weak energy condition (WEC), strong energy condition

(SEC) and also, dominant energy condition (DEC) at the center of the compact star. It is

important to analyze the energy conditions to show that the stellar instability is not due

the D-dimensional Fermi gas being an exotic matter (such as the matter in wormholes).

Such conditions can be written respectively as,

p+ ρ ≥ 0, (4.15)

p+ ρ ≥ 0 and ρ ≥ 0, (4.16)

p+ ρ ≥ 0 and T ≥ 0, (4.17)

ρ ≥ |p|. (4.18)

As we can see in the Fig. 4.17 for any dimension the NEC, WEC, SEC and DEC are

satisfied, which implies that the Fermi gas can be stated to be a normal matter in higher

dimension. So, as, a normal matter the Fermi gas in D dimensional background would be

a feasible physical system. Nevertheless, we shall see latter that the D dimensional Fermi

gas does not have gravitational stability even in a Newtonian framework.

Going on to understand the instability in D-dimensional GR and not being aware of

Chavanis’ work (CHAVANIS, 2007), we have performed the reduction to Newtonian limit

by completeness, using the Poisson’s equation for the Newtonian gravitational potential,

as we can see in the next section.
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(b) Weak energy condition (WEC)
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(c) Strong energy condition (SEC)
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FIGURE 4.17 – Energy conditions: in (4.17a) we have the null energy condition (NEC),
p + ρ ≥ 0. In (4.17b) we have the weak energy condition (WEC), ρ ≥ 0. In (4.17c)
the strong energy condition (SEC), T ≥ 0. And finally in (4.17d) we have the last one,
the dominant energy condition (DEC), ρ ≥ |p|, one can see that for any dimensions, the
energy conditions are respected for any value of energy density and pressure.

4.6.2 Lane-Emden equation in D-dimensions (Newtonian insta-

bility)

To derive the Lane-Emden equation in a D-dimensional space-time we start by writing

the well-known Poisson’s equation

∇2φ = 4πGρ, (4.19)

where G is the standard gravitational constant, φ is the gravitational potential and ρ

represents mass density. If one considers the space-time to have spatial extra dimensions

the Poisson’s equation can be rewritten as

∇2φD = ΩD−2GDρ, (4.20)
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being ΩD−2 the solid angle of the hyper-sphere, φD is the gravitational potential in D

dimensions andGD is the gravitational constant in also arbitraryD space-time dimensions.

The D-dimensional Laplace operator ∇2 in spherical coordinates, disregarding its angular

components, now reads

∇2 =
∂2

∂r2
+
D − 2

r

∂

∂r
, (4.21)

such that, for vacuum, one possible solution of (4.20) for D ≥ 4 is

φD = − 1

(D − 3)

GDm

rD−3
. (4.22)

The gravitational field thus becomes,

~g = −~∇φD = −GDm

rD−2
, (4.23)

and then the hydrostatic equilibrium equation of a hypersphere in D−1 spacial dimensions

reads
dp

dr
= −GDmρ

rD−2
, (4.24)

and the equation of mass continuity is, again, rewritten as

dm

dr
= ΩD−2ρr

D−2. (4.25)

The assumptions above of universal extra dimensions, and by using the polytropic ap-

proximations previously derived, one can obtain the modified Lane-Emden equation, in

its dimensionless form, as

1

ξD−2

d

dξ

(
ξD−2dθ

dξ

)
= −θn, (4.26)

where we performed the change of variables, r = aξ and ρ = ρcθ
n, with ρc being the

central mass density, n the polytropic index and a2 = (n+1)Kρ
1
n−1
c

GDΩD−2
.

The total mass of a spherical object in terms of those new variables thus becomes

M = ΩD−2ρca
D−1

∫ ξmax

0

ξD−2θndξ = ΩD−2ρca
D−1ξD−2

max θ
′(ξmax),

and by replacing a one get

M = Λρ
D−1
2 ( 1

n
−1)+1

c , (4.27)
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where Λ is a constant defined as

Λ =

 (n+ 1)K

GDΩ
(D−3)
(D−1)

D−2

D−1
2

ξD−2
max θ

′(ξmax). (4.28)

In the case of white dwarfs, for D = 4 and n = 3, one can obtain from Eq. (4.27), for

instance, the so-called Chandrasekhar mass limit. However, the assumption that particles

may access extra dimensions, such as an ideal Fermi gas in a D dimensional space-time

implies that for larger D the mass-central density relation is changed according to (4.27).

Thus, considering the stability criterion derived by Chandrasekhar, ∂M/∂ρc > 0, we can

impose that the mass density exponent in Eq.(4.27) needs to be larger than zero in order

the stars to be gravitationally stable. Using the generalized polytropic approximations

(2.35) and (2.36), we find
D − 1

2

(
1

n
− 1

)
+ 1 > 0{

D < 5, non− relativistic limit
(

1
n

= 2
D−1

)
D < 4, ultra− relativistic limit

(
1
n

= 1
D−1

)
,

then, it is a straightforward conclusion that no stable solutions are found for the bunch of

fermions in the presence of universal extra dimensions, thus confirming our previous results

obtained in a general relativistic framework and also in agreement with (CHAVANIS,

2007).



5 White Dwarfs in f (R, T ) Gravity

The application of the gravity f(R, T ) for the study of stellar equilibrium is motivated

by its recent outcomes in several areas. In particular, it has been shown that from a min-

imum coupling between matter and geometry, predicted in f(R, T ) theories of gravity,

it is possible to obtain flat rotation curves for the galaxies’ “halo” (ZAREGONBADI et

al., 2016). f(R, T ) models were also compatible with the description of our solar system

(SHABANI; FARHOUDI, 2014; DENG; XIE, 2015). A complete description of the cos-

mological scenario was constructed from f(R, T ) gravity in (MORAES; SANTOS, 2016).

