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Prof. Dr. Guilherme Matos Sipahi External Member - USP
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Back in the 1940s, researchers were just discovering how to use vacuum tubes as simple
switches. These switches could then form logic gates, which could be linked together to form

the first logic circuits. That’s where we’re at now with quantum processors.

We have verified that all the components work.

The next step is to engineer the smallest, yet most interesting circuit possible.

— Jungsang Kim



Abstract

A major challenge in creating a quantum computer is to find a quantum system that

could be used to implement the qubits. In this scenario, solid state systems, such as

deep center defects in semiconductors or quantum dots, are prominent qubit candidates,

and ab initio calculations are one of the most important tools to theoretically study

their properties. However, these calculations are usually highly involved, due to the large

supercells needed, and the computational cost can be even larger when one goes beyond

the Kohn-Sham scheme to correct the band gap problem and achieve good accuracy in

the prediction of excited state phenomena.

In this work, we use first principle calculations in the search of materials and systems

that would be suitable for the physical implementation of quantum bits and other quan-

tum information devices. This is addressed on two fronts: First, we develop a method that

sharply reduces the computational cost of simulating deep center defects with DFT includ-

ing quasiparticle corrections, and then we benchmark it with the largely used quantum

register based on the negatively-charged NV center in diamond, obtaining a great agree-

ment with experimental data. Second, we demonstrate the possibility of using a gated van

der Waals heterostructure to implement spatial quantum superpositions of electron states

and, moreover, to implement a qubit. We study the case of the ZrSe2/SnSe2 heterostruc-

ture, simulating it under the influence of the gate field, providing theoretical quantitative

results of its operation as a qubit, and proposing a possible methodology to manipulate

and to measure the information in this qubit.
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1 Introduction

1.1 Motivation

Shortly after their creation, during the last decades of the 20th century, computers

changed society. More than an end in themselves, they are important tools that have been

accelerating the development of new technologies and even their own evolution. Despite

all the progress, there are still problems that are very difficult to solve, no matter how

fast computers become. For some of these problems, quantum computation arises as a

possible solution in the near future.

A quantum computer is a computation system that makes direct use of quantum

phenomena, such as entanglement and superposition, to perform operations on data.

Prior to their complete development, there are already proposals of efficient algorithms

for some problems, such as the factorization of large prime numbers (SHOR, 1997), or the

simulation of quantum systems, as predicted by Feynman (FEYNMAN, 1982) and already

realized by (WANG et al., 2014) for a simple case, the helium hydride cation, HeH+.

The fundamental building blocks of a quantum computer are called qubits, in analogy

to the bits present in classical computers. A qubit is a quantum system consisting of two

energy levels, usually labeled |0〉 and |1〉. From the axioms of Quantum Mechanics, we

have that any normalized linear combination with complex coefficients of these states is

also valid states of the system, and from the Born rule (BORN, 1954), the square of the

magnitude of the coefficient is the probability of a measurement has its respective basis

vector as the outcome.

In order to implement an universal quantum computer (DEUTSCH, 1985), various tech-

nological barriers must be overcome. Among these challenges is the physical realization

of qubits, since most systems suffer from loss of coherence. In principle, an isolated atom

would provide an intuitive quantum bit, whose properties are well-understand. Unfor-

tunately, it is very difficult to use isolated atoms in a quantum device, since it requires

additional apparatus such as magneto-optical traps to fix them in space.

This scenario motivates the use of point defects in semiconductors or insulators, since
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their electronic properties are similar to the properties of isolated atoms or molecules,

with the intrinsic advantage of being held into place by the surrounding crystal, as it is

the case for all solid state qubits. Moreover, the dynamics of such systems presents the

same fundamental concepts of lasers. Therefore, the study relates to other technological

applications of current interest, such as terabit optical data channels (WANG et al., 2017).

Crystal growth and controlled incorporation of defects in semiconductors (doping) have

been largely used to engineer materials that can be used as electronic devices. By judicious

choice of the dopant and its respective concentrations, a very broad gamma of devices can

be realized. These devices, however, don’t make direct use of the quantum properties of

the defects, such as superposition and entanglement. Nonetheless, the technologies that

are already known by the semiconductor industry offers various tools for the solid state

quantum systems that are currently being developed.

One prominent candidate for solid state qubit is the negatively-charged nitrogen-

vacancy defect (NV− center) in bulk diamond (DOHERTY et al., 2013) since it is an indi-

vidually addressable quantum system that may be initialized, manipulated, and measured

with high fidelity even at room temperature (WEBER et al., 2010). It is also the platform

on which the aforementioned quantum simulation of HeH+ was realized (WANG et al.,

2014). However, it is of great interest to find other analog systems hosted in different

materials that would enable for better integration with microelectronic, photonic and mi-

cromechanical integration. Identifying defects with similar properties in other materials

would enhance device design and possibly result in superior performance.

On the other hand, as with the bits in classical computing, it is highly desirable to

have several different methods to store and process information, since each of them has

its positive and negative aspects, and may be more or less interesting depending on the

application intended. Examples in classical computing are the magnetic domains in hard

disks, transistors in RAM modules, reflective and opaque regions in a CD-R, or even white

and black regions in a barcode. There are already several proposals for qubits as well,

such as the polarization of light (O’BRIEN et al., 2003), energy levels of ultracold atoms in

an optical lattice (SCHNEIDER; SAENZ, 2012), and electron spin orientations (LAUCHT et

al., 2016). In order to contribute to this matter, we propose a novel qubit concept based

on van der Waals heterostructures, which directly dialogues with the fast-paced growing

technology of 2D materials.

1.2 Objective

The objective of the present study is to use first principle calculations in the search of

materials and systems that would be suitable for the physical implementation of quantum
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bits and other quantum information devices. This is addressed on two fronts:

First, qubits based on deep center defects in solids are studied, and a new theoretical

method for the calculation of the optical transition energies between the defect levels of

interest for their operation as a qubit is proposed. The proposal is based on a methodol-

ogy developed at the Grupo de Materiais Semicondutores e Nanotecnologia (GMSN) for

precise band-gap calculations called LDA-1/2, and it has the required accuracy and low

computational cost required for a systematic search for new combinations of host materi-

als and complex defects. The method is benchmarked with the NV− center in diamond,

which has already been extensively studied both theoretically and experimentally. Finally,

the method is applied on other possible host material, GaN, since it is more technolog-

ically mature than diamond and is, therefore, more suitable for the implementation of

quantum computers in the present date.

Second, consonant with the research conducted at the GMSN on 2D materials and

their heterostructures, a novel concept of a qubit is proposed. The qubit is based on

the spatial quantum superposition that can be obtained for some combinations of 2D

materials in gated van der Waals heterostructures. For this reason, we refer to it as the

vdW qubit. One of these possible combinations, namely the ZrSe2/SnSe2, is simulated

theoretically, as well as it manipulation using an electric field applied at the gate, and

the results are promising. Finally, we provide a table with combinations between ten 2D

crystals that allows the identification of cases where the natural bands’ discontinuities are

small and, therefore, have a possible application as a vdW qubit.

In both cases, toy models that were developed to aid in the understanding of the

physical phenomena involved are presented and discussed.

1.3 Overview

In chapter 2, Density Functional Theory is briefly explained. The Hohenberg-Kohn

theorems and the Kohn-Sham equations are presented, and a motivation for the supercell

method is given. Then, we demonstrate that it is possible to obtain the energies of

electronic transitions between two localized levels within the band gap directly from the

Kohn-Sham eigenvalues in supercell calculations. In the latter part, we introduce the

DFT-1/2 method for gap correction and present general aspects of its formulation.

In chapter 3, we introduce some concepts on quantum computing, and an illustrative

experiment on a real quantum processor is performed, using the IBM Quantum Experience

platform. Then, the structure and properties of the NV center in diamond are addressed.

Some experimental methods to initialize, manipulate and measure a single NV− center

are described. In the latter part, we introduce a simplified model that helps to clarify how
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the spin dynamics determines the luminosity. This model also presents good qualitative

results for the luminescence in function of time for various initial conditions. A comparison

of these results with experimental data is given.

In Chapter 4, we propose an extension to the method DFT-1/2 to correct the defect

energy levels within the band gap and thus allowing the accurate calculation of the elec-

tronic transition energies with low computational cost. We also show that together with a

standard DFT calculation of the anti-Stokes shift, we are able to determine other two en-

ergies of experimental interest: The Stokes shift and the Zero Phonon Line. The method

is then benchmarked with the NV− center in diamond, whose energies have already been

determined, both theoretically and experimentally. The application of the method to the

NV− center is explained in detail, in order to exemplify its use and to highlight some

important aspects. Finally, we present the results of the application of this methodology

in a complex defect in wurtzite Gallium Nitride.

Finally, in chapter 6, we demonstrate the possibility of using a gated vdW heterostruc-

ture to implement spatial quantum superpositions of electron and hole states. A charge

qubit based on the ZrSe2/SnSe2 vdW heterostructure is proposed. The quantum state is

prepared by application of a vertical electric field. It may be manipulated by short pulses

in this field, and measurement is possible via electrical currents. The qubit state is robust

and compatible with current 2D technology. The results show the potential use of vdW

heterostructures as a platform for qubit devices. In order to highlight important aspects,

before the actual proposal of the qubit, a toy model that presents analogous behavior is

developed and analyzed.



2 Theoretical Methodology

This chapter introduces topics on Density Functional Theory that directly relate to

this work. The possibility of determining the differences in total energy resulting from

an electronic excitation through the Kohn-Sham eigenvalues under certain conditions is

demonstrated. The electronic gap correction method DFT-1/2 is presented.

2.1 Formulation

The text in this section (2.1) was adapted from the paper A Bird’s-Eye View of

Density-Functional Theory, by Klaus Capelle. (CAPELLE, 2006) This section intends to

briefly introduce the DFT concepts that will be directly employed in this study. More

advanced readers may refer to (ENGEL; DREIZLER, 2011)

2.1.1 Quantum Theory of a Crystalline Solid

DFT is one of the most popular and successful quantum mechanical approaches to

matter. Therefore, to better understand its concepts, it is useful to understand how it is

derived from the quantum theory, recalling some important concepts.

In the quantum formalism, the state of a system may be described as a wavefunction

Ψ. The time-independent Schroedinger equation may be written as

HΨ = EΨ, (2.1)

where H is the Hamiltonian operator and E is the energy eigenvalue. For a crystalline

solid, the Hamiltonian can be separated into five terms,

H = T̂nucleus + T̂electron + Ûelectron−electron + V̂nucleus−electron + Ŵnucleus−nucleus (2.2)

where T̂ stands for the kinetic energy operator and Û , V̂ and Ŵ stands for the coulombic

interaction operators.
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Since we are concerned with a very large number of particles, it is not possible to

exactly solve the Schroedinger equation. Therefore, we must consider some approxima-

tions. The first one is known as the Born-Oppenheimer approximation, and it consists in

considering that the nuclei are static. It is based on the fact that the nuclei are much more

massive than the electrons, and thus change very slowly in the time scale of the electronic

movement. This introduces a great simplification, since the nuclei kinetic energy and the

nucleus-nucleus interaction become constants, corresponding to a global shift in energy,

and hence they can be removed from the calculation. Moreover, we may describe the

nucleus-electron interaction as a single-body potential, and hence write the Hamiltonian

of the system on the Hartree atomic units as

H = T̂ + V̂ + Û (2.3)

=
N∑

i=1

T̂i +
N∑

i=1

V̂i +
N∑

i=1

N∑

j>i

Ûij (2.4)

=
N∑

i=1

−∇
2
i

2
+

N∑

i=1

M∑

k=1

− Zk
|ri −Rk|

+
N∑

i=1

N∑

j>i

1

|ri − rj|
, (2.5)

where M is the total number of nuclei, N is the total number of electrons, ri is the

position of the i-th electron, Zk and RK are the atomic number and the position of the

k-th nucleus, respectively.

Even though the Born-Oppenheimer approximation simplification is significant, it still

unfeasible to solve the N-body problem. In this scenario, an ingenious approach is to

consider the problem in terms of the number density of electrons, defined as

n(r) = N

∫
|Ψ(r, r2, ..., rN )|2d3r2...d

3rN , (2.6)

which have only 3 spatial degrees of freedom, instead of 3N .

2.1.2 Hohenberg-Kohn Theorems

Hohenberg and Kohn demonstrated that the ground state density n(r) completely

specifies the ground state wave function Ψ(r1, r2, ..., rN ), despite the fact that the later

have N times more degrees of freedom than the former. (HOHENBERG; KOHN, 1964) This

is possible because besides reproducing the density n, Ψ must minimize the energy, due

to the variational principle. More precisely, the Hohenberg-Kohn (HK) theorems, which

relate to any system consisting of electrons moving under the influence of an external

potential, may be stated as:

Theorem 2.1 The external potential (and hence the total energy), is a unique func-
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tional of the electron density.

Theorem 2.2 The functional that delivers the ground state energy of the system gives

the lowest energy if and only if the input density is the true ground state density.

An important corollary to the first HK theorem is that all properties of a system are

determined from only the ground state electron density. Since the ground state density

defines the Hamiltonian, it also defines all its eigenfunctions.

2.1.3 Kohn-Sham Equations

One of the most successful methods to calculate the electronic structure of many

particles systems via DFT is to solve the so-called Kohn-Sham (KS) equations. (KOHN;

SHAM, 1965) Motivated by the enormous complexity of solving a system of interacting

electrons, it is desirable to define a fictitious system of non-interacting particles whose

density is the same as the density of the problem to be solved. We will denote the ground

state wave function of this fictitious system as Φ(r1, r2, ..., rN ).

Considering that the non-interacting Hamiltonian consists only of one single-particle

potential vks(r) and the kinetic energy operator, and that the potential energy depends

only on the density and not on the particular wave function of the system, the KS wave

function of density n(r) can be defined as the wave function that yields n(r) and has

least kinetic energy. Consequently, it is possible to write the KS wave function as a single

Slater determinant of the so-called Kohn-Sham orbitals φi(r), i = 1, 2, ..., N , and thus

write the density as

n(r) =
∑

i

|φi(r)|2, (2.7)

Since exact and simple expressions for both the single particle kinetic energy and the

Hartree energy are known, these terms are explicitly written in the energy functional

E[n] = T [n] + U [n] + Vext[n] (2.8)

= T0[n] + UH [n] + Vext[n] + Exc[n] (2.9)

= 〈Φ[n]| T̂ |Φ[n]〉+
1

2

∫
d3rd3r′

n(r)n(r′)

|r − r′| +

∫
d3rvext(r)n(r) + Exc[n] (2.10)

= −1

2

N∑

i=1

∫
φ∗i [n](r)∇2φi[n](r) +

1

2

∫
d3rd3r′

n(r)n(r′)

|r − r′| +

∫
d3rvext(r)n(r) + Exc[n]

(2.11)

where Exc[n] is the exchange-correlation energy defined as Exc = T − T0 + U − UH ,

whose functional form is not known and therefore must be approximated. Among several

possibilities, in this work we consider the purely theoretical functional PBE (PERDEW
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et al., 1996a), which is one of the most popular and reliable approximations for Exc. It

belongs to a class of approximations called GGA, or Generalized Gradient Approximation,

which has the general form:

EGGA
xc =

∫
d3rf(n(r),∇n(r)) (2.12)

Minimizing the energy functional subjected to the restriction of a fixed number of

electrons, one obtains the set of uncoupled equations

{
− 1

2
∇2 +

∫
d3r′

n(r′)

|r − r′| + vext(r) + vxc(r)

}
φi(r) = εiφi(r) (2.13)

and identifies the KS potential as

vks(r) =

∫
d3r′

n(r′)

|r − r′| + vext(r) + vxc(r) (2.14)

where vxc is defined as the functional derivative of the exchange-correlation energy with

respect to the density, and the integral term is called the Hartree potential (denoted vH).

Since the vH and vxc depend on n, which depends on the φi, which in turn depend on

vks, the problem of solving the KS equations is nonlinear and is usually solved through

a self-consistency cycle, which consists in starting with an initial guess for n, calculate

vks, solve the system of KS equations for the φi, calculate the new density and iterate

until convergence is reached. At this point, the KS orbitals yield the density which yields

themselves; hence the name “self-consistency”. The Fig. 2.1 schematically represents the

FIGURE 2.1 – Flowchart of the algorithm used in the self-consistent solution of the Kohn-
Sham equations.



CHAPTER 2. THEORETICAL METHODOLOGY 25

major aspects of the procedure.

2.1.4 Projector Augmented-Wave

Although several approximations are made, DFT solutions still are rather costly from

a computational point of view. Even when the procedures explained so far are employed,

there are still two major concerns in the description of solids:

• The singularity of the Coulomb potential renders too large the number of plane

waves necessary to describe it adequately, especially when compared to non-singular

potentials.

• Heavier elements in the periodic table require more electrons to be simulated, ren-

dering simulations more costly and complex.

