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Resumo

Haletos de perovskita AMX3 são semicondutores de alto interesse para aplicações foto-

voltaicas, tendo mostrado células solares com eficiência de conversão luminosa comparável

à da bem-estabelecida tecnologia de siĺıcio. No entanto, ainda há obstáculos na comer-

cialização desses dispositivos, como a necessidade de estabilidade a longo prazo e aper-

feiçoamento da absorção luminosa. Comumente, esses problemas são abordados com a

substituição completa ou parcial dos elementos nas posições A, M e X da rede cristalina.

Nesse trabalho, apresentamos cálculos ab initio de uma serie de perovskitas incluindo

correção de quasipart́ıcula DFT-1/2 e acoplamento spin-órbita. O objetivo principal é in-

vestigar o papel de cada elemento nas propriedades eletrônicas e estruturais e estabilidade

de cada material. É reportado o cálculo de 48 perovskitas em fase cúbica (A = CH3NH3,

CH(NH2)2, Cs, Rb; M = Pb, Sn, Ge, Si; X = I, Br, Cl), das quais 16 apresentam gap de

banda adequados para células solares de junção única. As tendências de gap são então ex-

plicados metodicamente com base na rede, no caráter orbital das bandas e na magnitude

do acoplamento spin-órbita. Três programas foram criados em Python para o cálculo de

alto rendimento de ligas multinárias. Com base no conhecimento adquirido com células

puras e nas soluções desenvolvidas, são reportados os cálculos das ligas CsPb1−xSnxI3 e

CsSn1−xGexI3. Em ambos os casos, a desordem estrutural, estabilidade de fase e a estru-

tura eletrônica são investigados. No primeiro caso, a forte não-linearidade na evolução do

band gap é quantificada e explicada em termos de alinhamento de bandas. Na segunda

liga, é observada uma transição cont́ınua entre as simetrias romboédrica e cúbica, afetando

diretamente a estabilidade de fase e o gap de banda. Em resumo, esse trabalho aborda

sistemas de grande impacto na literatura e de dif́ıcil descrição teórica. Desenvolve-se

um programa computacional avançado que reúne várias técnicas para a modelagem efi-

ciente de materiais, comparável ao estado da arte. São fornecidos resultados em ótimo

acordo com o experimento e previsões confiáveis de novas perovskitas, evidenciando os

mecanismos f́ısicos que regem o ajuste de composição dessa classe de semicondutores.



Abstract

AMX3 halide perovskites are semiconductors of burgeoning interest for photovoltaic ap-

plications, showing solar cells with light conversion efficiencies comparable to the well-

established silicon technologies. However, there still are challenges for the commercial-

ization of those devices, including long-term stability and optimal optical absorption.

These obstacles are commonly surpassed with the partial or complete substitution of the

A, M and X site elements. In this work, we present ab initio calculations of a series

of perovskite systems with DFT-1/2 quasiparticle and spin-orbit corrections. The ulti-

mate objective is to evidence the role played by each composing element in the material’s

electronic structure, lattice geometry and stability. The calculation of 48 cubic halide

perovskites (A = CH3NH3, CH(NH2)2, Cs, Rb; M = Pb, Sn, Ge, Si; X = I, Br, Cl) is

reported, of which 16 materials present gaps suitable for integrating single-junction solar

cells. The gap trends are methodically explained based on lattice geometry, orbital char-

acter, and spin-orbit magnitude. The formation of pyramidal MX3 units was identified as

the cause of unexpectedly broad gaps. Three Python programs were created for the high-

throughput calculation of multinary alloys. Based on the knowledge acquired with pristine

perovskites and using these computational solutions, the calculation of CsPb1−xSnxI3 and

CsSn1−xGexI3 alloys is reported. In both cases, the structural disorder, phase stability,

band gap and band orbital character are obtained and correlated. In the first alloy, the

peculiar bowing in the band gap evolution was quantified and explained in terms of band

alignment. In the second case, it is observed a continuous transition from rhombohedral

to cubic symmetries that affect both phase diagram and band gap evolution. In sum-

mary, this dissertation addresses systems of great impact and of sophisticated theoretical

description. Aiming for and efficient modelling, the developed computational solutions

unite many techniques comparable to the state-of-the-art. The results are in close agree-

ment with experiment and thus provide reliable predictions on new perovskite systems,

evidencing the underlying physical mechanisms of compositional engineering of this class

of semiconductors.
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1 Introduction

The development of clean energy sources is a topic of worldwide interest, figuring

between the United Nations Sustainable Development Goals. The ultimate objective

is to mitigate the use of non-renewable sources such as fossil fuels, which have severe

medium- and long-term impacts on the environment, economy, and human health. Global

attention to the subject contributes to increasingly significant investments in the wind,

biomass, solar energy, and others. Solar photovoltaic (PV) energy receives a significant

share of this investment, amounting to 47% of the total in 2016 (RITCHIE; ROSER, 2020).

Concomitantly, its yearly energy consumption has rocketed from 1.13 TWh in 2000 to

584.63 TWh in 2018, but still corresponds to 0.95% of the total.

Crystalline silicon is currently the most common technology for photovoltaic devices,

early reports tracing back to 1941 (OHL, U.S. Patent 2443542, 27 May 1941). The following

decades of development of semiconductor physics and novel fabrication techniques lead to a

good comprehension of its functioning and efficiency. Polycrystalline and Monocrystalline

silicon now reach solar-to-electric power conversion efficiencies (PCE) of 21.2% and 27.6%,

respectively (NREL, Access date: 2020). However, the bad light absorption properties

of silicon wafer-based cells sparked interest in the investigation of alternative materials,

leading to the development of second and third-generation thin-film technologies (SAHOO

et al., 2018).

Kojima et al. (2009) reported the first perovskite solar cell (PSC). Composed of an

absorptive layer of methylammonium lead iodide (MAPbI3), it showed a PCE of 3.8%.

Although initially low, it developed rapidly until reaching values of up to 25.2% a decade

later, a position comparable to those of the well-established silicon technologies.

Even more impressive is the MAPbI3 resistance to defects, a result of its high dielectric

constant and low effective masses (YIN et al., 2014). It can thus be manufactured with

solution-processing techniques, much cheaper when compared to silicon wafer fabrication.

The most common method is the spin-coating of perovskites, consisting of spraying a so-

lution of the precursor materials onto a spinning substrate (ANSARI et al., 2018). The high

angular speed results in rapid evaporation of the solvents and deposition of the crystal,

but it leads to high material waste since most of the solution spills out of the substrate.
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Although it is useful for low production volumes, there is on-going development of roll-to-

roll perovskite printing methods aiming at large-scale production and commercialization

(SWARTWOUT et al., 2019).

These promising characteristics were sufficient for arresting the attention of the solar

photovoltaics community. Nevertheless, MAPbI3-based devices still face major setbacks.

They rapidly degrade under operating conditions: humidity, oxygen, and high temper-

atures cause it to decompose into the optically inactive PbI2 (SALHI et al., 2018). Also,

lead is a toxic material, harmful for the environment and human health (BABAYIGIT et

al., 2016). There are thus many challenges to overcome before perovskite-based solar cells

are commercially available.

In this scenario, the scientific community directs much effort towards the research

of alternative halide perovskite compositions. These are semiconductors of general for-

mula AMX3, where X is a monovalent halogen anion, M is a divalent cation, and A is a

monovalent cation. The lead metal is often substituted by other group-IV elements, most

commonly Sn and Ge. Other halogens such as Br, Cl, and F can replace the iodine ion.

The A cation, on the other hand, is much more versatile. It can be an organic molecule

such as methylammonium (MA), formamidinium (FA) or guanidinium (GA), or an alkali

metal such as Rb and Cs. Even larger molecules are possible, allowing the dimensionality

reduction of the crystalline lattice (LIU et al., 2020).

Such flexibility in composition offers a powerful tool for tuning the optoelectronic prop-

erties, as well as the possibility of bypassing stability and toxicity issues. All-inorganic

Cs perovskites can reduce the thermal decomposition (KRISHNAMOORTHY et al., 2015),

Sn and Ge are promising candidates for lead-free solar cells without loss in performance

(MUTALIB et al., 2018), and halide ion exchange was proven useful for tuning the light

absorption spectrum (YUAN et al., 2015). Since effectively reaching optimal properties

requires a profound understanding of these materials, many publications perform compre-

hensive theoretical studies on the band gap and structural properties on a large number

of perovskites (GOESTEN; HOFFMANN, 2018; PRASANNA et al., 2017; PISANU et al., 2018).

The vast compositional space of perovskites can be further extended by mixing two

or more materials, a technique known as alloying (ZARICK et al., 2018). Alloying pos-

sibly produces materials with more suitable properties than those of its components.

MAPb1−xSnxI3, for example, has minimum band gap value around x = 0.75 (HAO et

al., 2014), allowing the absorption of higher wavelengths than MASnI3 or MAPbI3 alone.

MAPb(I1−xBrx) presents a significantly enhanced resistance to humidity even at small bro-

mide inclusion (x = 0.20) (NOH et al., 2013). The A cation control in FA1−xCsxPb1−ySnyI3

allows for phase selection and tuning of structural distortions in the lattice (PRASANNA et

al., 2017). The use of mixed systems is thus a promising approach for building practical

perovskite solar cells, although they are much more complicated to study in both the
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experimental and the theoretical sense.

This work aims to study the fundamentals of compositional engineering in perovskite

systems for photovoltaic devices. The lattice geometry, thermodynamics, band gap, or-

bital character and relativistic effects in the bandstructure of pristine and mixed systems

will be analyzed using ab initio methods. These intrinsic properties will be calculated,

correlated, and discussed given previous literature. The results should shed light on the

shared characteristics of perovskites and the particularities of each material.

Chapter 2 opens this text with a discussion of the theoretical and computational

methodologies. The calculations performed in this work utilize the density functional the-

ory (DFT) (KOHN; SHAM, 1965), a quantum mechanical formulation that simplifies the

description of the ground state of many-body systems. The application of these methods

to periodic systems such as the perovskite crystals will be explained. Moreover, the Gen-

eralized Quasi-Chemical Approximation (GQCA) is used to extend the tools applicable

to crystals to crystalline alloys (SHER et al., 1987). This method provides information on

the entire range of mixtures x, on the contrary to more conventional methods.

The combination of DFT and GQCA for the ab initio calculation of semiconductor

alloys have long been used by the Group of Semiconductor Materials and Nanotechnology

at the Aeronautics Institute of Technology. Despite the accumulated expertise, no unified

and automatized solution had yet been developed for the group. Through the course of this

dissertation, three programs were developed in Python for performing high-throughput

alloy calculations. These were designed to contemplate alloys with arbitrary lattice and

composition, as well as significantly reduce human effort. A solution of the kind is even

more critical for the study of complex systems such as mixed perovskites. Calculations of

such systems are of high computational costs, for they require the consideration of spin-

orbit coupling (SOC), band gap quasiparticle correction, and cells with a large number of

atoms, often comprising rotating molecules. Without the aid of algorithms, this becomes

an extenuating task. The programs, briefly described in Section 2.3, are also expected to

be of use for future works of the group on diverse alloyed systems.

The study of perovskite systems starts with the calculation of 48 cubic perovskites

AMX3 with composition A = MA, FA, Cs, Rb; M = Pb, Sn, Ge, Si; and X = I, Br,

Cl, as detailed in Chapter 3. This selection covers the most common compositions for

PV cells. It also includes the less studied rubidium- and silicon-containing perovskites,

making predictions on their electronic structure. All materials were calculated in the

cubic (α) phase for allowing the proper comparison between different compositions, while

still offering meaningful information on other possible phases. The trends in band gap are

explained in terms of orbital interaction and structural deformation, as well as chemical

factors such as halogen electronegativity. The gap values obtained are used to propose

possible materials for constituting the absorptive layer in single-junction cells.



CHAPTER 1. INTRODUCTION 21

Based on the knowledge acquired, some perovskites were selected for the study of

their alloys. Chapter 4 reports the account of cubic CsPb1−xSnxI3, quantifying its phase

stability, oxidation resistance, and band gap. Tin-lead perovskites are notorious for their

very accentuate gap bowing, resulting in intermediate compositions (x ≈ 0.75) having a

lower band gap than those of the end components. This interesting effect is not yet fully

understood, and this study seeks to provide further insights into the topic.

In Chapter 5, CsSn1−xGexI3 is studied. This perovskite is exceptionally stable and

relatively efficient at x = 0.5 (CHEN et al., 2019). Since it has only recently been discovered

as a promising material for lead-free solar cells, there is no detailed composition-dependent

study of this alloy in the literature to the best of the author’s knowledge. Careful analysis

of structural, thermodynamical, and electronic properties of this system are reported for

the first time.

This dissertation offers many insights into the compositional engineering of perovskite

materials for photovoltaics. Many mechanisms here described are transferable to analo-

gous systems. It should serve as an introduction to band gap tuning, as well as a guide

for future theoretical and experimental research. Also, the tools developed are expected

to be useful for future studies on any mixed system.



2 Methodology

The objective of this chapter is to introduce the well-established theoretical princi-

ples and computational tools that will be addressed throughout this text. The first topic

is Density Functional Theory (DFT) (KOHN; SHAM, 1965), a set of quantum mechanics

theorems that go beyond the Schrödinger’s equation and simplify the electronic structure

calculation of many-body systems. Following, the application of DFT to crystalline sys-

tems is discussed. The Bloch’s theorem simplifies the problem of finding the electronic

states of a periodic potential, while the projector augmented wave method (PAW), as

used by the Vienna Ab initio Simulation Package (VASP), eases the computational costs

(BLöCHL, 1994; KRESSE; FURTHMüLLER, 1996). The DFT-1/2 method is presented as a

way of correcting well-known errors in the bandstructure of semiconducting crystals (FER-

REIRA et al., 2008; FERREIRA et al., 2011). In the third and last section, it is explained

how the methods developed for perfectly periodic systems can be useful for quantifying

properties of crystalline alloys, which are periodic in structure but disordered in atomic

composition. Three programs were written in Python code, namely autoalloy.py, simclus-

ters.py and MGQCA.py, with the objective of fully automating the application of these

tools to the ab initio calculation of alloys.

2.1 Density Functional Theory

The physics of quantum mechanics stems from Schrödinger’s equation. It determines

the time evolution of any given state, represented by a vector |Ψ(t)〉 in Hilbert’s space, of

a system described by the hamiltonian operator Ĥ:

Ĥ |Ψ(t)〉 = i~
∂

∂t
|Ψ(t)〉 . (2.1)

The quantum hamiltonian Ĥ is an hermitian operator (assumed to be independent of

time) directly related to the system’s classical hamiltonian H. The quantization process

consists in substituting the canonical conjugated pairs of variables of the system by pairs

of operators associated to the degrees of freedom. The general solution to Eq. 2.1 can be
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expressed as

|Ψ(t)〉 = e−
i
~ Ĥ(t−t0) |Ψ(t0)〉 , (2.2)

where the exponential is an unitary operator also refered to as the propagator U(t− t0).

An interesting case happens when |Ψ(t0)〉 is an eigenvector of Ĥ with eigenvalue E, in

which case it is also an eigenvector of U(t− t0) with eigenvalue exp{−iE(t− t0)/~} and,

therefore, evolves in time following a simple relation:

Ĥ |Ψ(t0)〉 = E |Ψ(t0)〉 → |Ψ(t)〉 = U(t− t0) |Ψ(t0)〉 = e−
i
~E(t−t0) |Ψ(t0)〉 . (2.3)

The state of the system thus evolves with a phase shift. The eigenvalue E, correspondent

to the energy of the state, is constant with time. These are thus known as the stationary

states.

The standard problem of quantum mechanics is to obtain the electronic structure

described by the set of pairs of stationary states and energies {|ΨE〉 , E}. Any arbitrary

state can then be written as a linear combination of the basis {|ΨE〉}, and the expression

2.2 can be calculated directly. Analogously to classical mechanics, the solution is obtained

by (i) defining the hamiltonian Ĥ that suitably describes the physical system of interest

and (ii) solving the time-independent Schrödinger’s equation (2.3).

Although simple to state, the process of obtaining the electronic structure easily be-

comes an excruciating task. If, for example, the state |Ψ〉 describes a number N of inter-

acting electrons, Eq. 2.3 translates into a nonlinear partial differential equation with 3N

independent variables. For N of the order of Avogadro’s number, even numerical approx-

imations are well beyond any computing power currently available. Due to this difficulty,

the methods involving many-body systems focus on finding an alternative hamiltonian

that will simplify the solution and give information on the original system. This is the

role of the density functional theory.

DFT is founded on the theorems proved by Hohenberg and Kohn (1964) that establish

the importance of the electron density to the ground state of a system. The first theorem

establishes a biunivocal relationship between an external potential Vext applied to the

system and the corresponding ground-state (GS) density ρ0 of the solution |ΨE0〉, where

E0 is the lowest possible energy a state can occupy. For the non-degenerate case, any

given Vext will generate a single ground-energy state |ΨE0〉 as solution of (2.3), which in

turn has a unique electronic density given by

ρ0(~r) = 〈ΨE0|
N∑
j=1

δ(~r − ~rj)|ΨE0〉 . (2.4)

The ~rj variables represent the positions of each particle. Hohenberg and Kohn prove that
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the opposite path is also true. That is, if ρ(~r) is the ground state solution of a given

external potential V1
ext (and is, therefore, v-representable), no other potential V2

ext that

differs from V1
ext by more than a constant value can generate the same GS density ρ(~r).

The consequence of the first theorem is that all information regarding the ground

state is included in the electronic density. The external potential, as well as the electronic

state, are functionals Vext[ρ0] and |Ψ[ρ0]〉. The expected value of any observable Ô can

be written as a functional of density〈
Ô
〉

[ρ] = 〈Ψ[ρ]|Ô|Ψ[ρ]〉 . (2.5)

Similarly, for a given system’s hamiltonian Ĥ there exists a functional of energy E[ρ] =

〈Ψ[ρ]|Ĥ|Ψ[ρ]〉, whose domain is the set of v-representable density functions.

The second Hohenberg-Kohn (HK) theorem proves that the minimum value of the

functional E[ρ] is obtained for the system’s ground-state density ρ0. That is:

E[ρ] = 〈ψ[ρ]|Ĥ|ψ[ρ]〉 ≥ 〈ψ[ρ0]|Ĥ|ψ[ρ0]〉 = E[ρ0] = E0. (2.6)

Now suppose one wants to obtain the ground state energy and electronic density of a

system described by the hamiltonian Ĥ. One option is to solve Equations 2.3 and 2.4.

The alternative route is to obtain the system’s functional E[ρ] and minimize it with respect

to ρ.

The HK theorems show that the energy is a functional of density and that it is possible

to use it to obtain the ground-state properties of a system. However, they offer no practical

method for doing so, and the general form of the functional E[ρ] is unknown. It can be

decomposed as

E[ρ] = T [ρ] + Uee[ρ] + V [ρ], (2.7)

where T, Uee and V are respectively the kinectic, electron-electron interaction and poten-

tial energies. The potential energy can be written as the simple relation

V [ρ] =

∫
V (~r)ρ(~r)d3r. (2.8)

The Uee term, on the other hand, is partly composed of the classical coulombic energy

(also known as Hartree energy), which is given by

J [ρ] =
1

2

∫ ∫
ρ(~r)ρ(~r′)

|~r − ~r′|
d3rd3r′. (2.9)

The remaining interaction energy Uee − J, along with the kinectic energy T, does not
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count with an explicit expression in terms of ρ.

The method proposed by Kohn and Sham (1965) intends to treat separately the un-

known functionals from those for which an exact description is available. This method

leads to eigenvalue problems much simpler to solve than time-independent Schödinger’s

equation (2.3). It begins by substituting the N-electron state |Ψ〉 by a fictitious state of

uncorrelated electrons |Ψf〉. This alternative state can be written as the tensor product

of N one-electron states |Ψf〉 = |ψ1〉
⊗
|ψ2〉 ...