In (MORAES; SAHOO, 2017), a cosmological model in agreement with observations was

also obtained from a non-minimal coupling between matter and geometry in the frame-

work of the f(R, T ) theories. The validity of the first and second laws of thermodynamics

in f(R, T ) theories were discussed in (SHARIF; ZUBAIR, 2012).

In addition, the hydrostatic equilibrium equations in f(R, T ) gravity was originally

derived in (MORAES et al., 2016) and it has been used to the study of quarks stars (DAS

et al., 2016; SHARIF; WASEEM, 2018; DEB et al., 2018d; DEB et al., 2018a; DEB et

al., 2018c; DEB et al., 2018b), and neutron stars (Moraes et al., 2018). In other works

the stability and collapse of objects with spherical symmetry were derived in (SHARIF;

YOUSAF, 2014; NOUREEN; ZUBAIR, 2015b; NOUREEN; ZUBAIR, 2015a; NOUREEN

et al., 2015; ZUBAIR; NOUREEN, 2015).

As we will show below, the f(R, T ) gravity can be an important tool for the study of

macroscopic properties of white dwarf stars, in the sense that it can increase the maxi-

mum stable mass. As well as we will show some advantages of the f(R, T ) theory when

compared to the results of f(R) theories for such objects. Using the equilibrium equations

previously derived for the functional f(R, T ) = R + 2λT , we calculate the white dwarf

equilibrium configurations in this theory.

The mass of the WDs as a function of their total radii is shown in Fig. 5.1 for six

different values of λ. λ = 0 recovers the GR case. From Figure 5.1, we note that the

masses of the stars grow and their total radii increase until attain the maximum mass

point, which will be represented by full magenta circles. After that, the masses decrease

with the total radii. It is important to remark that the total maximum mass grows with



CHAPTER 5. WHITE DWARFS IN F (R, T ) GRAVITY 66

0 5000 10000 15000 20000
R [km]

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

M
/M

= 1 × 10 3

= 4 × 10 4

= 3 × 10 4

= 2 × 10 4

= 1 × 10 4

= 0.5 × 10 4

= 0

FIGURE 5.1 – Total mass as a function of the total radius for different values of λ. The
full magenta circles indicate the maximum mass points.

the decrement of λ and the radius increases much more when we consider a fixed star

mass. We also mention that the curves above tend to a plateau when λ is ≈ −4× 10−4.

For smaller values of the parameter λ, all stars are unstable, what can be seen in Figures

5.1 and 5.4 for λ = −1 × 10−3, where ∂M/∂R < 0 and the necessary stability criterion

∂M/∂ρc > 0 are not satisfied. So, from the equilibrium configurations, the minimum

value allowed for λ is ∼ −4 × 10−4, which defines a limit for the maximum mass of the

WD in the f(R, T ) gravity to be ∼ 1.467M�.
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FIGURE 5.2 – Mass as a function of the radius for massive WDs with different values of
λ. The blue circles with error bars represent the observational data of a sample of massive
WDs taken from the catalogs (VENNES et al., 1997; NALEŻYTY et al., 2004).

In addition, in Fig. 5.2 we highlight the massive WDs region of Fig. 5.1, in which
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we have also inserted some observational data taken from the catalogs of References

(VENNES et al., 1997; NALEŻYTY et al., 2004). It can be clearly seen from Fig. 5.2

that some of the data can hardly be described purely from General Relativity, while some

values of λ can, indeed, predict the existence of massive WDs with larger radii.

Thus, according to observations of some massive WDs, in particular the most massive,

WD (1659+440J), found in (VENNES et al., 1997), the inferior limit for λ is λmin ≈ −3×
10−4. We regard that this restriction is obtained by neglecting the WD data (0003+436J)

with the largest error bar in Fig. 5.2. Such a constraint is more restrictive than the

one obtained from Fig. 5.1, with no observational data. It is worth to cite that this

observational constrain is not compatible with the one obtained for the f(R, T ) = R+2λT
cosmology where λ needs to be positive and of the order ∼ 1 (VELTEN; CARAMÊS,

2017).

In Fig. 5.3 the energy density, fluid pressure and mass profile in the interior of the

star are plotted on the top, central and bottom panels, respectively, as functions of the

radial coordinate. We take into account ρc = 109 [g/cm3] and different values of λ. On

the top and central panels, we can observe that the energy density and the fluid pressure

decrease monotonically towards the surface of the object.

On the other hand, concerning the bottom panel, it can be noted that the mass profile

m/M�, with M� representing the Sun’s mass, grows until it reaches the surface of the

star. It can also be seen that the total mass of the star increases with λ. This is due to

the effect caused by the term 2λT .

Fig. 5.4 shows the behavior of the total mass against the central energy density of

the stars. The values considered for the central energy density are between 1.3× 108 and

4.2 × 1011 [g/cm3]. The upper limit is the neutron drip limit, i.e., the point where the

WD turn into a neutron star. We can note that the total mass grows monotonically with

central energy density until it attains a maximum value, except for λ = −1× 10−3. After

that point, the stellar mass decreases with the increment of ρc and becomes unstable.