Several methods try to solve these problems, such as the pseudopotentials (HELLMANN,

1935; VANDERBILT, 1990), the Linearized Augmented-Plane-Wave (LAPW) (ANDERSEN,

1975), and the Projector Augmented-Wave (PAW) (BLÖCHL, 1994; KRESSE; JOUBERT,

1999). In this work, we use the PAW method, which tries to combine in a single approach

the accuracy of the “all-electron” methods (such as the LAPW) with the efficiency of the

pseudopotential methods.

In the PAW method, the problem of the plane waves describing the wavefunction is

firstly solved by determining “augmentation spheres” of given radii around the atoms.

Inside these spheres, i.e., in the core region, the wavefunction oscillates rapidly in space

due to the Coulomb potential. Outside these spheres, i.e., in the interstitial region, the

wavefunction is smoother and can easily be described using plane waves.

The method describes how to build a transformation of the physical quantities between

the all-electron Kohn-Sham orbitals space and a pseudo-space of plane waves. Such a

transformation can be written as (ANDERSEN, 1975)

|Ψ〉 = T̂ |Ψ̃〉, (2.15)

where |Ψ〉 represents the real wavefunction and |Ψ̃〉 represents the pseudo-wavefunction.

Since these two functions must coincide in the region outside the spheres, the transfor-

mation must be of the form

T̂ = 1̂ +
∑

a

T̂ a, (2.16)

where 1̂ is the identity operator and T̂ a only acts in their respective augmentation spheres,
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labeled by the index a. It is possible to show that these operators can be calculated as

T̂ a =
∑

i

(
|φai 〉 − |φ̃ai 〉

)
〈p̃ai |, (2.17)

where i is a index for both angular and magnetic quantum numbers, |φai 〉 are the radial

solutions of the Kohn-Sham equations for the atoms, |φ̃ai 〉 are the corresponding pseudo-

orbitals, and |p̃ai 〉 are smooth projector functions satisfying the following orthogonality

and completeness relations inside the augmentation spheres:

〈p̃ai |φ̃aj 〉 = δij∑

i

|φ̃aj 〉〈p̃ai | = 1̂. (2.18)

The true wavefunction can be written as

|Ψ〉 = |Ψ̃〉+
∑

a

∑

i

|φai 〉 〈p̃ai |Ψ̃〉 −
∑

a

∑

i

|φ̃ai 〉〈p̃ai |Ψ̃〉 = |Ψ̃〉+ |Ψ1〉 − |Ψ̃1〉. (2.19)

The PAW method, therefore, divides the wavefunction in three terms: (i) a pseudo-

wavefunction |Ψ̃〉, related to a pseudopotential and identical to |Ψ〉 outside the augmen-

tation spheres; (ii) a component |Ψ1〉 that corrects the behavior of the wavefunction close

to the nuclei; and (iii) a component |Ψ̃1〉 that cancel the pseudo-function on the atomic

site.

By means of the transformation T̂ , it is possible to obtain, in a formal manner, the

expectation value of physical quantities such as the electronic density in a pseudopotential

calculation.

2.1.5 Periodic Boundary Conditions and the Supercell Method

One way to apply DFT calculations to solids is to assume that the crystal is infinite.

Due to the translational symmetry, it is possible to limit the calculation to a single unit

cell, applying periodic boundary conditions. The KS orbitals then can be written in the

form

φk(r) = eik·ruk(r), (2.20)

where the vector k is called the crystal momentum and u is a function with the same

periodicity of the crystal lattice, i.e. uk(r + R) = uk(r), for all lattice vectors R. This

result is known as the Bloch theorem (BLOCH, 1929).

A practical consequence of this approach in the calculation of crystalline defects is

that if a defect is placed in a unit cell, it is infinitely replicated throughout the crystal.
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This corresponds to a large concentration of defects and consequently introduces spurious

interactions between them. In order to minimize such effects, one of the most used

techniques is to place the defect in a very large unit cell, commonly called a supercell,

and hence separating the defect of its images by several atomic layers. One signature

of a properly isolated defect is the reduction of the defect levels dispersion within the

electronic band structure, indicating a localized orbital.

Since the number of atoms grows with the cube of the unit cell size for three-dimensional

systems, this method can become very computational costly.

2.2 Hybrid Functionals

Since DFT deals well with correlation but not with the exchange functional, attempts

to perform a mixed approach together with the Hartree-Fock (HF) method (HARTREE,

1928; FOCK; LENINGRAD, 1930), which has an exact exchange, were proposed.

For this purpose, the use of hybrid functionals was proposed (BECKE, 1993), in which

the hybrid exchange-correlation energy Ehyb
xc is composed by a mixture of the DFT and

HF energies, following a linear relationship such as

Ehyb
xc = EHF

x + (1− a)(EDFT
x − EHF

x ) + EDFT
c , (2.21)

where a is the mixing parameter, originally proposed as a = 1/2 (BECKE, 1993). In the

case of a = 1/4, derived with perturbation theory, and using the GGA functional PBE

for the DFT exchange and correlation energies, the hybrid functional PBE0 is obtained

(PERDEW et al., 1996b; ADAMO; BARONE, 1999). Although the energy is improved in these

systems, the convergence starts to be a problem in solids due to the long-range integral

from HF calculations. In order to circumvent this problem, the exact exchange term was

divided into two parts: a short-range and a long-range one (HEYD et al., 2003). In this

case, the exchange-correlation energy is written as

EHSE06
xc =

1

4
EHF,sr
x (µ) +

1

4
EGGA,sr
x (µ) + EHF,lr

x + EGGA
c , (2.22)

having µ as an adjustable “screening” parameter, and with “sr” and “lr” standing for short

range and long range, respectively. The exchange-correlation is better represented when

the non-locality is included in the exchange energy. This also describes partially quasi-

particle effects due to electronic excitations and, thus, band structures calculated with

hybrid functionals usually present considerably better predictions for the band gap of

semiconductors and insulators.

This is a reason for the success of hybrid functionals, especially when its complexity
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is reduced by means of an artifice such as the one employed in HSE06. However, HSE06

calculations require more computational time than standard DFT and can be up to two

order of magnitude slower than PBE calculations.

2.3 Approximate quasi-particle corrections: DFT-1/2

It is a well-known fact in the solid state physics literature that the Kohn-Sham band

gap of semiconductors and insulators are underestimated when compared to experiments

(SHAM; SCHLÜTER, 1985; PERDEW; LEVY, 1983; PERDEW et al., 2017). It has been shown

that this effect also impairs reliable calculations of defect levels above the valence band.

(RINKE et al., 2009)

The methods that go beyond DFT to correct Kohn-Sham eigenvalues, such as hybrid

functionals (HEYD et al., 2003; HEYD et al., 2006) and the GW approach, (HYBERTSEN;

LOUIE, 1985) usually sharply raise the computational cost (PELA et al., 2015), which is

critical in large supercell calculations. One good alternative is the DFT-1/2 method

(FERREIRA et al., 2008; FERREIRA et al., 2011), which produces results comparable to

the best correction methods, but with a very reduced computational cost - essentially

the same as the standard DFT. The DFT-1/2 method generalizes the Slater’s transition

state technique for solids, introducing approximate quasi-particle corrections which lead

to accurate calculations of semiconductor band gaps.

The method assumes the Janak’s theorem (Eq. 2.38) and considers the quasi-linear

dependence of the eigenvalue with its own occupancy (LEITE; FERREIRA, 1971; GÖRANS-

SON et al., 2005). By direct integration from fi = 0 (unocupied orbital) to fi = 1 (occupied

orbital), we obtain ∫ Ei(1)

Ei(0)

dE =

∫ 1

0

εi(fi)dfi, (2.23)

where Ei(1) and Ei(0) are the energies of the system with fi = 1 and fi = 0, respectively.

Assuming the linearity of εi whith respect to fi, we may write εi(fi) = αifi + βi, where α

and β are constants with respect to fi. Hence

Ei(1)− Ei(0) =

∫ 1

0

(αifi + βi)dfi =

(
αif

2
i

2
+ βifi

)∣∣∣∣
1

0

= αi
1

2
+ βi = εi(1/2). (2.24)

Since Ii = Ei(0) − Ei(1) is the ionization energy of the i-th level, and defining the self-

energy as Si = 1
2
∂εi
∂fi

= αi/2, Eq. 2.24 may be written as

Ii = −εi(1) + Si. (2.25)

This result shows that the ionization energy of the i-th electron requires not only the
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opposite of its eigenvalue, but also its self-energy.

In the case of a semiconductor, we are usually interested in the band gap energy, G,

which is defined here as the difference between the system with one excited electron and

the system in the ground state. If we denote the total energy as E = E(fV BM , fCBM), were

fV BM and fCBM are the occupations of the valence band maximum and the conduction

band minimum, respectively, we may write

G = E(0, 1)− E(1, 0)

= [E(0, 1)− E(0, 0)]− [E(1, 0)− E(0, 0)] (2.26)

= −ICBM + IV BM

= −[−εCBM(1) + SCBM ] + [−εV BM(1) + SV BM ]

= εCBM(1)− εV BM(1) + SV BM − SCBM
= g + SV BM − SCBM , (2.27)

where g is the gap between Kohn-Sham eigenvalues. Eq. 2.27 shows that the gap, as

defined here, is not simply the difference between eigenvalues. Moreover, it shows that

the self-energy must be considered in the calculation. If we apply Eq. 2.24 in Eq. 2.26,

we find that

G = εCBM(1/2)− εV BM(1/2), (2.28)

that is, we may calculate the band gap as the difference between two Kohn-Sham eigen-

values, as long as they were calculated in a half occupation scenario. However, until

this moment, we did not show how we can implement the half occupation scenario in a

semiconductor crystal. From Eqs. 2.7 and 2.13 with the occupation varaiables fi, we can

rewrite the self-energy Si as (FERREIRA et al., 2008; FERREIRA et al., 2011)

2Si =

∫
d3rd3r′

ni(r)ni(r
′)

|r − r′| +

∫
d3rd3r′ni(r)ni(r

′)
δ2E

δni(r)δni(r
′)

+

∫
d3rd3r′

ni(r)

|r − r′|
∑

j

fj
∂nj(r

′)

∂fi
+

∫
d3rd3r′ni(r)

δ2E

δni(r)δni(r
′)

∑

j

fj
∂nj(r)

∂fi

(2.29)

were, compactly, we denote ni(r) = φ∗i (r)φi(r). The first term of the equation was the

motivation to attribute the name self-energy to the variable Si. The self-energy can be

written in terms of a potential VS of self-energy, defined as

Si =

∫
d3rni(r)VS(r) (2.30)
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that is, we may write VS(r) as

2VS(r) =

∫
d3r′

ni(r
′)

|r − r′| +

∫
d3r′ni(r

′)
δ2E

δni(r)δni(r
′)

+

∫
d3r′

1

|r − r′|
∑

j

fj
∂nj(r

′)

∂fi
+

∫
d3r′

δ2E

δni(r)δni(r
′)

∑

j

fj
∂nj(r)

∂fi
(2.31)

It is possible to show that εi(1) − Si, as appears in Eq. 2.25 can be obtained by

solving the Kohn-Sham equations (Eq. 2.13) with VS summed to the effective Hamiltonian

(FERREIRA et al., 2008). It is necessary, therefore, calculate VS. For atoms, VS is the

difference between the potentials of the neutral atom and the half-ionized atom (FERREIRA

et al., 2008; FERREIRA et al., 2011), that is:

[V (r)]f1=1 − V (r)]f1=1/2 = VS(r) (2.32)

In the case of an atom, this quantity can be easy calculated within DFT, In this work, this

calculation was done with the well-known code ATOM (PSEUDOPOTENTIALS, 2014). Due

to spherical symmetry, the correction potential depends only on r = |r|. For a crystal,

we consider that the correction VS of one electron at the conduction band minimum and

a hole at the valence band maximum can be obtained through the atomic VS corrections

for each ion in the crystal lattice. Therefore, we add the atomic VS to the LDA potential

(in the LDA-1/2 method), or in the GGA potential (in the GGA-1/2 method).

Directly summing VS in the ions of the crystal would lead to a convergence problem:

since the VS potential has a resulting charge of e/2, the periodic summation to all the

atoms in the solid would lead to a harmonic series, which diverges. To avoid this problem,

we multiply VS by a trimming function Θ(r), which limits the reach of the potential to a

radius defined by a parameter called CUT . There are a few requisites that Θ must obey,

and the function proposed in (FERREIRA et al., 2008) is

Θ(r) =





[
1−

(
r

CUT

)8
]3

if r ≤ CUT

0 if r > CUT

(2.33)

which has already been extensively tested and proved to yield correct results.

The CUT parameter introduced by the trimming function, which measures the reach

of the DFT-1/2 correction applied to each atom of the crystal lattice. Nonetheless, it was

shown that it can be determined variationally, by extremizing the band gap (FERREIRA et

al., 2008). Therefore, the DFT-1/2 method does not have any adjustable or semi-empirical

parameter.
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The results of the LDA-1/2 method are compared with the experimental data and

with the results for standard LDA in Fig. 2.2 for several semiconductors. We note that

the DFT-1/2 method is much more accurate than standard DFT, and the agreement of

the results with experimental data is outstanding.

FIGURE 2.2 – Calculated and experimental band gaps for several semiconductors. The
calculations were performed with both LDA and LDA-1/2 potentials. The diagonal line
(in black) corresponds to a perfect calculation, where the theoretical result is equal to the
experimental data. Reproduced from (FERREIRA et al., 2011).

2.4 van der Waals correction

van der Waals (vdW) interactions are essential to describe 2D materials. Although

LDA and GGA are reasonably successful when calculating solid systems, London disper-

sions are not well taken into account due to the short range of the correlation in these

methods (ENGEL; DREIZLER, 2011). Considering that in the presented methods these

systems are solved by a local density, correlation effects are not enough to describe their

electronic behavior. For instance, two atoms separated by a long distance may be almost

non-interacting from a correlation point of view, due to small wavefunction overlap. How-

ever, virtual excitations, such as ones in vdW interaction, give rise to forces which are not

well described by these methods.

One possible approach for this problem is to adjust the correlation energy, dividing it
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in two,

Ec[n] = E0
c [n] + Enl

c [n], (2.34)

where both terms on the right hand side are non-local correlation energies. E0
c [n] is a

term similar to the LDA one, while Enl
c [n] is responsible by the vdW interaction. It has

the general form

Enl
c [n] =

1

2

∫ ∫
d3rd3r′n(r)f(r − r′)n(r′), (2.35)

with f a function of r − r′ (DION et al., 2004).

In 2D systems or adsorption of molecules on surfaces, vdW interactions are necessary

to predict adequate distances between the systems and binding energies. The non-locality

obtained by adjusting the correlation energy, therefore, deals adequately with the vdW

interaction and alters stability effects.

2.5 Obtaining differences in total energy through eigen-

values

Kohn-Sham eigenvalues do not represent the energy of the electrons which occupy these

levels. However, in particular cases, it is possible to use them to compute differences in

the total energy of the system. Consider a situation in which we want to obtain the energy

of an electronic transition between the localized states ψα and ψβ through the use of a

supercell DFT calculation. Defining the total energy E in terms of partial occupations

E = T + U [n] + Exc[n], (2.36)

n
(
r
)

=
∑

i

fi
∣∣φi
(
r
)∣∣2, (2.37)

where n is the electron number density, ψi is the i -th Kohn-Sham orbital and fi its

occupancy, T is the kinetic energy, U is the classical Coulomb energy, and Exc is the

exchange-correlation functional. In order to preserve the simplicity of the argument, we

are considering that we have a single sampling point on the reciprocal space, which is, in

fact, a reasonable assumption, due to the band folding on large supercells. Nonetheless,

the demonstration can be extended to an integral over the first Brillouin zone.

Considering all but ψα and ψβ levels’ occupations are fixed, we have E=E(fα, fβ).

The Janak’s theorem states that
∂E

∂fi
= εi, (2.38)

where εi is the i -th Kohn-Sham eigenvalue. In a large supercell, the excitation of a

localized electron is a small perturbation on the Kohn-Sham operators. Thus, the position
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of the eigenvalues remain unchanged and we can immediately integrate to obtain

∫ 1

0

∂E

∂fα
(fα, fβ)dfα = εα

∫ 1

0

dfα ⇒ E(1, fβ)− E(0, fβ) = εα,∀fβ (2.39)

and ∫ 1

0

∂E

∂fβ
(fα, fβ)dfβ = εβ

∫ 1

0

dfβ ⇒ E(fα, 1)− E(fα, 0) = εβ,∀fα. (2.40)

By taking fβ=0 on equation 2.39 and fα=0 on equation 2.40, and then performing

their subtraction, we conclude that

∆Etrans = E(0, 1)− E(1, 0) = εβ − εα, (2.41)

i.e., in this case, the transition energy can be computed as the difference between the

Kohn-Sham eigenvalues.