⊗
|ψN〉. Both states are required to have

the same electronic density. If each state |ψj〉 is represented by a wavefunction in real

space ψj(~r), its electronic density can be written, according to 2.4 in the simplified form

ρ(~r) =
N∑
j=1

|ψj(~r)|2. (2.10)

The kinetic energy of uncorrelated states are, in fact, much simpler to calculate. It is

expressed as the sum of kinetic energies of the one-electron states:

Tf =
N∑
j=1

Tf,j = − ~2

2m

N∑
k=1

∫
ψ∗j (~r)∇2

jψj(~r)d
3r. (2.11)

The kinetic energy of the original system T[ρ] can then be written as a sum of the kinetic

energy Tf of the fictitious uncorrelated system and the remaining T[ρ]− Tf . The so-called

exchange-correlation functional is then defined as

Exc = (T − Tf ) + (Uee − J), (2.12)

and Eq. 2.7 can be rewritten as

E[ρ] =Tf + J + V + Exc

=− ~2

2m

N∑
j=1

∫
ψ∗j (~r)∇2

jψj(~r)d
3r +

1

2

∫ ∫
ρ(~r)ρ(~r′)

|~r − ~r′|
d3rd3r′

+

∫
V (~r)ρ(~r)d3r + Exc[ρ],

(2.13)

with Exc = (Uee − J) + (T[ρ] − Tf ). In exception for Exc, every term can be written

explicitely in terms of ρ and, consequently, in terms of the functions ψj. Following the

second HK theorem, the ground-state energy and density can be obtained by minimizing

the energy functional while obeying the constraint of a fixed number N of electrons. This

minimization reads as

δ

(
E[ρ]− µ

(∫
ρ(~r)d3r −N

))
= 0, (2.14)
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where µ is a lagrange multiplier. Assuming the existence of the functional derivative

εxc(~r) = δExc/δρ(~r) and proceeding with the variational calculations, one arrives at the

Kohn-Sham equations [
− ~2

2m
∇2
j + VKS(~r)

]
ψj = µψj, j = 1, ..., N. (2.15)

The Kohn-Sham equations constitute an eigenvalue problem at first sight similar to the

time-independent Schrödinger’s equation 2.3, with the N-particle state being substituted

by a one-particle wavefunction. However, for (2.15), the hamiltonian itself depends on

the electronic density ρ. The effective Kohn-Sham potential VKS substitutes the actual

potential energy experienced by the electrons in the system, being

VKS = V (~r) +
1

2

∫
ρ(~r)

|~r − ~r′|
d3r′ + εxc. (2.16)

The method to solve KS equations must, therefore, be self-consistent. The steps are

(1) assuming an initial trial electronic density, (2) calculating the corresponding VKS,

(3) obtaining a set of one-electron orbitals with Equation 2.15, (4) calculating the new

electronic density with Equation 2.10, and repeating the process from (2) until some

convergence criteria are met. The Projector Augmented-wave method (PAW), discussed

in the next section, is a common technique for solving the Kohn-Sham equations.

The problem is thus entirely reduced to the determination of the exchange-correlation

term, and there are many alternatives available in the literature (see, for example, Filippi

et al. [1994]). The simplest form of obtaining εxc is approximating the energy of the

real system by that of an electron gas with the same local density, method known as the

Local Density Approximation (LDA) (KOHN; SHAM, 1965). The Generalized Gradient

Approximation (GGA) tries to improve on LDA, taking into consideration the first-order

variations on the density:

EGGA
xc =

∫
f(ρ(~r,∇ρ(~r))d3r. (2.17)

There are many possible formulations for the GGA functional, and the publication by

Esṕındola et al. (2015) provides a good introduction to the topic. The DFT calculations

done in this work use the version developed by Perdew, Burke and Ernzerhof (PBE-GGA)

(PERDEW et al., 1996).

Another important physical result obtained by the Kohn-Sham equations is the orbital

occupation energy, given by the orbital’s Lagrange multiplier µ = εj. Janak’s theorem

(JANAK, 1978) states that the total energy of the system (2.13) is affected by the occu-
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pation of the k-th orbital fj by a rate

∂E

∂fj
= εj(fj). (2.18)

The occupation fj is unitary when the orbital is completely occupied and null when com-

pletely unoccupied, possibly assuming values in-between. In Section 2.2.2, it will be

shown how it is possible to take advantage of Janak’s theorem to improve upon the DFT

predictions on semiconductor’s band gaps.

2.2 Electronic structure calculations in crystals

The theories discussed above are general and can be applied to a myriad of systems.

This work is concerned with the study of the particular case of crystalline alloys. Before

understanding disordered systems, though, it is first necessary to discuss how the Kohn-

Sham equations are solved for perfectly periodic crystalline structures.

2.2.1 Bloch’s theorem

Crystals are defined by the spatial repetition of identical cells. These primitive cells

contain the atoms that make up the crystal’s composition. The cell edges are known as

the primitive lattice vectors {~Rj}, which define the spatial periodicity. For tridimensional

crystals, there are three linearly independent lattice vectors. Since the atomic arrangement

is periodic, it is natural that the potential energy V(~r) at any point in the crystal lattice

also shares this property:

V (~r) = V (~r − n1
~R1 − n2

~R2 − n3
~R3), n1, n2, n3 ∈ Z. (2.19)

The values of V(~r) can be interpreted as the diagonal matrix elements of the potential

energy operator V̂ in the basis of position vectors |~r〉: V(~r) = 〈~r|V̂ |~r〉. Defining an

arbitrary translation operator R̂ with translation ~a =
∑3

j=1 nj
~Rj, so that

R̂ |~r〉 = |~r − ~a〉 , (2.20)

the following conclusion is immediate:

R̂V̂ − V̂ R̂ = [R̂, V̂ ] = 0. (2.21)

The potential energy operator commutes with any translation operator following the crys-

tal’s periodicity. The same property is valid for the kinetic energy operator T̂ , since its
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matrix elements 〈~r|T̂ |~r〉 do not depend on the value of ~r. Therefore, for the hamiltonian

of the crystal:

Ĥ = T̂ + V̂ → [R̂, Ĥ] = 0. (2.22)

This commutation relation implies that the hamiltonian eigenstates |ΨE〉 are also

eigenstates of R̂. Expanding |ΨE〉 in terms of the position basis |~r〉 and using Equation

2.20:

R̂ |ΨE〉 = R̂

∫
ψE(~r) |~r〉 d3r =

∫
ψE(~r) |~r − ~a〉 d3r

=

∫
ΨE(~r + ~a) |~r〉 d3r =

∣∣ΨT
E

〉
,

(2.23)

where
∣∣ΨT

E

〉
is the translated electron state and

R̂ |ΨE〉 = C |ΨE〉 =
∣∣ΨT

E

〉
→ CψE(~r) = ψE(~r + ~a), (2.24)

where C is the translation operator eigenvalue. Since both |ΨE〉 and
∣∣ΨT

E

〉
are required

to have the same norm, |C|2 = 1 and C can be written as a phase factor C = eiθ~a . For n

successive translations in ~a, the phase shifts add together as

ψ(~r + n~a) = einθ~aψ(~r). (2.25)

Defining the phase shifts due to translations by primitive lattice vectors ~R1, ~R2 and ~R3 as

θ1, θ2 and θ3, respectively, and further defining the vector ~k =
∑3

j=1 θj
~Rj/
∣∣∣~Rj

∣∣∣2, without

loss in generality

ψ(~r + ~a) = ei
~k.~aψ(~r), (2.26)

for any ~a given as a sum of integer multiples of the primitive lattice vectors. Notice that
~k is still arbitrary, and in that sense it indexes the different possible solutions that obey

Eq. 2.26. Multiplying both sides by exp
{
−i~k(~a+ ~r)

}
:

e−i
~k(~r+~a)ψ~k(~r + ~a) = e−i

~k.~rψ~k(~r) = u~k(~r). (2.27)

The quantity defined as the function u~k(~r) is consequently invariant under any translation

by lattice vectors. Any wavefunction of an electron placed in a periodic crystal must then

have the form of the so-called Bloch wavefunction (BLOCH, 1929)

ψ~k(~r) = ei
~k~ru~k(~r). (2.28)

The general solution of (2.15) should, therefore, have the form of (2.28). Taking Bloch’s

theorem into consideration, the problem of solving the Kohn-Sham equations for ψ in an
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infinitely extended region of space simplifies to finding the form of u~k in a primitive cell.

For each value of ~k, there will be a discrete number of solutions ψn,~k indexed by an integer

n. The space of wavevector values (also known as kpoints), is known as the reciprocal

space, which also possesses translational periodicity. The first Brillouin zone is the unit

cell of reciprocal space, comprising all kpoints of physical interest.

The set of eigenvalues En,~k obtained for the crystal constitutes its bandstructure, and

the band gap of the crystal is the energy difference between the most energetic occupied

orbital (the valence band maximum, VBM) and the less energetic unoccupied orbital (the

conduction band minimum, CBM). Both concepts of bandstructure and band gap will be

recurrent in this text. However, the density functional theory, as discussed in the last

section, is designed for the study of ground-state properties. This leads to well-known

errors in the determination of excited states. Band gap, an important parameter for solar

cell design, is known to be systematically underestimated by the LDA functional. Next

section, it will be shown how the DFT-1/2 method can correct this error, leading to gap

values comparable to experiment with a low computational cost.

2.2.2 DFT-1/2 quasiparticle correction

Many approaches have been proposed with the objective of correcting the well-known

DFT band gap underestimation, such as the GW approximation and hybrid funtional

methods (HEDIN, 1999). Although accurate in many cases, both methods often come

with a high computational cost even for simple crystalline systems. In the context of

alloys and large supercells calculations, this cost becomes an impediment.

The DFT-1/2 method was developed in the Group of Semiconductor Materials and

Nanotechnology by Ferreira, Marques, and Teles (2008, 2011) to fulfill this demand for a

more efficient solution. It is based on the Slater’s half-occupation scheme, which uses the

eigenvalue of the valence band maximum after removing half electron as an approximation

to the ionization energy of the molecule or solid. In this section, the general ideas and

assumptions for extending Slater’s idea to the density functional theory framework are

discussed.

An immediate implication of Janak’s theorem (2.18) is that

∂E

∂fα
= εα → E(1)− E(0) =

∫ 1

0

εα(fα)dfα, (2.29)

where fα represents the occupation of the orbital ψα, with value fα = 1 (0) when totally

occupied (unoccupied). The Hellmann-Feynman theorem (FEYNMAN, 1939; HELLMANN,
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1941) can be used to obtain the derivative of εα with respect to the occupation:

∂εα
∂fα

=
∂

∂fα
〈ψα|Ĥ|ψα〉 = 〈ψα|

∂Ĥ

∂fα
|ψα〉 = 2Sα. (2.30)

If the Kohn-Sham hamiltonian is used (2.15, 2.16) and the electron number density ρ

is expanded in partial densities ρβ associated with each atomic orbital β in the form

ρ =
∑

β fβρβ, the Sα coefficient is given by:

Sα =

∫ ∫ [
ρα(~r)ρα(~r′)

|~r − ~r′|
+

1

2
ρα(~r)

δ2Exc
δρ(~r)δρ(~r′)

ρα(~r′)

+
ρα(~r)

|~r − ~r′|
∑
β

fβ
∂ρβ(~r′)

∂fα
+

1

2
ρα(~r)

δ2Exc
δρ(~r)δρ(~r′)

∑
β

fβ
∂ρβ(~r′)

∂fα

]
d3rd3r′.

(2.31)

Sα is called the orbital self-energy due to the first term of Eq. 2.31. It is known that that

εα is up to a good approximation a linear function of fα (LEITE et al., 1972), so the last

two terms of (2.31) can be neglected. Under this consideration, a self-energy potential

VS(~r) can be defined as

Sα =

∫
ρα(~r)VS(~r)d3r → VS(~r) =

∫
ρα(~r′)

|~r − ~r′|
d3r′ +

1

2

∫
δ2Exc

δρ(~r)δρ(~r′)
ρα(~r′)d3r′. (2.32)

Back to Equation 2.30, the derivative of εα is approximately a constant value 2Sα.

Therefore, considering Iα as the ionization potential, Equation 2.29 results in

−Iα = E(1)− E(0) =

∫ 1

0

εα(fα)dfα = εα(1/2); (2.33)

εα(1/2) = εα(0) + Sα = εα(1)− Sα. (2.34)

These relations offer a direct way of calculating the ionization potential of an orbital given

its half-occupancy energy. The band gap can actually be expressed in terms of ionization

potentials of the CBM and VBM.

Consider the total energy as a function of the orbital occupancies E(fCBM , fV BM). The

band gap of a crystal is the energy necessary to promote the electron at the VBM to the

CBM:

Eg = E(1, 0)− E(0, 1) = (E(1, 0)− E(0, 0))− (E(0, 1)− E(0, 0)) = −ICBM + IV BM

= εCBM(1/2)− εV BM(1/2) = εCBM(0)− εV BM(1) + SCBM + SV BM .

(2.35)

Equation 2.35 tells us that the standard DFT band gap given by εCBM(0) − εV BM(1) is
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not exactly equal to the actual band gap Eg due to the self-energy terms SCBM + SV BM .

But it can be obtained directly from the DFT band gap when considered half occupancy

of both CBM and VBM.

Ferreira et al. also show how the half-occupancy can be calculated. Using Equations

2.32 and 2.34 for removing half electron from an occupied orbital:

εα(1/2) = εα(1)− Sα = 〈ψα(1)|Ĥ|ψα(1)〉 − 〈ψα(1/2)|VS|ψα(1/2)〉

≈ 〈ψα(1/2)|Ĥ − VS|ψα(1/2)〉 .
(2.36)

The DFT-1/2 correction then consists in including the self-energy potential VS to the

Kohn-Sham hamiltonian in (2.15). The corrected Kohn-Sham equations are

[− ~2

2m
∇2
j + VKS(~r)− VS(~r)]ψj = µψj, j = 1, ..., N. (2.37)

However, this is problematic due to the charge disequilibrium induced by the removal of

half an electron. In a crystal, the periodic addition of a e/2 charge causes the potential

to diverge due to the coulombic interaction. To correct this problem, VS is multiplied by

a trimming function

Θ(r) =

{
[1− ( r

CUT
)8]3, r ≤ CUT

0, r > CUT
, (2.38)

where CUT is a length parameter (henceforth expressed in atomic units) obtained varia-

tionally so to maximize the band gap.

The validity of the DFT-1/2 correction for halide perovskites has been previously

discussed by Tao et al. (2017) for numerous systems, showing great correspondence to

experiment and to other ab initio correction methods. Guedes et al. (2019a) later used

this method for the study of the MAPb1−xSnxI3 mixed system. The DFT-1/2 correction

will be applied for every band gap calculation presented in this text. The CUT parameter

is obtained variationally for the primitive cells of the pure perovskites with a resolution

of 0.05Å, with the removal of half electron from the halogen p orbital, which constitutes

the top of the valence band. For A(M1−xM’x)X3 alloys, the CUT adopted for all super-

cell calculations is the average (CUTAMX3 + CUTAM ′X3)/2. The correction has a great

transferability, so the CUT value for Xp is almost unaffected when the halogen is placed

in different environments.

The accurate and efficient description of the electronic structure of crystals with den-

sity functional theory is now clearer. However, there are still many techniques used to

ease down the computational effort. The projector augmented-wave method (PAW), for

example, aims in transforming the Kohn-Sham wavefunctions ψ on related pseudofunc-

tions ψ̃ that are more easily described with plane-wave expansion. This approach, used

by the VASP software, is discussed in the following section.
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2.2.3 Projector augmented-wave method

The computational description of the wavefunctions and electron densities in crystals

often resorts to the plane wave basis. This representation involves several advantages

due to its simplified implementation, fast calculation of Fourier transforms, and tractable

convergence criteria. However, problems appear when describing electrons close to the

atomic nucleus: due to the strong potential produced by the inner-shell electrons, the

valence wavefunctions are highly oscillating. Such behavior requires a large number of

plane waves to reach convergence, consequently raising memory and CPU requirements.

The solution proposed by the PAW method consists in finding a linear transformation

T̂ that bridges the actual state |Ψn〉 and an auxiliary state |Φn〉 whose pseudofunction

presents a smoother behavior close to the nucleus:

|Ψn〉 = T̂ |Φn〉 , (2.39)

which, using Eq. 2.15, leads to

T̂ †ĤT̂ |Φn〉 = εnT̂ †T̂ |Φn〉 . (2.40)

This allows to calculate |Φn〉 with efficiency using the transformed Kohn-Sham equations

(2.40) and then retrieve the information of |Ψn〉 using T̂ .

The atom-centered transformations T̂ a are defined for each atomic orbital so that

|Ψa
n〉 = (1 + T̂ a) |Φa

n〉 , T̂ = (1 +
∑
a

T̂ a), (2.41)

where |Ψa
n〉 denotes each atomic orbital and |Φa

n〉 their respective pseudo-orbitals. Since

the sharpness of |Ψn〉 resides in the proximity to the nucleus, the linear transformations

T̂ are meant to affect only the region inside a certain radius ran, so the wavefunctions of

|Ψa
n〉 and |Φa

n〉 coincide outside this sphere. The total wavefunction and the respective

pseudofunction are supposed to be linear superpositions of the atomic orbitals:

ψn(~r) =
∑
a

canψ
a
n(~r), (2.42)

φn(~r) =
∑
a

canφ
a
n(~r). (2.43)

The expansion coefficients are equal as a requirement of the linear transformation in Eq.
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2.41. Using Equations (2.41-2.43):

|Ψn〉 = T̂ |Φn〉 = |Φn〉+
∑
a

canT̂ a |Φa
n〉

= |Φn〉+
∑
a

can(|Ψa
n〉 − |Φa

n〉).
(2.44)

The transformation in Eq. 2.44 then consists in first removing the pseudofunction behav-

ior
∑

a c
a
n |Φa

n〉 from the proximities of the nuclei and then adding back the real orbital

behavior given by
∑

a c
a
n |Ψa

n〉. Given the superposition shown in Eq. 2.43, the coefficients

can are obtained by choosing proper projector functions |pan〉 so that
〈
pa

′
n

∣∣Φa
n

〉
= δa′a and,

consequently

can = 〈pan|Φn〉 . (2.45)

The result is that the linear transformation T̂ can be expressed in terms of the projector

functions using Equations 2.44 and 2.45:

T̂ = 1 +
∑
a

(|Ψa
n〉 − |Φa

n〉) 〈pan| . (2.46)

The PAW formulation allows one to assume a frozen core approximation by excluding

from the summation of T̂ the inner-shell orbitals, which do not interact strongly with their

surroundings. The core wavefunctions are tabulated, and so the transformed Kohn-Sham

equations are reduced to the calculation of the valence electrons. As the VASP software

uses PAW, this method is applied to all calculations reported in this work.

From Bloch’s theorem and the quasiparticle correction of the semiconductor band

gap to the frozen-core approximation as implemented by the projector augmented-wave

method, the proper application of density functional theory to semiconducting crystals

is well outlined. In the following section, it will be explained how these theories can be

expanded to describe crystalline alloys.

2.3 Developed solutions for the DFT study of crys-

talline alloys

The simplifications discussed so far for many-body problems rely especially on Bloch’s

theorem, which assumes the spatial periodicity of the system. The alloyed systems here

reported, however, break this symmetry. When mixing two different semiconductors of

formulas AMX3 and AM’X3, for example, there is, in principle, no order in the arrange-

ment of the M ions. Moreover, M and M’ interact differently with the environment,

causing structural disorder as well.
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Nonetheless, the behavior of semiconductor alloys is, in general, similar to that of their

components. So, even though the translational symmetry is broken, some assumptions

are still valid (CHEN; SHER, 1996). In fact, the electron and hole wavefunctions in semi-

conductors are often assumed to span over a large number of unit cells, which implies

that these carriers are affected by a macroscopic average of the lattice interaction. The

alloy itself can be approximated as a material with the average properties of the local

disordered regions.

The intuitive approach for the theoretical description of alloys then consists in three

steps: (i) defining the alloy’s building blocks, the supercells (SC), that take into consid-

eration the local disorder; (ii) calculating the electronic structure and physical properties

of each SC using DFT; and (iii) utilizing a meaningful statistical method for determining

the average property of the material. This section will briefly explain how each step is

implemented. Three scripts were written in the Python programming language to solve

each step, named autoalloy.py, simclusters.py and MGQCA.py, respectively. Their im-

plementation and use are reported elsewhere (VALADARES, 2019).

2.3.1 Supercell expansion

The simplest way of inferring any property of a mixed system is to characterize its end

components and interpolate their properties. Suppose one wants to study an A1−xBx alloy,

where A and B are different materials. One could simply run primitive cell calculations

of both A and B, and, for a property P of any composition x,

P (x) = (1− x)PA + xPB. (2.47)

This is an extremely crude approximation since it does not take into account the interac-

tions between A and B that occur in the mixed material. In the real system, properties

often do not evolve linearly.

The natural improvement for this model is to adopt larger cells (also referred to as

supercells or clusters) in the DFT calculations, made up of stacking of primitive cells

(PC). Suppose a supercell defined as containing N PCs. Mixed supercells can have NA

primitive cells of A and NB = N-NA cells of B, thus having a corresponding x = (NB/N).

The higher the N, the finer is the sampling of the compositional space 0 ≤ x ≤ 1, and the

more interactions and mixing disorder are taken into account. On the other hand, large

values of N can lead to prohibitive computational costs.

There would be 2N possible supercell configurations in the A1−xBx system. The num-

ber of calculations, however, can be drastically reduced with symmetry considerations.