Additionally, in Fig. 5.4, we observe an increment of the maximum mass with λ

(see also Table 5.1). For example, the maximum mass value found in GR case (λ = 0)

is 1.417M�, while for λ = −4 × 10−4, it is 1.467M�. A similar effect for λ in the

structure of the stars has been found for neutron stars and strange stars (MORAES et

al., 2016; MALHEIRO et al., 2003). Moreover, it is remarkable that for lower values of

λ, the maximum mass point is reached for lower values of ρc, which can be considered an

advantage of this approach when compared with f(R) theory of gravity or GR outcomes,

as we will argue in the next section.

In Fig. 5.5 the dependence of the total radius with the central energy density is shown.

In all cases presented, we can note that the total radius decreases when the central energy
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FIGURE 5.3 – On the top panel it is presented the star energy density as a function of the
radial coordinate, on the central panel we show the star pressure fluid against the radial
coordinate and on the bottom panel we display the mass (in solar masses, M�) inside the
star versus the radial coordinate. We consider ρc = 109 [g/cm3] and the displayed values
of λ.

density is incremented. Larger radii are found for smaller central energy densities when λ

is decreased. This is the most important effect of f(R, T ) theory for massive WDs, that
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FIGURE 5.4 – The dependence of the total mass of the white dwarfs on central density
for different values of λ.

is, the increase of the radius, and as a consequence, the decrease of the central density, in

comparison with GR and also f(R) results. This is mainly due to the fact that the sound

velocity becomes very small near the surface of the star, so that the term (3.84) weakens

the gradient of pressure, yielding to the predicted larger radii.
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FIGURE 5.5 – The total star radius versus central density for different values of λ.

In Table 5.1 the maximum masses are presented, with their total radii and central

energy densities, for each value of λ. We can see that more massive and larger WDs are

found with the decrement of λ. The values of maximum masses are obtained for lower

central densities (range of ρc ∼ 109 − 1010[g/cm3]) when compared with those predicted

in the f(R) gravity or GR scope (ρc ∼ 1011[g/cm3]) (DAS; MUKHOPADHYAY, 2015b).
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λ M/M� R [km] ρc [g/cm3]
0.0× 10−4 1.416 1021 2.307× 1010

−0.5× 10−4 1.420 1146 1.803× 1010

−1.0× 10−4 1.425 1247 1.558× 1010

−2.0× 10−4 1.437 1590 9.567× 109

−3.0× 10−4 1.450 2168 5.345× 109

−4.0× 10−4 1.467 2970 3.366× 109

TABLE 5.1 – The maximum masses of the white dwarfs found for each value of λ with
their respective total radii and central energy densities.



6 White Dwarfs in Binary Systems

In this chapter we will focus on the study of white dwarf binary systems, in particular,

double white dwarf binary systems (for simplicity WD-WD systems). An estimate is that

our galaxy host a number of 100− 300×(106) WD-WD binary systems (NELEMANS et

al., 2001), but only a few have been detected ∼ 100. However, the number of WD-WD

binaries has been increased the last few years (NELEMANS et al., 2005) and it is an

expectation that this number will increase even more in a near future. In some cases is

difficult to determine whether the binary system hosts two white dwarfs or a white dwarf

and a neutron star (KULKARNI; KERKWIJK, 2010; KAPLAN et al., 2013), and our

plan is that this study hepls to determine the difference between them. Binary systems

are of great significance as they are a leading source of gravitational waves, such as the

one detected recently by LIGO/VIRGO collaboration (ABBOTT et al., 2017). The large

number estimated of WD-WD binaries in our galaxy also indicates that this kind of system

can be a leading source of gravitational waves for the LISA detector, which could bring

light to a wide variety of physical processes concerning those close binary systems and its

evolution (KREMER et al., 2017; BREEDT et al., 2017).

Double white dwarf binary mergers have also been recently introduced as a new sub-

class of gamma-ray bursts (GRBs) characterized by a prompt gamma-ray emission, an

infrared/optical kilonova from the merger ejecta, and an extended X-ray emission from

the WD central remnant born in the merger (RUEDA et al., 2018). While the optical

and X-ray emission were treated in detail, the gamma-ray emission was only proposed to

arise from WD magnetospheric processes. We here estimate the gamma-ray emission as

the result of the electric potential induced by the interaction of the magnetic field of the

WD.

It has been recently estimated the luminosity generated due to the magnetosphere

interaction in a NS-NS merger (LYUTIKOV, 2018). Qualitatively, it is there considered

that one of the binary system components possesses a magnetic NS and the companion

is a conductor spherical body that is moving into the NS magnetosphere. Under these

conditions, the relative motion between the two stars induces an electric potential capable

of accelerate particles. Lyutikov estimate applied to WD-WD binaries were shown to

power an emission as high as 1041erg/s, however, this estimate is based in a very simple



CHAPTER 6. WHITE DWARFS IN BINARY SYSTEMS 72

calculation.

Wu et al. (WU et al., 2002) and Dall’Osso et al. (DALL’OSSO et al., 2006) had

applied earlier to WD-WD binary systems, in more details, the above Lyutikov approach

- often named as unipolar inductor model (UIM). Wu et al. have considered a binary

system composed of a rotating magnetic white dwarf and its companion a non-rotating,

non-magnetic white dwarf that behaves like a conductor moving into the primary star’s

magnetosphere. The system could be asynchronous as the magnetic white dwarf angular

velocity Ω can be different from the orbital one, ω0. The relative velocity is ~v = r(ω0−Ω)φ̂,

where r is the orbital separation. Given the Kepler’s third law the velocity becomes

~v = [G(M1 +M2)]1/3ω
1/3
0 (1− α)φ̂, (6.1)

where the parameter α = Ω
ω0

determines how asynchronous is the system.