It is important to note that this result is valid only if the level is flat, since if we have

more than one k point Eq. 2.41 becomes

∆Etrans =
1

Ω1BZ

∫

1BZ

d3k
(
εβ(k)− εα(k)

)
, (2.42)

where Ω1BZ is the volume of the first Brillouin zone. If εα and εβ are constant with respect

to k, i.e., the level is flat, it is possible to remove the eigenvalues from the integration to

obtain

∆Etrans =
εβ − εα
Ω1BZ

∫

1BZ

d3k = εβ − εα. (2.43)

Finally, one could be concerned that the number of states to excite scales linearly with

the number k points, so the approximation that the change in their occupancy does not

change the Kohn-Sham operators would be harnessed. However, the approximation is

still valid, since the number of states that remain constant also scales linearly with the

number of k points, making the ratio between them constant.

2.6 Vienna Ab-Initio Simulation Package

First-principles simulations in this work are made using the software Vienna Ab-Initio

Simulation Package (VASP) (KRESSE; FURTHMÜLLER, 1996a; KRESSE; FURTHMÜLLER,

1996b), within the PAW method (BLÖCHL, 1994; KRESSE; JOUBERT, 1999) to generate

the wavefunctions and pseudopotentials.

The software performs integrations in the First Brillouin Zone (1BZ) by means of
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sampling,
1

Ω1BZ

∫

1BZ

d3kf(k) ≈
∑

k

wkf(k), (2.44)

where Ω1BZ is the volume of the first Brillouin zone and wk are weights such that

∑

k

wk = 1. (2.45)

The plane wave basis set truncation is given by a parameter named ENCUT, which

corresponds to the kinetic energy in eV of the plane wave. All plane-waves with kinetic

energy smaller than ENCUT are included in the basis set.

The functionals employed throughout the work, as well as the chosen convergence

parameters, are described for each calculation in its respective “Computational Details”

section.



3 Qubits and the Case of the NV−

Center in Diamond

In this chapter, some motivational topics on quantum computing will be presented,

and a brief description of its foundations are going to be explored within an example,

which is then experimentally tested in an actual quantum processor. The use of NV−

centers in diamond as solid state qubits is explored, and a description of its properties is

given. Finally, a simple model of its operation is proposed, in order to illustrate how the

quantum properties are accessed and manipulated.

3.1 Quantum bits and quantum gates

One of the most exciting engineering problems of current days is to develop a quantum

computer. A quantum computer is a computation system that makes direct use of quan-

tum phenomena, such as entanglement and superposition, to perform operations on data.

Their fundamental building blocks are called qubits, in analogy to the bits present in

digital computers. One motivation to create a quantum computer is that it would enable

us to solve very complex and time-demanding problems in a fast way. This difference is

not because quantum computers are going to be faster in processing data (clock speed),

on the contrary, thus most probably will not. It is due to the different kind of operations

they can do with the data stored in qubits (STRUCK; BURKARD, 2016).

A qubit is a quantum system consisting of two energy levels, labeled |0〉 and |1〉.
Together, they compose what is commonly called the computational basis vectors. From

the axioms of Quantum Mechanics, we have that any normalized linear combination with

complex coefficients of these states is also valid states of the system, and from the Born

rule (BORN, 1954), the square of the magnitude of the coefficient is the probability of

a measurement have its respective basis vector as an outcome. These mixed states are

called superpositions.

Since the coefficients can be complex numbers, visualizing a qubit requires a unitary

sphere on the state space, called the “Bloch Sphere”, depicted on Fig. 3.1. Each point on
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the surface of the Bloch Sphere corresponds to the state of a qubit, being |0〉 on the top

of the sphere and |1〉 at the bottom. When the qubit is in a superposition of the states

|0〉 and |1〉, its representation will be in some point between these two extrema.

FIGURE 3.1 – Single qubit representation in the Bloch Sphere. The qubit state is repre-
sented by the orange line in the picture. The state at the top of the sphere represents |0〉
and the state at the bottom of the sphere represents |1〉.

The components of a quantum circuit are the quantum gates, which are basic quantum

circuits that operate on a small number of qubits. They are analogous to the classical

logic gates of conventional digital circuits. An example of a single qubit gate is the X

gate, which is known as “bit flip” or “X rotation”, since it can be viewed as a π radians

rotation around the x axis on the Bloch Sphere. If the original state is |0〉, it becomes

|1〉, and vice-versa. Analogously to this gate, there are also the Y and Z gates, which

correspond to a π radians rotation around the y and z directions, respectively.

Another common single qubit gate is the H gate, known as the Hadamard gate. This

gate maps state |0〉 to state |+〉 ≡ (|0〉 + |1〉)/
√

(2) and state |1〉 to state |−〉 ≡ (|0〉 −
|1〉)/

√
(2), and hence is useful to create superpositions. The states |+〉 and |−〉 also form

a basis, which is commonly called the “superposition basis”.

Another class of important gates is formed by the two-qubit gates. The most remark-

able example is the CNOT gate (Controlled-NOT gate), which flips the target qubit in

the computational basis if the control qubit is |1〉; otherwise, it does nothing. It can

be shown that the single qubit gates and the CNOT gate form a universal set of gates,

which means that any other gate, acting on any number of qubits, can be build by using

only these elements. This is analogous as the NAND gate in classical computing, which

is a universal gate, meaning that any other gate can be represented as a combination of

NAND gates.
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Finally, it is important to mention the ancilla qubits, which are quantum registers

whose quantum states are known a priori. Since quantum computers are reversible com-

putation machines, one cannot deterministically put qubits in a specific prescribed state

unless one is given access to qubits whose original state is known in advance. For this

reason, algorithms normally use ancillae qubits, whose values are independent on the

input.

3.2 Quantum algorithms and Quantum speedup

Quantum circuits, which are based on quantum gates, are designed to implement

quantum algorithms, some of which have no classical counterpart. By making direct use

of superposition and entanglement properties, some algorithms are able to solve problems

in a much more efficient way than in classical computing and hence being of particular

interest.

Some of the most famous algorithms are:

• Grover’s algorithm, for unstructured search;

• Quantum Fourier Transform, analogous to the Discrete Fourier Transform;

• Quantum Phase Estimation, which can be used to determine the eigenvalues of

a given matrix;

• HHL algorithm, for solving linear systems of equations;

• Shor’s algorithm, for factoring numbers.

All the listed algorithms present a significant improvement in its complexity over

the known classical solutions. For example, the HHL algorithm is able to solve sparse

linear system of equations in time O(κ2s2log(N), /ε3) while the classical solution takes

O(κsN log(1/ε)), where N is the number of variables, κ is the conditioning factor, s is the

sparseness and ε is the error.

The most important aspect of quantum speedup is that it makes it possible to solve

problems that would be impractical otherwise. One outstanding example is Shor’s algo-

rithm, which would make it possible to break cryptography. For example, considering

that a quantum computer would operate at 1Mhz and that current cryptography uses

numbers of about 1000 bits of length, the quantum computer would break the cryptogra-

phy in about one day, while the best known classical algorithm would take approximately

one hundred years (HAMDI et al., 2014).



CHAPTER 3. QUBITS AND THE CASE OF THE NV− CENTER IN DIAMOND 38

FIGURE 3.2 – Scaling of the general number field sieve (GNFS) on classical computers
and Shor’s algorithm using BCDP modular exponentiation on a quantum computer, with
various clock rates. The steep curves are for GNFS on a set of classical computers. The
left curve is extrapolated performance based on a previous world record, factoring a 530-
bit number in one month, established using 104 PCs and workstations made in 2003. The
right curve is speculative performance using 1,000 times as much computing power. This
could be 100,000 PCs in 2003, or, based on Moore’s law, 100 PCs in 2018. Reproduced
from (HAMDI et al., 2014)

3.3 IBM Quantum Experience

Despite the fact that quantum computers are still only available in laboratories and

inaccessible for most people, there is one exception: one can program an actual quantum

processor and run one’s own quantum software through a program called IBM Quantum

Experience. This program’s goal is to allow the users to learn about quantum computing

and to compose their own experiments, running them in simulation, and executing them

on the world’s first fully-controllable quantum processor through the IBM Cloud.

The IBM Quantum Experience consists of:

• a set of tutorials that leads the reader from the basics of simple single-qubit ex-

periments to more complicated multi-qubit experiments, and then toward more

advanced ideas in the area of quantum algorithms and quantum error correction;

• the Quantum Composer, which is a graphical user interface where the user can

create his own quantum circuits (which they call quantum scores, in analogy to

music scores);

• a simulator that can test the quantum scores;
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• access to an actual quantum processor running in an IBM Quantum Computing lab,

where the quantum scores will be executed; and

• a quantum community where the quantum scores, ideas, and experiences can be

shared and discussed.

As a practical example, we perform an experiment with the circuit depicted in Figure

3.3. In the first line, we are measuring the qubit q[0], which should always result in 0. In

the second line, we are measuring qubit q[1] after applying an X gate, and hence it should

always result in 1. In the third line, we are measuring the action of the Hadamard gate

on |0〉, and hence the result is expected to be 50% 0 and 50% 1. In the fourth line, we are

measuring the action of the Hadamard gate on |1〉, and hence the result is expected to be

50% 0 and 50% 1. Finally, on the fifth line, we are measuring the result of two consecutive

Hadamard gates on |0〉, and hence the result is expected to be always 0. Since all these

measurements are independent of each other, the expected final result is 25% 00010, 25%

00110, 25% 01110 and 25% 01010, as can be confirmed by running a simulation of this

circuit.

FIGURE 3.3 – Simple quantum circuit used to test the operation of the Hadamard and
X gates, and its corresponding Quantum Assembly code. The barriers (vertical gray
dashed lines) is added to ensure that the compiler will not perform simplifications, such
as HH = I; while the idle gates were inserted to ensure the measurements are done at
the same time, and hence obtaining a similar level of decoherence in each qubit.

After the simulation, we executed the code on the quantum processor. The results are

presented in Fig. 3.4. This experiment is interesting because it highlights the effect of the

superposition after the Hadamard gate. Based only on the result of the third and fourth

lines, one could naively hypothesize that the Hadamard gates were randomly placing their

corresponding qubit on |0〉 or |1〉. However, from the fifth line, we see that the result for

two consecutive Hadamard gates is always zero, and this rules out the previous hypothesis

since under it the result was supposed to be 50% 0 and 50% 1.
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FIGURE 3.4 – Results of 1024 runs of the quantum circuit in Fig. 3.3 on the quantum
processor. We note a small percentage of spurious results due to noise and decoherence.

3.4 The NV− Center in Diamond

A major challenge in creating a quantum computer is to find a quantum system that

could be used to implement the qubits, which are the building block of quantum comput-

ers, in analogy to bits. Most systems interact strongly with their surroundings, causing

decoherence and consequently loss of information. In this scenario, deep centers have a

prominent position. They are point defects in a semiconductor or insulating crystal that

bind electrons to a localized region of space. Consequently, most characteristics of their

electronic states resemble the ones of single atoms or molecules. Additionally, deep centers

have a fundamental advantage, since they are fixed in space by the surrounding crystal,

in contrast to other proposals that require additional systems to accomplish this, as the

magneto-optical traps for ultracold atoms.

A deep center in diamond, known as negatively charged nitrogen-vacancy center (NV−
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FIGURE 3.5 – NV center in diamond. The vacancy is represented in gray, the nearest-
neighbor and next-nearest-neighbor carbon atoms to the vacancy in black and the substi-
tutional nitrogen atom in cyan.

center), has been strongly considered for such applications, since it has many desirable

characteristics: its spin can be optically polarized, manipulated with microwaves, opti-

cally measured in an on-demand fashion at the single defect level, and also have a huge

coherence time, achieving the order of milliseconds (KOEHL et al., 2015).

Point defects are usually stable in different charge configurations, depending on the

position of the Fermi level. The NV center has two different charge configurations, NV0

and NV−, and only the last one has the desired properties (DOHERTY et al., 2013). For-

tunately, doping by nitrogen itself can easily place the Fermi level inside the range where

the negatively charged defect is stable (WEBER et al., 2010).

The NV center structure consists of a substitutional nitrogen atom adjacent to a carbon

vacancy (Fig. 3.5). The defect belongs to the C3v symmetry group, of which the ammonia

molecule is also a member. An instructive and useful model is to think of the point defect

as an effective molecule. This approach, known as “molecular model for defects” consists

in making symmetry adapted linear combinations of the atomic orbitals (SALCs) of the

dangling bonds around the vacancy to construct molecular orbitals (MOs) (Fig. 3.6).

This approach has the implicit assumption of the electrons bound to the defect being

localized in space and not “spilling over” from the vacancy into the rest of the crystal

(COULSON; KEARSLEY, 1957; LENEF; RAND, 1996). The states are commonly labeled

using the Mulliken symbols, which in our case are:

• a1, a2 where “a” indicates that it is a non-degenerate state without changes of the

sign under the C3 rotations and the subscripts 1 and 2 stand for symmetry and

antisymmetry under the σv reflections respectively;
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• ex, ey where “e” indicates that the state is twofold degenerate. These functions

do not transform under the C3 rotations. ex stands for the wave function that is

symmetric under reflection in one vertical plane (xz plane) and ey for the one that

is antisymmetric under reflection in this same plane.

These same labels are used with capital letters when describing states of a multielectronic

system.

Since each dangling bond from the three surrounding carbon atoms contributes with

one electron, and the overlapping nitrogen orbital has other two electrons, we conclude

that the neutral NV center would have five electrons and, consequently, the NV− would

have six.

FIGURE 3.6 – Schematics of the three NV center MOs responsible for the center’s observ-
able properties in the vicinity of the vacancy and their energy ordering. The vacancy is
represented in white, the nearest-neighbor carbon atoms to the vacancy in black and the
substitutional nitrogen atom in brown. Red and blue components represent positive and
negative contributions to the MOs, respectively. The band gap induced energy levels are
shown at the right, without considering spin-orbit and spin-spin interactions. Reproduced
from (DOHERTY et al., 2011).

The state of the art in the theoretical determination of the properties of crystals are the

computational methods known as ab initio (or first-principles) calculations, in particular,

the ones based on Density Functional Theory (DFT). By means of those methods, it is

possible to calculate with reasonable precision (O(0.1 eV)) the electronic band structure

of systems with translational symmetry, and with some considerations (detailed in the

section Search for other deep centers), it is possible to determine the energy levels of the

point defects. Fig 3.7(a) is the result obtained by Gali et. al. (GALI et al., 2008).

We note that the defect has states within the band gap that are spin dependent, a

consequence of the fact that this defect breaks the inversion symmetry of the crystal, as

explained by Krupin in (KRUPIN, 2004). The electronic occupation for the ground state

of the NV− center is shown in Fig. 3.7(a). It can be obtained by filling the lowest energy

states with the corresponding spin state (spin up on the left side, spin down on the right

side). This leaves us with four spin-up and two spin-down electrons, hence the spins in

the ground state do not cancel out and we have a total spin of S = 1, i.e. the ground
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FIGURE 3.7 – (a) Band diagram for the NV− calculated using density functional theory.
Reproduced from (GALI et al., 2008). (b) Configuration coordinate diagram. Reproduced
from (GORDON et al., 2013). (c) Many-body diagram for the NV− transitions. The primary
transition between triplet ground and excited states is predominantly spin conserving. De-
cay via the intermediate singlets gives rise to spin polarization by preferentially switching
spin from ms = ±1 to ms = 0.

state is a triplet. This fact is of central importance in the application of the NV− center

as a qubit since it is the spin that is used to store the quantum information.

When we apply electromagnetic radiation at 2.27 eV (546 nm, green light) as depicted

in Fig 3.7(b), we have resonant excitation to the first excited state. This can be understood

in light of Fig 3.7(a) as promoting the spin down electron in the state a1(2) to one of the

excited states ex or ey. As we will see soon, this is too simplistic of a way to think about it,

since the many-body states are superpositions of the states with well-defined occupancy,

but this is a good enough picture in most situations. Note that this is the first possible

optical excitation of the system since changes in spin are forbidden at the first order.

Another important fact concerning this transition is that we are able to excite the system

without exciting any electrons from the valence band, due to the “deepness” of the energy

levels within the band gap. If the levels were shallower, it would be possible to excite

electrons into the defect levels, what would compromise its operation as a qubit, and the

reason for this will become clear in the Using the qubit section.

The excited state is also a triplet, but transforms as the E symmetry representation,

in contrast with the ground state, which transforms as A2. This change in the symmetry

of the wave function impacts the geometry of the defect due to the coulombic interaction.

The structure then relaxes to the new equilibrium geometry, and since the movement of

the ions is orders of magnitude slower than the electronic transition, it is a good approx-

imation to consider that the absorption and emission correspond to vertical transitions

(Fig 3.7(b)). The photon emission then occurs in the equilibrium geometry of the excited

state, and the difference in energy between the excited state and the ground state in this

configuration is 1.80 eV (688 nm, red light). This change in the frequency of absorp-

tion/emission is called the Stokes shift. The difference in energy between the excited and
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ground states in their respective relaxed geometries is called the Zero Phonon Line (ZPL)

and is also indicated in Fig 3.7(b). This large difference in the wavelength enables us to

easily separate the photons of the pumping laser from the photons emitted by the center

by using a dichroic mirror (which reflects one wavelength and transmits the other), as in

confocal microscopy.