Many of these cells, in fact, represent the same material, being related by the symme-
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try operations of the crystal, such as translations, rotations, reflections, etc. Using the

crystal’s space group - the group of symmetry operations of a given crystal - the set of

SC can then be divided into subsets of degenerate supercells. All cells belonging to the

same group have the exact same properties, and only one representative cell must be cal-

culated to characterize the rest. As an example, Figure 2.1 illustrates the 4 possible SC

configurations for a CsPb1−xSnxI3 alloy with two primitive cells stacked in a crystalline

direction. The two configurations at the right can be easily identified as being degenerate

since one can be transformed onto another by a reflection operation. In this case, only

three supercells must be calculated to characterize the system.

FIGURE 2.1 – Supercell configurations for CsPb1−xSnxI3 with N = 2. The highlighted
cells are degenerate and connected by a reflection operation. Lead and tin ions are depicted
in black and light gray, respectively.

The entire process of applying the symmetry operations and preparing the represen-

tative clusters for DFT calculations was implemented in the autoalloy.py program. It

covers tridimensional crystalline alloys of arbitrary composition and lattice geometry, as

well as arbitrarily-shaped supercells. Figure 2.2 exemplifies the input file for a wurtzite

Al1−xGaxN alloy, with a supercell defined as a stacking of two layers in the first and second

crystalline directions, totaling N = 4 PCs and 8 group-III atoms. The program uses the

pymatgen Python library (ONG et al., 2013) to find the space group of the defined lattice.

In this example, the output reports 22 representative supercells, a number significantly

lower than the 28 = 256 possible configurations.
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FIGURE 2.2 – Example of input file of the autoalloy.py program for defining the repre-
sentative clusters of the Al1−xGaxN alloy.

2.3.2 Coordination of VASP runs

Once the representative cells have been obtained, it is then necessary to calculate the

ground state of each using density functional theory. This task can be very demanding

not only computationally but also to the operator, who needs to set-up, execute, and

wait for the ending of multiple VASP runs for each supercell. The solution was to write

the simclusters.py program, which is designed to be easy to use, adaptable to different

systems, and robust to errors. It was designed to run in a machine that uses Slurm

Workload Manager (YOO et al., 2003) as a job scheduler for VASP executions and allows

all calculations to be executed uninterruptedly.

The user may select a number of calculations to be performed for each cluster, such

as (1) relaxation of atomic positions, calculation of (2) density of states, (3) band gap,

(4) effective mass tensor, and (5) elastic constants. The code can be easily adapted to

include more protocols such as dielectric function calculation and is compatible with the

DFT-1/2 correction. Once these have been defined, the simclusters.py program builds a

dynamical list of tasks (VASP runs) to be performed for each cluster, as seen in Figure

2.3. This task list is continuously revisited, and new tasks may be included during the run

if the program identifies the necessity. The user may also define the parallel calculation

of multiple alloys.

Once the electronic structure of the j-th supercell is calculated, a given property Pj

(for example, band gap) can be obtained by reading VASP output files. Equation 2.47
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FIGURE 2.3 – Tasks list for each cluster of each alloy defined by the simcluster.py program
for coordinating VASP calculations.

can then be upgraded to

P (x) =
J∑
j=0

xjPj, (2.48)

where J + 1 is the number of representative supercells, and xj is the probability of

formation of the j-th cluster during the crystallization process. The set of probabilities xj

are governed by the ratio x of materials in the precursor solution, the formation energy of

each supercell, and the fabrication temperature T of the alloy. The problem of determining

these values is discussed in the following section.

2.3.3 Generalized quasi-chemical approximation

The Generalized quasi-chemical approximation (GQCA) is a statistical theory devel-

oped and reported by Sher et al. (1987) in the context of theoretical calculations of binary

alloys. It has been applied to a variety of systems, including hybrid organic-inorganic per-

ovskites (GUEDES-SOBRINHO et al., 2019b; GUEDES-SOBRINHO et al., 2019a), III-nitrides

(MARQUES et al., 2003), and zinc oxides (ATAÍDE, 2016).

The third and final program developed, named MGQCA.py, aims at defining and

solving the equations for the probabilities xj. The abbreviation stands for Multinary

GQCA since the original GQCA formulation for binary alloys is extended for multinary

mixed systems. Moreover, it acts as a post-processing tool of VASP outputs, retrieving

the Pj properties of all clusters.

The GQCA formulation consists in modelling the fabrication of the alloy A1−xBx as

occurring in an environment with an infinite source of atoms. The composition of this
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precursor solution comes from the composition of A and B and follows a proportion

determined by x. Suppose the supercell formation energies εj, with ε0 = εA and εJ =

εB. Suppose also the formation probabilities xj, yet unknown. They must follow the

constraints

xN =
J∑
j=0

xjNB,j,

J∑
j=0

xj = 1, (2.49)

where NB,j is the number of B primitive cells in the j-th supercell.

The mixing energy of the alloy is defined as the difference in energy necessary for the

crystallization of M supercells of the mixed system and the energy of the precursors:

∆E = M(
J∑
j=0

xjεj − (1− x)εA − xεB), (2.50)

The mixing entropy is defined as

∆S = −NkB(x lnx+ (1− x) ln (1− x))−MkB
∑
j

xj ln
xj
x0
j

, (2.51)

kB is the Boltzmann constant and x0
j are the a priori supercell probabilities, which disre-

gard any thermodynamical effects. Denoting the number of configurations in each group

of degenerate supercells as gj,

x0
j = gj(1− x)N−NB,jxNB . (2.52)

The set of solutions xj is obtained with the minimization of the free energy in the

crystallization process. The fabrication usually occurs at constant temperature T and

pressure p, minimizing Gibbs mixing free energy ∆G = ∆E − T∆S − p∆V. Neglecting

the volume variation ∆V, the problem is equivalent to minimizing Helmholtz mixing free

energy

∆F = ∆E − T∆S. (2.53)

The phase diagram can be obtained by identifying the spinodal and binodal points in the

∆F curves as a function of temperature. The procedure is detailed elsewhere (VALADARES,

2019). The minimization should be constrained to (2.49), leading to the equations

∂

∂xi

{
∆F

M
− λ1

∑
j

xj − λ2

[∑
j

NB,jxj −Nx

]}
= 0, i = 0, 1, ..., J. (2.54)

This results in

xj =
x0
jη
NB,jexp(−∆εj/kBT )∑

j x
0
jη
NB,jexp(−∆εj/kBT )

, (2.55)
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where η is a real positive solution to the polynomial equations

J∑
j=0

gj(Nx−NB,j)η
NB,je−∆εj/kBT = 0, (2.56)

and the excess energies ∆εj are defined as

∆εj = εj −
NA,j

N
εA −

NB,j

N
εB. (2.57)

There is always a single real positive solution of Eq. 2.56, avoiding ambiguity.

The procedure to obtaining the average property of the alloy is then (i) defining the

set of representative clusters, gj, NB,j, ∆εj, (ii) solving (2.56) for a given (x, T), (iii)

obtaining the cluster populations xj with Equation 2.55 and the cluster properties Pj,

and (iv) calculating the alloy property P(x,T) using Eq. 2.48.

As both alloys CsPb1−xSnxI3 and CsSn1−xGexI3 are binary, the derivation will be

restricted to the original GQCA formulation. The derivation and formulas of Multinary

GQCA are described elsewhere (VALADARES, 2019).



3 Cubic AMX3 perovskite systems

3.1 Motivation

Methylammonium lead iodide MAPbI3 is the prototype perovskite for photovoltaic

applications. The initial success of this material is due to its very unique set of properties.

Its band gap of 1.57 eV is suitable for sunlight absorption, while its low electron and

hole effective masses increase the carrier mobility (EPERON et al., 2014; MIYATA et al.,

2015). The strong spin-orbit coupling (SOC) effect present in the lead ions produces

a Rashba-Dresselhaus splitting in its conduction and valence bands, inducing a unusual

recombination mechanism that enhances carrier lifetime (AZARHOOSH et al., 2016). It

shows considerable carrier diffusion lengths, reaching up to 1µm (SARDASHTI et al., 2017).

Moreover, the high dielectric constant value makes the charge traps (excitons and defects)

shallow, so that efficient solar cells can be produced with the relatively less sophisticated

solution-processed methods, lowering production costs (GALKOWSKI et al., 2016).

Despite these qualities, future advancements in perovskite solar cells must venture

beyond MAPbI3. The investigation of new compositions is crucial to bypass the instability

issues and the lead toxicity, which pose as the major problems of this material. Also,

besides single-junction solar cells, there is demand for tandem devices. These require the

fine manipulation of the band gap of each perovskite absorptive layer.

The most straightforward approach in compositional engineering is to substitute the

constituting elements for others with similar chemical behaviour. In the MAPbI3 crystal,

the bivalent Pb is commonly substituted for other group-IV bivalent cations such as Sn2+

and Ge2+. In addition, the less-studied Si2+ will also be considered in this chapter. Its

much smaller ionic radius and negligible SOC helps to investigate how the crystal’s prop-

erties react in more extreme cases. Similarly, the iodine monovalent anion I− can be sub-

stituted by other halogens, which will here be limited to the more usual cases of Br− and

Cl−. Finally, the monovalent cation MA+ can be substituted by other organic molecules,

as well as inorganic ions such as the alkali metals. Here, the study will include the most

commonly used methylammonium MA (CH3NH3), formamidinium FA (CH(NH2)2), ce-

sium Cs, and also the less common rubidium Rb compositions. This selection amounts to
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48 compositions, ranging from well-known to yet hypothetical perovskites.

Not every composition explored in this chapter has been synthesized until the present

date. The results aim to predict their properties and encourage further experimental re-

search. Similarly, many of these perovskites are not stable in the cubic phase at room

temperature. The choice for the cubic symmetry is due to two considerations. First, the

lattice geometry is a determinant factor for the optoelectronic properties in perovskite

materials. Therefore, to better isolate and investigate the effects of compositional engi-

neering, it is indispensable to compare different materials while in the same phase. Second,

the cubic phase is often sought after due to its increased stability and enhanced properties.

As will be seen in the following sections, this higher-symmetry phase broadens the light

absorption spectrum, an attractive effect in current perovskite solar cell research. The

study of the cubic phase is even more interesting for mixed perovskites, where this state

can be stabilized with bond length tuning (LI et al., 2015) or with small-dose incorporation

into other materials (NOH et al., 2013).

This chapter will first start by presenting the results of the structural relaxation,

including bond lengths, angles and unit cell shape. Following, the orbital origins of the

perovskite bandstructure will be explored and the band energy level tuning will be linked

to the lattice geometry. Then, Section 3.4 presents the band gaps as obtained by the DFT-

1/2 method and compares these results to experiment and to other ab initio techniques,

validating the model. The study ends with the elaboration on how these structural and

orbital factors influence the band gap trends with element substitution.

All calculations were performed by solving the Kohn-Sham equations using the pro-

jector augmented-wave method (PAW) as implemented by VASP code. (BLöCHL, 1994;

KRESSE; FURTHMüLLER, 1996) The lattice relaxation procedure followed the same pa-

rameters: a 500 eV plane wave cut-off energy, 10−5 eV break condition for the electronic

self-consistent loop, a 0.01 eV/Å break condition for the Hellmann-Feynman forces in

the relaxed structure and a gamma-centered k-mesh with eight divisions along each re-

ciprocal lattice vector. The inclusion of spin-orbit coupling into calculations is crucial

for an accurate description of the bandstructure due to the presence of heavy elements

Pb and Sn, and so it is considered in every case. In order to ease computational costs,

each cell was initially relaxed without SOC and subsequently relaxed with the incorpora-

tion of SOC. For the exchange-correlation energy the Perdew-Burke-Ernzerhof generalized

gradient approximation (GGA-PBE) was employed (PERDEW et al., 1996).
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3.2 Structural parameters

In the cubic AMX3 perovskite, the bivalent metal cation M+2 is surrounded by 6

halogens X−, forming a MX6 octahedron. Each halogen is shared between two metal

cations M and M’ located in adjacent octahedra and, in the perfectly cubic system, the

MX bonds are aligned so that the ∠MXM’ angle equals 180◦. The A+ cation rests in the

cuboctahedral cage and plays an important role in filling the vacancies and maintaining

charge equilibrium. Such crystalline lattice belongs to the space group Pm-3m (number

221). Figures 3.1a and 3.1b illustrate both the MX6 octahedron and the cuboctahedron

cage delineated by its surrounding octahedra. The first Brillouin zone is also cubic, as

shown in 3.1c. The high-symmetry kpoints X, M and R are positioned respectively in

reciprocal coordinates (1
2
, 0, 0), (1

2
, 1

2
, 0) and (1

2
, 1

2
, 1

2
).

FIGURE 3.1 – Schematic diagram for the cubic perovskite phase of (a) primitive cell,
highlighting the MX3 octahedron; (b) cuboctahedron cage centered by the A-cation, and
(c) first Brillouin zone with high symmetry k-points shown. Green, gray and purple
spheres represent the A, M and X ions, respectively.

Tables 3.1 and 3.2 display the cell volume and mean lattice constant in comparison

to experimental results. The MX framework information is also shown, including mean,

maximum and minimum bond lengths and M-X-M bonding angles for each lattice di-

rection. The calculated lattice constant is in good agreement with experiments, giving

a maximum and average errors of 2.6% and 1.0%, respectively. This demonstrates that

PBE is suficciently accurate to determine the lattice geometry.

The cell dimensions (lattice parameter and volume) follow the expected trend regard-

ing ionic size (FA > MA > Cs > Rb; Pb > Sn > Ge > Si; and I > Br > Cl). But there

are two noteworthy exceptions: in spite of the smaller ionic size of Sn with relation to Pb,

both FASnBr3 and FASnCl3 have greater volume than their respective lead counterparts

FAPbBr3 and FAPbCl3. This odd behaviour was confirmed experimentally for the bro-

mide perovskites (PISANU et al., 2018) and will be seen in Section 3.4 to affect a similarly
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irregular trend in their band gap values.

In the hybrid perovskites, the cubic symmetry is disturbed due to the size and geom-

etry of the organic cations MA and FA. There is a consequent deformation in the MX6

octahedra, leading to an uneven distancing between the M ion and some of the halogens.

This is expressed in the ratio between the maximum and minimum MX bond lengths

as shown in Tables 3.1 and 3.2, which is greater in the more distorted perovskites. In-

terestingly, between Pb- and Sn-based perovskites, FASnBr3 and FASnCl3 present the

highest ratios of 1.43 and 1.55, respectively, whereas the other compositions have lower

ratios ranging from 1 to 1.21. This is possibly associated to their anomalously large unit

cell volume. Germanium and silicon perovskites, on the other hand, present much higher

ratios, reaching up to 2.08 in the case of FASiCl3.

This bond ratio distortion is shown by molecular dynamics calculations in FASnBr3

to be constantly changing. The metal and halogen ions oscillate and the time-averaged

bond length equals its arithmetic mean (PISANU et al., 2018). Higher ratios might indicate

a structural instability for pure compounds and poor mixing in solid solutions (GUEDES-

SOBRINHO et al., 2019b).

The higher distortion for Ge and Si perovskites is also evidenced by the ∠MXM’

bonding angles, which are labeled accordingly to each crystallographic direction (a, b and

c). FAGeI3 and FASiCl3 show angle values down to 159◦, whereas the minimum value

amongst tin and lead perovskites is 168◦. This difference in distortion can be explained

considering the smaller ionic radii of Ge and Si, which contract the inorganic network and

makes them more susceptible to A-cation distortion.

3.3 Orbital character

The sophisticated electronic structure of a crystal emerges from the interactions be-

tween ionic orbitals (HOFFMANN, 1987). The higher the spatial overlap between the

orbitals of different ions, the stronger is their interaction, rearranging the energy levels of

the total system. To understand how the structural parameters discussed can influence

the band gap, it is thus necessary to determine the orbital character at the valence and

conduction bands.

3.3.1 The orbital origin of the valence and conduction bands

The electronic structures of all halide perovskite systems present some common char-

acteristics. The A cation orbitals are known not to participate directly on the formation

of bands close to the Fermi level. Therefore, the analysis can be limited the inorganic
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TABLE 3.1 – Cell volume (Å
3
), mean lattice constant (Å), mean, maximum and minimum

MX bond length (Å) and ∠MXM’ angle (◦) values for APbX3 and ASnX3 perovskites.

Volume a MX bond Angle
PVK Calc. Exp. Calc. Exp. Max. Mean Min. a b c

FAPbI3 270 6.46 3.27 3.23 3.15 177 180 174
FAPbBr3 227 219.7 a 5.99 5.99 a 3.10 3.05 2.98 177 180 174
FAPbCl3 200 5.86 2.99 2.93 2.83 177 180 175
MAPbI3 265 6.42 3.34 3.22 3.09 172 168 170
MAPbBr3 220 6.04 3.14 3.03 2.90 171 168 171
MAPbCl3 192 5.77 5.7 b 3.04 2.90 2.82 169 168 171
CsPbI3 260 6.39 6.289 c 3.19 180
CsPbBr3 215 202.2 d 5.99 5.874 d 3.00 180
CsPbCl3 187 176.5 d 5.73 5.605 d 2.86 180
RbPbI3 258 6.37 3.18 180
RbPbBr3 212 5.97 2.99 180
RbPbCl3 185 5.70 2.85 180

FASnI3 261 6.39 3.34 3.20 2.98 179 180 172
FASnBr3 233 219.7 a 6.16 6.03 a 3.86 3.09 2.69 178 170 170
FASnCl3 211 5.97 3.93 2.99 2.53 176 173 172
MASnI3 246 243 e 6.35 6.245 e 3.43 3.19 2.95 172 170 170
MASnBr3 216 6.01 5.90 f 3.32 3.01 2.73 172 170 170
MASnCl3 192 5.78 3.26 2.90 2.56 173 169 171
CsSnI3 248 6.28 6.183 g 3.14 180
CsSnBr3 204 194.8 h 5.89 5.797 h 2.95 180
CsSnCl3 178 5.62 5.56 i 2.81 180
RbSnI3 245 6.26 3.13 180
RbSnBr3 202 5.87 2.93 180
RbSnCl3 175 5.60 2.80 180

a(PISANU et al., 2018); b(KITAZAWA et al., 2002); c(TROTS; MYAGKOTA, 2008); d(MØLLER,
1958); e(STOUMPOS et al., 2013); f (FERRARA et al., 2017); g(SHARMA et al., 1992);

h(SABBA et al., 2015); i(BARRETT et al., 1971) .



CHAPTER 3. CUBIC AMX3 PEROVSKITE SYSTEMS 45

TABLE 3.2 – Cell volume (Å
3
), mean lattice constant (Å), mean, maximum and minimum

MX bond length (Å) and ∠MXM’ angle (◦) values for AGeX3 and ASiX3 perovskites.

Volume a MX bond Angle
PVK Calc. Exp. Calc. Exp. Max. Mean Min. a b c

FAGeI3 257 6.37 6.25 a 4.24 3.22 2.73 180 162 159
FAGeBr3 223 6.09 4.26 3.07 2.50 177 163 162
FAGeCl3 201 5.88 4.25 2.96 2.33 174 164 167
MAGeI3 241 6.23 6.12 a 3.65 3.14 2.73 167 165 165
MAGeBr3 202 5.88 3.55 2.96 2.49 169 165 169
MAGeCl3 180 5.66 5.69 b 3.49 2.84 2.32 171 167 170
CsGeI3 216 221.4 c 6.00 6.05 c 3.00 180
CsGeBr3 176 184.2 c 5.61 5.69 c 2.81 180
CsGeCl3 152 163.7 c 5.34 5.47 c 2.67 180
RbGeI3 212 5.97 2.98 180
RbGeBr3 172 5.57 2.78 180
RbGeCl3 148 5.29 2.65 180

FASiI3 253 6.34 4.34 3.19 2.63 180 163 161
FASiBr3 221 6.07 4.35 3.05 2.37 174 164 166
FASiCl3 203 5.93 4.54 2.99 2.18 161 159 173
MASiI3 237 6.20 3.68 3.12 2.64 167 167 165
MASiBr3 198 5.85 3.65 2.94 2.37 170 167 170
MASiCl3 186 5.72 3.55 2.87 2.20 172 170 169
CsSiI3 203 5.88 2.94 180
CsSiBr3 165 5.49 2.75 180
CsSiCl3 142 5.22 2.61 180
RbSiI3 198 5.83 2.92 180
RbSiBr3 161 5.44 2.72 180
RbSiCl3 138 5.16 2.58 180

a(KRISHNAMOORTHY et al., 2015); b(YAMADA et al., 2002); c(THIELE et al., 1987).
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MX framework. It is also of common understanding in the literature that the valence

band maximum (VBM) and the conduction band minimum (CBM) are located at the

high-symmetry kpoint R in reciprocal space, with the VBM being originated from an

antibonding σ* state of Ms and Xp orbitals.