The induced electric field is

~E =
~v × ~B

c
, (6.2)

and its associated electric potential

U = 2R2|E|. (6.3)

The total energy dissipation is (DALL’OSSO et al., 2006)

Ė = 2I2R (6.4)

where the factor 2 accounts for the upper and lower similar parts of the circuit (see figure

6.1), R is the effective resistance of the system and I = U/R is the electric current. Wu

et al. showed that the total resistence for double white dwarf binaries is

R =
1

2σ

(
H

∆d

)(
r

R1

)3/2
j(e)

R2

, (6.5)

where R1 and R2 are the radii of the primary and secondary stars, respectively, σ is the

average conductivity, H is the depth at which the induced currents cross the magnetic

field lines and return to the secondary, ∆d is the current layer thickness of the arc-like

cross section at the primary atmosphere and j(e) is a geometric factor (see (WU et al.,

2002)). The luminosity L = Ė, then becomes

L =
2U2

R
=
(µ1

c

)2 16σR
3/2
1 R3

2ω
17/3
0 (1− α)2

(G(M1 +M2))11/6 (H/∆d)j(e)
, (6.6)

where M1 and M2 are the respective masses of the primary and secondary stars and
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FIGURE 6.1 – Schematic representation of the unipolar inductor model. As the secondary
star is a conductor moving in the primary star’s magnetosphere an electric field is induced
inside the secondary. This electric field could thus accelerate particles from the secondary’s
surface. In a situation of equilibrium a closed circuit could be set with the charged particles
following the magnetic field lines’ path. Source: (WU et al., 2002).

~B = −(µ1/r
3)ẑ, where µ1 is the magnetic moment of the primary star. As estimated by

Wu et al. the ratio H/∆d is of the order of 1 and also the geometric factor j(e) ∼ 1

for orbital periods less than one hour. Wu et al. also estimated the conductivity σ as

1013 − 1014esu, for a star with electron temperature Te = 105K (more details, see (WU et

al., 2002)). Using these fiducial parameters derived by Wu et al. we varied the magnetic

field strengh to obtain the luminosity as showed in figure 6.2. It is worth to cite that in

the work of Wu et al. they fixed the magnetic moment as µ1 = 1032G cm3 and varied

the parameters of mass and radius of the stars, here we did not fix the magnetic moment,

rather we estimate the magnetic moment as µ1 = B1R
3
1, where B1 is the magnetic field of

the primary star and varied the magnetic field. We take into account that the maximum

orbital frequency is

ωmax
0 =

2π

Pmin

=
(G(M1 +M2))1/2

(R1 +R2)3/2
, (6.7)

and the mass-radius relation is taken from (CARVALHO et al., 2018). According to the

model of Wu et al. the unipolar inductor model can power a very high emission 1051ergs/s

at instants prior to merger for a magnetic field of 109G, see figure 6.2. This is an important

result that could explain the gamma-ray emission of some gamma-ray bursts, such as the

one associated with the gravitational wave detection GW170817. In particular, the energy

observed in GRB 170817A - associated with GW 170817 - is of the order ∼ 1046erg/s,

which could be explained by a magnetic field of a few 106G in the present model.

However, Lai showed that in the case of binary systems the magnetic field can be

twisted as the dimensionless azimuthal twist of the flux tube ξφ = −Bφ+/Bz = 16v/c2R
depends on the effective resistance (LAI, 2012). Which means that if the resistance is low

enough the magnetic field will be twisted and energy can be released due to disruption of
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FIGURE 6.2 – Luminosity as a function of the orbit’s angular frequency using the results
of (WU et al., 2002) (see also Eq. (6.6)). The value of α is 0.9. The masses are M1 =
M2 = 0.6M� and their respective radii are taken from (CARVALHO et al., 2018). The
magnetic field strength ranges from 106G to 109G. According to the model of Wu et al.
the luminosity can be very high at moments close to merger.

the magnetic flux tubes. Using the effective resistance derived by Wu et al. we find that

the azimuthal twist is much higher than unity, which implies that the magnetic field is

highly twisted and the system is constantly reaching a low energy state by magnetic re-

connection. Lai proposes that a quasi-cyclic mechanism can take place (LAI, 2012), where

several magnetic recconections may occur. According to (LAI, 2012) the electromagnetic

emission can be parameterized by the twist factor ξφ as

L = ξφω0(1− α)
µ2

1R
2
2

2r5
. (6.8)

Using the result of Lai (6.8) with appropriated parameters for WD-WD binary systems

the luminosity becomes

LWD−WD = 3.84× 1029ξφ(1− α)×
( µ1

1032 G cm3

)2

×(
R2

109 cm

)2

×
(
M

M�

)−5/3

×
(

P

10min

)−13/3

erg s−1.

(6.9)

In figure 6.3 we show the parameterized luminosity with maximum efficiency ξφ = 1

and α = 0.9. We see that the luminosity drops far below the previous values of figure 6.2,

i.e., the luminosity is screened by magnetic stresses. The case of magnetic field B = 109G

the maximum powered emission is 1041erg/s. The GRB 170817A power, 1046erg/s, can

be reached now only if the magnetic field is of a few 1011G. This may indicate that GRB
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FIGURE 6.3 – Parameterized luminosity as a function of orbital angular frequency (see
Eq. 6.9). The masses are M1 = M2 = 0.6M�. The mass-radius relation is taken from
(CARVALHO et al., 2018).

powers may be originated from a high magnetic WD-WD binary at moments close to

merger. However, we need to stress that we do not know how much energy can be released

in a magnetic reconnection, which could be higher than the parameterized luminosity. It

can also be seen from Fig. 6.3 that when the field is larger than 109G the electromagnetic