It is important to mention here that the DFT approach is complementary to the defect

molecular model. These two theoretical methods have their complementary strengths and

weaknesses, and only their combined application can give us a good picture of the observed

phenomena (DOHERTY et al., 2013).

Thinking of the NV− as a multielectronic system, we can draw the diagram in Fig. 3.7(c),

where the states are labeled according to their symmetry and with a left superscript that

indicates with a 3 if it is a triplet (S = 1) and with a 0 if it is a singlet (S = 0). It is

well accepted today that we have two triplet states and two intermediate singlet states

(DOHERTY et al., 2013). It is possible to relate the many-body states (denoted by capital

letters) with the occupancy of the single electron states in Fig. 3.7(a) (denoted by lower

case letters) and, in general, the many-body states are superpositions of different occu-

pancies given by slater determinants (or combination of them, when including spin-orbit

interactions). A detailed treatment is given by Lenef and Rand in (LENEF; RAND, 1996)

and by Doherty et.al. in (DOHERTY et al., 2011).

The optical excitations conserve the spin state, but there is a probability of the states

|3E,±1〉 decaying non-radiatively to the singlet state |1A1〉, a phenomenon called inter-

system crossing (ISC). This happens at an appreciable rate because the energy curve in

function of the position of the atoms for the |3E,±1〉 state intersects the curve for the

|1A1〉 state. Therefore, for some instant during the vibrational relaxation that the ions

undergo after the excitement, it is possible for the spin to flip with little or no energy

required in the transition (CHOI et al., 2012). It is important to note that this mechanism

could also lead to a transition from |3E, 0〉 to |1A1〉, but the rate of the ISC is much

larger for the |3E,±1〉 states, therefore this transition can be neglected. The diagram in

Fig. 3.7(c) also shows the non-radiative and infrared competing decay paths between the

two singlet states, and the fine splitting in the triplet states, whose difference in energy

corresponds to microwave frequencies.

3.5 Using the Qubit

The key feature behind the implementation of qubit using the NV− center is that

the spin couples to optical transitions, and we can exploit spin-selective interactions to

initialize, manipulate and measure the spin state using optical techniques. In this section,
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we will briefly explain how the optical cycle of the NV− center can be exploited in this

sense, and introduce a simple model for its dynamics that can reproduce many observed

aspects. An example of a real application of the system as a qubit is given in Fig. 3.8

and readers with interest in more details about it should refer to (HIROSE; CAPPELLARO,

2016).

Initialization

The initialization can be achieved by a very straight-forward method: We have an

appreciable probability of the system decaying from the ms = ±1 to the ms = 0 states

through the one-way route of the singlet states, as described above. If we cycle the system

for a large enough amount of time (O(µs)), we should approach 100% of probability of

being in the ms = 0 states, at least in principle. The small probabilities of the second-order

effects (singlet state decaying to the ms = 1 states, spin flipping in optical transitions,

change in the charge state, etc) impose a practical limit to this value.

Manipulation

In order to manipulate the states of the system, the most common procedure is to

apply a microwave field resonant with the fine splitting of the ground state. Similarly

to the Nuclear Magnetic Resonance (NMR) experiments, the state of the system will

precess, giving rise to Rabi Oscillations between the states ms = ±1 and ms = 0. By

controlling the duration of a pulse of this microwave, we can set the spin state in any

desired superposition of these states, and in this way, we are able to write the data in the

qubit.

Measurement

As mentioned above, the emitted and absorbed light have different frequencies, thus it

is easy to separate the light that is coming out of the NV− center. To measure the qubit,

we explore the fact that the ms = ±1 states will eventually decay to the long-lived singlet

states and therefore fluoresces less than the ms = 0 state on average. The strategy is to

illuminate the center with the pumping light and count the intensity of light that comes

out of it as a function of time. The incidence of the laser also reinitializes the system,

hence we have a window of time (O(100ns)) when we can measure the difference in the

response of the different initial states. Due to this mechanism, the ms = ±1 and ms = 0

states are also called the “dark” and “bright” states, respectively.

It is important to note that this method of measurement requires averaging, which can
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be done by two means: first, if we have an ensemble of NV− centers; second, if we make

several runs at a single center and record the data. This is not ideal for the quantum

computing applications, and there are some proposals in order to increase the spin-photon

coupling aiming a single-shot readout. A more ambitious goal is to achieve single-shot

measurement by detecting a single photon (BARRETT; KOK, 2004).

FIGURE 3.8 – (a) An example of a quantum circuit, which implements an algorithm
whose function is to decouple the qubit state from a dephasing bath state, and (b) its
experimental implementation using an NV− center. In this example, 14N nuclear spin
is used as an ancilla (‘a’), and the electron spin of the NV center (‘q’) is subjected to
noise (lightning bolt) due to the spin bath (‘b’) of the 13C of the bulk diamond and
possibly subjected to the action of unitary gates U. The entangling gates, represented
in (a) by the circle with a plus sign inside and a vertical extension, are controlled-NOT
gates. The shaded region is a coherent feedback gate implemented by a controlled Pauli-Z
gate (‘Z’). Hadamard gates (‘H’) prepare and read out a superposition state of the qubit,
|φ〉q = (|0〉+ |1〉)/

√
2. Figure adapted from (HIROSE; CAPPELLARO, 2016).

Model for the spin dynamics

In order to clarify and illustrate the concepts listed above, a toy model will be devel-

oped here.

One of the most simple systems that could be used to study optically excited elec-

tronic transitions is the so-called two-level atom. The approximations are that the optical

radiation field is nearly monochromatic and that it coincides with one of the transition
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frequencies in the atom under consideration. Conceptually, the two-level atom is the

same kind of system of a spin-one-half particle in a magnetic field, and hence the spin

vector formalism of Bloch, developed for magnetic resonance, is immediately applicable

to optical resonance problems (BLOCH, 1946).

In order to facilitate the application of the analogy between these two systems, the

pseudospin vector is defined. Its components are related to the atom’s dipole moment and

inversion, and their time evolutions are determined by a set of equations called the optical

Bloch equations, which can be derived by applying the time-dependent Schrödinger’s

equation (HAGELSTEIN et al., 2004; ALLEN; EBERLY, 2012).

Solving the optical Bloch equations can easily become a difficult task. However, when

the properties of interest are only related to incoherent effects, the system can be analyzed

very straightforwardly using probabilistic rate equations (ALLEN; EBERLY, 2012), which

are a set of differential equations over time of the probabilities that the system occupies

each of the different states. Fortunately, many important phenomena are well described

under these considerations. For example, Einstein’s derivation of Planck’s radiation law

and his prediction of the phenomenon of stimulated emission was based on rate equations

(EINSTEIN, 1917). Lamb has demonstrated that for a laser well above threshold a rate

equation approach leads to results in close agreement with those of a much more sophisti-

cated theory (LAMB, 1964). In a more recent work, Casperson compared rate equations in

high-gain lasers with more rigorous semiclassical models, and also developed higher-order

rate-equation approximations, which can yield much better accuracy with little added

complexity (CASPERSON, 1997).

As shown in (ALLEN; EBERLY, 2012), the rate equations are a quasi-steady-state limit

of the optical Bloch equations, when the dipole moment homogeneous decay time is the

FIGURE 3.9 – (a) 5-level model graph detailing the allowed transitions as well as their
rate. (b) Simulation of the time-resolved emission for an ensemble whose centers were
previously initialized and manipulated to a specific initial state. (c) Temporal evolution
of the probability of being in each one of the states to a center who was previously
initialized and manipulated to a superposition state with 40% probability of being in the
dark state (|g1〉) and 60% probability of being in the bright state (|g0〉).
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shortest of all the incoherent relaxation rates. Following (ALLEN; EBERLY, 2012), for an

ensemble of the two-level system on resonance, the rate equations become

Ṅ2 = −R(N2 −N1)− N2

T1

Ṅ1 = +R(N2 −N1) +
N2

T1

(3.1)

where R expresses the rate of stimulated emission and absorption due to the applied field,

N1 and N2 are the level population densities and T1 is the spontaneous decay time. The

equations have a very straightforward qualitative interpretation. The first one says that

the upper-level population changes for three reasons, at three different rates: at the rate

−RN2 because of induced emission, at the rate +RN1 because of absorption of radiation

by lower level atoms, and at the rate −N2/T1 by the natural decay independent of the

inducing field. For the second equation, the term +N2/T1 represents atoms being added

to the first-level population because of decay from the first level.

Thus, by the same logic, we can model this system as a series of simultaneous first-

order processes. This leads us to a system of coupled first-order differential equations, and

if we divide by the total number of centers in the ensemble, we can give a probabilistic

interpretation to it. We can, therefore, model it as a Markov chain, since the transition

depends only on the present state of the NV− center, and not in the previous transitions.

Based on Fig 3.7(c), we can draw the graph presented in Fig. 3.9(a), where the two

singlet states were condensed into one state, labeled |s〉, and the |3A2, 0〉, |3A2,±1〉, |3E, 0〉,
|3E,±1〉 were labeled |g0〉, |g1〉, |e0〉, |e1〉, for convenience in the notation, and we also

condensed the degenerate ms = ±1 states. Here, s stands for singlet, g for ground state

and e for excited state. Note that we included the transmission rate for the |3E, 0〉 to

|1A1〉, represented by a dashed line to emphasize that it is small.

Some simplifying assumptions about the rates where made: First, we assume that

the transition rates from the excited states to the ground state are equal, what is not

generally true, especially in this case where they have different resonant frequencies and

the intensity of light in each of them is probably very different. Second, we assumed that

the transition rates from the excited states to the ground states are equal to the transition

rates from the ground states to the excited states, and in general this is not the case since

the emission have two different contributions, one from the spontaneous and the other

from the stimulated process. Third, we neglected the imperfection of the spin selection

rules in the optical excitation and relied only on the more pronounced effect of the |3E, 0〉
state decaying to |1A1〉 to model the effects of the undesirable spin flips. Fourth, we

assumed that the rates of decaying from the singlet state are equal for both spin states.

This might seem like a bad approximation, but in fact, it is not and is in agreement with
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the findings of Robledo et.al. (ROBLEDO et al., 2011).

Many authors explain the dynamics of the NV− center by admitting that the transition

from |s〉 to |g1〉 is small, but as we will see, only the fact that the probability of decaying

to |1A1〉 is smaller for |3E, 0〉 than for |3E,±1〉 is enough to polarize the spin to ms = 0.

The system of differential equations that describes our system is:

Ṅ|g0〉 = −γN|g0〉 + γN|e0〉 + δN|s〉

Ṅ|g1〉 = −γN|g1〉 + γN|e1〉 + δN|s〉

Ṅ|e0〉 = γN|g0〉 − (γ + β)N|e0〉

Ṅ|e1〉 = γN|g1〉 − (γ + α)N|e1〉

Ṅ|s〉 = αN|e1〉 + βN|e0〉 − 2δN|s〉 (3.2)

where N|x〉 stands for the number of centers in state |x〉. If we divide all the equations of

our system by the total number of centers N , we will have the same equations with the

replacements:

N|x〉
N

= P|x〉

Ṅ|x〉
N

= Ṗ|x〉 (3.3)

where P|x〉 stands for the probability of a center be in state |x〉.

In order to construct matrices and vectors to describe our system, we will ordinate the

basis of our state space as

{|g1〉 , |e1〉 , |g0〉 , |e0〉 , |s〉}. (3.4)

Our transition rate matrix Q is

Q =




−γ γ 0 0 δ

γ −(γ + α) 0 0 0

0 0 −γ γ δ

0 0 γ −(γ + β) 0

0 α 0 β −2δ



, (3.5)
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and the vector of probabilities is given by

P (t) =




|〈g1|Ψ(t)〉|2

|〈e1|Ψ(t)〉|2

|〈g0|Ψ(t)〉|2

|〈e0|Ψ(t)〉|2

|〈s|Ψ(t)〉|2




(3.6)

where |Ψ(t)〉 is the state of our system at time t. The evolution of the vector of probabilities

is simply given by the differential equation:

P ′(t) = QP (t) (3.7)

We can set the derivative of the probabilities to zero and find a steady state given by

Pss =
1

2
γ

+ 2
α

+ 2
β

+ 1
δ

(
γ + α

γα
,

1

α
,
γ + β

γβ
,

1

β
,
1

δ

)
, (3.8)

which is independent of the initial conditions.

Since the measured luminosity is due to the system decaying from one of the states |e〉
to its respective state |g〉, we can say that for a large ensemble the emission is proportional

to the population of the |e〉 states. Equivalently, for a single center the average of its

emission over many runs is proportional to the probability of being in the states |e〉.
Therefore:

I(t) ∝ |〈e1|Ψ(t)〉|2 + |〈e0|Ψ(t)〉|2 = P2(t) + P4(t). (3.9)

The “large ensemble” and “average over many runs” interpretations are dual, and it is easy

to relate one to another. In the following discussions we will focus on the former, since

we believe it is more intuitive.

This system of coupled first order linear equations have a fifth-order characteristic

equation, and our attempts to solve it analytically were unsuccessful. Therefore, we

aimed to plug in numerical rates and observe how the system behaves. Some authors

have already employed similar models and fitted to the experimental data (ROBLEDO et

al., 2011; MANSON et al., 2006), so we can get an insight into how to choose reasonable

parameters based on their works. We found that the set of parameters

γ = 0.2 ns−1

α = 0.1 ns−1

β = 0.01 ns−1

δ = 0.02 ns−1 (3.10)
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reproduces most of the interesting aspects in the dynamics of this system. We can now

use our model to predict the behavior of the system under different initial conditions.

Fig. 3.9(b) shows the emission for three different initial spin states according to eq. (3.9).

From this result, we note that we have the behavior described on the Measuring subsec-

tion: for a window of time in the order of 100 ns, the luminosity is a crescent function of

the probability of the initial state being in the |g0〉 state.

Solving the system for a slightly more asymmetric initial condition, we can visualize

the time evolution of the number of centers in each state in a less particularized way.

Fig. 3.9(c) can be interpreted as the proportion of centers in each state in function of

time, starting from 40% in the dark state and 60% in the bright state. The time scale for

the optical transitions is lower than the others, and soon the curves for the respective |e〉
and |g〉 pairs start to track each other. The effect that follows is that the centers start

to accumulate in the long-lived |s〉 state and the system undergoes to the steady state,

which is independent of the initial conditions.

The comparison of our result for the emission rate with the experimental measurements

in Fig. 3.10 confirms that the most important qualitative characteristics of the system were

preserved, despite all the simplifications.

FIGURE 3.10 – (a) Simulation of the time-resolved emission for an ensemble whose centers
were previously initialized and manipulated to the dark state and to the bright state. (b)
Experimental result measured using confocal microscopy. Reproduced from (DOHERTY et

al., 2013).



4 The DFT-1/2 Local Correction to

Defect Levels

In this chapter, an extension of the method DFT-1/2 for correcting the defect levels

within the band gap is proposed. The method is then exemplified and benchmarked by

its application on the NV− center in diamond, whose transition energies have already

been determined, both theoretically and experimentally. Results for the application to

wurtzite gallium nitride (w-GaN) are presented. Finally, some limits of validity of this new

approach, more specifically in what concerns substitutional transition-metals, is discussed.

4.1 The Local Correction

The most important tools to support the search for suitable deep centers for quantum

computing applications are the ab initio computational techniques based on DFT since

they allow us to determine macroscopic properties based only on the system’s atomic

composition and approximate geometry. Many attempts have been made to find such

defects to find such kind of defects in several semiconductors, as in some silicon-carbide

polytypes, (KOEHL et al., 2015; WEBER et al., 2010) wurtzite aluminum nitride (TU et al.,

2013) and zinc-blende gallium nitride. (WANG et al., 2012)

Two major concerns can make first-principle calculations of defects a difficult task.

First, the usually employed periodic boundary conditions to study solids require a large

supercell to minimize the interaction between the defect and its images. Second, the Kohn-

Sham band gap is underestimated when compared to experiments, (SHAM; SCHLÜTER,

1985; PERDEW; LEVY, 1983) which also impairs reliable calculations of defect levels above

the valence band. (RINKE et al., 2009) The methods which correct Kohn-Sham eigenvalues,

such as hybrid functionals (HEYD et al., 2003; HEYD et al., 2006) and the GW approach,

(HYBERTSEN; LOUIE, 1985) usually raise the computational cost. (PELA et al., 2015) The

DFT-1/2 method is a good alternative due to its nice accuracy and low computational

cost.

There are several methods to correct the band-gap predictions of DFT. The most
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commonly used are the GW (HYBERTSEN; LOUIE, 1985) and HSE. (HEYD et al., 2003;

HEYD et al., 2006) The problem is that those methods, especially GW, sharply raise the

computational cost. This imposes a practical limit in the cell size, establishing a trade-off

between the time required to perform the calculation and the proximity of two defects.

In this work, we extend the GGA-1/2 method, which is a generalization of the LDA-1/2

for GGA pseudopotentials. The method has been chosen by its low-cost characteristics,

high accuracy in its predictions and for being entirely theoretical, not semi-empirical.