There is, however, discussion on the nature of the bottom of the conduction band.

In the CBM of MAPbX3 (X = I, Br, Cl), Crespo (2019) observed an antibonding σ*

interaction of Mp and Xp. Yuan et al. (2015) confirms this result for AMX3 (A = MA,

Cs; M = Sn, Pb; X = I, Br, Cl). In apparent contradiction, Kim et al. (2015) finds that

the conduction band minimum in MAPbI3 is formed by an antibonding Pbp-Is character,

instead of Pbp-Ip. By studying the electronic structure of CsMBr3 perovskites (M = Pb,

Sn, Ge), the work of Goesten and Hoffmann (2018) concluded that the known direct gap

at the R point is a direct consequence of Mp-Xp σ
∗π∗π∗ character at the conduction band.

Suppose the metallic ion and the 3 halogens in the unit cell. At the conduction band, the

metallic px orbital produces two π∗ interactions with the Xpx orbitals of the halogen ions

located in the plane transversal to the x axis, and one σ∗ interaction with the Xpx orbitals

of the halogen ions aligned in the x direction. At the Γ point, the periodic repetition of

these orbitals amounts to a completely antibonding crystal orbital. As the wavefunction

kpoint transits continuously from Γ to R, some of these interactions transforms from

antibonding to bonding, lowering the energy of the band. At R, the orbitals of neighboring

unit cells become completely out of phase, so the number of bonding interactions equals

that of antibonding interactions. Thus, R presents a net nonbonding interaction, having

a minimal energy and forming the CBM.

FIGURE 3.2 – Percentual participation of ionic orbitals in the conduction band for CsGeI3.
A similar profile is found for all perovskites. The Xp character is divided between those
orbitals responsible for σ (Xpd) and π (Xpt) bonds with the M ion.
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With the objective of testing the literature findings, the electronic structures of the 48

compositions were analysed. As expected, all perovskites show direct gaps at the R point

and Ms-Xp σ
∗ interaction at the VBM. The conduction band, on the other hand, discloses

much more information. The percentual participation of each ionic orbital of CsPbI3 in

the conduction band is shown in Figure 3.2. The Xp orbitals that produce transversal (π)

and direct (σ) interactions with Mp orbitals are labeled respectively as Xpt and Xpd. The

Mp-Xp σ
∗π∗π∗ character shows up as expected, but it disappears at the CBM. At this

point, the net nonbonding equilibrium decouples Mp and Xp orbitals, so Xp is taken out of

the mix. However, the Xs orbital becomes predominant at R, for there is no nonbonding

equilibrium in the Mp-Xs interaction. When looking at the projected density of states,

as done by Yuan et al. (2015) and Crespo (2019), one may have the impression that Xp

is predominant at the CBM due to its strong presence at the conduction band, which

explains the confusion.

Given the reasoning above, the existence of the nonbonding equilibrium should be

associated to a perfectly cubic lattice. The structural deformation for hybrid perovskites

reported in the previous section will then reflect a change in orbital character at the CBM.

A careful analysis of the Xp character in the vicinity of the CBM was conducted

for all perovskites, and four general behaviours were identified. Figure 3.3 shows the

profile for one representative of each type: CsPbI3 (I), FAPbI3 (II), FAGeCl3 (III) and

MASiI3 (IV). Type I was observed in all inorganic perovskites (CsMX3 and RbMX3), and

is the ideal behaviour of cubic symmetry as discussed above. Type II is seen in hybrid

perovskites with small distortion (long/short bond ratios between 1.21 and 1), where the

Xp character makes an almost imperceptible appearance at R. This small breaking of the

nonbonding equilibrium occurs in all MAPbX3, FAPbX3 and MASnX3 perovskites, as

well as in FASnI3. Interestingly, the most distorted compositions are classified into types

III and IV. In type III, the Xpd orbital character remains almost or entirely null at R,

whereas Xpt presents a considerable participation. For type IV compositions, both Xpt

and Xpd orbitals have relevant participations at R.

Only MASiI3 and MASiCl3 fall into type IV. A closer look to their unit cell geometry

reveal a common factor: both present high long/short MX bond ratios in all three crys-

tallographic directions in the inorganic lattice. Figure 3.4 (left) shows how this causes

the formation of MX3 pyramidal units in the unit cell. In this situation, the bonding

and antibonding interactions in R will have different magnitudes, and the nonbonding

equilibrium is entirely broken.

The remaining FASnBr3, FASnCl3, MAGeX3, FAGeX3, FASiX3 and FASiBr3 are all of

type III. In these cases, the bond ratio is seen to be close to 1 in one or two crystallographic

directions (Figure 3.4, right). This causes the nonbonding equilibrium to be conserved

for the σ interaction, relative to Xpd, but broken for π overlaps, relative to Xpt. One may
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FIGURE 3.3 – Percentual participation of ionic orbitals in the conduction band at the
vicinity of R for CsPbI3. A similar profile is found for all perovskites. The Xp character
is divided between those orbitals responsible for σ (Xpd) and π (Xpt) bonds with the M
ion.

ask why the CBM is constituted by σ interactions specifically in the directions with the

lowest bond ratio. That is, due to the triple degeneracy of p orbitals, there must be a σ

interaction for each x, y and z directions, and in Figure 3.4 (right) only one of the three do

not have a nonbonding equilibrium. This is in fact true. However, as will become clearer

in the following subsection, the energy increase of the states where the σ nonbonding

interaction is broken is much more significantly than the increase caused by breaking the

π nonbonding. Therefore, the lowest-lying band, which constitutes the CBM, is the one

for which the σ overlap is most nonbonding.

Now the nature of the bandstructure of AMX3 perovskites is understood in detail.

Following, it will be shown how changing the interaction between orbitals can affect the

energy levels of the CBM and the VBM, consequently tuning the band gap.

3.3.2 Band energy level manipulation

When two orbitals interact, they give origin to pairs of bonding and antibonding states.

Increasing the orbital overlap (and consequently the strength of interaction) causes the
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FIGURE 3.4 – Relaxed structure of MASiCl3 (left) and FASnBr3 (right), exemplifying
complete and partial MX3 segregation, respectively.

bonding states to decrease in energy, whereas the antibonding states are shifted to higher

energies. Both VBM and CBM in halide perovskites are known to be antibonding states.

And the orbital overlap in the crystal can be manipulated by changing the structural

parameters of the inorganic lattice.

The most straightforward way of manipulating the bandstructure of perovskites is by

contraction or expansion of the lattice. Lower MX bond lengths cause both CBM and

VBM to destabilize. However, due to the higher metal-halogen orbital mixing in the

VBM, its increase in energy surpasses that of the CBM, leading to a decrease in the band

gap (PRASANNA et al., 2017).

Another structural parameter that influences the overlap is the ∠MXM’ bonding angle.

Figure 3.5a is a diagram of the spatial arrangement of Xp and Ms orbitals in a MX array

in the valence band maximum. Orbital lobes are represented either as filled or hollow;

orbital lobes of the same kind are in phase, whereas out-of-phase lobes have distinct

filling. Therefore, the crystal state represented in the figure is completely antibonding,

only presenting σ interaction between dephased lobes. When the crystal is distorted and

the ∠XMX’ angle is lowered (Fig. 3.5b), the ions become misaligned and the orbital

overlap is reduced. This causes the VBM energy to stabilize. An analogous reasoning can

also be applied to the Mp-Xs antibonding interaction in the CBM. However, as for the

case of lattice contraction, the larger influence at the CBM results in a net opening of the

band gap.

The last element of distortion to be discussed is the partial and complete formation

of MX3 units, observed in the last section. Figure 3.6a shows a similar orbital diagram

for the Mp and Xp orbitals in the tridimensional MX network. Differently to the Xp-Ms
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FIGURE 3.5 – (a) Ms-Xp antibonding interaction as found in the top of the valence band.
(b) Ms-Xp interaction after the MX array is misaligned, lowering orbital overlap. (c)
consequent change in band energy.

interaction, in this case the X ions localized in the transverse plane to the Mp orbital

direction form π interactions and thus must be taken into consideration. Represented

in the blue color are the orbitals of the M cation and three X anions inside a single

primitive cell of an initially undisturbed cubic lattice. The orbitals of the adjoined cells

are represented in red. Since the conduction band is originated from an antibonding

overlap, every interaction inside a single unit cell is antibonding, totalizing one σ∗ and

two π∗ interactions. In order to correctly represent the Bloch’s crystal state at R (1
2
,1
2
,1
2
),

every orbital in the neighboring cells must be out-of-phase with relation to its analogous

in the central cell. Therefore, if all Mp-Xp overlaps are considered, there is one bonding

interaction for every antibonding interaction, adding up to a nonbonding equilibrium.

Consider then the distortion as shown in Figure 3.6b, where the long/short bond ratio is

risen above the ideal unitary value. This distortion causes the orbital overlap of σ∗ and

π∗ antibonding interactions to increase, while separating σ and π bonds. Consequently,

the crystal state is destabilized, increasing the energy level of the CBM and consequently

increasing the band gap.

In the case of partial segregation of MX3 units, where one or two of the halogen

ions remain halfway between two metal ions, the gap opening is not as significant as in

complete segregation. This is so because the π∗ interactions observed in the CBM in type

III compositions are weaker than σ∗ orbital interactions. Ultimately, it is not possible to

assert with certainty with static DFT calculations which compositions present a type III or

type IV bandstructure, for the MX connections are dynamical. However, it is reasonable

to suppose that for a fixed A cation, smaller M and X ions will tend to present a type IV

character due to shorter bond lengths.
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FIGURE 3.6 – (a) Mp-Xp nonbonding interaction as found in the bottom of the conduc-
tion band. (b) Mp-Xp arrangement for long/short bond ratios higher than 1, enhancing
antibonding and lowering bonding overlap. (c) consequent destabilization of the CBM
energy level.

In light of the orbital considerations, the succeeding sections are committed to analyze

and explain the band gap values and trends of different perovskites.

3.4 Band Gap

The bandstructures of all 48 compositions were determined using DFT and DFT-1/2

correction. The approximate DFT-1/2 correction was employed, where only the removal of

half electron from the halogen p orbital is considered. This approximation was previously

reported to generate good results for perovskite systems, and is seen to account for most

of the self-energy terms in Eq. 2.35 (GUEDES-SOBRINHO et al., 2019a).

As an example, Fig. 3.7 shows the archetype bandstructure of CsPbI3 with and with-

out spin-orbit coupling, as obtained by the DFT-1/2 method. The conduction band

minimum is in principle threefold degenerate, with each band related to a Mp-Xs anti-

bonding interaction between the group-IV cation and one of the three halogens comprised

in the unit cell. However, the SOC lifts this degeneracy, splitting the conduction band

into two degenerate p 3
2

bands with higher energy and a third and more stable p 1
2

band,

similarly to the valence band of III-V semiconductors (COMBESCOT et al., 2019). This

splitting caused by relativistic effect leads to the reduction of band gap. The magnitude

of such closing is expected to be stronger for heavier elements such as Pb and Sn, weak

for Ge and negligible for Si, due to the atomic number of each element. The CBM of the
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lighter elements Ge and Si thus remains nearly degenerate.

FIGURE 3.7 – DFT-1/2 band structure of cubic CsPbI3 without (left) and with (right)
spin-orbit coupling.

The DFT and DFT-1/2 gap values obtained computationally for each cubic perovskite

are shown in Tables 3.3 and 3.4, as well as results from HSE06 and variations of GW found

in the literature: GW0 (BOKDAM et al., 2016; SUTTON et al., 2018), and QSGW (HUANG;

LAMBRECHT, 2016). These are compared to experimental values when available. In

many cases the values retrieved in literature are obtained for perovskite phases other

than cubic, and so the lattice system of each material is indicated for proper comparison.

The DFT-1/2 method systematically corrects the well-known underestimation of DFT

band gap, showing gaps close to experiment. For the commonly studied FAPbI3, MAPbI3

and CsPbI3, the correction broadens the DFT gap by over 1 eV, reaching values with

absolute errors smaller than 0.16 eV.

11 perovskites have both experimental and GW data available for the cubic phase. In

these cases, the DFT-1/2 method reaches an average absolute error of 0.193 eV compared

to 0.197 eV for GW. Considering the perovskites MAPbBr3, MAPbCl3, CsPbI3, MASnI3

and MASnBr3, for which there is also HSE06 data, both GW and DFT-1/2 present an

average absolute error of 0.164 eV with relation to experimental gaps, whereas the hybrid

functional method have a much larger mean error of 0.447 eV. Therefore, the DFT-

1/2 method comes out as an accurate alternative to the more costly GW and HSE06

calculations. In general, GW have broader band gaps than both DFT-1/2 and hybrid

functional methods, often overestimating the experimental result. GW and DFT-1/2

present a similar accuracy, whereas the HSE06 method presents less accurate results in

comparison to the other methods.

As a general rule, DFT-1/2 renders band gap values slightly smaller than experiment.

This tendency can be primarily explained by the cubic phase adopted in our calculations.
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TABLE 3.3 – Calculated DFT and DFT-1/2 band gaps in eV for APbX3 and ASnX3

perovskites compared to experimental, GW and hybrid functional values found in litera-
ture. The lattice system of collected values are indicated for proper comparison: (c), (t),
and (o) the cubic, tetragonal, and orthorhombic lattice systems. The orbital character
classification as defined in Fig. 3.3 is also shown.

Perovskite orbital char. DFT DFT−1
2

Exp. GW HSE06

FAPbI3 II 0.32 1.39 1.48 (c)a 1.48b (c)
FAPbBr3 II 0.74 2.04 2.18 (c)c 2.26 (c)b

FAPbCl3 II 1.20 2.61 3.07 (c)b

MAPbI3 II 0.54 1.55 1.57 (t)d 1.675 (c)e 1.82 (c)f

MAPbBr3 II 0.92 2.16 2.2 (c)d 2.34 (c)b 2.44 (c)f

MAPbCl3 II 1.36 2.70 3.11 (c)g 3.07 (c)b 2.91 (c)f

CsPbI3 I 0.25 1.32 1.48 (c)h 1.14 (c)h 0.755 (c)i

1.73 (o)d 1.57 (o)h

CsPbBr3 I 0.60 1.88 2.25 (o)j 1.868 (c)e

CsPbCl3 I 1.02 2.39 2.86 (t)j 2.678 (c)e

RbPbI3 I 0.23 1.29
RbPbBr3 I 0.57 1.84
RbPbCl3 I 0.99 2.34

FASnI3 II 0.33 1.27 1.41 (c)k 1.27 (c)b

FASnBr3 III 1.10 2.15 2.37 (c)c 2.67 (c)b

FASnCl3 III 1.70 2.74 3.90 (c)b

MASnI3 II 0.42 1.34 1.20 (c)k 1.03 (c)b 0.94 (c)f

MASnBr3 II 0.85 1.93 2.00 (c)l 1.87 (c)b 1.19 (c)f

MASnCl3 II 1.43 2.51 4.02 (c)b 1.70 (c)f

CsSnI3 I 0.07 1.02 1.27 (o)m 1.008 (c)e 0.344 (c)i

1.3 (o)e 0.804 (o)i

CsSnBr3 I 0.28 1.43 1.75 (c)m 1.382 (c)e

CsSnCl3 I 0.64 1.84 2.23 (c)n 2.693 (c)e

RbSnI3 I 0.02 0.97
RbSnBr3 I 0.23 1.37
RbSnCl3 I 0.58 1.77

a(PRASANNA et al., 2017); b(BOKDAM et al., 2016); c(PISANU et al., 2018); d(EPERON et al.,
2014); e(HUANG; LAMBRECHT, 2016); f (KOLIOGIORGOS et al., 2017); g(KITAZAWA et al.,
2002); h(SUTTON et al., 2018); i(RAY et al., 2018); j(LIU et al., 2013); k(STOUMPOS et al.,
2013); l(FERRARA et al., 2017); m(SABBA et al., 2015); n(VOLOSHINOVSKII et al., 1994).

A comprehensive first-principles study published by Jacobsen’s group support that the

band gap is larger for structures with lower symmetry (CASTELLI et al., 2014). The octa-

hedral tilting present in tetragonal and orthogonal phases diminishes the orbital overlap

and stabilizes the valence band maximum. A similar reasoning should be extended to

the less studied rhombohedral phase adopted by germanium perovskites. Also, molec-

ular dynamics studies show that the MX bonds in hybrid perovskites are dynamically

distorted due to the constant motion of the organic cation in higher-temperature phases
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TABLE 3.4 – Calculated DFT and DFT-1/2 band gaps in eV for AGeX3 and ASiX3 per-
ovskites compared to experimental, GW and hybrid functional values found in literature.
The lattice system of collected values are indicated for proper comparison: (c) and (r) the
cubic and rhombohedral lattice systems. The orbital character classification as defined in
Fig. 3.3 is also shown.

Perovskite orbital char. DFT DFT−1
2

Exp. GW HSE06

FAGeI3 III 1.23 2.08 2.35 (r)a

FAGeBr3 III 1.63 2.65 -
FAGeCl3 III 2.12 3.16 -
MAGeI3 III 1.14 2.03 2.00 (r)a 1.21 (c)b

MAGeBr3 III 1.49 2.55 - 1.51 (c)b

MAGeCl3 III 2.01 3.10 - 1.96 (c)b

CsGeI3 I 0.39 1.29 1.63 (r)a 1.199 (c)c

1.619 (r)c 1.41 (r)d

CsGeBr3 I 0.59 1.71 2.38 (r)e 1.800 (c)c 1.66 (r)d

CsGeCl3 I 0.92 2.12 3.43 (r)e 2.654 (c)c 2.22 (r)d

RbGeI3 I 0.33 1.22 -
RbGeBr3 I 0.49 1.60 -
RbGeCl3 I 0.80 1.98 -

FASiI3 III 0.66 1.39 -
FASiBr3 III 1.11 1.92 -
FASiCl3 III 1.79 2.51 -
MASiI3 IV 0.83 1.54 -
MASiBr3 III 0.92 1.78 -
MASiCl3 IV 2.51 3.15 -
CsSiI3 I - 0.49 - 0.313 (c)c

CsSiBr3 I - 0.72 - 0.381 (c)c

CsSiCl3 I - 1.02 - 1.427 (c)c

RbSiI3 I - 0.37 -
RbSiBr3 I - 0.55 -
RbSiCl3 I - 0.80 -

a(KRISHNAMOORTHY et al., 2015); b(KOLIOGIORGOS et al., 2017); c(HUANG; LAMBRECHT,
2016); d(WALTERS; SARGENT, 2018); e(LIN et al., 2008).

(QUARTI et al., 2015; PISANU et al., 2018). Quarti et al. (2015) have found that the gap

experiences variations of up to 0.22 eV for cubic-phase FAPbI3 and 0.13 eV for tetrago-

nal MAPbI3. This effect is not contemplated in our calculations since the methods here

presented consider a static frame.

A previous publication assessing the application of DFT-1/2 to two-dimensional sys-

tems indicates that the success of the approximation is compound-dependent (GUILHON

et al., 2018). Since this method is designed for correcting localized electronic states, a

lower orbital mixing between Ms and Xp orbitals at the VBM results in better gap val-

ues. Considering that the Ms energies lie well below those of Xp orbitals, the increased
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electronegativity of the halogen ion brings both energy levels closer together, enhancing

the orbital mixing at the VBM. This enlightens the higher accuracy of the method for

iodide perovskites in comparison to bromide perovskites, and of the latter in comparison

to chloride materials. Such considerations can partially explain the discrepancy found for

CsGeCl3.

FIGURE 3.8 – DFT-1
2

and default DFT band gap results in comparison to experimental
band gaps for perovskites for which there are data available. Each labels indicates the
corresponding perovskite and the phase in which the experimental results were obtained,
being (c), (t), (o) and (r) the cubic, tetragonal, orthorhombic and rhombohedral lattice
systems, respectively.

The corrected values show an outstanding agreement with experimental data, as is

evidenced in Figure 3.8. This correspondence validates the use of the method for pre-
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dicting hypothetical materials such as some Ge-, Si- and Rb-containing perovskites. The

results also point out promising candidates for further investigation. Calculations on

the theoretical limit of single junction solar cell efficiency conclude that materials with

band gap between 0.93 eV and 1.61 eV can reach PCE above 30% (RüHLE, 2016). 16

of the 48 investigated perovskites fall within this range, 12 of which contain iodine, 3

are Si-based materials (FASiI3, MASiI3 and CsSiCl3) and 4 contain rubidium (RbSnI3,

RbSnBr3, RbGeI3, RbGeBr3). Among the materials containing Ge and Sn, RbSnBr3 and

RbGeBr3 are of special interest due to the reduced lattice size and higher electronegativity

of Br in comparison to I, two factors that may reduce vulnerability to oxidation.