(EM) emission is higher than gravitational wave (GW) emission. Since the EM emission

also takes energy from the orbital motion the orbital evolution will not be GW driven,

rather a coupling between GW and EM emission will drive the binary evolution, for those

cases we will use the results of Wu et al. (WU et al., 2002) for the coupling between ω0

and α

ω̇0

ω0

=
1

g(ω0)

[
LGW −

LWD−WD

1− α

]
(6.10)

α̇

α
=

1

g(ω0)

[
LGW −

LWD−WD

1− α

(
1 +

g(ω0)

αI1ω2
0

)]
, (6.11)

where LGW is the gravitational wave luminosity. In Fig. 6.4 we show the evolution in time

of ω0 considering an initial orbital period of 4 hours. The evolution of ω0 or equivalently

the orbital separation is not sensitive to the initial condition for α. We can see from Fig.

6.4 that for magnetic fields larger than 109 the higher the magnetic field the smaller the

time necessary to merger, mainly because the magnetic friction takes energy from the

orbital motion.

We define now the intrinsic time-domain phase evolution,

Qω =
ω2

ω̇
= 2π

dN

d lnω
, (6.12)

where ω = 2ω0, is the GW angular frequency, and N the number of GW cycles. From Fig.
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FIGURE 6.4 – Orbital evolution for two values of magnetic field. The parameters were
choose such as in Fig. 6.3. The initial period is 4 hours.

10 8 10 7 10 6

GM
c3

10 5

10 4

10 3

10 2

10 1

Q

B = 109 G
B = 1010 G

FIGURE 6.5 – Intrinsic time-domain phase evolution normalized byQGW
ω , Q̂ω ≡ Qω/Q

GW
ω .

6.5 we can see that the intrinsic time-domain is largely affected according the magnetic

field is increased for B > 109G, which implies a different number of cycles N for an

appreciable changing in frequency. This effect can be measured by gravitational wave

detectors, such as LISA, and may be a possible way to estimate the magnitude of the

high magnetic fields in WD-WD binary systems.

Another important quantity is the delay time distribution (DTD), which is defined

as the “hypotetical supernova rate versus time that would follow a brief burst of star

formation” (MAOZ; MANNUCCI, 2012), or simply the number of systems as a function

of the time elapsed to form them. The DTD is important because it can provide clues

about the progenitors of type Ia supernovae. The DTD is related to lifetimes, i.e., the

binary evolution timescale. As we have shown the binary evolution is affected by the UIM

and one would expect as a result a different scenario for the DTD. The theoretical DTD

can be derived by simple physical considerations. For example, if the orbital evolution is
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governed by energy loss from gravitational wave emission, we have then

dr

dt
= − κ

4r3
, κ =

256

5

G3

c5
M1M2(M1 +M2), (6.13)

integrating (6.13) we have that after a time t the system evolves from an orbital distance

r′ to r as

r′4 − r4 = κt. (6.14)

Now, supposing an initial separation distribution n′(r′), systems with separations in

the range of r′ to r′+ dr′ migrates after a time t to a shell from r to r+ dr in the evolved

distribution n(r, t). Number conservation, except for those systems who reaches merger,

yields

n(r, t)dr = n′(r′)dr′. (6.15)

If the initial separation distribution is a power law n′ ∝ r′α, we have

n(r, t) ∝ r3(r4 + κt)(α−3)/4. (6.16)

The evolved distribution can be broke into two parts, where both can be given also by a

power law. First we may have systems with r >> (κt)1/4, and the distribution will have

the same power law as the original, i.e., n(r) ∼ rα. For orbital separations r << (κt)1/4,

then we have n(r) ∼ r3. Binaries with short separations will control the DTD, the DTD

then becomes,
dn

dt
=
dn

dr

dr

dt
∝ n(r, t)

r4
∼ t(α−3)/4. (6.17)

These above calculations is a review from (MAOZ et al., 2012). According to (MAOZ;

MANNUCCI, 2012) a consistent consideration is α = −1, which leads to the well know

result for the DTD as proportional to ∼ t−1 and this is also in good agreement with

the observational data for delays between the range 1Gyr < t < 10Gyr. However, for

smaller delays t < 1Gyr the observational data show some discrepance with the typical

result ∼ t−1. As the magnetic friction changes the orbital evolution we fit it and its

respective separation distributions and DTDs could be derived, the results are showed

in Tab. 6.1. The parameterized DTDs for magnetic WD-WD binaries show that they

all provide the standard result ∼ t−1 for α = −1. However, the power law is changed

for small separations. In Fig. (6.6a) we show the separations distributions versus orbital

separation. From the figure we can see that the similar power-law shape is reached in

a different position when considering magnetic WD-WD binary systems. On the other

hand systems with short separations have its power law for n changed.

Taking now a series of WD populations, all of them with an inital separation distri-

bution n′ ∝ r′α and produced with a rate τ(t) between t = 0 and the age of the Galaxy
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TABLE 6.1 – Parameterized orbital evolution, separation distribution and delay time
distribution for WD-WD binaries.