LDA-1/2 and GGA-1/2 have already been successfully used to study point defects

(MATUSALEM et al., 2013; MATUSALEM et al., 2014) by applying a formalism developed

by Rinke et al. (RINKE et al., 2009) In these cases, the interest was to study the defect

formation and transition energies, both quantities related to the electronic ground state

in several charge states, such that what was changing was the number of electrons bound

to the defect as a function of the Fermi level position. In the present case, the charge of

the defect is always the same and our interest is to study the energies associated with the

optical excitation of an electron between intra-defect energy levels.

The DFT-1/2 method generalizes the Slater’s transition state technique for solids,

introducing approximate quasi-particle corrections which lead to accurate band gap cal-

culations. The details of the method are given in Refs. (FERREIRA et al., 2008; FERREIRA

et al., 2011). The approach relies on the Janak’s theorem (JANAK, 1978) and on the ap-

proximately linear dependence of the Kohn-Sham eigenvalues with its own occupation.

It is possible to use these two facts to show that, in the case of atoms and molecules,

the value of the highest occupied eigenvalue with half-ionization is the system ionization

energy with a remarkable agreement with experimental data.(SLATER; JOHNSON, 1972)

In semiconductors and insulators, the quasi-particle band gap is defined as the energy

difference between the ionization energy and the electronic affinity. Thus, this scheme

allows us to compute the band gap as the difference between the Kohn-Sham eigenvalues,

by introducing a half-hole on the VBM and a half-electron on the CBM.

Since Bloch states are delocalized, they do not accurately describe neither the hole

on the valence band nor the electron on the conduction band. (FERREIRA et al., 2011)

Therefore, instead of changing the occupations of the levels, this contribution in energy

is added to the potential of the atoms itself. It is assumed that this potential has the

same format of the atomic self-energy potential VS, which can be simply computed as

the difference between the neutral atomic potential and the half-ionized atomic potential.

(FERREIRA et al., 2008) Considering that the localized hole state will be close to the VBM

and the localized electron state will be close to the CBM, we must find which atomic

orbitals contribute to each of these levels and in what proportion (the orbital character

of the levels). This is quantified by the projection of these Kohn-Sham orbitals onto the

atomic orbitals. A schematic representation of this scenario is given in Fig. 4.1(a).
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FIGURE 4.1 – (a) Schematic representation of a Kohn-Sham band structure with the
Valence Band Maximum and Conduction Band Minimum with half-occupation, as con-
sidered on the DFT-1/2 method; and (b) Extension of the DFT-1/2 scheme for defect
levels within the band gap.

In what follows, we describe an extension of the method for defect levels, which re-

sembles in many aspects the scheme for the bulk (Fig. 4.1(b)). Due to the increased

complexity of the orbital character of the levels, a more precise notation is necessary.

Indeed, this is also a formalization of some ideas that already have been introduced in

recent publications. (FREITAS et al., 2016b; FREITAS et al., 2016a; ATAIDE et al., 2017)

We must add the potential that corresponds to the removal of half-electron from the

occupied level (labeled α). In the usual and simple cases for the bulk, the Kohn-Sham

state ψα(kVBM) is composed only of the valence level p orbital of the ion. However, in

the case of the defect, we can have a set of atoms contributing to this level, in which case

we must remove a smaller fraction of electron from each of them, proportionally to their

contribution. Hence, for each atomic orbital φ of each atom X, we subtract a fraction

ξX,φ of an electron given by

ξXφ = charXφ
[
ψα(Γ)

]
× 1

2
, (4.1)

where charXφ[ψ(k)] corresponds to the proportion of the atomic orbital φ of atom X to

the orbital character of the Kohn-Sham state ψ at point k. Similarly, we must add the

potential that corresponds to the addition of half-electron to the unoccupied level (labeled

β). The fraction ζXφ to be added to the orbital φ of atom X is given by:

ζXφ = charXφ
[
ψβ(Γ)

]
× 1

2
. (4.2)

The projection on atomic orbitals is usually a standard output of DFT codes and is

computed as the projection of the wave functions onto spherical harmonics within spheres

of an atomic species-dependent radius around each ion. Considering the fact that some

small contributions of atoms far from the defect are going to be neglected, it is important
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to normalize the orbital characters of the considered atoms with respect to their sum,

ensuring that ∑

Xφ

ξXφ =
∑

Xφ

ζXφ =
1

2
. (4.3)

The self-energy potentials are considered spherically symmetric, so the dependence on

r will be omitted on our notation. We compute the components V Xφ
S of the self-energy

potential VS as

V Xφ
S,α = VX

(
f0

)
− VX

(
f0 − ξXφ

)
(4.4)

V Xφ
S,β = −

[
VX
(
f0

)
− VX

(
f0 − ζXφ

)]
, (4.5)

where f0 is the occupation of the orbital φ of atom X on the ground state, and VX(f) is

the potential of atom X with occupation f . Adding the components, we find

V Xφ
S = VX

(
f0 − ζXφ

)
− VX

(
f0 − ξXφ

)
. (4.6)

Before adding the potentials to the Kohn-Sham potential, we must multiply them by

a trimming function ΘXφ(r) to avoid the divergence that would arise from the sum of the

1/r coulombic tails of these potentials.(FERREIRA et al., 2008; FERREIRA et al., 2011) Θ is

a smooth step-like function, defined as

Θ(r) =





[
1−

(
r

CUT

)8
]3

if r ≤ CUT

0 if r > CUT

(4.7)

which depends on a parameter called CUT . This parameter have to be determined vari-

ationally, by extremizing the band gap. (FERREIRA et al., 2008; FERREIRA et al., 2011)

Thus, the trimmed potential is

V̂ Xφ
S = ΘXφV

Xφ
S . (4.8)

It is common to have situations in which the CUT depends only on the atom. In these

cases, it is useful to define

V̂ X
S = ΘX

∑

φ

V Xφ
S , (4.9)

and then we would have a single correction to the potential per atomic species, with a

single value of CUT to be determined variationally.

The most noticeable difference between the usual DFT-1/2 and the procedure here
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introduced is that in the latter exactly half electron is transferred between the defect

levels, being divided amongst the atoms which contribute to them. In solids, the total

number of transferred electrons scales with the number of atoms in the cell, since the

corrections are applied as if each atom contributed independently to the composition of

the VBM and the CBM.

4.2 Benchmarking with the NV− Center in Diamond

4.2.1 Computational details

The calculations have been performed within the DFT combined with the Generalized

Gradient Approximation of Perdew-Burke-Ernzerhof (GGA-PBE) exchange-correlation

potential (PERDEW et al., 1996a) using the Viena Ab-initio Simulation Package (VASP).

(KRESSE; FURTHMÜLLER, 1996a; KRESSE; FURTHMÜLLER, 1996b) The electronic wave

functions have been expanded using the projected augmented wave (PAW) method.

(BLÖCHL, 1994; KRESSE; JOUBERT, 1999)

In order to build a good approximation for the supercell structure, the structure of a

single cubic unit cell has been relaxed. The next step is to replicate it side by side to build

FIGURE 4.2 – (a) 215-atom supercell used to simulate the defect avoiding spurious in-
teractions among images. (b) NV− center and its surrounding atoms, representing the
vacancy as a gray shadow. In both images, Brown, bluish-gray and red circles represent,
respectively, the host carbon atoms, the nitrogen atom, and the three carbon atoms neigh-
boring the vacancy. The images have been produced with help of the VESTA software.
(MOMMA; IZUMI, 2011)



CHAPTER 4. THE DFT-1/2 LOCAL CORRECTION TO DEFECT LEVELS 57

a 3x3x3 supercell, with a total of 216 atoms, and a new structural relaxation has been

carried out. Then, the defect has been created by arbitrarily removing one of the atoms of

the supercell and replacing one of the carbon atoms neighboring the resulting vacancy by

a nitrogen atom (Fig. 4.2). The number of electrons has been increased by one since we

are interested in the negatively charged NV center. As the last step before applying the

DFT-1/2 corrections, a spin-polarized structural relaxation has been performed for both

the electronic ground state and first excited state by setting the corresponding energy

levels occupations, to obtain and store the respective resulting atomic positions. It is

noteworthy that, according to Fig. 3.7(a), the first excited state corresponds to promote

the highest occupied spin-down state (2a1↓) to the lowest unoccupied spin-down states

(ex↓ and ey↓), with half electron in each one of the states, to symmetrize the occupation.

In the geometry optimization of the pure cells, i.e. cells that do not include the defect,

the volume and the shape of the cell and all the atoms have been allowed to relax until the

magnitude of all forces is smaller than 10−3 eV/Å. In order to save computational effort

and relying on the fact that only the nearest atoms should be affected by the defect, the

volume and the shape of the cell have been fixed for the relaxation of the supercells with

the defect, and the same stopping criteria as before have been used.

Following the Monkhorst-Pack scheme, (MONKHORST; PACK, 1976) the Brillouin zone

(BZ) has been sampled by a 19x19x19 grid of k-points for the single cubic cell and by only

the gamma point for the supercells. The plane wave basis set has been considered within

cutoff energy of 530 eV. The electronic convergence criterion has been that the total (free)

energy and the band structure energy change between two steps are both smaller than

10−7 eV. In the simulation of the negatively charged defect, a positive uniform background

charge has been added. The numeric errors of our calculations have been estimated to be

smaller than 50 meV.

4.2.2 Procedure

The usual procedure to calculate the optical transition energies of defect levels is

to take the difference in total energy between each electronic configuration. Since this

concerns excitations, one needs to go beyond the Kohn-Sham scheme, by carrying out

e.g. HSE calculations, to avoid the usual band gap problem.(RINKE et al., 2009) Hence,

one must go beyond standard DFT, as in HSE calculations, in order to obtain a more

accurate result for these energies. The inconvenient is the increase in the computational

cost. Therefore, it would be of interest to apply the less demanding DFT-1/2 formalism.

However, as implemented, this method does not compute a physically meaningful total

energy, but the optical transition energies can be accurately obtained as the difference

between their corresponding Kohn-Sham eigenvalues, as demonstrated in Section 2.5.
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FIGURE 4.3 – CUT determination for the DFT-1/2 corrections. The corrections have
been performed sequentially for each geometry, in the following order: CBulk, N, CDefect.
(a) Band gap of pure diamond as a function of the CUT for the 0.25 electron removal
from the CBulk atoms’ 2p orbital; (b) Transition energy on the ground state’s geometry
as a function of the CUT of the nitrogen atom, with CBulk corrected; (c) Transition
energy on the ground state’s geometry as a function of the CUT of the CDefect atoms,
with CBulk and N corrected; (d) Transition energy on the excited state’s geometry as a
function of the CUT of the nitrogen atom, with CBulk corrected; (e) Transition energy on
the excited state’s geometry as a function of the CUT of the CDefect atoms, with CBulk

and N corrected.

We must obtain the difference between the state 2a1↓ and the double-degenerate state

e↓ in each geometry, according to Fig. 3.7(a). We may write

EAb = ε(e↓; qgnd)− ε(2a1↓; qgnd) (4.10)

EEm = ε(e↓; qexc)− ε(2a1↓; qexc), (4.11)

where ε(ψ; q) corresponds to the eigenvalue of the state ψ as a function of the configuration

coordinate q, which in the current case correspond to the most stable geometries in each

one of the two electronic configurations, as indicated in Fig. 3.7(b). Note that it is only

possible to unambiguously define these functions because the position of the eigenvalues

is considered independent of the occupation of these levels, as explained in Section 2.5.

Otherwise, they would be functions of the occupation as well.

With the relaxed geometries for both the ground and excited states, we first separate

the atoms in three types: the carbon atoms of the bulk (CBulk), which are responsible

for the valence and conduction bands, the nitrogen atom, and the carbon atoms which

are the carbon vacancy next-neighbors (CDefect), whose dangling bonds contribute to the
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TABLE 4.1 – Orbital character of the defect levels and fractions of an electron to be
removed from and added to each potential (denoted by ξ and ζ, respectively).

Ground State Excited State

Xφ 2a1↓ ξXφ ex↓+ey↓ ζXφ 2a1↓ ξXφ ex↓+ey↓ ζXφ

C2s 0.6% 0.00 3.1% 0.02 0.6% 0.00 2.2% 0.01
C2p 17.7% 0.09 30.2% 0.15 21.7% 0.11 31.1% 0.16
N2s 4.6% 0.02 0.0% 0.00 4.9% 0.02 0.0% 0.00
N2p 40.7% 0.20 0.3% 0.00 28.1% 0.14 0.3% 0.00

localized defect levels. Since these types contribute differently to the band structure, they

must be analyzed separately.

For the CBulk atoms, the same corrected potential as the one used in the diamond unit

cell is applied: due to the perfectly covalent bonds between the carbon atoms, the band

gap of diamond is corrected by subtracting one quarter of electron from the 2p orbital

of the CBulk atoms, as indicated in Ref. Ferreira et al. (2008). The CUT of 2.5 bohr

is determined by maximizing the band gap, which gives a gap of 5.01 eV, as shown in

Fig. 4.3(a).

To apply the local correction to the defect, the character of the levels involved in the

first optical excitation, for both geometries, is determined by using the band character

obtained by standard PBE calculation. Accordingly, the percentage of the character

contribution is obtained by considering solely the nitrogen atom and the carbon atoms

that are the vacancy next-neighbors (CDefect). Table 4.1 presents the orbital character of

the defect levels.

For each orbital, in each geometry, the potential of half electron, weighted by the

character of the 2a1↓ level, must be removed, while the potential of half electron, weighted

by the character of the two states e↓, must be added. These results are also displayed in

Table 4.1. The CUT parameters for these corrections are determined by maximizing the

difference between the levels e↓ and 2a1↓, and we obtain the same values for the excited

and ground states, which are CUT=2.50 bohr for CDefect and CUT=3.00 bohr for N. The

curves obtained in this optimization procedure are displayed in Figs. 4.3 (b, c, d, and e).

The maximum values obtained on Figs. 4.3 (c and e) correspond, respectively, to the

corrected absorption and emission energies. The values are displayed in Table 4.2, together

with other results and experimental data. With their respective corrected potentials, the

electronic structure is calculated for each geometry, and the corrected band structures

are displayed in Fig. 4.4. The energy differences between the defect levels correspond to

the optical transition energies, as indicated by the curved arrows. The similarity of these

results with the initial and simple picture of the position of the energy levels (Fig. 3.7(a))
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TABLE 4.2 – Vertical absorption (EAb), vertical emission (EEm), zero-phonon line (EZPL),
Stokes shift (ES) and anti-Stokes shift (EaS) energies calculated by different methods,
compared to the experimental data (all values in eV).

Method EAb EEm EaS EZPL ES

GGA total energy 1.90 1.55 0.16 1.71 0.19
GGA eigenvalues 1.86 1.55 0.16∗ 1.72† 0.15‡

GGA-1/2 eigenvalues 2.18 1.68 0.16∗ 1.85† 0.33‡

HSE06 (GALI et al., 2009) total energy 2.21 1.74 0.22 1.96 0.26
Exp. (DAVIES; HAMER, 1976) -/- 2.18 1.76 0.19 1.95 0.24

∗ Calculated using Eq. 4.12
† Calculated using Eq. 4.13
‡ Calculated using Eq. 4.14

is remarkable. A discussion about Table 4.2 and about the band structures shown in

Fig. 4.4 is given in Section 4.2.3.

Besides the vertical transition energies, the ZPL energy is also of experimental interest.

We cannot simply use the difference between the Kohn-Sham eigenvalues of two different

geometries to calculate it since it would not take into account the energy difference due

to the displacement of the ions. Nonetheless, we can indirectly calculate EZPL. This is

possible because the values for the total energy of the two geometries in their electronic

ground state are correctly calculated by the standard DFT. Hence, we can obtain the

anti-Stokes shift as

EaS = E(fgnd, qexc)− E(fgnd, qgnd), (4.12)

where E(f, q) is the energy as a function of the electronic configuration f and the geometry

q, and use it together with the vertical transitions to determine the remaining desired

energies as

EZPL = EEm + EaS (4.13)

ES = EAbs − EZPL, (4.14)

as one can readily see from Fig. 3.7(b).

Finally, the steps to be followed to apply the DFT-1/2 method for defect levels, intro-

ducing Local Corrections, can be summarized:

1. Perform the structural relaxation of the unit cell;

2. Determine the VBM and CBM orbital characters;

3. Build the supercell and perform a new structural relaxation;

4. Set and build the defect in the supercell, perform the structural relaxation with

the electronic ground state occupancy and determine the orbital character of the
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selected defect levels;

5. Perform the structural relaxation with the electronic excited state occupancy and

determine the orbital character of the selected defect levels;

6. Calculate the system total energy in the electronic ground state in the excited state

geometry, and determine the anti-Stokes shift (EaS) using Eq. 4.12;

7. Determine the CUT parameter for the bulk atoms by maximizing the band gap;

8. Determine the CUT parameter for the defect atoms by maximizing the energy dif-

ference between the selected defect levels, and determine the energies of the vertical

transitions (EAb and EEm); and

9. Determine the remaining energies (EZPL and ES) using Eq. 4.13 and Eq. 4.14,

respectively.