3.5 General trends

Figure 3.9 shows the corrected band gap results for all perovskites as a function of

composition. The metal ions are separated into different graphs, and each color represents

an A cation. This section focus on justifying the band gap trends and eventual anomalies

found.

The most prominent feature is the broadening of the band gap with the halogen

electronegativity, a well-known effect in the literature (SUTTON et al., 2016; ZARICK et

al., 2018; CRESPO, 2019; YUAN et al., 2015). The I → Br → Cl substitution involves

two conflicting mechanisms: the reduction in unit cell dimensions, which increases the

VBM energy, and the reduction of Xp energy level. Since the valence band is primarily

composed of Xp orbitals, the VBM energy level εV BM lowers significantly. The CBM

is also affected by destabilization of the antibonding interaction and the stabilization

of the Xs energy, although less significantly in both cases. The result is a non-trivial

trend in the VBM level of CsSnX3 and MASnX3 perovskites as reported by Yuan et

al. (2015), with εVBM(Br) > εVBM(Cl) > εVBM(I). They also found a regular decrease

in the CBM energy with higher electronegativity. Crespo (2019) found a regular trend

εVBM(I) > εVBM(Br) > εVBM(Cl) for MAPbX3 perovskites, with little influence over the

CBM. In summary, although the precise movement of both bands should be verified in each

case, all literature results show a net broadening in gap with halogen electronegativity,

no matter the identity of A and M cations. Figure 3.9 has the same behaviour, with

average increases of 0.48 eV for I→ Br substitution and 0.47 eV for Br→ Cl substitution

(excluding the outlier MASiCl3).

Halide ion exchange does not allow one to achieve narrower band gaps, so it is nec-

essary to explore other forms of electronic manipulation, such as A cation replacement.

As previously mentioned, the A cation does not participate directly in the formation of

conduction or valence bands, although it can indirectly affect the electronic structure by
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reshaping MX bonds. When the cation is a molecule, it breaks the cubic symmetry. If it

is too large to fit the cuboctahedron cage of the inorganic network, it induces the bonding

angle distortion and increases the gap. These effects can be attested in Fig. 3.9. Es-

pecially for Sn, Ge and Si perovskites, the FA and MA compositions have considerably

larger gaps than their inorganic counterparts due to this symmetry breaking. Also, the

magnitude of this effect increases with smaller M cations due to the higher susceptibility

to distortion. The A cation also affects the overall bond length. For the undistorted

inorganic perovskites, the lattice contraction caused by Cs → Rb substitution causes a

consistent decrease in band gap, as expected.

FIGURE 3.9 – DFT-1
2

band gap as a function of chemical composition. Formamidinium
(FA), methylammonium (MA), cesium (Cs) and rubidium (Rb) perovskites are respec-
tively ploted in blue, green, yellow and red colors.

The last option of composition exchange is by selecting the metal ion. This case is less

well-behaved as it involves various chemical and structural effects. The substitution of Pb

for lighter group-IV cations (1) decreases the SOC magnitude, consequently increasing

the band gap; (2) contracts the MX bond lengths, closing the gap; (3) increases the

electronegativity of the Mp orbitals at the CBM, narrowing the gap; and (4) leaves the MX

network vulnerable to the A molecule distortion. Factor (4) is less predictable and confuses

the search for meaningful chemical trends. Considering only the inorganic perovskites,
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which are affected only by factors (1-3), the results for Cs and Rb perovskites reveal a

consistent gap narrowing occurring with Pb → Ge → Sn → Si substitution. There is not

a direct correlation between gap and the atomic number. Whereas Pb → Sn causes a

gap closing due to factors (2) and (3), Sn → Ge causes an abrupt loss of magnitude in

spin-orbit coupling, broadening the gap. The same non-trivial gap trend was observed by

Huang et al. (2016) in a first-principles study using GW approximation. Inorganic silicon

perovskites have the lowest gap values, whereas some of their hybrid versions present band

gaps broader than Sn perovskites. This confirms that factor (4) can disturb the observed

trend.

There are two intriguing cases in Figure 3.9 that must be assessed individually. Firstly,

both FASnBr3 (2.15 eV) and FASnCl3 (2.70 eV) have higher gap values than their lead

counterparts FAPbBr3 (2.04 eV) and FAPbCl3 (2.61 eV), as opposed to what is observed

in every other APbX3/ASnX3 pair. They have also unexpectedly broader gaps than their

methylammonium versions MASnBr3 (1.93 eV) and MASnCl3 (2.51 eV), respectively.

These two compositions were already mentioned in Section 3.2, where they also showed

a large unit cell volume. This, however, is not the only factor influencing the gap. In

Section 3.3, they were identified as the only perovskites amongst Pb and Sn compositions

that presented partial MX3 formation (type III orbital profile). Every other composition

were classified either as type I or type II (See Table 3.3). As was previously explained,

the distortion caused by the partial segregation broadens the band gap.

Secondly, there is an anomalous evolution with halide ion exchange in MASiX3 per-

ovskites. MASiBr3 has narrower gap than both MASiI3 and MASiCl3, the Br → Cl sub-

stitution leading to a remarkable broadening of 1.37 eV. This is no surprise, since MASiI3

and MASiCl3 were the only perovskites to present a complete formation of pyramidal MX3

structures, thus having a type IV orbital profile. The impact of the nonbonding equilib-

rium breaking in the CBM energy level is considerably stronger in type IV compounds

than that for type III perovskites, explaining why the MASiBr3 gap is this narrow with

relation to the other methylammonium silicon halides.

Once again, it must be mentioned the importance of considering the system’s dynamics

and its impact on the band gap. There is in principle no reason for MASiBr3 to be of

type III while MASiI3 is classified into type IV. A possible path for future studies is to

understand how the MA and FA rotations impact the energy level and orbital character

of the CBM.
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3.6 Conclusion

In this chapter, the quasiparticle correction DFT-1/2 is reaffirmed as a fast and accu-

rate method for the study of electronic properties of metal halide perovskites. The band

gaps of a broad number of perovskites were obtained with accuracy similar to that of GW

method when compared to the experiment, and the deviations can be partly attributed

to the lack of dynamical distortion and eventual difference in phase. This result there-

fore sustains the competence of the method in predicting the electronic properties of less

studied materials such as silicon-, germanium- and rubidium-containing perovksites. 16

materials were identified as falling within the band gap range of 0.93 eV-1.61 eV, coming

up as promising candidates for the photoactive layer of solar cells.

The orbital character of both conduction and valence bands were analysed in detail

for every material, consistently showing respectively the presence of Mp-Xs and Ms-Xp

antibonding character at the CBM and VBM. Even though a significant presence of Xp

orbitals is observed in the conduction band, this character vanishes at the CBM due to a

net nonbinding interaction. The knowledge of the atomistic origin of the bandstructure

sheds light on the relationship between structural parameters and band gap, which was

inspected carefully. Cs → Rb substitution is observed to cause a consistent band gap

reduction due to lattice contraction. Also, the hybrid perovskites show a higher band

gap than their inorganic counterparts due to structural distortion, and smaller metal ions

show to be more susceptible to this effect due to their more contracted MX lattice. In

more extreme cases of lattice distortion, such as in Ge and Si perovskites, the organic

molecules force the detachment of metal-halogen bonds, destabilizing the CBM state and

broadening the gap. In MASiI3 and MASiCl3 perovskites, this leads to the segregation of

MX3 units.

The calculations allow the investigation of purely chemical aspects of electronic struc-

ture manipulation. The increased halogen electronegativity has a major influence in the

blueshift of absorption onset, leading to materials appropriate for the top layer of tandem

solar cells. Moreover, the inorganic Ge-based perovskites are seen to have broader gaps

than their Sn-based relatives, a trend attributed to the tuning of spin-orbit coupling with

metal substitution.

In conclusion, orbital, structural, and chemical arguments were employed for a rea-

sonable and comprehensive understanding of the electronic properties of a large set of

perovskite semiconductors. This study opens up a path for further exploration and ma-

nipulation of new materials for the fabrication of cheap, efficient, and stable solar cells.



4 CsPb1−xSnxI3 - Minimizing the

band gap

4.1 Motivation

The attention towards CsPbI3-based perovskite solar cells has intensified in the last few

years, since Eperon et al. (2015) reported a device with 2.9% efficiency. The enthusiasm

for the replacement of the organic cation in MAPbI3 or FAPbI3 for Cs and Rb was justified

by the enhanced thermal stability of the inorganic materials (KRISHNAMOORTHY et al.,

2015), overcoming one of the major obstacles for the fabrication of commercial perovskite

devices. Despite presenting an initially low performance, not long after Swarnkar et

al. (2016) reported a quantum-dot photovoltaic cell with efficiency of 10.77%. Many

subsequent studies reported PCE above 13% using varied techniques (NAM et al., 2018).

In special, Wang et al. produced stable 17% efficient solar cells using Br-doped CsPbI3

(WANG et al., 2018).

This fast development encourages the research on CsPbI3 and related perovskites

for surpassing the known problems. Orthorhombic CsPbI3 has a band gap of 1.73 eV,

which theoretical calculations show to be somewhat larger than the optimal value for

single-junction solar cells (RüHLE, 2016). This limits the solar radiation absorption and,

therefore, reduces the maximum PCE achievable. Also, its black perovskite phase is

unstable at room temperature, rapidly degrading to an optically inactive yellow (δ) phase

in the presence of humidity. The performance of the cell thus depends on preventing this

phase transition.

One interesting perspective of enhancing the light absorption spectrum is to fabricate

CsPbI3 in its cubic (α) phase. Ab initio calculations indicates this band gap to be,

in fact, lower than that of the orthorhombic phase due to the lowering of bond angle

distortions (SUTTON et al., 2018). However, the black perovskite phase observed at room

temperature is in truth the orthorhombic (γ) phase, the α phase only becoming stable

at high temperatures (SUTTON et al., 2018). Extrapolation of the band gap dependency

with temperature estimates that the cubic phase has a gap of 1.48 eV at T = 0 K, a value
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closer to the DFT-1/2 and GW predictions.

Many studies suggest that the cubic phase can be stabilized over both γ and δ phases

at room temperature with surface engineering (LI et al., 2018; DING et al., 2019; YANG;

TAN, 2020). This involves either the inclusion of surface ligands or the fabrication of

nanocrystals, although in the latter case the quantum confinement effect might broaden

the band gap back to non-ideal values (PROTESESCU et al., 2015).

Another possibility for the band gap optimization is metal alloying. CsSnI3 has a

considerably smaller gap of 1.27 eV (SABBA et al., 2015), allowing CsPb1−xSnxI3 to reach

adequate values for single-junction cells. More than that, the previous literature reports

that tin-lead mixed perovskites present a strong gap bowing, so much so that some in-

termediate compositions have narrower gaps than those of tin and lead pristine materials

(RAJAGOPAL et al., 2019). Tin-lead alloying can also contribute to the device stabilization:

Swarnkar et al. (2018) suggest that the tuning of bond lengths can stabilize the black

phase at room temperature, and Leijtens et al. (2017) show that the mixing of both metals

can reduce Sn oxidation. A recent showed γ-CsPb0.7Sn0.3I3 solar cells with significantly

larger stability when exposed to air than those of MAPb0.7Sn0.3I3 and CsPbI2Br (YANG

et al., 2020).

Given this context, the cubic CsPb1−xSnxI3 alloy has a good perspective for photo-

voltaic applications. The objective of this chapter is to report the calculation of this

perovskite. Its electronic structure will be determined with the DFT-1/2 correction and

studied in correlation to structural and thermodynamical effects. The detailed methods

applied are expected to provide an in-depth understanding of the underlying mechanisms

of the band gap bowing, which will be assessed in view of previous literature. The results

shown should serve as a guide for the fabrication of respective solar cells, and also for

shedding light on the study of other tin-lead mixed perovskite systems.

4.2 Symmetry and structural relaxation

As discussed in the previous chapter, the atomic arrangement in a semiconductor is

determinant of its electronic structure. Obtaining the equilibrium crystalline structure

is then a crucial step for accurate first principle calculations. In alloys, this relationship

becomes more sophisticated since the compositional disorder brings up a correlated struc-

tural disorder. Hence, we start with the careful analysis of the geometry, bonding and

symmetry in CsPb1−xSnxI3 alloys.

Even though CsPbI3 and CsSnI3 both adopt the orthorhombic perovskite phase at

ambient conditions, they transform to the cubic phase at temperatures above 425 K and

375 K, respectively, and so their cubic lattice parameters can be measured (MARRONNIER
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FIGURE 4.1 – Schematic diagram for the cubic perovskite phase of (a) primitive cell,
highlighting the MX6 octahedron and its (b) 2x2x2 supercell, with a number from 1 to 8
assigned to each metal cation. Green, gray and purple spheres represent the A, M and X
ions, respectively.

TABLE 4.1 – Symmetry information on the 22 groups of degenerate 8-fold supercells of
cubic CsPb1−xSnxI3. The supercells are numbered from j = 0 to j = 21. The degeneracy
gj and the number of Sn ions is displayed. The internal atomic arrangement of a repre-
sentative supercell is represented by a list of letters, where the i-th letter is A or B when
the i-th metal position is occupied by a Pb or Sn cation, respectively.

j gj # Sn
Configuration

12345678
j gj # Sn

Configuration
12345678

0 1 0 AAAAAAAA 11 24 4 BBBABAAA
1 8 1 BAAAAAAA 12 24 5 BBBBABAA
2 12 2 BBAAAAAA 13 6 4 BABAABAB
3 12 2 BABAAAAA 14 24 5 BBBABAAB
4 24 3 BBABAAAA 15 12 6 BBBBABBA
5 6 4 BBBBAAAA 16 2 4 BABABABA
6 8 3 BABABAAA 17 8 5 BBBABABA
7 8 4 BBABABAA 18 12 6 BBBBBABA
8 4 2 BAAAAAAB 19 4 6 BBBABBAB
9 24 3 BABAABAA 20 8 7 BBBBBBBA
10 24 4 BBBAABAA 21 1 8 BBBBBBBB

et al., 2018; YAMADA et al., 1991). From Table 3.1, the calculations for CsPbI3 resulted

in cubic edges of 6.39 Å in comparison to 6.289 Å as found by x-ray diffraction (TROTS;

MYAGKOTA, 2008). For CsSnI3, the calculated lattice constant was 6.28 Å, also slightly

larger than the experimental value of 6.219 Å (YAMADA et al., 1991). Both results show

to be good approximations, with error below 1.6%.
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The alloy calculations were done with a 40-atom 2x2x2 supercell, with the eight octa-

hedra being centered either on a lead or tin cation. Figure 4.1b shows this structure where

the M positions are numbered from 1 to 8. There are, in principle, 28 = 256 possible con-

figurations. With the use of crystalline symmetries, these configurations are reduced to 22

representative supercells. Table 4.1 lists the group’s degeneracy, atomic composition, and

the metal configuration of each representative; the configuration is encoded as an array

with 8 elements, where the i-th element, corresponding to the i-th position in Fig. 4.1, is

written as A or B when occupied by Pb or Sn, respectively.

Each supercell of CsPb1−xSnxI3 was relaxed with the same criteria used for unit cells

(described in detail in Section 3.1) in exception for the number of divisions in the k-

mesh, reduced from eight to four. The lattice parameter value a was retrieved for all the

clusters and averaged using GQCA statistics as described in Section 2.3. The result is the

lattice parameter as a function of composition at T = 300 K, plotted in Figure 4.2 as a

solid line. The representative lattice constants are displayed as a scatter plot. Both the

GQCA average and the cluster values closely follow Vegard’s rule of linearity. Moreover,

the cell dimensions for each configuration are seen to essentially depend of their overall

composition, with neglectable changes between different metal configurations.

FIGURE 4.2 – Lattice parameter a for each cluster (scatter plot) and its GQCA average
(solid line) at T = 300 K as a function of composition.

Besides the natural volume contraction expected with increasing tin content in lead

perovskites, the octahedra also suffer from reshaping after relaxation. The two most

relevant parameters to be studied in this case are ∠MIM’ bonding angle and dMI bond

length. For the α-CsPb1−xSnxI3 supercells, the lead-tin alloying distorts ∠MIM’ only down

to 179.91◦, which is believed to be within the calculation error and does not convey much
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physical information on the system. For comparison, unit cell calculations on MASnI3

and MAPb3 lead to bond angles as low as 170◦ and 168◦, respectively (see Table 3.1). The

Pb and Sn ions do not displace significantly from their ideal positions, while the iodine

anions remain on the common line between adjacent metal cations. It is thus possible to

neglect the bonding angle influence in the stability and electronic structure of the alloy.

The iodine anions still have one degree of freedom, which is their position along the

MM
′

segment. The dMI bonding length is strongly related to the identity of the two

metal cations M and M’ neighbors to I. Since tin ions have a somewhat shorter radius

of 1.10 Å compared to lead’s 1.19 Å (SHANNON, 1976; CHEN et al., 2015), iodine shared

between different elements will displace towards Sn. When, however, the iodine is split

between two isotopes, it stays approximately halfway between M and M’. It this last

case, dMI ≈ a/2 regardless of the nature of M. Therefore, the agglomeration of isotopes

have the effect of limiting bond length relaxation. Let us define dMI(M
′) as the bond

length between M and I, with M’ being the second adjacent metal. Figure 4.3 shows, as a

function of the number of tin ions, the bond length values found in all relaxed supercells.

The bonds of different clusters were plotted together since their internal arrangements

do not influence the bond length significantly. dPbI(Pb) and dSnI(Sn) are seen to follow

a diagonal line between the values of dPbI and dSnI in the end components, echoing the

lattice constant trend in Figure 4.2. dPbI(Sn) and dSnI(Pb), however, deviate strongly

from the other bond values, since the broken symmetry allows the proper relaxation of the

iodine ion position. dSnI(Pb) is ≈ 0.04 Å lower than dSnI(Sn), while dPbI(Sn) is larger

than dPbI(Pb) by roughly the same amount. Notably, these two bond lengths are still

modulated by the volumetric contraction with x, thus following a linear evolution.

The structural disorder in α-CsPb1−xSnxI3 is somewhat simple. Neither Cs, Pb or

Sn ions significantly deviate from their ideal positions. The relaxation process is thus

essentially contained in the iodine movement, which is limited to the line segment between

metal ions.

4.3 Stability and cluster population

A more evenly mixed supercell increases the number of iodine anions shared between

different metal cations. As discussed in the previous section, this allows the halogen to

reduce the strain by approaching the Sn ion, contributing to the energy minimization of

the cell. In this case, it is expected that these evenly mixed cells will have lower formation

energies, increasing its probability of formation during the alloy fabrication. The objective

of this section is to explore the relation between structure, excess energies, miscibility and

cluster statistics. These factors will be correlated with the alloy susceptibility to oxidation,
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FIGURE 4.3 – Bond length values dMI(M’) as a function of composition, for M, M’ ∈
{Sn, Pb}.

a major research topic in tin-containing perovskite solar cells.

The excess energies as defined in 2.57 are obtained for each representative supercell

and displayed in Figure 4.4. Interestingly, many supercell configurations have negative

excess energies, indicating a propensity for ordering. Similar stable configurations were

previously observed in the literature for APb1−xSnxI3, A = Cs, MA (FANG et al., 2019;

GUEDES-SOBRINHO et al., 2019b). It is also noteworthy that the mixing enthalpies for

CsPb1−xSnxI3 have very low absolute values, smaller that 3 meV per metal ion in com-

parison to values over 60 meV/metal observed by Guedes et al. for MAPb1−xSixI3. The

colors of the plot in Figure 4.4 are specified according to the percentage of iodine ions

present in the cluster that bond with similar metal cations. That is, values close to 100%

indicate the formation of tin or lead-rich regions, whereas more evenly-mixed supercell

configurations show values closer to 0%. The graph shows a consistent positive correla-

tion between isotope agglomeration and excess energy when comparing supercells of same

composition, as expected by the bond relaxation reasoning. This result indicates the sta-

bilization of CsPbI3 perovskites with Sn inclusion, agreeing with previous experimental

observations which showed for a large number of cases that partial substitution of Pb by

smaller ions can lead to more durable devices (SWARNKAR et al., 2018).

Resistence of oxidation in Pb-Sn mixed perovskites has been first reported by Ogomi

et al. (2014), and the detailed mechanism was later studied in depth by Leitjens et al.
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FIGURE 4.4 – Excess energies ∆ε for each cluster as a function of composition. The
colors are specified according to the percentage of iodines of the supercell shared between
isotopes (M = M’).