B (G) dr/dt n(r, t) ∝ dn/dt ∝
0 −4.05× 1026a−3 (r4 + 1.62× 1027t)(α−3)/4r3 n/r4 ∼ t(α−3)/4

109 −7.06× 1037a−3.97 (r4.97 + 3.5× 1038t)(α−3.97)/4.97r3.97 n/r4.97 ∼ t(α−3.97)/4.97

1010 −1.7× 1045a−4.48 (r5.48 + 1.92× 1046t)(α−4.48)/5.48r4.48 n/r5.48 ∼ t(α−4.48)/5.48

t = t0 we have, as a total present-day distribution

N(r) =

∫ t0

0

τ(t0 − t)n(r, t)dt. (6.18)

In the case of binaries which have their orbital evolution driven by gravitational wave

emission, we have

N(r) ∝
∫ t0

0

r3(r4 + κt)(α−3)/4dt, → N(x) ∝ x4+α
[
(1 + x−4)

(α+1)/4 − 1
]
, if α 6= −1

→ N(x) ∝ x3 ln (1 + x−4) , if α = −1 (6.19)

where we considered the rate τ as a constant and x = r/(κt0)1/4 is the normalized sepa-

ration. Similar to the DTD, the present day distribution N will be affected if we consider

magnetic WD-WD binaries whose orbital evolution is affected by the UIM. The present

day distribution for magnetic WD-WD binaries can be obtained from (6.18) and they

are showed in Fig. 6.6, where we show that the power-law shape for N is changed only

for systems with small orbital separations. These results may also affect the merger rate

dN/dt, but we left this for future analysis.
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FIGURE 6.6 – Left: Evolution of the separation distributions n for WD-WD binaries with
an initial power-law where α = −2. Red, black and blue lines correspond to magnetic fields
of 0, 109G and 1010G, respectively. Solid, dotted and dashed-dotted lines corresponds to
a time t of 1Myr, 100Myr and 10Gyr. Right: Present day distributions N for a timescale
t0 = 10Gyr. Colors follow the same representation as in the left panel, solid, dashed-dotted
and dotted lines now represent α equals to 1, -1 and -3, respectively.



7 Conclusions

• General relativistic effects on white dwarfs

In this part of this thesis we showed that General Relativity is very important to

estimate correctly the radius of a massive WD (M > 1.3M�) and, consequently, to

calculate the surface gravity and any other property who depends on the mass and

radius of the star. We also showed that the minimum radii are very different within

either Newtonian or general relativistic cases (about 200% at most).

We demonstrate that for fixed values of total mass there is a large deviation from

Newtonian WD radius to general relativistic WD radius, for example, for a mass

close to the value M = 1.42M� the Newtonian radius is about 50% larger than

the general relativistic one. For the most massive WD found in literature M =

1.41 ± 0.04 (VENNES et al., 1997) the Newtonian value of radius is 37% larger

than the general relativistic one (or at least 6% for a mass of 1.37M�). Due to

those deviations in radius the surface gravity is expected to be 55% smaller in

Newtonian case in comparison with the result from GR for a fixed total mass of

about M = 1.42M�.

Briefly, the GR effects produces a different correlation between surface gravity and

radius, what may induce changes in the values of observational parameters. In

particular, if we measured the surface gravity for a massive WD that we know

the mass, the correct radius obtained by GR is going to be smaller than the one

we would obtain if we do not take into account general relativity, because of the

different mass-radius relation of the two cases.

The WD structure in a general relativistic, finite temperature case was studied in

(CARVALHO et al., 2014), in which was showed that the finite temperature effects

are more significant the less massive the star is. The deviations arising from thermal

effects are negligible for stars with M < 1.2M�. On the other hand the main effects

of GR appears for stars with M > 1.3M�, what turns both effects crucial for the

determination of the WD mass-radius relation from observations.

We also found a novel analytic mass-radius relation by fitting the general relativistic

mass-radius relationship obtained numerically. We suggest that it can be useful to
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calculate other properties of the stars like magnetic dipole field, moment of inertia,

gravitational red-shift and so on.

• Surface charge effects on white dwarfs

The static equilibrium configurations and the stellar radial stability of charged white

dwarfs were investigated. Both studies were analyzed through the results derived

from the hydrostatic equilibrium equation, the Tolman-Oppenheimer-Volkoff equa-

tion, modified to include the electrical part. For the interior of white dwarfs, we

consider that the equation of state follows the employed for the fully degenerated

electron gas (CHANDRASEKHAR, 1967; SHAPIRO; TEUKOLSKY, 1983). In ad-

dition, we assume a Gaussian distribution of charge of ∼ 10 [km] thickness close the

star’s surface. It is important to mention that the interior solution match smoothly

to the exterior Reissner-Nordström vacuum solution.

We observe that for larger total charge, more massive stellar objects are found. For

instance, the increment of the total charge from 0 to 2.058 × 1020[C] allows to in-

crease the total mass in approximately 55.58%, growing from 1.416M� to 2.203M�.

This increment in the mass of the star is explained since the electric charge acts as

an effective pressure, thus helping the hydrodynamic pressure to support more mass

against the gravitational collapse. It is worth mentioning that for the total elec-

tric charge 2.058 × 1020[C], we found that the Schwinger limit is saturated for a

white dwarf with ∼ 2.2M�. This total mass is within the interval of white dwarf

considered as super-Chandrasekhar white dwarfs (TAUBENBERGER et al., 2011;

SILVERMAN et al., 2011). From the aforementioned, we can understand that a

surface distribution of charge could plays an important role in the existence of the

super-Chandrasekhar white dwarfs.

On the other hand, the stability against small radial perturbations of charged white

dwarfs are analyzed using a sequence of equilibrium configurations with increasing

central energy density, where these spherical objects are constituted by an equal

total electric charge. In this types of sequences, the maximum mass point marks

the onset of the instability, see (ARBAÑIL; MALHEIRO, 2015). From this, we can

say that the regions where lay stable and unstable white dwarfs can be distinguished

by the inequalities dM/dρc > 0 and dM/dρc < 0, respectively.