10. Optional: Calculate the corrected band structures.

4.2.3 Results and Discussion

The diamond band gap value of 5.01 eV obtained with GGA-1/2 approach shows

remarkable improvement over the value of 4.1 eV obtained with standard GGA when

compared to the experimental value of 5.47 eV.(WORT; BALMER, 2008) Even though the

result has a considerably better agreement with the experimental value, it is still slightly

underestimated, not as good as the corrections to other materials.(FERREIRA et al., 2011)

FIGURE 4.4 – Supercell band structures, around the gap region and along some special
high symmetry directions in the cubic BZ, for the structural geometries of the NV- center
in the (a) ground state and (b) excited state. The blue and red lines represent, respec-
tively, the spin-up and spin-down energy levels. The occupied states related to the defect
are indicated by ↑ and ↓ arrows. Both results have been obtained with bulk and local
corrections. The direct band gap is a consequence of the supercell band folding.
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This is due to the fact that the VBM and CBM of diamond’s band structure have almost

the same orbital character and the usual procedure (FERREIRA et al., 2008; FERREIRA et

al., 2011) is not able to appropriately correct the conduction band.

The corrected band structures of Fig. 4.4 present all the expected general features for

the NV− center in diamond: the defect 1a1 energy levels are resonant inside the valence

band; the relative positions of the spin up and spin down levels are correct; and the first

possible valence band excitation is high energetic enough, avoiding an electron transition

from the valence band to the defect 2a1↓ energy levels when the pumping laser is shined.

Although the e↓ energy levels appear to be closer to the conduction band than ex-

pected, due to the slightly underestimated band gap, the transition energies analysis is

not impaired. On the other hand, since the gap underestimation is a diamond particu-

lar case, as explained above, the method is expected to display still better performance

when applied to other semiconductors, like the III-V ones, in which the application of the

DFT-1/2 method presents very accurate results. (FERREIRA et al., 2011)

The usual procedure to obtain the optical transition energies via DFT is to take

the difference between the total energy values of the excited and ground states. The

correction method proposed here allows these quantities to be extracted directly from the

Kohn-Sham eigenvalues. To verify this claim, Table 4.2 presents results obtained with the

usual total energy approach and with the eigenvalues approach, without the quasi-particle

corrections. Even though these values are not supposed to correspond to the quasi-particle

band gap, they should agree with each other, and in fact, they do within a precision of

0.04 eV.

The results obtained when using the DFT-1/2 approximate quasi-particle corrections

are in close agreement with the reported HSE results and experimental data. It is observed

that, in the GGA-1/2 results, the relative error of the Stokes and anti-Stokes shifts are

greater than that of the other energies, as expected, since both shifts values result from

the difference between two values very close to each other.

In our development, it has been argued that the standard DFT approach may provide

a good estimate of the anti-Stokes shift, and this is supported by the results from Ref.

(GALI et al., 2009) that reports both GGA-PBE and HSE calculations of the anti-Stokes

shift for a larger supercell (4ax4ax4a) than the one used here, and they indeed shown that

GGA slightly outperformed HSE.
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4.3 Chromium-Vacancy in w-GaN

4.3.1 Characteristics of the Host

Gallium nitride is a binary III-IV semiconductor with well-established growth tech-

niques. Its most stable phase has the wurtzite crystal structure, and a wide band gap of

3.4 eV, which affords its special properties for applications in Optoelectronics. For exam-

ple, the first high-brightness blue LED, invented by Shuji Nakamura in 1989, was made

of GaN. Producing a bright blue LED was first achieved by Akasaki and Amano (AMANO

et al., 1989). They developed a method to produce strongly p-type GaN by electron-beam

irradiation of magnesium doped-GaN.

The advances of Nakamura’s work were to create a method to mass-produce the

strongly p-type GaN, by doping it with Magnesium via a thermal annealing process,

and to identify the passivation of acceptors caused by Hydrogen. The blue LED technol-

ogy allowed for the production of white LEDs, by partially converting the light to yellow

via a phosphor coating, and they went into production in 1993. Due to his contributions,

he was rewarded with the 2014 Nobel Prize for Physics, “for the invention of efficient blue

light-emitting diodes, which has enabled bright and energy-saving white light sources”,

together with Isamu Akasaki and Hiroshi Amano.

Due to its technological relevance, several defects have been studied for GaN, both

theoretically and experimentally. However, until recently, the interest was to find shallow

donors and acceptors in GaN, and the plausibility of using deep defects as spin qubits was

not considered. This scenario might have changed when GaN was identified as a potential

host for spin qubits (GORDON et al., 2013), together with several other semiconductors.

Since then, there have been studies considering the properties of defects, such as the first-

principles study of an Oxygen-Vacancy complex defect in cubic GaN (WANG et al., 2012),

and the spectroscopy of isolated defects in several GaN samples grown on sapphire and

silicon carbide.

4.3.2 Computational details

As in Section 4.2.1, the calculations have been performed within the DFT combined

with the Generalized Gradient Approximation of Perdew-Burke-Ernzerhof (GGA-PBE)

exchange-correlation potential (PERDEW et al., 1996a) using the Viena Ab-initio Simula-

tion Package (VASP). (KRESSE; FURTHMÜLLER, 1996a; KRESSE; FURTHMÜLLER, 1996b)

The electronic wave functions have been expanded using the projected augmented wave

(PAW) method. (BLÖCHL, 1994; KRESSE; JOUBERT, 1999)

In the geometry optimization of the single cell, the volume and shape of the cell and
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all the atoms have been allowed to relax until the magnitude of all forces is smaller than

10−5 eV/Å. In order to save computational effort and relying on the fact that only the

nearest atoms should be affected by the defect, the volume and the shape of the cell have

been fixed for the relaxation of the supercells with the defect, and the stopping criteria

were changed to 10−4 eV/Å.

Following the Monkhorst-Pack scheme, (MONKHORST; PACK, 1976) the Brillouin zone

(BZ) has been sampled by a 19x19x19 grid of k-points for the single orthogonal cell

and by only the gamma point for the supercells. The plane wave basis set has been

considered within cutoff energy of 530 eV. The electronic convergence criterion has been

that the total (free) energy and the band structure energy change between two steps are

both smaller than 10−7 eV. In the simulation of the positively charged defect, a negative

uniform background charge has been added.

4.3.3 Simulating the Defect

There are several potential defects that could be studied in GaN. We have decided to

study a complex defect composed by a substitutional Chromium atom at a Gallium site

and an adjacent Vacancy, which then occupies a Nitrogen site. In this work, we are going

to refer to this defect as the “CrGaVN” center.

In order to study defects in w-GaN, we chose to first perform the structural relaxation

FIGURE 4.5 – (a) Orthogonal cell used to perform the structural relaxation of the w-GaN.
(b) 432 atoms supercell used to simulate the defect, avoiding spurious interactions among
images. In both images, gray and red spheres represent, respectively, the bulk Gallium
and Nitrogen atoms, while the blue, black and orange spheres represent, respectively,
the Chromium atom, the three Gallium atoms neighboring the vacancy and the three
Nitrogen atoms neighboring the Chromium atom. The images have been produced with
help of the VESTA software.(MOMMA; IZUMI, 2011)
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FIGURE 4.6 – Schematic band diagram for the CrGaV+
N center, obtained via first-

principles calculations after applying the correction to the bulk atoms.

of a small orthogonal cell, and then replicate it to form a large orthogonal supercell 4.5(a).

The validity of using only the gamma point in the sampling of the first Brillouin zone

of the 432 atoms supercell was verified by comparing the calculated total energy with the

one of a 4 atoms hexagonal cell fully converged. The ratio between these total energies was

of 107.98, while the ratio between the number of atoms is 108. The agreement between

these values indicates that a single k-point is enough to sample the supercell reciprocal

space.

We then placed the defect of choice in the cell and identified its first neighbors 4.5(b),

It is worth noting that in the case of the NV− center, we only identified the neighbors of

the vacancy. However, considering that GaN is a binary compound, it may be necessary

to apply different corrections to the neighbors of the substitutional atom as well.

Point defects usually occur in several charge states. The strategy adopted in this work

is to first determine charge states that have the desired electronic properties. Verifying

whether this state is stable or not and in what conditions is left for a next step, to be

done only in case the defect presents the desired properties.

TABLE 4.3 – Transition energy between the levels of interest for different corrections.
The bulk corrected potentials were applied to different combinations of atoms, in order
to study the effect of considering the neighbor atoms as part of the bulk or not.

Cr Ga (defect) N (defect) Ga (bulk) N (bulk) Energy

- - - - - 0.744
- - - - X 0.821
- - - X X 0.819
- - X X X 0.499
- X - X X 0.815
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Since the ground state of the neutral defect is neither a spin-triplet nor a spin-

quadruplet, which have already been experimentally proven to be suitable for spin-qubit

operations (WIDMANN et al., 2014), we decided to study the positively charged CrGaVN,

which will be denoted CrGaV+
N. Its level structure and occupation are schematically rep-

resented of Fig. 4.6. The highest occupied and lowest unoccupied spin-up levels are the

levels of interest and hereafter are going to be referred to as the “lower”and“upper” levels,

respectively. It is important to note that the upper level is two-fold degenerate.

We calculated the bulk correction by the standard procedure, using the single-cell to

this purpose. After determining the corrected potentials for the bulk, we studied the

influence of these corrections on the character and position of the defect levels of interest,

by applying the corrected potentials to different combinations of bulk atoms and first-

neighbors (Table 4.3).

The first point to note is that the application of the correction to the bulk atoms has a

very small influence on the transition energy. This was expected, since we are correcting

hundreds of atoms, and even negligible effects can add up to noticeable changes. The

correction on the bulk Gallium atoms has a small effect on the band gap, and as shown,

has also a small effect on the defect levels. Therefore, we can still neglect it, as usual.

Surprisingly, applying the correction to the Nitrogen atoms that are neighbors to the

Chromium atom resulted in a significant shift, and therefore they must be considered as

different atoms. The Gallium atoms that are neighbors to the vacancy does not have a

significant contribution, in contrast to what happens in the NV− center in diamond.

If we examine the character of the levels of interest, we find a simple explanation for

what was observed in Table 4.3. As shown in Table 4.4, the only atoms that significantly

contributes to the levels of interest are the Chromium atom and its Nitrogen neighbors,

TABLE 4.4 – Orbital character of the defect levels and fractions of an electron to be
removed from and added to each potential (denoted by ξ and ζ, respectively). Only the
defect and its first neighbors were considered in this table.

Ground State

Xφ Lower Level ξXφ Upper Level ζXφ

Crs 4.17% 0.021 0.00% 0.000
Crp 0.54% 0.003 11.01% 0.055
Crd 87.30% 0.436 79.75% 0.399
Gas 0.54% 0.003 0.21% 0.001
Gap 1.09% 0.005 0.30% 0.001
Gad 0.18% 0.001 0.04% 0.000
Ns 0.00% 0.000 0.12% 0.001
Np 0.85% 0.004 2.40% 0.012
Nd 0.00% 0.000 0.00% 0.000



CHAPTER 4. THE DFT-1/2 LOCAL CORRECTION TO DEFECT LEVELS 67

which are precisely the atoms that caused a major change in the transition energy. The

contribution of the Nitrogen atoms occurs mostly on the upper level. It is important to

remember that there are 3 of these atoms, and therefore they correspond to 7.20% of this

level. Applying the bulk correction to these atoms is equivalent to a strong deviation from

their contribution since in the first case it is subtracted half electron from each of them,

instead of adding 0.001 + 0.012− 0.004 = 0.009 electron.

It is a known limitation of the DFT-1/2 as currently implemented that it does not dis-

tinguish the angular momentum projection in the corrections. This is due to the fact that

the DFT code used only accept spherically symmetrical potentials as input. Therefore,

since both the upper and lower levels have a strong Cr-d character, the corrections would

cancel each other, even though they would not necessarily cancel if it was considered that

the character of the lower level is Cr-d(z2) and the character of the upper levels, which

are degenerated, are Cr-d(x2) and Cr-d(xy). Since this coincidence of both levels having

almost the same character is only common in d-type orbitals, our methodology is more

indicated for defects that do not contain transition metals. For this reason, the study

of the CrGaVN center was not continued, but it is still important as a beginning of the

systematic calculations and for highlighting interesting aspects of the methodology.



5 Qubit Based on van der Waals

Heterostructures

In this chapter we propose a novel qubit concept, based on van der Waals heterostruc-

tures of two-dimensional materials. A particular case is studied, namely the ZrSe2/SnSe2

heterostructure, and other possible systems are indicated by estimating the band align-

ments using Anderson’s rule. Before the actual proposal of the qubit, in order to highlight

important aspects of it, a toy model that presents analogous behavior is developed and

analyzed.

5.1 Quantum superposition and two-dimensional sys-

tems

The quantum superposition (QS) plays a major role in the so-called second genera-

tion of quantum technologies, which includes quantum cryptography, quantum imaging,

quantum computing, and quantum sensing (GEORGESCU; NORI, 2012). The preparation,

manipulation, and measurement of the QS are central aspects in order to reach the opera-

tion of these advanced devices. Such a superposition of two quantum states characterizes

the unit of quantum information, a qubit. The QS or a qubit can be prepared by a sys-

tem of two quantum states. Examples are the polarization of light (O’BRIEN et al., 2003),

energy levels in a two level system (SCHNEIDER; SAENZ, 2012), electron spin orientations

(LAUCHT et al., 2016).

Very attractive are solid-state quantum bits such as spin qubits with electrically tun-

able spin-valley mixing in silicon (CRIPPA et al., 2018; BOURDET; NIQUET, 2018), the qubit

of the two charge states of a negatively charged nitrogen vacancy in diamond (LUCATTO et

al., 2017; CHOU et al., 2018), and the charge-qubit operation of an isolated double quantum

dot (GORMAN et al., 2005). All these examples show that isolated atomic-like structures

in or of solids may be of interest for novel qubits, which may be used as building blocks

of future quantum computers or quantum information devices. Recently, together with
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the strong development of two-dimensional (2D) materials technology, efforts have been

made to find possible candidates for a qubit in monolayer (PAW LOWSKI et al., 2018) and

multilayer (KHORASANI; KOOTTANDAVIDA, 2016) structures.

One interesting property of 2D materials is the possibility of van der Waals (vdW) het-

erostructures formation, which consists of the stacking of 2D sheet crystals (NOVOSELOV

et al., 2016). Despite the weak interaction of the two atomic layers in a 2D heterostructure,

spatial QS can be formed between the wavefunctions localized in different layers but form-

ing the conduction or valence bands of the heterostructure, if the band structures of the

isolated layers are nearly aligned on an absolute energy scale (KODA et al., 2018). For the

orbitals localized in one subsystem pointing toward the other subsystem, their bonding

and antibonding combinations build the basis functions of the joint conduction or valence

band (KODA et al., 2017). The resulting energy splittings and the mixing coefficients of

the wavefunctions depend on the vdW layers distance and the natural band discontinu-

ities. The mixing coefficients characterize the quantum-mechanical probabilities to find a

certain carrier, electron or hole, in one 2D material of the heterostructure.

5.2 A Toy Model for the Dihydrogen Cation Under

an Axial Electric Field

The dihydrogen cation H+
2 , consisting of a single electron in the Coulomb field of two

protons, is the simplest molecular system possible and, for that reason, is studied in many

introductory Quantum Mechanics books, such as (HAGELSTEIN et al., 2004; GRIFFITHS,

2004). For that simplicity, we will choose this molecule to study the behavior of an

electron in a double-well potential system under the influence of an electric field. This

will give insights and aid in the understanding of the phenomena explored in the van der

Waals qubit, which is the object of study of this chapter. Moreover, this simple system

has even more similarities and possible analogies with another important qubit concept,

the double quantum dot qubit (GORMAN et al., 2005). The system will be solved under

the Linear Combination of Atomic Orbitals (LCAO) approximation, due to the simplicity

of this approach. It is important to mention that the system does admit an exact solution

in terms of special functions, but it happens to be overly complicated, what ultimately

defeats the purpose.

5.2.1 Formulation

In this section, we present the definitions of the relevant quantities and the results

for the proposed toy model. The complete formulation is given in Appendix A, to avoid
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FIGURE 5.1 – Coordinates for the mathematical formulation of the dihydrogen cation
system.

harnessing the reading with mathematical development.

Under the Born-Oppenheimer approximation, assuming that the atomic nuclei are

fixed in position, with a specified distance R apart, the Hamiltonian for the electron is

H = − ~2

2m
∇2 − e2

4πε0

(
1

r1

+
1

r2

)
+ eFz = − ~2

2m
∇2 + 2a0E0

(
1

r1

+
1

r2

)
+ eFz (5.1)

assuming S.I. units and where a0 is the Bohr radius, E0 is the ground state energy of the

hydrogen atom, and r1 = |r1| and r2 = |r2| are the distances to the electron from the

respective protons.