(2017). This last study found that the main oxidation path requires the presence of two

adjacent Sn ions and is much less likely to occur in the presence of lead. At the same time,

the calculated mixed enthalpies reveal that the alloy statistics inhibits the formation of Sn-

rich regions. The hindering of tin oxidation is thus also influenced by the thermodynamics

during the alloy fabrication. The thermal cluster distribution is expected to produce more

stable perovskites than what would be expected from an ideal solution model.

With the objective of measuring the oxidation stability enhancement obtained from

thermal distribution, a simple model is developed to calculate the probability of a random

M’, neighbor to any M = Sn, of also being a tin ion. Assume the spatial stacking of

statistically-independent clusters, whose formation probability is defined by GQCA. Then,

for each metal ion present in the cluster as defined in Fig. 4.1, there are three iodine anions

shared with other metal cations within the cluster and three other iodines connected to

the local environment. For a given metal ion Mi (i = 1, 2, ..., 8) within cluster j, the

vulnerability to oxidation Vj
i is defined as the normalized sum of probabilities

V j
i =

1

6

(
3x+

∑
M ′

δM ′,Mi

)
, (4.1)

where x is the probability of a random metal ion in neighboring cells being Sn. The

summation is executed over the three internal neighboors M’ and δM ′,Mi
equals 1 when

M’ = Mi and is 0 otherwise. The summation in 4.1 accounts for the thermodynamical
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effect in Vj
i . Vj

i is then averaged over the Sn ions present in the cluster, and then the

GQCA average is obtained as in Eq. 2.48:

V j =
1

nj

∑
Mi=Sn

V j
i , (4.2)

V (x, T ) =
∑
j

V jxj(x, T ). (4.3)

The value nj indicates the number of Sn ions within the j-th cluster. The complementary

value R(x,T) = 1 − V(x,T), related to the resistance to oxidation, is plotted in Figure

4.5 for T = 10 K, 300 K and T →∞.

FIGURE 4.5 – Resistence to oxidation R(x, T) = 1 - V(x, T) for α-CsPb1−xSnxI3 at
multiple temperatures. The dashed green line is obtained at the limit T →∞.

The curve for T→∞ represents the oxidation resistance values for the a priori cluster

distribution (Eq. 2.52). For lower formation temperatures, R gets consistently higher due

to the lower mixing enthalpy of more resistant clusters. The alloy gets considerably more

resistant for extremely low temperatures of T = 10 K. However, the graph indicates that,

for perovskite fabrication above room temperature (T > 300 K), the oxidation resistance

is very close of that for T → ∞ and, therefore, suffers little influence of thermodynam-

ical effects. These results suggest that the enhanced stability observed in experiment is

primarily attributed to ideal solution distribution, but that this effect can be significantly

improved if the ordering tendency is leveraged.

Proceeding to the thermodynamical analysis, the mixed perovskite’s miscibility can

be evaluated in GQCA’s framework by analyzing the Helmholt’s free energy (2.53) as a
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function of temperature. Figure 4.6 (left side) shows the alloy’s mixing energy ∆E as a

function of composition for temperatures ranging from 30 K to 240 K. The curve has a

very distinct profile when compared to the values found for α-MAPb1−xSnxI3 using the

same method (GUEDES-SOBRINHO et al., 2019b). The methylammonium perovskite shows

two minima near the end components, and a higher ∆E at intermediate compositions. On

a completely opposite fashion, CsPb1−xSnxI3 has a single depression at x ≈ 0.5 and two

local maxima near the end compositions. This distinct feature of the inorganic perovskite

is due to the presence of many intermediate cluster configurations with negative excess

energy, as depicted in Figure 4.4. The graph at the right side charts the mixing entropy

∆S curve for the same temperatures, presenting the usual shape and a rapid convergence

to high-temperature behavior.

FIGURE 4.6 – Alloy’s mixing energy ∆E and mixing entropy ∆S as a function of tem-
perature and composition.

Once ∆E and ∆S are outlined the mixing free energy ∆F = ∆E − T∆S curves are

plotted in Figure 4.7. ∆F is convex even at low temperatures due to the single minima

of ∆E centralized at intermediate compositions. It is, therefore, absent of binodal and

spinodal decomposition regions above 30 K, meaning a remarkable miscibility between

CsPbI3 and CsSnI3 perovskites. This is in contrast with other mixed perovskite materi-

als as calculated by Guedes et al. (2019b). For comparison, MAPb1−xSnxI3 presents a

miscibility gap for temperatures below 204 K.

4.4 Eletronic Structure

Now that the structural and thermodynamical features of CsPb1−xSnxI3 are known in

detail, this section studies the electronic properties of its supercells.



CHAPTER 4. CsPb1−XSnXI3 - MINIMIZING THE BAND GAP 69

FIGURE 4.7 – Alloy’s mixing free energy ∆F as a function of temperature and com-
position. The convexity of the curve implies the total miscibility between the mixed
perovskite’s components.

The band gap evolution with x in an alloy A1−xBx is commonly modeled as a parabolic

function in the form

Eg(x) = (1− x) ∗ Eg(0) + x ∗ Eg(1) + bx(1− x), (4.4)

where Eg(x) is the band gap as a function of composition x, and b is denominated the

bowing parameter. Early experimental studies on methylammonium mixed tin-lead iodide

perovskites (STOUMPOS et al., 2013; OGOMI et al., 2014; HAO et al., 2014) showed the pres-

ence of a strong bowing, leading to gaps in intermediate compositions lower than those of

the end components. Stoumpos et al. (2013) produced MAPb0.25Sn0.75I3 perovskite show-

ing a red-shift of 70 nm in comparison to MASnI3 by measuring the photoluminescence

emission peak, whereas the same samples showed optical absorption edges of 1.17 eV and

1.21 eV respectively. A subsequent publication by Ogomi et al. (2014) reported the first

solar cells made of mixed tin-lead perovskites, which presented the same low optical ab-

sorption edge of 1.17 eV for MAPb0.30Sn0.70I3. This anomalous behavior in MAPb1−xSnxI3

is a promising path for the electronic structure manipulation for high-efficiency solar cells,

encouraging further research.

Stoumpos and coworkers published a density functional theory study in which they an-

alyze the possible causes for the strong band gap bowing (IM et al., 2015). They conclude

that both the spin-orbit coupling effect and the structural distortion due to transition

from cubic to tetragonal phases make up the non-linear trend. Eperon et al. (2016) re-

ported similar calculations on MAPb1−xSnxI3. Their results pointed out that, under the

ideal solution assumption, the gap obeys a linear trend, but the bowing would again reap-
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pear if only the low-bandgap supercell configurations were selected for each composition.

This would indicate the presence of short-range ordering in the alloy, even though they

remark that the selected configurations are less stable. With the objective of resolving

the conflicting premises found in literature, Goyal et al. (2018) publishes another ab ini-

tio study in which they argue that SOC, structural distortion and ordering should all be

ruled out as possible explanations for the gap trend with composition. Instead, they show

that in intermediate compositions the valence band maximum is primarily determined by

Sn orbitals, whereas the conduction band minimum is composed of Pb orbitals. Thus,

a small addition of tin in lead perovskites produces a sudden elevation of the VBM en-

ergy, consequently narrowing the band gap. Similar narrowing occurs as a result of the

estabilization of the CBM with Pb-doping in MASnI3, which causes the gap bowing.

The same atypically strong bowing was later observed in other tin-lead mixed per-

ovskites APb1−xSnxX3 with a multitude of A-cation and halogen combinations (PRASANNA

et al., 2017; PISANU et al., 2018; RAJAGOPAL et al., 2019). A recent experimental research

by Rajagopal and others quantified the bowing parameter b for iodine alloys with FA,

MA, Cs, FA0.8Cs0.2, MA0.8Cs0.2, MA0.5FA0.5 and MA0.8GA0.2 occupying the cuboctahe-

dral cage. In every case, the lowest band gap values were found for tin-rich intermediate

compositions. The microstrain, composed of a conjunction of octahedral distortion and

octahedral tilting, is found to be correlated to the magnitude of b. Nevertheless, the same

research concludes that the non-linearity in gap evolution should occur even in the ab-

sence of lattice distortion, possibly due to chemical effects as postulated by Goyal’s group.

The purpose of this section is the study of band gap of cubic CsPb1−xSnxI3, which is then

expected to give insights on the nature of bowing in tin-lead perovskite alloys. Given the

absence of octahedral tilting and ∠MXM’ distortion, the microstrain in this material is

primarily related to the dMX distortion caused by iodine displacement, simplifying the

problem. The developed calculations will contribute to the aforementioned discussion by

presenting gap values with a good correction method and by including orbital, structural

and thermodynamical considerations.

The DFT and DFT-1/2 corrected band gaps for the unit cell calculation of end com-

ponents, as obtained in Chapter 3, are displayed in Table 4.2. The CUT parameters used

were 3.20 a.u. for the Ip orbital in CsPbI3 and 3.05 a.u. for the same orbital in CsSnI3.

Experimental and ab initio GW values found in literature are also shown for comparison.

To evaluate accurately the precision of DFT-1/2 method, the table includes the band gap

for both cubic and orthorhombic phases when available. The gap of α-CsPbI3 indicated

(1.48 eV) was measured by Sutton et al. (2018) using linear extrapolation to 0 K of the

evolution of its absorption onset with temperature. DFT-1/2 results in the close value of

1.32 eV, a more accurate result than the GW gap of 1.14 eV. Both the GW and experimen-

tal values for the γ phase corroborates with the observation that high-symmetry phases
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lead to smaller band gaps. As for CsSnI3, DFT-1/2 (1.02 eV) results are comparable to

GW (1.008 eV). Huang et al. (2016) realized a second GW calculation for the γ phase

using the same method, obtaining a value of 1.3 eV in comparison to the experimental gap

of 1.27 eV. The success of the GW method in predicting the gap of γ-CsSnI3 endorses the

DFT-1/2 results for the cubic phase. Finally, the DFT-1/2 method provides a significant

correction compared to the underestimated GGA gap and an accuracy comparable to the

GW method, validating its use for the subsequent supercell calculations.

TABLE 4.2 – Band gap values for unit cell DFT, DFT-1/2 and GW calculations and
experimental measurements for CsPbI3 and CsSnI3 in cubic (α) and orthorhombic (γ)
phases.

Perovskite DFT DFT-1/2. GW exp.

α-CsPbI3 0.25 1.32 1.14 a 1.48 a

γ-CsPbI3 1.57 a 1.73 b

α-CsSnI3 0.07 1.02 1.008 c

γ-CsSnI3 1.3 c 1.27 d

a(SUTTON et al., 2018); b(EPERON et al., 2014); c(HUANG; LAMBRECHT, 2016); d(SABBA et

al., 2015).

For the supercell calculations, the CUT parameter was fixed as the average of the CUT

values for the end components (3.125 a.u.). Figure 4.8 shows the resultant thermodynam-

ically averaged band gap as a function of composition at the temperatures of 300 K (solid

line) and 10 K (dashed line). The expected strong bowing is evidenced by these results.

A value of b = 0.582 eV for T = 300 K is found by numerical fit to the function defined in

4.4. This value is remarkably close to the bowing parameter of b = 0.57 ± 0.06 eV deter-

mined experimentally for γ-CsPbSnI3 (RAJAGOPAL et al., 2019). At this temperature, the

calculated gap curve reaches a minimum of 0.984 eV at the composition of xmin = 0.80,

0.033 eV lower than the gap of CsSnI3. This difference is comparable to a narrowing of

0.04 eV between the band gaps of MASnI3 and MAPb0.25Sn0.75I3 (STOUMPOS et al., 2013).

Besides the GQCA average, Figure 4.8 shows the individual gap values of the 22 cluster

configurations of the alloy as a function of its fractional tin composition. The color of each

cluster value is related to its excess energy. It is evident from the graph that, for each

fixed composition, the supercell configurations with the narrower gaps are less stable.

Configurations 5 and 16, both with 4 tin ions within the supercell, have band gaps of

0.952 eV and 1.103 eV and excess energies of 22.0 meV and -23.6 meV (per supercell),

respectively. This rule is valid for all clusters, and it casts doubt on the hypothesis that

short range ordering can cause the bowing. On the contrary, the graph shows that, at

lower manufacturing temperatures - a condition that is more prone to ordering -, the

bowing is less intense.

With the objective of understanding the mechanisms determining the band gap, a
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FIGURE 4.8 – Band gap Eg for each cluster (scatter plot) and its GQCA average for
T = 10 K (dashed line) and 300 K (solid line) as a function of composition x. The colors
are specified according to the cluster’s excess energy ∆ε.

closer look into the electronic structure is necessary. The average Ms orbital character at

the VBM for each cluster, as well as the Mp orbital at the CBM, is shown in Figure 4.9.

Regardless of the composition or cluster configuration, the Pbs character is consistently

more prevalent at the conduction band, since the Pbp atomic orbital is more stable than

Snp. The opposite is found at the valence band, in which Sns character is stronger than

Pbs. This indicates that the VBM and the CBM energy levels are determined respectively

by the CsSnI3 and CsPbI3 bands, which is a possible cause for the gap bowing as proposed

by Goyal et al. (2018). A small incorporation of Pb in CsSnI3 would lead to a sudden

stabilization of the CBM energy, narrowing the gap. Also, the orbital character shows

a tendency for charge separation: the thermally excited electrons will likely concentrate

in Pb-rich regions, while the vacancies will accumulate around Sn ions, hindering carrier

recombination. This property is valuable for solar cells, enhancing its quantum efficiency.

The chemical aspect of the gap bowing is also closely related to the atomic arrange-

ment. Given the relation between ∆ε and metal arrangement as previously discussed,

Figure 4.9 shows that, between isocompositional clusters, higher isotope agglomeration is

associated with a more accentuated Sn and Pb character at their respective bands. This
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effect is a possible explanation for the gap narrowing in supercells with higher ∆ε as seen

in Figure 4.8, and is responsible for enhancing the band gap bowing. For illustration, con-

sider the valence band maximum character of the two supercell configurations depicted

in Figure 4.10. The grey and black circles represent tin and lead ions, respectively, and

their radii are scaled to denote the ion-projected Ms orbital character at the VBM. In

the supercell at the left, the two Sn ions are adjacent and the tin character is much more

substantial than the Pb character. In the second configuration, there are no two adjacent

isotopes, and the orbital character is more evenly distributed between Pb and Sn ions. A

similar rule occurs at the CBM, in which the Pb character is more present in the first su-

percell and better distributed in the latter. The first supercell configuration then presents

both a lower Eg and a higher ∆ε than the second configuration. This rule is observed

between the isocompositional supercells of any x.

FIGURE 4.9 – Average Mp and Ms orbital character at the CBM (left) and the VBM
(right), respectively, as a function of cluster composition. The colors indicate the cluster’s
excess energies ∆ε.

Finally, it is necessary to determine the influence of spin-orbit coupling in the band

gap. The SOC affects in special the conduction band of metal halide perovskites due to

the prevalence of Mp character. Without SOC (no-SOC for short), the CBM is triply

degenerate, each band associated to one of px, py or pz orbitals. When relativistic effects

are taken into consideration, the CBM splits into two p 3
2

bands and a p 1
2

lower-energy split-

off band. The stabilization of the p 1
2

band is responsible for a strong band narrowing in

Pb-based perovskites. The same effect is found for tin perovskites, but in lower magnitude

since it is a lighter atom. On the other hand, the valence band, primarily composed of

halogen orbitals, is less affected. Figure 3.7 illustrates these effects by comparing the band

structures of CsPbI3 with and without considering spin-orbit coupling.

Figure 4.11 shows for comparison the DFT-1/2 band gap curve at T = 300 K with and
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FIGURE 4.10 – Comparison of mixing enthalpy, bandgap and VBM Ms orbital character
between two isocompositional supercell configurations. The amplitude of the projected
Ms character is proportional to the circle’s radius drawn over each octahedron. Green,
purple, light gray, and black circles represent Cs, I, Sn, and Pb ions, respectively.

without SOC. In no-SOC calculations, the band gaps broaden by 1.25 eV and 0.40 eV with

relation to SOC for CsPbI3 and CsSnI3 respectively. The accentuated band gap bowing

vanishes. Instead, the band gap evolution of the clusters from j = 1 to 21 follow a linear

behavior, with cluster j = 0 (corresponding to CsPbI3), deviating from this tendency.

This result is compatible with that reported by Im et al. (2015), with the exception that,

in this case, structural deformation and phase transition are not determinant factors.

To further investigate the influence of SOC on the gap bowing, the orbital character

of the CBM and VBM were analyzed as well for no-SOC calculations. The metal Ms

character at the VBM is very similar to the one depicted in Figure 4.9b, with a prevalence

of Sn character throughout all compositions. The CBM, however, showed a very different

profile, as can be seen in Figure 4.12. The CBM character in no-SOC band structure

has a higher presence of tin orbitals, in contrast to the SOC results shown in Figure 4.9.

Therefore, without SOC both the VBM and CBM are strongly defined by Sn orbitals,

which explains the stronger band gap narrowing with the addition of a single tin ion to the

CsPbI3 8-fold supercell (j = 0 → j = 1), and also explains the absence of narrowing with

the inclusion of one Pb ion to the CsSnI3 supercell, an effect observed in SOC calculations.

This exchange in metallic character can be explained in terms of the atomic energy levels

of the outermost p orbitals of tin and lead atoms which compose the conduction band.

Toggling on SOC stabilizes the Snp level from -4.0 eV to -4.2 eV for p 1
2
, and takes Pbp

from -3.8 eV (higher than Snp) to -4.9 for p 1
2

(lower than tin p 1
2
) (GOYAL et al., 2018). It

is thus reasonable to conclude that the spin orbit coupling is an essential feature for the
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FIGURE 4.11 – Band gap Eg as a function of composition considering SOC (blue) and
without considering SOC (yellow). The individual cluster values are depicted as a scatter
plot, and the GQCA averages at T = 300 K are shown as a line plot.

presence of band gap bowing.

4.5 Conclusion

The analysis accomplished in this chapter allowed for a comprehensive understanding

of the properties of CsPb1−xSnxI3. The study of the crystal’s lattice, cluster configura-

tion, bonding, mixing enthalpy, band gap, charge separation and orbital character were

integrated, and the physical relationships between these variables were investigated.

The structural deformation due to alloying was primarily attributed to the stretch-

ing of Pb-I bonds and the contraction of Sn-I bonds when compared to Vegard’s law,

while still maintaining linearity in the MIM’ chain. This deformation is responsible for

the stabilization of cluster configurations with evenly distributed metal ions, configura-

tions which are known to improve oxidation resistance. A measure of oxidation resistance

based on the fraction of iodine ions shared between metals of different identities was pro-

posed, and the measurement of this quantity indicated that low-temperature fabrication

methods can lead to solar cells less susceptible to deterioration. A detailed look into the

thermodynamics of the solid solutions showed an unusual profile of the mixing enthalpies

of different supercells configurations. The mixed perovskite then demonstrated a perfect

miscibility, a feature that was not found for other perovskite alloys.
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FIGURE 4.12 – Average Pbp and Snp orbital character at the CBM as a function of
composition for no-SOC calculations.

Thereafter, the electronic structure of CsPb1−xSnxI3 was explored in detail. The quan-

titative results obtained are in great accordance with experiment, thus validating the

methods employed. The band gap evolution with composition demonstrated a strong

bowing, with intermediate tin-rich compositions having narrower band gaps than the end

components. For x = 0.80, the alloy is predicted to have a band gap of 0.984 eV, 0.033 eV

lower than the gap of CsSnI3. Such behavior is a common effect between tin-lead per-

ovskites. The bowing parameter was calculated with a parabolic fit, giving a value of

b = 0.582 eV, comparable to the value of b = 0.57 ± 0.06 eV obtained experimentally for

the orthorhombic phase. The many proposals for the origin of such bowing found in pre-

vious literature were carefully investigated. Short-range ordering claims were ruled out,

since the more stable configurations would, in fact, show a weaker bowing. The inspection

of metal orbital character revealed that the valence and conduction bands were originated

from different metals, which explains the band gap narrowing with small Pb inclusion in

CsSnI3. The strong spin-orbit coupling in Pb with relation to Sn has a determinant role

in this chemical arrangement. Thus, it is inferred that the band gap bowing is originated

from an unusual arrangement of atomic levels, which is only possible due to SOC effects.

The aforementioned analysis and results are expected to play an important role in

understanding the underlying physics of tin-lead mixed perovskites in general. Also,

the calculations show to be accurate when compared to experiment and make relevant

predictions on the properties of α-CsPb1−xSnxI3.



5 CsSn1−xGexI3 - Towards efficient

lead-free devices

5.1 Motivation

The replacement of toxic lead in metal halide perovskite solar cells is a theme of great

research interest. The operation conditions to which solar panels are commonly exposed

can cause device deterioration and consequently contaminate the environment, posing a

high risk to human health (BABAYIGIT et al., 2016). With the objective of tackling this

issue, alternate compositions based on Sn2+, Ge2+, Sb3+, Bi3+ and a myriad of other

cations have been proposed (SHALAN et al., 2019), even though they commonly present

much lower power conversion efficiency (PCE) when compared to lead-based materials.