• f(R, T ) gravity effects on white dwarfs

In this section we investigated the effects of an extended theory of gravity, namely

f(R, T ) gravity, in WDs, by developing the hydrostatic equilibrium analysis for such

a theory. Our main goal was to check the imprints of the extra material terms -

coming from the T−dependence of the theory - on WD properties.



CHAPTER 7. CONCLUSIONS 82

The hydrostatic equilibrium configurations of WDs in alternative gravity theo-

ries others than f(R, T ) gravity can be seen in the recent literature. In (DAS;

MUKHOPADHYAY, 2015b) the consequences of modifications in GR were deeply

analyzed in the WDs perspective. A similar approach is presented in reference

(DAS; MUKHOPADHYAY, 2015a). In (JAIN et al., 2016) it was shown that WDs

provide a unique setup to constrain Horndeski theories of gravity. In (BANER-

JEE et al., 2017), it was explored the effects that WDs suffers when described in

various modified gravity models, such as scalar-tensor-vector, Eddington inspired

Born-Infeld and f(R) theories of gravity. Furthermore, WDs have been used to

constrain hypothetical variations on the gravitational constant (ALTHAUS et al.,

2011; GARCÍA-BERRO et al., 2011; CÓRSICO et al., 2013).

The equilibrium configurations of WDs were analyzed for f(R, T ) = R + 2λT with

different values of λ and central energy densities. We showed that the extended

theory of gravity affects the maximum mass and radius of WDs depending on the

value of λ. Since gravitational fields are smaller for WDs than for neutron stars or

quarks stars, the scale parameter λ used here is small when compared to the values

used in Ref. (MORAES et al., 2016). In this way, WDs data can be used as a tool

to constrain an inferior limit on λ, which is λmin ≈ −3× 10−4.

The values of the parameter λ used in the present work are clearly small when

compared to those of reference (MORAES et al., 2016), in which the hydrostatic

equilibrium configurations of neutron and quark stars were calculated in f(R, T )

gravity. This may be due to the fact that the compactness M/R of WDs is small

when compared to those of neutron and quark stars. In fact, it can be seen in

(MORAES et al., 2016) that the values of λ needed to get stable quark stars are

greater than the values used for neutron stars, as a probable consequence of the

higher compactness of quarks stars in relation to neutron stars. In this way, these

analysis indicate that higher compactness objects would need higher deviations from

GR.

We found that for λ = −4× 10−4, the maximum mass of the WD is 1.47M�. This

value is determined in a central energy density ∼ 85% lower and radius ∼ 110%

greater than those values used to find the maximum mass value in the GR case (λ =

0). The outcomes for the central energy density are also smaller than those obtained

in f(R) = R + αR2 gravity, for different values of α (DAS; MUKHOPADHYAY,

2015b).

We argue about the advantages of having WDs with lower central energy densities in

the following. In (MIKHEEV; TSVETKOV, 2016) some constraints on the central

density of a WD were obtained. The authors have derived a system of equations

and inequalities that allows one to determine constraints on ρc. They have found
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that ρc ≤ 109 g/cm3 for the star RX J0648.0-4418. Moreover, in a seminal paper

by Hamada and Salpeter (HAMADA; SALPETER, 1961), it was found that for the

maximum masses of WDs, ρc ∼ 109 − 1010 g/cm3. Recently, WD calculations in

GR also showed that central energy densities are limited by nuclear fusion reactions

(CHAMEL et al., 2013; BOSHKAYEV et al., 2013; OTONIEL et al., 2016). It is

worth quoting that the values of the central energy densities that we have obtained

for the f(R, T ) gravity respect these constraints. In contrast, what has been found

for the central energy density of WDs in f(R) gravity is ρc ∼ 1011 g/cm3 (DAS;

MUKHOPADHYAY, 2015b).

As a direct extension of the present work, one can also consider quadratic terms on

T for the functional form of f(R, T ), that is, f(R, T ) = R+2λT +ξT 2, with ξ being

a free parameter. Since the extra material terms seem to yield an increment on the

mass of WDs, one may expect the presence of the quadratic term T 2 to significantly

elevate the Chandrasekhar limit and predict the existence of super-Chandrasekhar

WDs (HOWELL et al., 2006; SCALZO et al., 2010), which still require convincing

physical explanation.

• Effects of extra dimensions on white dwarfs

We investigate the equilibrium configurations of self-gravitating spherically sym-

metric fluid composed by a relativistic free Fermi gas in the framework of higher

dimensional gravity. It is considered the hydrostatic equilibrium equation within

General Relativity (GR) and Newtonian theories of gravitation under the presence

of universal extra dimensions (UED). We generalize the equation of state (EoS) of

an ideal relativistic Fermi gas in the presence of such UEDs, obtain for the first

time analytic expressions for the energy density and pressure in D-dimensions, and

solve the generalized D-dimensional Tolman-Oppenheimer-Volkoff stellar equilib-

rium equation. Interesting properties of the D-dimensional relativistic free Fermi

gas such as sound velocity, and polytropic limits were also presented. In particular,

we show that the adiabatic index Γ for the non-relativistic and ultra-relativistic

limits of a degenerated free fermi gas in D-dimensions is related only to the space-

time dimension. Thus, the sound velocity in these two cases is always constant and

decreases with the increase of the spacial number of dimensions, since goes with

1/(D− 1). We also find that there is no gravitationally stable fermion compact star

solution for the D-dimensional ideal Fermi gas considering GR, when D > 4. Fur-

thermore, this important result is independent of the fermion mass, and also of the