Using the simplest LCAO approximation, we will consider the electron’s wavefunction

to be a linear combination between the wavefunction of the ground state of the electron

in a hydrogen atom, ψ0(r), centered in each nucleus. The ground state wavefunction of a

hydrogen atom is (GRIFFITHS, 2004)

ψ0(r) =
e−r/a0√
πa3

0

. (5.2)

Thus, our wavefunction can be written as

ψ(r) = αψ0(r1) + βψ0(r2) = A[ψ0(r1) + λψ0(r2)], (5.3)

where α and β are the mixing coefficients, A is the normalization constant, which we can

choose to be a real number due to the non-observability of a global phase of the state, and

λ is a complex number. In order to calculate the normalization constant, and considering

that the displaced wavefunctions are not orthogonal, we define the overlap integral as
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I = 〈ψ0(r1)|ψ0(r2)〉. Evaluating this integral, we obtain

I = e−R/a0
[
1 +

(
R

a0

)
+

1

3

(
R

a0

)2]
, (5.4)

and the normalization constant can be written as

Calculating the expectation value of the Hamiltonian, it is useful to define the direct

integral, D = a0 〈ψ0(r2) |1/r2|ψ0(r2)〉 = a0 〈ψ0(r1) |1/r1|ψ0(r1)〉, and the exchange inte-

gral, X = a0 〈ψ0(r1) |1/r2|ψ0(r1)〉 = a0 〈ψ0(r2) |1/r1|ψ0(r2)〉. Evaluating these integrals,

we obtain

D =
a0

R
−
(

1 +
a0

R

)
e−2R/a0 , (5.5)

and

X =

(
1 +

R

a0

)
e−R/a0 . (5.6)

Assuming that the nuclei are fixed in space, as is the case of quantum dots or the vdW

heterostructure on a substrate, we find the values of λ that maximize and minimize the

expectation value of the energy as a function of the field strength F .

λmax =
−eFR−

√
(eFR)2(1− I2) +

(
4(DI −X)E0

)2

eFIR + 4(DI −X)E0

λmin =
−eFR +

√
(eFR)2(1− I2) +

(
4(DI −X)E0

)2

eFIR + 4(DI −X)E0

, (5.7)

which are always real numbers.

Including the energies due to the nucleus-nucleus repulsion and due to the nuclei in

the electric field, we compute the total energy of the system, which is as a function of

only the electric field, considering that R is fixed.

Etot =

(
1− 2

a0

R

)
E0 +

(
D + 2Xλmin +Dλ2

min

)
2E0 −

(
Iλmin + 1

)
eFR

1 + λ2
min + 2Iλmin

. (5.8)

The probabilities of finding the electron in atom 1 or in atom 2 are given, respectively,

by

p1 = | 〈1|ψ〉 |2 = |α + βI|2 =
(1 + Iλmin)2

1 + λ2
min + 2Iλmin

p2 = | 〈2|ψ〉 |2 = |αI + β|2 =
(I + λmin)2

1 + λ2 + 2Iλmin
(5.9)
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5.2.2 Results and Discussion

The dihydrogen cation H+
2 studied in (GRIFFITHS, 2004) is a particular case of the

system studied here, when the field is null and λ = 1. Minimizing the energy in these

particular conditions, we find Rmin=1.3Å, in agreement with (GRIFFITHS, 2004).

In order to increase the similarity between this model and the double quantum dot or

the vdW heterostructure on a substrate, we keep the distance between the nuclei fixed,

and thus we must choose one to work with. In this sense, R = Rmin is a natural choice

and, therefore, we adopt it.

FIGURE 5.2 – (a) Total energy as a function of the electric field and the λ coefficient,
for a fixed value of R = Rmin. The values of λ which maximize and minimize the total
energy for each field strength F are given by the red and blue dashed lines in the contour
plot (b).

Figure 5.2(a) presents the total energy of the system as a function of the electric field

and the λ coefficient, Etot
∣∣
Rmin

(F, λ). The λ values that are extrema of 〈H〉 are also

extrema of Etot, since the difference between these two functions is not a function of λ,

not even implicitly since we are keeping R fixed. In Fig. 5.2(b), we superpose the contour

plot of the total energy with the values of λ that extremize it for each value of the field

F , given by Eqs. 5.2 with the substitution R = Rmin. We note that the lines representing

the extrema cross the contours whenever they are parallel to one of the axes, what is

expected.

Since we have λmin for all field strengths, we can compute the wavefunction given in

Eq. 5.3 as a function of the electric field, and plot its values along the z axis. The result is

presented in Fig. 5.3. It is possible to observe the symmetry of the solution with respect

to the signal of the field strength F . When F is positive, the electron tends to be more

localized around the nucleus at z = 0, and the opposite is true when F is negative.

Finally, we compute the probabilities of finding the electron around each nucleus, given

by Eqs. 5.9. The results are presented in Fig. 5.4(a), and one can readily note that due
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FIGURE 5.3 – The surface plot represents the values that the wavefunction along the z
axis for a range of values of the electric field. One of the hydrogen nucleus is at z = 0,
while the other is at z = Rmin = 1.3Å.

to the overlap I being different from zero, the sum of the probabilities is greater than

one. We then perform DFT calculations of the system, and following the same procedure,

we choose to keep the distance between the nuclei fixed in the position of minimum

energy at the null field, which is Rmin,DFT = 1.13 Å, closer to the experimental value of

1.06 Å(GRIFFITHS, 2004).

The projections on atomic orbitals provided on the output of VASP need to be nor-

malized. This is not a problem when the overlap between the projective functions is

negligible, however, in the present case, this introduces a great distortion of the results.

In order to compare the results, we normalize the probabilities p1 and p2 by their sum,

resulting in

p1 =
p1

p1 + p2

p2 =
p2

p1 + p2

. (5.10)

Figure 5.4(b) shows a good agreement between our model and the DFT solution, despite

the simplicity of the former.

The study of this model, therefore, highlighted several aspects regarding the non-

orthogonality of the projective basis, some of which are yet to be worked on, especially in

what concerns the normalization of the projection provided by VASP. Moreover, in this

model we are able to manipulate the position of the electron between one nucleus and the

other by means of an electric field, using it to change the superposition coefficients. This

effect will be explored in the proposal of the vdW qubit.
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FIGURE 5.4 – (a) Probability of finding the electron around ions 1 (blue) and 2 (red)
calculated using the LCAO model. (b) Comparison between the normalized probabilities
calculated with the LCAO model (solid lines) and the DFT simulation (dashed lines)

5.3 The van der Waals Qubit

5.3.1 Computational details

The structural and electronic properties are calculated using the density functional the-

ory (DFT) as implemented in the Vienna Ab-initio Simulation Package (VASP) (KRESSE;

FURTHMÜLLER, 1996b). The wave functions and pseudopotentials are generated within

the projector-augmented wave (PAW) method (KRESSE; JOUBERT, 1999). Exchange and

correlation (XC) are described using the Perdew-Burke-Ernzerhof (PBE) functional within

the generalized gradient approximation (GGA) (PERDEW et al., 1996a). Van der Waals

interaction is taken into account using the optB86b functional (KLIME et al., 2011). The

kinetic energy cutoff of the plane wave expansion is restricted to 500 eV. Integrations over

the 2D Brillouin zone (BZ) are performed using an 11 × 11 × 1 Γ-centered Monkhorst-

Pack k-points mesh (MONKHORST; PACK, 1976) for 1× 1 lateral unit cells. The repeated

slab method is applied to simulate individual 2D crystals (BECHSTEDT, 2003). A vacuum

thickness of 15 Å is employed to avoid unphysical interaction in stacking direction. Since

a charge transfer may occur in vdW heterostructures, dipole corrections are applied to

satisfy the periodic boundary conditions for the supercells. Ionization energies I and elec-

tron affinities A of the isolated atomic layers are determined as differences of valence band

maximum (VBM) and conduction band minimum (CBM) to the vacuum level defined by

vanishing electrostatic potential (KODA et al., 2017).

Minimum lateral unit cells employed are found using the coincidence lattice method

(KODA et al., 2016). Heterostructure investigations are performed after fixing the param-

eters of the most stable structural geometry for each monolayer and applying necessary

strains to make the systems commensurate. We make sure that the resulting biaxial strain
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in the 2D crystals is smaller than 2% and that there are no more than atoms inside the

joint lateral cell. All structural parameters are calculated first finding the energy mini-

mum with a stopping criterion of 10−5 eV for the energy convergence and then relaxing the

atomic positions until the Hellmann-Feynman forces on atoms are smaller than 1 meV/Å.

Electronic properties calculated using the DFT functional lead to 2D band structures

which suffer from the typical underestimation of energy gaps and interband distances com-

puted as differences of Kohn-Sham eigenvalues of the DFT (PAIER et al., 2006). Therefore,

they also lead to an incorrect description of hybridization and band offsets in vdW het-

erostructures (KODA et al., 2017). To account for the excitation aspect we add approximate

quasiparticle corrections to the Kohn-Sham bands by applying the XC hybrid functional

HSE06 (PAIER et al., 2006; HEYD et al., 2003; HEYD et al., 2006) to compute the electronic

band structures and energy alignments.

5.3.2 Effect of vertical electric field on band structure

In order to illustrate the superposition of states for electrons and holes in biased 2D AB

heterostructures, we start with an AB model system consisting of A=ZrSe2 and B=SnSe2

atomic triple layers. Because of the near lattice match, 1x1 cells with zero twist and small

antisymmetric biaxial strain of ±0.008 are chosen (KODA et al., 2017). A vertical electric

field ~F simulates that the AB heterostructure is gated or vertically biased as displayed

in the inset of Fig. 5.5(a). The band structures resulting for three field strengths are

plotted in Fig. 5.5 along high-symmetry directions in the Brillouin zone (BZ) for a small

energy interval around the fundamental gap. The indirect semiconductor character of the

conduction band minimum (CBM) at M and the valence band maximum (VBM) at Γ

is conserved for all field strengths. In Fig. 5.5, the color of each eigenvalue represents

the relative contribution of each sheet crystal A or B to the wavefunction. It is obtained

as the proportion of the projections of the Kohn-Sham orbitals onto the atomic orbitals

(i.e., the orbital character of these levels (LUCATTO et al., 2017)), for all the atoms in the

A or B material. Most interesting for the preparation of a qubit represented by a two-

level system are the two lowest conduction bands at the M point in the BZ. The lower

conduction band state at M may be denoted by |0〉, while the next higher conduction

band state |1〉 is higher in energy by a value ∆ ≈ 0.3 eV but at the same ~k point. The

most interesting hole state is the VBM at Γ. It is denoted by |h〉. All these band states

are generally composed by wavefunctions, which are localized at one of the sheet crystals

A or B. Figure 5.5 clearly shows that their contribution can be manipulated by external

field ~F .

In the unbiased case, Fig. 5.5(a), |0〉 and |1〉 have almost equal contributions of each

layer of the junction as indicated by the green dots. This means that, in the absence
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FIGURE 5.5 – Band structures of ZrSe2/SnSe2 heterostructure for different values of the
vertical electric field. The inset in (a) shows the positive field orientation is considered
from the ZrSe2 layer to the SnSe2 layer. The color of a dot in a Bloch band represents the
relative contribution of each monolayer to the eigenvalue. The VBM is chosen as energy
zero.

of the electrical field, an electron in one of these states tends to be in a superposed

electronic state with equal probabilities to find the carrier due to material A and B.

Instead, a superposition of the wavefunctions that belong to material A or to material

B as illustrated in Fig. 5.6(b). This behavior is different from what happens in the top

valence band state. |h〉 has a strong character of material A, as indicated by the red color

of the VBM in Fig. 5.5(a). Therefore, a hole tends to be localized in sheet A. However,

Fig. 5.5(a) also shows that slightly away from the Γ point the Bloch wave function may

drastically change its localization in dependence on the direction of the wave vector.

A vertical external electric field, as indicated for the gated bilayer in the inset of

Fig. 5.5(a), has a strong effect on the band states, shifting them relatively to each other

in energy in Figs. 5.5(b to g). The change in energy also impacts the hybridization of the
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FIGURE 5.6 – Qualitative representation of the squared moduli of the wavefunctions for
states |0〉 and |1〉 for positive (a), vanishing (b), and negative (c) electric fields.

orbitals, their overlap, and their relative contribution to the bilayer wave function. By

applying an electric field in the A-B direction, electrons in the lowest CBM are lowered

in energy. The electric field then “pulls down” the band structure of material B relatively

to the band structure of material A, and consequently turns |0〉 in a state with a stronger

character of material B, as indicated by the dot colors of the lower CBM in Figs. 5.5(b to

d). As |0〉 becomes more localized in material B, |1〉 becomes more localized in state A. In

the valence band, |h〉 becomes almost completely localized in sheet A. The consequences

for the wave function localization are schematically depicted in Fig. 5.6c.

The opposite is true when applying an electric field in the reverse direction: the bands

of material B are “shifted up”, conceiving to |0〉 a stronger localization in material A.

As |0〉 becomes more localized in material A, |1〉 becomes more localized in state B, as

indicated in Figs. 5.5(e to g), and schematically depicted in Fig. 5.6a. However, this is

not the only effect observed in this case. Since the band structure of material B is shifted

toward higher absolute energies, the VBM of material B starts to line up with the VBM of

material A, and thus |h〉 exhibits a stronger hybridization and nearly equal contributions

from both sheets A and B, as indicated by the colors of Fig. 5.5(g). Moreover, for this

extreme value of the electric field, the VBM is shifted from Γ, which is not true for the

intermediate values. See Section 5.3.4 for a more detailed discussion on the hole states.

There is a complementarity between |0〉 and |1〉 under the influence of the gate field,

where one state becomes more localized in one sheet as the other becomes more localized

in the other sheet. Therefore, an electron occupying any superposition of these two states

configures a charge qubit in the AB heterostructure, where for strong positive electric

fields the |0〉 and |1〉 states are localized in sheets B and A, respectively, and the oppo-

site happens for strong negative electric fields. The corresponding energy configuration

is illustrated schematically in Fig. 5.7 as a function of the electric field. Anticrossing

energy ∆AC = 0.30 eV is determined by the difference between the eigenenergies of |1〉
and |0〉 for the wavefunction, in which the contribution of each layer is the same. This

energy difference corresponds to oscillations of frequency ω ≈ 450 THz. In the studied
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FIGURE 5.7 – Conduction-band energy level diagram versus gate-field strength F to-
gether with the localized electron states for an uncoupled system |A〉 and |B〉 (dashed
lines) with eigenenergies EA and EB, respectively. The hybridization of the states for the
coupled system results in new eigenstates |0〉 and |1〉, with eigenenergies E0 and E1, respec-
tively, and anticrossing energy ∆AC (solid lines). For strong fields the qubit eigenstates
are well approximated by |A〉 and |B〉, but for fields values around FAC the eigenstates
are strongly delocalized. For the null field, EB − EA = ∆EC , i.e., the conduction band
discontinuity.

system, this occurs at nearly vanishing field FAC ≈ −15mV/Å. The conduction-level sys-

tem, therefore, has similarities with the charge qubit suggested in a double quantum dot

(GORMAN et al., 2005). The difference in energy between these two states as a function

of the vertical electric field F is plotted in Fig. 5.8. The actual field variation of E1 −E0

in Fig. 5.8 exhibits a nearly parabolic behavior, i.e., it is almost independent of the field

orientation.

The contribution of each layer A or B to the Bloch wave function of the states |0〉 and

|1〉 in the AB heterostructure strongly depends on the electric field strength F . Therefore,

any electron wave function |ψ(F )〉 of the AB heterostructure is mainly a combination of

the corresponding wave functions |A〉 and |B〉 of the two individual atomic sheets with

different weights. It can be written as a superposition for a given field strength F

|ψ(F )〉 = αψ(F ) |A〉+ βψ(F ) |B〉 (5.11)

with complex but normalized coefficients, such that |αψ(F )|2 + |βψ(F )|2 = 1. Because of

the vdW gap between the two sheets the overlap of the functions |A〉 and |B〉 is neglected.