Any potential substitute of MAPbI3 must rival its optoelectronic properties, such as its

relatively low band gap of 1.57 eV and small carrier effective masses (EPERON et al., 2014;

GALKOWSKI et al., 2016).

Numerous publications focus on the first-principle study of perovskites in search for

adequate photoactive materials (MAO et al., 2018; KRISHNAMOORTHY et al., 2015; QIAN et

al., 2016). Qian et al. (2016) assessed 48 different compositions, between which CsGeI3

stood out as the best candidate. Using the Spectroscopic Limited Maximum Efficiency

method (YU; ZUNGER, 2012), they obtained the theoretical limit of 27.9% for its PCE,

compared to 26.7% for MAPbI3. This result was a consequence of a suitable optical

absorption function, which, alongside the balanced and reduced carrier masses, acknowl-

edges CsGeI3 as a promising candidate for solar cell research. Krishnamoorthy et al.

(2015) also identified the high potential of Ge-based perovskites and devised the earliest

reported CsGeI3 solar cell, obtaining a PCE of 0.11% with a 1.63 eV band gap. Despite

its competent intrinsic characteristics, germanium, as well as tin, is known for suffering

rapid oxidation from Ge2+ to Ge4+, leading to low efficiencies.

Effort in enhancing CsGeI3-based solar cells are justified by the several advantages this

material presents besides its absorption properties. The absence of a volatile molecule in

its composition leads to a much higher thermal stability when compared to MAGeI3 and
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FAGeI3 (KRISHNAMOORTHY et al., 2015). Moreover, it is stable in the rhombohedral phase

at ambient temperature (THIELE et al., 1987; STOUMPOS et al., 2015), whereas CsPbI3 and

CsSnI3 tend to degrade to an optically inactive yellow phase (KONTOS et al., 2016; SUTTON

et al., 2018). The susceptibility to oxidation is thus the major stability challenge of Ge-

based solar cells.

This scenario has suddenly changed with the recent report by Chen et al., in which a

CsSn0.5Ge0.5I3 device delivered a PCE of 7.1%, a high conversion efficiency value amongst

the lead-free perovskite solar cells reported so far (CHEN et al., 2019). The device showed a

higher resistance to oxidation compared to the pristine CsSnI3 and CsGeI3. Such enhanced

stability was attributed to the surface passivation due to the formation of native-oxide

layer when in contact with air.

The objective of this chapter is to present an in-depth study of CsSn1−xGexI3 mixed

perovskite. To the best of the author’s knowledge, this is the most detailed account

of this alloy reported so far. Using the same methods previously addressed, the micro-

scopical geometry, solid solution thermodynamics, and electronic structure are calculated

and discussed. The intrinsic characteristics of this material are obtained over the en-

tire composition range, offering opportunities and insights for the improvement of related

photovoltaic devices.

5.2 Symmetry and geometrical parametrization

CsSnI3 and CsGeI3 crystallize at room temperature into orthorthombic and rhombo-

hedral structures respectively, so phase transition should occur when adjusting the com-

position of the mixed system CsSn1−xGexI3. In this chapter, the rhombohedral system is

assumed in all supercell calculations, which is believed to be the symmetry of most inter-

est due to a series of factors. Firstly, at higher temperatures CsSnI3 crystals can assume

the aristotype cubic structure (YAMADA et al., 1991), closely related to the rhombohedral

structure, whereas CsGeI3 does not assume the orthorhombic phase. Also, the fabricated

perovskite with x = 0.5 was identified as rhombohedral by XRD measurements (CHEN et

al., 2019). Lastly, the germanium perovskites are more promising for solar cell application

than tin-based materials, so, in principle, the Ge-rich compositions are of greater research

interest.

The adopted rhombohedral primitive cell is depicted in Figure 5.1a. In simple terms,

it can be described as a cubic cell stretched along the [1,1,1] direction - the so-called triad

axis. The square angles between the cell edges are narrowed down to a value β, and the

MX3 octahedron is distorted. Moreover, the M cation slides along the triad axis from the

centre of the octahedron, which is responsible for the breaking of inversion symmetry. The
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parameter δ will be defined as the dislocation of M from the equidistant point between

two Cs cations. The M cation then comes closer to three of the surrounding halogen

anions, forming a trigonal pyramidal MX3 unit with MX bonding distance dS and dL to

the closest and farthest halogens, respectively. Considering X and X’ opposite vertices of

the octahedron, the ∠XMX’ angle consequently deviates from the value of 180◦ found in

the regular cubic structure. These parameters are highlighted in Fig. 5.1b and will be of

interest in the next section when analyzing the cell relaxation.

The described primitive cell is classified within the Space Group 160 (R3m). Supercells

for alloy calculations are defined as shown in Figure 5.1c, with 8 unit cells each and 40

atoms in total. There are consequently 8 octahedron centered either by a tin or germanium

cation, and each octahedron is numbered from 1 to 8. In principle, there are 28 = 256

supercell configurations. Using the Space Group symmetry operations, the set of possible

configurations was parsed into 22 groups of degenerate supercells. As can be seen in

Table 5.1, the results are identical to those obtained for the cubic structure in Chapter

4. One representative configuration for each group is selected, and its metal arrangement

is encoded as a list of letters. If the i-th element of the list is the letter A (B), the i-th

octahedron is centered by a Sn (Ge) ion.

TABLE 5.1 – Symmetry information on the 22 groups of degenerate 8-fold supercells of
rhombohedral CsSn1−xGexI3. The supercells are numbered from j = 0 to j = 21. The
degeneracy gj and the number of Ge ions is displayed. The internal atomic arrangement
of a representative supercell is represented by a list of letters, where the i-th letter is A
or B when the i-th metal position is occupied by a Sn or Ge ion, respectively.

j gj # Ge
Configuration

12345678
j gj # Ge

Configuration
12345678

0 1 0 AAAAAAAA 11 24 4 BBBABAAA
1 8 1 BAAAAAAA 12 24 5 BBBBABAA
2 12 2 BBAAAAAA 13 6 4 BABAABAB
3 12 2 BABAAAAA 14 24 5 BBBABAAB
4 24 3 BBABAAAA 15 12 6 BBBBABBA
5 6 4 BBBBAAAA 16 2 4 BABABABA
6 8 3 BABABAAA 17 8 5 BBBABABA
7 8 4 BBABABAA 18 12 6 BBBBBABA
8 4 2 BAAAAAAB 19 4 6 BBBABBAB
9 24 3 BABAABAA 20 8 7 BBBBBBBA
10 24 4 BBBAABAA 21 1 8 BBBBBBBB
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FIGURE 5.1 – Depiction of (a) the R3m unit cell, showing the MX6 octahedron faces;
(b) the dL, dS and ∠XMX’ parameters, with the shorter bonds forming a MX3 trigonal
pyramidal form; and (c) the 2x2x2 rhombohedral supercell used for alloy calculations.

5.3 Structural relaxation

The microscopic arrangement of perovskite materials plays a crucial role in determining

their electronic properties. Obtaining the lattice and equilibrium atomic positions is the

first step in understanding any key factor that determines the quality of an active layer

of solar cells, such as stability, band gap, orbital signature of bandstructure, and carrier

effective mass. Not as simple as their cubic counterparts, rhombohedral perovskites have

a much richer complexity in its internal structure, and the relations between its diverse

geometrical parameters must be studied with care. The objective of this section is to

provide a rational basis for the structural analysis of mixed rhombohedral perovskites, as

well as to offer some insights on the particular characteristics of CsSn1−xGexI3.

First, the primitive cell of pure compounds CsSnI3 and CsGeI3 are investigated in

both cubic (α-) and rhombohedral (r-) structures, with the objective of understanding

the differences and similarities between both forms. r-CsSnI3 and r-CsGeI3 structures

were initialized with parameter values a = 6.10 Å, β = 88.46◦, δ = 0.342 Å, dS = 2.80

Å, dL = 3.34 Å and ∠XMX’ = 168.2◦. These values were chosen to match the relaxed
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structure of r-CsGeI3 as found in the Materials Project Database (JAIN et al., 2013). The

atomic positions of each cell were then relaxed with the same VASP parameters as used

in the previous chapter for CsPb1−xSnxI3. The results are displayed in Table 5.2.

TABLE 5.2 – Geometrical parameters of relaxed structures of rhombohedral and cubic
CsGeI3 and CsSnI3 perovskites compared with experimental data. The output VASP
energy E is given in units of eV/atom.

Perovskite Structure a β δ dS dL ∠XMX’ E

r 6.12 88.32 0.353 2.79 3.36 167.8 -2.96755
CsGeI3 r (Exp.)a 5.983 88.62 0.31 2.7526 3.2561 169.31

α 6.00 90.0 0 3.0 3.0 180.0 -2.42183
α (Exp.)b 6.05

r 6.28 89.9 0.03 3.11 3.17 178.5 -2.95212
CsSnI3 α 6.28 90.0 0 3.14 3.14 180.0 -2.95217

α (Exp.)c 6.219
a(STOUMPOS et al., 2015); b(THIELE et al., 1987); c(YAMADA et al., 1991).

The calculated lattice parameters for r-CsGeI3 and α-CsSnI3 were overestimated with

relative errors of 2.2% and 0.9%, respectively, showing good agreement to experimental

data. In the former case, the additional calculated geometrical parameters also show a

remarkable agreement to X-ray diffraction data, although presenting a somewhat larger

rhombohedral distortion. On the other hand, the r-CsSnI3 perovskite spontaneously re-

laxes towards the cubic symmetry. This is expected due to the higher stability of the

cubic system in tin perovskites and the proximity between both polymorphs. The output

total energy per atom E is also shown for each material. As expected, r-CsGeI3 has a

lower formation energy than α-CsGeI3, evidencing a higher stability of the former. The

α-CsSnI3 is slightly more stable than r-CsSnI3.

Next, the alloy’s representative supercells were relaxed from the same initial conditions

until reaching equilibrium. The same DFT parameters for primitive cell calculations

were used, in exception for the sampling of the first Brillouin zone that is changed to

4 divisions along the reciprocal vector directions. The composition-dependence of the

geometrical parameters were obtained and will now be analyzed. Fig. 5.2 shows both

the values of lattice parameter a and lattice angles β as a function of composition. Each

cluster has three values of a and β as a consequence of the tridimensional geometry, so

the data points shown correspond to the average value within each cluster. The GQCA

average of the lattice parameter presents a slight downward curvature with increasing Ge

content, specially in the region x > 0.875. The lattice angles also depart from linearity in

this region, whereas following a linear evolution for x<0.875. This suggests a connection

between both parameters. Moreover, the lattice angles are seen to continuously increase

towards the ideal cubic value of β = 90◦ for tin-rich compositions, indicating a continuous
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transformation between lattice systems with x.

FIGURE 5.2 – Graphs showing (left) lattice parameter a as a function of composition x,
with the individual cluster values shown as a scatter plot and the average GQCA values
for T = 300 K represented as a solid line; and (right) the three lattice angles β of each
cluster as a function of x.

Due to the potentially chaotic behavior of the microstructure of alloys, some prelim-

inary simplifications are necessary. The rhombohedral perovskites present linear CsM

chains along the triad axis, as can be seen in Fig. 5.1a. The calculations reveal that

the Cs-Cs distance along those chains remains within 0.2% of its ideal value. Also, the

∠Cs1Cs2Cs3 angle remains essentially straight, having a maximum distortion of 0.4◦ for

three consecutive Cs cations. It is thus reasonable to neglect deviations of the Cs cations

from their ideal positions, and so the relaxation effects are assumed to take place within

the MX framework primarily.

Similarly to CsPb1−xSnxI3, the iodine anions in CsSn1−xGexI3 are disputed between Sn

and Ge and naturally lie closer to the latter due to its shorter radius. This competition

moves both metal and halogen ions from their ideal positions. The resulting M off-

centering δ also holds an important relation with the perovskite’s electronic properties. It

is responsible for breaking the nonbonding equilibrium of Mp-Xp orbital interaction at the

conduction band minimum and subsequently enlarging the bandgap, as will be explored

in Section 5.5, and for removing the inversion symmetry, which is commonly associated

with a lower bimolecular recombination due to Rashba splitting (AZARHOOSH et al., 2016).

Since δ is directly influenced by halogen competition, it is necessary to take into account

the immediate vicinity of the octahedron. Suppose that NM is the number of octahedra

centered by M ions that surround a given ion of same chemical element M. If, for example,

NGe = 6 (= 0), it means the respective GeI6 octahedron is completely surrounded by 6

Ge- (Sn-) centered octahedra. In Figure 5.3, δ is plotted for each of the 8 octahedra of

each cluster as a function of cluster composition x. Data points of Sn and Ge ions are
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represented by crosses and circles, respectively, and their color correspond to the value of

NM . Several conclusions can be taken from this plot. As expected, the germanium ions

present consistently higher δ than tin ions. Also, its value its strongly influenced by the

neighboring elements. The higher the number of surrounding Sn ions (lower NM for Ge

and higher NM for Sn), the lower is δ. For Sn-centered octahedron surrounded by 6 other

tin ions δ is cut down to less than 0.1 Å, which indicates that even a relatively small

agglomeration of Sn ions could induce a local transition to the cubic symmetry. Also, δ is

not significantly influenced by the supercell composition x for fixed values of NM , which

shows some insensibility to change in lattice constant.

Even though the M displacement is ideally aligned with the triad axis as seen in

Fig. 5.1a, the complicated equilibrium of forces can cause M to leave the axis and slightly

break the rhombohedral symmetry of the primitive cell. However, similarly to pseudocubic

perovskites, this local symmetry breaking should be null when averaged over the range of

a sufficiently large sample of unit cells.

FIGURE 5.3 – M ion displacement δ of each octahedron for every cluster as a function
of its composition x. The colors of data points are assigned accordingly to the number of
neighboring isotopes.

Both metal and halogen displacements are the cause of the asymmetry between short

and long bonds in the MX arrays. With the objective of classifying and effectively un-

derstanding the bonds, the iodine ions can be divided into four types regarding their first

neighbors: those (i) placed between Ge ions, (ii) placed between Sn ions, (iii) forming a
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long bond with a Ge ion and a short bond with a Sn ion, and (iv) forming short (long)

bond with a Ge (Sn) ion. Each type of iodine naturally forms one short bond dS and

one long bond dL, resulting in a total of 8 categories of bonds. Next, each category is

analyzed and quantified with respect to the alloy’s composition.

Consider a linear infinite array M1XM2XM3X... along a given primitive lattice vector

direction. Since the supercells are limited to two primitive cells stacked in each direction,

the presented calculations are limited to the study of pure-tin (SnISnI...), pure-germanium

(GeIGeI...) and alternating arrays (SnIGeISnIGeI...). Figure 5.4 shows a representative

alternating array, that contains iodines of types (iii) and (iv). There are in total four

distinct types of bond: dS(GeI), dS(SnI), dL(GeI), dL(SnI), identified in the structure.

The graph in Figure 5.4 plots the bond values of each type as a function of cluster

composition. As expected, both short and long SnI bonds are more stretched than the

respective GeI bonds, although dL(GeI) > dS(SnI). Also, both GeI and SnI short bonds

are nearly constant with x and have a small value dispersion for any fixed composition,

demonstrating that the alloy environment does not affect these bonds significantly. On

the other hand, the long bonds dL are linearly distorted with x and show a slightly larger

dispersion. The weaker metal-halogen interaction of the long bonds should make them

more sensible to perturbation. A similar conclusion was given by Stoumpos et al. (2015),

who observed experimentally that the Cs→ MA→ FA substitution in AGeI3 perovskites

would extend the long bonds as 3.256 → 3.446 → 3.577 [Å], whereas the short bonds

remained virtually the same (2.753 → 2.772 → 2.733 [Å]).

Figure 5.5 does the same analysis for the pure-tin and pure-germanium arrays. For

the latter, both dS and dL show a similar profile to those present in the alternating array.

The Sn bonds have a different behavior, with the dL bonds remaining almost constant,

and dS values slightly decreasing with increased x. The underlying reason for this distinct

behavior is that the Sn-centered octahedron is forced to raise its rhombohedral distortion

due to a local environment rich in germanium, but at the same time it is constrained to

progressively smaller volumes. This causes the dL/dS ratio to increase. Figure 5.6 (left)

shows the evolution of the dL/dS ratios rAGeI and rASnI for the Ge and Sn octahedra in the

alternating array, and rPGeI and rPSnI values for the pure arrays. The values of rPGeI , rAGeI
and rASnI suffer a linear decrease due to the sensibility of the long bond to the shortening

of the lattice constant.

Besides the bond length, a second parameter of interest is the ∠XMX’ bond angle,

where X and X’ are located in opposite vertices of the octahedron centered by M. its value

in the ideal cubic structure is 180◦, and decreases in the rhombohedral symmetry. For the

calculated supercells, the individual angle values show a considerable dispersion. ∠ISnI’

values span the range 178◦-171◦, while ∠IGeI’ lie in the lower range of 172◦-166◦. On the

other hand, the average cluster values for all ∠IMI’ angles show a much clearer trend.



CHAPTER 5. CsSn1−XGeXI3 - TOWARDS EFFICIENT LEAD-FREE DEVICES 85

FIGURE 5.4 – The alternating (GeISnI...) array is depicted in the left, highlighting four
different types of bonds: dL(GeI), dS(GeI), dL(SnI), and dS(SnI). The graph at the right plots
the bond values found in each cluster as a function of composition x.

Figure 5.6 displays the average values as a scatter plot as a function of composition, as

well as their GQCA average for T = 300 K.

In this section, the principal geometrical parameters of the rhombohedral CsSn1−xGexI3

alloy were examined in detail. The Cs cations are seen to be virtually unaffected by the

alloying, so the ionic relaxation occurs mainly in the MX lattice. It is shown that the

average lattice of the alloy undergoes a continuous transition from cubic to rhombohedral

symmetry with increasing x, and that even small tin-rich regions may rapidly transit to

the α phase. The MX bonds were found to lie within 8 distinct categories including up to

second-neighbor effects, and the evolution and behavior of each type of bond were quan-

tified. At last, the average bonding angle of MX arrays - another parameter of interest

for the bandstructure analysis - was described.

5.4 Phase diagram

The insertion of alien metal elements to a pristine perovskite alloy causes a struc-

tural perturbation to the immediate surroundings. This is specially true when mixing

perovskites which adopt different lattice arrangements at the given temperature. Figure
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FIGURE 5.5 – (a) SnI and (b) GeI arrays, with corresponding long dL and short dS
metal-halogen bond distances highlighted in each structure. The graphs in (c) and (d)
plots the bond values found in each cluster as a function of composition x.

5.6, for example, shows that, with the insertion of one Ge ion to CsSnI3 (x = 0.125), the

bond angle is severely changed. This local strain causes the energy of the mixed supercell

to increase in comparison to the linear interpolation between those energies of the pure

compounds. It is important to evaluate these excess energies, as defined in Eq. 2.57, for

they dictate the alloy mixing thermodynamics.

Figure 5.7 plots the excess energies per metal ion ∆ε as a function of composition.

The profile of the graph is remarkably different from that obtained for the CsPb1−xSnxI3

alloy (Fig. 4.4). In the present case, the excess energies have much higher values, and

no cluster shows negative ∆ε, indicating that CsSn1−xGexI3 is much more susceptible to

phase separation. ∆εj peaks at 13.00 meV/metal for j = 7, compared to 2.75 meV/metal

of CsPb1−xSnxI3. Guedes et al. did similar calculations for methylamonium metal io-

dide mixed perovskites (GUEDES-SOBRINHO et al., 2019b). Compared to the results of

the present study, MAPb1−xSnxI3 has lower max(∆ε) than CsSn1−xGexI3, whereas the
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FIGURE 5.6 – (left) Long/short bond ratios found for the octahedrons of every cluster as a
function of composition. rA and rP correspond to ratios retrieved from the alternating and
pure arrays, respectively. (right) Cluster average of ∠IMI’ bonding angles as a function
of composition, with individual values shown as a scatter plot and the GQCA average at
T = 300 K shown as a solid line.

MAPb1−xGexI3 and MAPb1−xSixI3 alloys have much higher max(∆ε) (≈ 30 meV/atom

and 60 meV/atom, respectively). These trends can be partially attributed to the unbal-

ance of ionic radius between distinct metal elements. Moreover, the graph in Fig. 5.7

is skewed towards lower values of x, indicating that the tin-rich compositions are more

unstable than the Ge-rich regions. The presence of loose long bonds in CsGeI3 possibly

allows the lattice to more easily accommodate to the inclusion of ionic species of different

sizes.