gravitational constant value GD in D dimensions. We performed an analysis of the

energy conditions of the equation of state, and also considered the Newtonian limit

by completeness. We found that for any number of dimensions the energy conditions

are all respected, which implies that the ideal relativistic Fermi gas in D-dimensions
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can be stated to be a normal matter. Concerning the Newtonian limit, we derive

the generalized Lane-Emden equation, and again, we did not found stable solutions,

meaning that even in a Newtonian theory of gravity it is not possible to have stable

fermion compact stars constituted by an ideal Fermi gas with D > 4, which is in

agreement with the literature. Since, the main source of the internal pressure inside

white dwarfs is due to the degenerate free electron gas, this class of compact objects

cannot exist in more dimensions, even in the GR theory, which is important to take

into account for Super-Chandrasekhar white dwarfs, in order to obtain the correct

star radius (CARVALHO et al., 2018). Thus, the existence of white dwarfs in our

universe is one more observational evidence that extended extra spatial dimensions

do not exist, and extra dimensions must be compactified, as proposed, for instance,

in brane-word gravity where the “normal” matter can only propagate in the 4-D

brane.

• Effects of unipolar inductor model on double white dwarf binaries

We take into account the magnetic friction between double white dwarf binaries by

using the so called unipolar inductor model (UIM). We showed that the UIM may

produce high energy emission, being possible to achieve the GRB powers, neverthe-

less when we consider the twist of the magnetic field we note that the magnetic field

lines can be opened and flares due to disruption of magnetic flux tubes occurs with

certain frequency, thus we consider a parameterized emission proposed in the liter-

ature yielding a much smaller electromagnetic emission. We stress that the energy

released as flares due to disruption of magnetic flux tubes were not calculated here

and it may also be related somehow to GRBs, and we plan to address this ques-

tion in a near future. Moreover, we showed that the parameterized UIM can affect

the orbital evolution for magnetic fields B > 109G, thus changing the time needed

to merger. Consequently, the separation distribution, delay time distribution and

possibly the merger rate are also affected. It is worth to cite that this is a work in

progress, so the conclusions presented here are not definitive.
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Appendix A - Some derivations and

important mathematical identities

Using the definition of the energy-momentum tensor one find for its covariant derivative

∇µTµν = ∇µ(−pgµν) +∇µ[(p+ ρ)uµuν ] (A.1)

= −∇νp+ gαµ∇α[(p+ ρ)uµuν ] (A.2)

= −∇νp+ gαµ∂α[(p+ ρ)uµuν ]− gαµ(p+ ρ)[Γβµαuβuν + Γβναuβuµ], (A.3)

however, for the static case uµ = {√g00, 0, 0, 0}, and using ν = 1, we have

−∂1p− g00(p+ ρ)Γ0
10(u0)2 = 0 (A.4)

−p′ − g00(p+ ρ)
φ′

2

1

g00
= 0 (A.5)

−p′ − (p+ ρ)e
φ′

2
= 0. (A.6)

To derive the field equations for the f(R, T ) gravity we follow the same procedure

such as in chapter 3, i.e., we take the variation of the action with respect to the metric

gµν . To perform the derivation of the field equations of the f(R, T ) gravity we need to

consider the action

s =

∫ (
f(R, T )

16π

√
−g +

√
−gLm

)
d4x. (A.7)

Taking the variation of (A.7), we obtain

δs =
1

16π

∫ [
fRδR + fT

δT

δgµν
δgµν − 1

2
gµνf(R, T )δgµν +

16π√
−g

δ(
√
−gLm)

δgµν
δgµν

]√
−gd4x,

(A.8)

where we have used the notation fR = ∂f(R,T )
∂R and fT = ∂f(R,T )

∂T . Now, knowing that

δR = Rµνδg
µν + gµν�δg

µν −∇µ∇νδg
µν , (A.9)
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we obtain,

δs =
1

16π

∫ [
fR(Rµνδg

µν + gµν�δg
µν −∇µ∇νδg

µν) + fT
δ(gαβTαβ)

δgµν
δgµν

−1

2
gµνf(R, T )δgµν − 8πTµνδg

µν

]√
−gd4x, (A.10)

with Tµν ≡ −2 δ(
√
−gLm)
δgµν

being the definition of the energy-momentum tensor. Integrating

by parts the second and third term of the right hand side of (A.10), one can obtain the

field equations, by taking δs = 0, as

fRRµν −
1

2
f(R, T )gµν + (gµν�−∇µ∇ν)fR = 8πTµν − fT (Tµν + Θµν), (A.11)

where Θµν ≡ gαβ
δTαβ
δgµν

. If we consider that the function f(R, T ) is reduced to f(R) one

can obtain from (A.11) the field equations of the f(R) gravity.

Now, applying ∇µ in (A.11)

fR∇µRµν +Rµν∇µfR −
1

2
gµν∇µf(R, T ) + (∇ν�−�∇ν)fR =

8πTµν − fT∇µTµν − fT∇µΘµν − (Tµν + Θµν)∇µfT . (A.12)

and making use of the following mathematical identities

∇µGµν = 0 (A.13)

(�∇ν −∇ν�)φ = Rµν∇µφ (A.14)

∇µf(R, T ) = fR∇µR + fT∇µT, (A.15)

one can achieve that

∇µTµν =
fT

8π − fT

(
∇µΘµν + (Tµν + Θµν)∇µlnfT −

1

2
∇νT

)
, (A.16)

if we take fT = 0, the conservation of the energy-momentum tensor is recovered as in GR

and f(R) theories of gravity.
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