The mixing free energy ∆F of the alloy is calculated as in Eq. 2.53 for a range of

temperatures and is plotted in Figure 5.8. The mixing energy values are entirely positive

at temperatures lower than 60 K, indicating complete immiscibility. With increasing

temperatures, two local minima appear close to x = 0 and x = 1 as a consequence of

the entropy contribution to ∆F, indicating the existence of a well-defined miscibility gap.

For the curves at 270 K and 300 K, the two minima are merged together and the second

derivative ∂2∆F/∂x2 is positive for all x, showing no binodal or spinodal decomposition

regions.

The spinodal and binodal points of the mixing free energy were calculated as a func-

tion of fabrication temperature. The respective phase diagram is shown in Figure 5.9. A

miscibility gap is present for lower temperatures, disappearing above the critical temper-

ature Tc = 258.78 K. As inferred from Fig. 5.7, the Sn-rich compositions are indeed more

prone to phase separation than the Ge-rich mixed systems, and the critical temperature is
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FIGURE 5.7 – Cluster excess energies ∆εj as a function of cluster composition.

observed at the composition x = 0.385. In conclusion, the mixing of CsSnI3 with CsGeI3 is

less stable than mixing with CsPbI3, although no phase separation should be observed for

CsSn1−xGexI3 since typically perovskite fabrication methods take place at temperatures

higher than Tc (WATTHAGE et al., 2018).

5.5 Electronic Structure

Firstly, the bandstructure calculations were executed for both pure compounds CsSnI3

and CsGeI3 in the two lattice systems. In the case of the rhombohedral lattice, the

reciprocal lattice was sampled in the high-symmetry kpoints Γ (0,0,0), L (1
2
, 0, 0), F (1

2
,

1
2
, 0) and Z (1

2
, 1

2
, 1

2
), analogous respectively to the points Γ, X, M and R in the first

Brillouin zone of the cubic lattice. The labelling follows the notation of Setyawan and

Curtarolo (2010). The CUT parameters of 3.05 a.u. (CsSnI3) and 3.10 a.u. (CsGeI3)

for the DFT-1/2 correction were found variationally, resulting in the band gap values

displayed in Table 5.3. All materials were identified as having a direct band gap at the

(1
2
, 1

2
, 1

2
) kpoint of the reciprocal space. The experimental and GW band gap values as

found in the literature are also shown for comparison.

The DFT-1/2 band gaps are seen to have a good correspondence to GW calculations,

especially in the α phase. As seen in Chapter 3, both methods often render comparable

results, although in this case there are no experimental data available for evaluating

their accuracy. The rhombohedral system shows a gap broadening with relation to the
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FIGURE 5.8 – Mixing helmholtz free energy ∆F(x) of the alloy for temperature values
ranging from 60 K to 300 K. The spinodal region (positive second derivative of ∆F(x))
vanishes around 240 K.

cubic structure. For CsSnI3, the band gap broadening is negligible, consistent with both

structures being very similar (see Table 5.2). In the case of rhombohedral CsGeI3, for

which optical absorption measurements show a band gap of 1.63 eV, the DFT-1/2 method

results in the slightly overestimated value of 1.80 eV, much larger than the cubic value

of 1.29 eV. Figure 5.10 shows the DFT-1/2 band diagram of both r- and α-CsGeI3 for

comparison. Although the change in lattice system has a considerable impact on the band

gap, the general profile of the bandstructure remains almost unaltered.

TABLE 5.3 – Ab initio band gap values (DFT, DFT-1/2 and GW) and experimental
measurements for CsSnI3 and CsGeI3 in cubic (α) and rhombohedral (r) lattice systems.

Perovskite DFT DFT-1/2. GW exp.

r-CsGeI3 0.93 1.80 1.619 a 1.63 b

α-CsGeI3 0.39 1.29 1.199 a

r-CsSnI3 0.08 1.05
α-CsSnI3 0.07 1.02 1.008 a

a(HUANG; LAMBRECHT, 2016); b(KRISHNAMOORTHY et al., 2015)

The broader gap values of r-CsGeI3 compared to the experiment are a consequence

of the more severe rhombohedral distortion of the calculated structure when compared

to XRD measurements, as shown in Table 5.2. To measure this influence, a r-CsGeI3
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FIGURE 5.9 – Phase diagram of CsSn1−xGexI3 alloy, showing the spinodal and binodal
regions in red and blue, respectively. The critical temperature is Tc = 258.78 K and the
critical composition is x = 0.385.

primitive cell was artificially designed to meet the experimental parameters, with val-

ues of δ = 0.305 Å, ∠GeIGe’ = 169◦, β = 88.62◦, a = 5.983 Å, dS =2.752 Å, and

dL = 3.258 Å. This configuration resulted in a DFT-1/2 band gap of 1.51 eV (CUT

parameter of 3.10 a.u.), smaller and closer to the experimental gap. Comparing the two

rhombohedral calculations (gaps of 1.80 eV and 1.51 eV) and the cubic CsGeI3 (gap of

1.29 eV), it is evident a direct relation between gap and distortion.

This relation between structure and band gap can be understood based on the dis-

cussions of Chapter 3. Two important structural factors come into play: the bending

of ∠XMX angles and the increase in the dL/dS bond ratio. As seen in Table 5.2, the

transition from cubic to the rhombohedral system affects the lattice both ways due to

the formation of MX3 units. The increase in bond ratio is responsible for destabilizing

the CBM energy, while the angle distortion lowers the VBM energy. This conjunction of

effects results in a strong band gap opening, as evidenced by the DFT-1/2 data. This is

expected to account for a significant part in the band gap evolution in the CsSn1−xGexI3

alloy, since both effects increase with the inclusion of Ge in the mix (See Figure 5.6).

The rhombohedral deformation is related to that observed for MASiI3 and MASiCl3

perovskites. The increase in long/short bond ratio breaks the nonbonding equilibrium at

the CBM, so much so that the Xp orbital character is non-null at the (1
2
, 1

2
, 1

2
) point of the

conduction band. Figure 5.11 confirms this comparison: while the cubic lattice character
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FIGURE 5.10 – Bandstructures of both cubic and rhombohedral CsGeI3, showing the gap
broadening suffered from lowering the symmetry.

is similar to the type I profile (defined in Fig. 3.3), the rhombohedral lattice character

can be classified into type IV, similarly to MASiI3 and MASiCl3.

FIGURE 5.11 – Percentual orbital character participation at the conduction band of
CsGeI3 in both lattice systems, obtained with DFT-1/2 and SOC corrections. Xpd and
Xpt corresponds to the halogen p orbitals aligned and transversal to the MX segment,
respectively. The profile of the rhombohedral structure is similar to that of MASiI3 as
shown in Figure 3.3

The band gaps for each CsSn1−xGexI3 supercell were calculated with SOC and DFT-

1/2 corrections. The CUT parameter of 3.07 a.u. was used, an intermediate value between

those obtained variationally for the end components. The GQCA average of the cluster

values was calculated for T = 300 K, and the results are shown in Figure 5.12. The

band gap presents a very well-behaved linear evolution, closely obeying Vegard’s law.

The dashed line represents an interpolation between the gap values of cubic CsSnI3 and

CsGeI3, so the difference between both lines can be attributed to the lattice deformation.

Optical absorption measurements in rhombohedral CsSn0.5Ge0.5I3 found a band gap of 1.5

eV, which is close to the calculated value of 1.41 eV for the same composition (CHEN et
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al., 2019). Due to the lack of comprehensive composition-dependent experimental studies,

the proper analysis of band gap evolution is limited. Nevertheless, a recent study showed

by XRD measurements that CsSn0.7Ge0.3I3c is stable in the orthorhombic phase, and

consequently the linearity is expected to break at some point 0.3 ≤ x ≤ 0.5 due to the

phase transition (QIAN et al., 2020). The band gap curve should then present an upward

concavity in the tin-rich region, since γ-CsSnI3 has a band gap of 1.27 eV (HUANG;

LAMBRECHT, 2016). Such phase-related nonlinearity was experimentally observed for the

MASn1−xGexI3 perovskite (NAGANE et al., 2018).

FIGURE 5.12 – Band gap Eg of CsSn1−xGexI3 as a function of x. The blue data points
represent the individual cluster values and the solid curve is their GQCA average at
T = 300 K. The red data point is the experimental data for rhombohedral CsSn0.5Ge0.5I3

(CHEN et al., 2019). The dashed line is a linear interpolation between cubic CsSnI3 and
CsGeI3 band gap values, showing the expected behavior in the absence of rhombohedral
distortion.

The shape of the band gap evolution of r-CsSn1−xGexI3 is interestingly in contrast to

the gap of the α-CsPb1−xSnxI3 alloy obtained in Chapter 4. While the latter presents a

strong bowing with the band gap minimum appearing at intermediate compositions, the

former shows the complete absence of this effect. Since the origin of the band gap bowing

in the lead-tin mixed perovskites was attributed to the metal signature of the valence and

conduction bands, it is fruitful to analyze the M character for CsSn1−xGexI3 clusters as

well.

The average metal character for Sn and Ge ions in both CBM and VBM is shown in

Figure 5.13 as a function of x. In both bands, the Sn character is noticeably more present
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than Ge, although the difference is much lower in the CBM, possibly due to the proximity

of Snp and Gep atomic energy levels. This prominent Sn character in both bands is a

signature consistent with the linear evolution of band energy levels (GOYAL et al., 2018).

Neither band is significantly perturbed by the addition of one Ge ion to CsSnI3, and thus

its band gaps evolves as expected towards the gap of pristine CsGeI3. This is different of

the behavior observed with the addition of one Pb ion, which, in fact, causes the gap to

close as a consequence of the strong Pbp presence in the conduction band (See Fig. 4.9).

FIGURE 5.13 – Mp (left) and Ms (right) average orbital character per metal at the CBM
and VBM, respectively, as a function of x.

On the other extremity of composition, the CsGeI3 bandstructure is more significantly

perturbed by addition of tin content, in special its valence band. The inclusion of Sn

to CsGeI3 causes a sudden elevation of the VBM energy and a consequent stronger gap

narrowing than is expected from a simple linear interpolation. This effect is not too

evident in Figure 5.12, which shows a slight upward curvature in the 0.875 ≤ x ≤ 1.0

region. But it becomes clear in the second derivative of band gap Eg with respect to

composition x. Defining the local bowing b(x) as half the second derivative of Eg, the

graph of Figure 5.14a shows a sudden increase of this value when the last tin ion is

substituted by germanium. The diagram in 5.14b shows the expected band alignment

between germanium and tin perovskites that would generate this behavior in the energy

levels of the mixed system.

Interestingly, the band gap behavior of CsSn1−xGexI3 is qualitatively the same of

the no-SOC gap of CsPb1−xSnxI3 shown in Fig. 4.11. Both present a similar orbital

character in both CBM and VBM, as shown in Fig. 4.12. This correspondence validates

the explanation for the band gap trend of both mixed perovskites.
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FIGURE 5.14 – (a) Local bowing b(x) for temperature values ranging from 50 K to 300
K. (b) expected band alignment as a function of composition. The abrupt VBM energy
shift at x = 0.875 is a possible cause for the appearance of gap bowing for germanium-rich
compositions.

5.6 Conclusion

CsSn0.5Ge0.5I3 has recently been used as the active layer of lead-free solar cells, pre-

senting the relatively high PCE efficiency of 7.1% and an remarkable stability to oxidation.

However, no detailed experimental or theoretical study of the optoelectronic characteris-

tics of CsSn1−xGexI3 were published so far. In this chapter, much of its properties and

general behavior were obtained for the first time, generating useful insights to guide future

research and the design of photovoltaic devices.

The rhombohedral lattice system was assumed for all calculations, since it is known

that CsSn1−xGexI3 adopts this symmetry in the region of interest x > 0.5. However,

it is observed that the system suffers a continuous distortion to the cubic symmetry

with decreasing x, due to the higher stability of CsSnI3 in this form with respect to

its rhombohedral counterpart. The geometrical parameters a, β, δ, dL, dS and ∠XMX’

were defined and quantified, showing that even small tin-rich regions could rapidly relax
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towards the cubic phase. The lattice constant shows a subtle bowing, correlated to the

evolution in lattice angle β. The MX bonding distances dL and dS were classified into

8 distinct categories regarding their immediate vicinity, each presenting its own length

and comportment with x. The Cs cations remain virtually in their ideal positions, not

participating in the ionic relaxation process.

The phase stability of the alloy is also studied. The tin-germanium perovskite presents

considerably higher values of excess energy than those of the CsPb1−xSnxI3 system. The

phase diagram is calculated, showing that the critical temperature of Tc = 258.78 K

is lower than ambient and annealing temperatures during perovskite fabrication. The

miscibility gap reported is skewed to tin-rich compositions, indicating that the alloy is

less susceptible to phase separation for higher values of x. This preference is attributed to

the presence of long bonds in the rhombohedral lattice, allowing structural perturbation

with low additional cost to energy.

The lattice system adopted was found to be a factor of great importance to the elec-

tronic structure of the alloy. The rhombohedral system leads to broader band gaps with

relation to the arystotype cubic structure, specially due to dL/dS bond length ratio and

the ∠XMX’ angle bending. The effect of these geometrical parameters on the bandstruc-

ture was elucidated in terms of orbital interactions at the conduction and valence bands.

The band gap of the CsSn1−xGexI3 alloy was found to follow a linear trend with x, con-

trasting with the strong bowing of CsPb1−xSnxI3. The differences between both alloys

were explored and explained in terms of band alignment.



6 Conclusion

In summary, this dissertation outlines how it is possible to engineer the intrinsic prop-

erties of perovskite systems to meet the desired device requirements. It encompasses a

myriad of halide perovskite compositions of interest for photovoltaic applications, provid-

ing a bird’s-eye view on the underlying physics. More than characterizing the proposed

systems with ab initio calculations, this study explored the uniqueness of each composition

and how they relate to each other.

The lattice geometry and band gap of 48 cubic AMX3 perovskites were reported. This

collection included the more common hybrid Pb and Sn halide perovskites and those less

studied containing Rb and Si. With the use of the DFT-1/2 correction, the results were

close to the experiment and comparable to the state-of-art GW method, thus providing a

good description of the bandstructure. Sixteen cases have suitable band gaps for single-

junction solar cells, whereas other compositions can be useful to integrate varied layers of

tandem cells. The systems share common orbital characteristics in both the valence and

conduction bands. It was then shown how their energy levels could be tuned by either

enhancing or reducing orbital overlap in the MX3 network. It was further demonstrated

how the choices on composing elements influence the band gap in terms of their spin-

orbit coupling magnitude, electronegativity, ionic radius, and orbital overlap. Ultimately,

the partial or complete formation of pyramidal MX3 units was identified as the cause of

unexpectedly high band gaps in some perovskites.

With the knowledge acquired and in the light of previous literature, some composi-

tions were selected for constituting promising mixed perovskites. With the objective of

efficiently studying these materials, three programs were developed in Python to (1) re-

duce the number of supercell calculations using symmetry considerations, (2) coordinate

the VASP executions, and (3) post-process the output information to retrieve the alloy’s

properties. The high-throughput solutions were designed to be user-friendly and applica-

ble to multinary alloys of arbitrary composition and lattice geometry. These will be useful

in future works of the group on diverse semiconducting systems.

The first studied alloy was α-CsPb1−xSnxI3. It has been reported in previous literature

as a remarkably stable perovskite in terms of phase and thermal degradation, as well as
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oxidation. The structural disorder was identified as a simple relaxation of MX bond

lengths, without significant bond angle deformation. No tendency for phase separation

was found in any mixed composition. Also, there is a slight energetic preference for

configurations with evenly distributed Pb and Sn cations, which are also more resistant

to oxidation. The band gap was obtained for all values of x and compared to other tin-lead

alloys found in the literature. This class of mixed perovskites is known for presenting a

strong gap bowing, and some hypotheses for its origin were ranked and analyzed. The

bowing was found to be caused by a peculiar band alignment between the end components,

consequence of the strong SOC in CsPbI3.

Then, the rhombohedral CsSn1−xGexI3 perovskite was analyzed. This perovskite was

recently discovered to be stable to oxidation due to the formation of an oxide layer on

its surface and was used for building lead-free solar cells with 7.1% efficiency. The DFT

calculations showed a very sophisticated relaxation process, with a spontaneous transition

from the rhombohedral to the cubic lattice with decreasing x. The phase diagram shows

single-phase mixing for fabrication temperatures higher than 259 K. The orbital character

and band gap evolution as a function of x were calculated and discussed. The linearity

in the band gap of CsSn1−xGexI3 was also explained in terms of band alignment and

compared to the case of CsPb1−xSnxI3. Such a detailed description of this tin-germanium

alloy is reported for the first time.

The field of perovskite photovoltaics is vast and, although not exhaustive, this disser-

tation provides a significant outlook on the topic of compositional tuning. The systems

were carefully studied with reliable and efficient computational tools, and the physics was

discussed in detail. The results reported are expected to nurture future works and guide

the development and engineering of perovskite solar cells.
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CASTELLI, I. E.; GARCÍA-LASTRA, J. M.; THYGESEN, K. S.; JACOBSEN, K. W.
Bandgap calculations and trends of organometal halide perovskites. APL Materials,
AIP Publishing, v. 2, n. 8, p. 081514, ago. 2014. Dispońıvel em:
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582–587, jun. 2015. Dispońıvel em: <https://doi.org/10.1038/nphys3357>.

MØLLER, C. K. Crystal Structure and Photoconductivity of Cæsium Plumbohalides.
Nature, Springer Science and Business Media LLC, v. 182, n. 4647, p. 1436–1436, nov.
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<https://doi.org/10.1021/acsenergylett.8b00615>.

PRASANNA, R.; GOLD-PARKER, A.; LEIJTENS, T.; CONINGS, B.; BABAYIGIT,
A.; BOYEN, H.-G.; TONEY, M. F.; MCGEHEE, M. D. Band gap tuning via lattice
contraction and octahedral tilting in perovskite materials for photovoltaics. Journal of
the American Chemical Society, American Chemical Society (ACS), v. 139, n. 32,
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<https://doi.org/10.1021/jp5126624>.

SAHOO, S. K.; MANOHARAN, B.; SIVAKUMAR, N. Introduction: Why perovskite
and perovskite solar cells? In: Perovskite Photovoltaics. Elsevier, 2018. p. 1–24.
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methods for large-area production of perovskite thin films. ENERGY &
ENVIRONMENTAL MATERIALS, Wiley, v. 2, n. 2, p. 119–145, jun. 2019.
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Compositional tuning of perovskite systems for photovoltaics: an ab initio study

6. AUTORA(ES):

Fernando Valadares Calheiros de Siqueira
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8. PALAVRAS-CHAVE SUGERIDAS PELA AUTORA:

Perovskite, Photovoltaics, Density Functional Theory

9. PALAVRAS-CHAVE RESULTANTES DE INDEXAÇÃO:
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ITA, São José dos Campos. Curso de Mestrado. Programa de Pós-Graduação em F́ısica. Área de F́ısica
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orbital das bandas e na magnitude do acoplamento spin-órbita. Três programas foram criados em Python para
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ótimo acordo com o experimento e previsões confiáveis de novas perovskitas, evidenciando os mecanismos f́ısicos
que regem o ajuste de composição dessa classe de semicondutores.

12. GRAU DE SIGILO:

(X) OSTENSIVO ( ) RESERVADO ( ) SECRETO


	Thesis Committee Composition:
	Acknowledgments
	Epigraph
	Resumo
	Abstract
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	2 Methodology
	2.1 Density Functional Theory
	2.2 Electronic structure calculations in crystals
	2.2.1 Bloch's theorem
	2.2.2 DFT-1/2 quasiparticle correction
	2.2.3 Projector augmented-wave method

	2.3 Developed solutions for the DFT study of crystalline alloys
	2.3.1 Supercell expansion
	2.3.2 Coordination of VASP runs
	2.3.3 Generalized quasi-chemical approximation


	3 Cubic AMX3 perovskite systems
	3.1 Motivation
	3.2 Structural parameters
	3.3 Orbital character
	3.3.1 The orbital origin of the valence and conduction bands
	3.3.2 Band energy level manipulation

	3.4 Band Gap
	3.5 General trends
	3.6 Conclusion

	4 CsPb1-xSnxI3 - Minimizing the band gap
	4.1 Motivation
	4.2 Symmetry and structural relaxation
	4.3 Stability and cluster population
	4.4 Eletronic Structure
	4.5 Conclusion

	5 CsSn1-xGexI3 - Towards efficient lead-free devices
	5.1 Motivation
	5.2 Symmetry and geometrical parametrization
	5.3 Structural relaxation
	5.4 Phase diagram
	5.5 Electronic Structure
	5.6 Conclusion

	6 Conclusion
	Bibliography
	Folha de Registro do Documento