Their squared moduli give the weights of each sheet to that wavefunction, as illustrated in

Fig. 5.9, which presents similar qualitative behavior as the one obtained using the simple

model, Fig. 5.4. The figure also provides evidence for the complementarity between |0〉
and |1〉, which further justifies the usage of the system as a charge qubit realized in the

sheet arrangement. The representation of Eq. (5.11) can be also interpreted as a coherent
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FIGURE 5.8 – Difference between the eigenenergies E1 −E0 as a function of the vertical
electric field.

superposition of basic quantum states |A〉 and |B〉 at a given time or field strength, where

the probability amplitudes αψ, βψ to find an electron characterize a linear combination

as in a single qubit (SCHUMACHER, 1995). In a linear approximation around the state of

maximum delocalization, considering it to be exactly at the unbiased case, one finds for

the biased ZrSe2/SnSe2 heterostructure

{
|α0(F )|2
|β0(F )|2

}
=

{
|β1(F )|2
|α1(F )|2

}
=

1

2

(
1∓ 2.9[Å/V]F

)
. (5.12)

The states |ψ(F )〉 of Eq. 5.11 can be described as a Bloch vector in the standard Bloch

sphere representation, where the mixing coefficients are described by spherical coordinates

with angles θ and φ as

α = cos(θ/2)

β = eiφ sin(θ/2) (5.13)

The polar angle θ can be calculated as

θ = 2 arccos(|α|) = 2 arcsin(|β|). (5.14)

For the considered values of the electric field, the Bloch vector lies in the shaded area

depicted in the inset of Fig. 5.9, which corresponds to the interval between θ ≈ 45o and

θ ≈ 135o. Considering |F | < 0.1V/Å, where the linear approximation introduces just a

small error, the vector lies in the dark gray area in the inset of Fig. 5.9.
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5.3.3 Usage as qubit:

A general state |ψ〉 on this two-level system for a given field F can be expanded in the

energy eigenvector basis as |ψ〉 = ξ |0〉+ η |1〉. Considering that |0〉 = α0 |A〉+ β0 |B〉 and

|1〉 = α1 |A〉+ β1 |B〉, the expansion in the A/B basis will be given by |ψ〉 = αψ |A〉+ βψ |B〉,
where

αψ = ξα0 + ηα1

βψ = ξβ0 + ηβ1 (5.15)

A possible application of this system as a quantum bit is to initialize the system in

the desired state, by choosing a suitable vertical electrical field amplitude and allowing

the system to relax to ensure the electron is in the CBM, i.e., in the state |0〉. In order to

apply single-qubit gate operations, the gate field would be set to another value, and thus

changing the two-level system’s Hamiltonian itself, since the Hamiltonian is a function

of the field strength F . If this change is made in a slow manner, the coefficients on the

eigenvectors basis ξ and η would stay the same, under the conditions of the adiabatic

theorem. Therefore, the electron would stay in state |0〉, regardless of the wavefunction

of |0〉 being different from the starting one, which implies that αψ and βψ changed. On

the other hand, if the change of the electric field is fast enough, the electron wavefunction

would stay approximately the same during the whole process, i.e., αψ and βψ would stay

FIGURE 5.9 – Weights |αψ|2 (red) and |βψ|2 (blue), for |ψ〉 equals |0〉 (solid lines) and |1〉
(dashed lines), as a function of the applied vertical electric field. The inset represents the
area of the Bloch sphere in which |0〉 and |1〉 are comprised for the considered electric fields
(|F | < 0.3V/Å) (light gray), and for small fields (|F | < 0.1V/Å) (dark gray) considering
a generic azimuthal angle φ. The horizontal axis indicates the direction of the vector
v̂ = cosφx̂+ sinφŷ in the xy-plane.
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constant. Together with the fact that the coefficients of the energy eigenstates in the A/B

basis change with the electric field, this implies that ξ and η would change. This opens

the possibility of moving the electron to the excited state without recurring to optical

excitations. In order to measure the resulting state, the carrier concentration in each

sheet must be measured in a time window and compared.

An example of operation would be to prepare the initial state of the system with a

strong negative field, i.e., to start with |0〉 ≈ |A〉 and |1〉 ≈ |B〉, then suddenly change the

electric field to a strongly positive one. Considering the field switch happens fast enough,

the electron state remains the same, i.e., |A〉 or |B〉, but now this state corresponds to

the opposite eigenstate of the new Hamiltonian, i.e., |1〉 or |0〉, respectively. Therefore,

by doing so, a Pauli-X quantum gate was applied to the qubit. Applying an additional

external bias in the horizontal direction in each sheet, a small carrier drift can be induced,

and by measuring the resulting currents the carrier concentration in the layers can be

compared.

Since the variation of the orbital character of a band is continuous with respect to

the crystal momentum (see Fig. 5.5), even if more than one electron is excited, we can

assume it will have approximately the same mixing coefficients as the first one. The Pauli

exclusion principle is satisfied due to the difference in the crystal momentum quantum

number. Therefore, it may be possible to perform the same operation with many elec-

trons at the same time, if the decoherence time does not decrease too much due to carrier

collisions. This would allow for a single measurement operation since the desired statis-

tics of the result would be given by the relative amplitude between the currents flowing

through each sheet. Experimental realization of the qubit should give a measure of how

the (electro)chemical potential positioning affects the decoherence time. Besides, since

∆ >> kBT , where kB is the Boltzmann constant and T is the room temperature, we

expect the system to operate at high temperatures.

5.3.4 Conduction by holes

In order to work as a qubit as proposed, the ZrSe2/SnSe2 vdW heterostructure must

have electrons in its conduction band. One easy way to produce them is to excite electrons

from the valence band via optical radiation, creating an electron-hole pair. Therefore, for

such a method, the analysis of the charge on the sheets must include the effects of the hole

wavefunction in the device operation. The following analysis does not take into account

excitonic and spin-orbit coupling effects, and thus are only general trends that might have

small deviations from the actual behavior of the system.

As indicated in Fig. 5.5, in this heterostructure, an electron in the lower CBM and a

hole at the VBM move in the opposite direction, thereby, forming a vertical dipole. This
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FIGURE 5.10 – Weights |αh|2 (red, solid line) and |βh|2 (blue, solid line), as a function of
the applied vertical electric field. The dashed lines indicate the weights for the maximum
valence band state at Γ and the dotted lines indicate the weights for the maximum valence
band state at the reciprocal space position of the VBM for F = −0.3V/Å.

will not happen for an electron in the upper conduction state |1〉.

As the field becomes more negative, the bands of material B are shifted up. At

F ≈ −0.26V/Å, a bump in its valence band is raised above the energy level of the

maximum valence band state at Γ, resulting in the VBM of the heterostructure being

shifted from Γ to a point between Γ and M, as indicated in Fig. 5.5(g). This causes a

step change in the weights αh and βh, since the characters of these states are substantially

different for this value of F , as indicated in Fig. 5.10.

The fact that the holes change their localization from one sheet to the other depending

on the electric field value makes the comparison between the electrical current of electrons

not straight forward, so engineering the (electro)chemical potential position by n-type

doping would be preferable than producing free carriers by optical absorption transitions.

5.3.5 Similar systems

The weights |αψ(F )|2 and |βψ(F )|2 are strongly related to the “natural” band disconti-

nuities ∆EC and ∆EV of the band structures of the two sheet materials A and B forming

the AB heterostructure, at least for vanishing gate field F → 0 (KODA et al., 2018). This

has been demonstrated in Fig.4 of the main text. The Anderson rule (ANDERSON, 1962)

is a first approximation to predict the alignment of the band structures of the individual

sheets in the heterostructure. Thus, they should allow predicting also other possible A

and B heterosystems for charge vdW qubits.
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TABLE 5.1 – Difference in energy between the conduction and valence bands of several
pairs of materials, i.e., the band discontinuities ∆EC and ∆EV (in eV). In green are
the systems that present a misalignment lower than 0.3 eV, in yellow the ones that are
between 0.3 eV and 0.6 eV and in red the ones that are greater than 0.6 eV. All the values
are given in eV.

The general result is that electron and hole distributions over the atomic sheets in

a heterocombination can be only significantly modified by an external vertical electric

field F for small band discontinuities ∆EC and ∆EV . Considering field strengths of the

order of F = 0.1V/Å and vdW gaps between the sheets of about d = 3Å, field-induced

modification of the band structure of energies eFd = 0.3 eV appear as observed from

Fig. 5.5. Consequently, heterocombinations with maximum band discontinuities of about

|∆EC | or |∆EV | ≈ 0.3 eV may be switched with the gate voltage.

Besides the trivial match when the materials are the same, we observe that out of the 45

possible combinations, there are 13 with matching conduction bands and 9 with matching

valence bands, as shown in Table 5.1. Moreover, between these combinations there are

only two, HfS2/ZrS2 and MoS2/WS2, with a simultaneous match between both the valence

and conduction bands. The explicit values are ∆EC = −0.22 (0.25) eV and ∆EV =

0.03 (−0.20) eV for HfSe2/ZrS2 (MoS2/WS2), indicating that both heterostructures are

of type II as also the model system ZrSe2/SnSe2.

Other extreme band alignments occur in the types II and III heterostructure cases,

the staggered-gap and broken-gap systems, respectively, where the valence band of one

material is aligned with the conduction band of the other material. Among the 45 het-

erocombinations studied only the systems ZrSe2/WSe2 and SnSe2/WSe2 approach this

situation, all of them being of type II. The CBM of ZrS2 (SnSe2) is only 0.29 (0.32) eV

above the VBM of WSe2, as shown in Table 5.2. Consequently, there should be a wave

function overlap of the conduction-band functions of the A sheet and the valence-band

functions of the B sheet. Tunneling of electrons from the B=WSe2 side into the A=ZrS2

or SnSe2 sheet should be possible.
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Under the action of a negative gate field, oriented from A to B, this tendency will be

enforced until strong tunneling of electrons from the valence band of one sheet into the

conduction band of the other happens. In the opposite field direction, the band alignment

tends toward a pronounced type II heterostructure character. Experimental studies of

vdW heterostructure devices based on the WSe2/SnSe2 combination (ROY et al., 2016)

seem to imply that efficient carrier tunneling can be obtained by applying moderate gate

voltages. This is in line with the above theoretical predictions.

TABLE 5.2 – Difference in energy between the conduction band minimum of the materials
in the columns with the valence band maximum of the materials in the rows. In green
are the systems that present a misalignment lower than 0.3 eV, in yellow the ones that
are between 0.3 eV and 0.6 eV and in red the ones that are greater than 0.6 eV. All the
values are given in eV.



6 Conclusion

In summary, we studied solid state systems focusing on their application as qubits.

We first present an experiment on a real quantum processor, through the IBM Quantum

Experience, which is an online platform that gives users in the general public access to a set

of IBM’s prototype quantum processors via the Cloud, being an example of cloud-based

quantum computing. In the experiment, we both demonstrate how quantum information

can be processed and give an example that highlights how quantum algorithms are not

just probabilistic computation. We then present a review on the use of NV− centers in

diamond as qubits, and develop a toy model for its operation that reduces the complexity

of the quantum interactions to the simplicity of a Markov chain, by assuming the validity

of rate equations, enlightened by the ideas of Einstein in its famous study of the quantum

theory of radiation. The model helps understanding how the spin configuration determines

the intensity of the irradiated light.

Understanding that the NV− center in diamond has some drawbacks due to the fact

that diamond as a host does not allow it to be integrated with other microelectronics

devices with current technology, and that it is, therefore, greatly desirable to find an

analogous system in a host material more technologically mature than diamond, we de-

velop a method to approximate quasiparticle corrections in the study of complex defects

in semiconductors, based on a methodology to correct band gaps called LDA-1/2. Since

computing time is one of the most limiting aspects of the techniques that go beyond

DFT to adequately predict properties regarding excited states, including the transition

energies, the method developed in this work greatly contributes to this field of research,

allowing the calculation of various different combinations of host materials and complex

defects, and helping in the characterization of these defects through spectroscopy. We

also presented results for the application of the proposed method to a complex-defect in

gallium nitride, which permitted us to further understand some characteristics of these

corrections. Gallium nitride was chosen as a possible host due to its large band gap and

its extensive use on the microelectronic industry. The study of defects in GaN introduced

some additional complexity, especially because it is a binary compound and because of

its wurtzite structure, which is has a lower symmetry than the diamond structure.

Similarly to a classical bit where the state of a transistor in a processor, the magneti-
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zation of a surface in a hard disk and the presence of current in a cable can all be used

to represent bits in the same computer, an eventual quantum computer is likely to use

various combinations of qubits in its design. We aimed to contribute to this matter by

proposing a new concept of a qubit, based on a spatial quantum superposition state in

the conduction bands of van der Walls heterostructures with small natural band discon-

tinuities, which we show that can be manipulated by a gate field perpendicular to the 2D

crystals. In order to better understand the physical concepts explored in vdW qubit pro-

posal, we first develop a toy model based on the dihydrogen cation H+
2 under the effects

of an axial electric field, which highlights important aspects regarding the manipulation

of the position of an electron in a double-well structure by means of an electric field and

the use of the projections on each side of the double-well as a measuring basis. Finally, we

performed rigorous ab initio calculations for the model vdW heterostructure consisting of

atomic sheets of ZrSe2 and SnSe2 for several values of the perpendicular electric field. We

obtained quantitative conduction band structures which clearly showed the feasibility of

controlling the probability of the electron being on a specific side of the heterostructure

by the external field. We proposed to use the system as a charge qubit, by proposing

possible methodologies to initialize, manipulate and measure its state. The qubit is based

in a robust electronic state, possibly does not require optical apparatus nor cryogenic

operating temperatures, and is compatible with the technology of 2D electronic devices.

Therefore, the fast and accurate method to simulate complex defects in semiconductors

and the novel concept of qubit based on gated vdW heterostructures may pave the way

for developing new physical implementations of qubits. Together with the instructive and

concise toy models here developed, this work contributed to the scientific community of

physics and engineering in the area of quantum information devices.
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JEHL, X.; SANQUER, M.; LAVIÉVILLE, R.; BOHUSLAVSKYI, H.; HUTIN, L.;
BARRAUD, S.; VINET, M.; NIQUET, Y. M.; De Franceschi, S. Electrical Spin Driving
by g -Matrix Modulation in Spin-Orbit Qubits. Physical Review Letters, vol. 120,
no. 13, p. 1–5, 2018. ISSN 10797114.

DAVIES, G.; HAMER, M. F. Optical Studies of the 1.945 eV Vibronic Band in
Diamond. Proc. Roy. Soc. Lond. A, vol. 348, no. 1653, p. 285–298, 1976. ISSN
1364-5021, 1471-2946.

DEUTSCH, D. Quantum Theory, the Church-Turing Principle and the Universal
Quantum Computer. Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences, vol. 400, no. 1818, p. 97–117, jul 1985. ISSN
1364-5021.
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Appendix A - Formulation of the

dihydrogen cation toy model

Under the Born-Oppenheimer approximation, assuming that the atomic nuclei are

fixed in position, with a specified distance R apart, the Hamiltonian for the electron is

H = − ~2

2m
∇2 − e2

4πε0

(
1

r1

+
1

r2

)
+ eFz = − ~2

2m
∇2 + 2a0E0

(
1

r1

+
1

r2

)
+ eFz (A.1)

assuming S.I. units and where a0 is the Bohr radius, E0 is the ground state energy of the

hydrogen atom, and r1 = |r1| and r2 = |r2| are the distances to the electron from the

respective protons.

Using the simplest LCAO approximation, we will consider the electron’s wavefunction

to be a linear combination between the wavefunction of the ground state of the electron

in a hydrogen atom, ψ0(r), centered in each nucleus. The ground state wavefunction of a

FIGURE A.1 – Coordinates for the mathematical formulation of the dihydrogen cation
system.



APPENDIX A. FORMULATION OF THE DIHYDROGEN CATION TOY MODEL96

hydrogen atom is (GRIFFITHS, 2004)

ψ0(r) =
e−r/a0√
πa3

0

. (A.2)

Thus, our wavefunction can be written as

ψ(r) = αψ0(r1) + βψ0(r2) = A[ψ0(r1) + λψ0(r2)], (A.3)

where α and β are the mixing coefficients, A is the normalization constant, which we can

choose to be a real number due to the non-observability of a global phase of the state,

and λ is a complex number.

In order to normalize the wavefunction, we calculate

1 = A2

[ ∫
d3r|ψ0(r1)|2] + |λ|2

∫
d3r|ψ0(r2)|2 + 2Re(λ)

∫
d3rψ0(r1)ψ0(r2)

]
, (A.4)

where Re(λ) stands for the real part of λ. The first two integrals are 1, since ψ0 itself is

normalized. The third is known as the overlap integral, and results in (GRIFFITHS, 2004)

I = 〈1|2〉 = e−R/a0
[
1 +

(
R

a0

)
+

1

3

(
R

a0

)2]
, (A.5)

where we adopted |1〉 = |ψ0(r1)〉 and |2〉 = |ψ0(r2)〉, for shortness. Therefore, in terms of

I, the square of the normalization factor A is

A2 =
1

1 + |λ|2 + 2Re(λ)I
. (A.6)

The expectation value of the energy 〈H〉 is given by

〈H〉 =
[
A
(
〈1|+ λ∗ 〈2|

)]
H
[
A
(
|1〉+ λ |2〉

)]

= A2
(
〈1 |H| 1〉+ |λ|2 〈2 |H| 2〉+ 2Re(λ) 〈0 |H| 1〉

)
. (A.7)

Writing H = T + U1 + U2 + eFz, where T = −(~2/2m)∇2 is the kinetic energy operator,

U1 = (2a0E0)(1/r1) is the coulombic potential of nucleus 1, and U2 = (2a0E0)(1/r2) is the

coulombic potential of nucleus 2, we can simplify the terms in Eq. A.7.

•The first term is given by

〈1 |H| 1〉 = 〈1 |T + U1| 1〉+ 〈1 |U2| 1〉+ eF 〈1 |z| 1〉 = E0 + 2a0E0

〈
1

∣∣∣∣
1

r1

∣∣∣∣ 1
〉
,

where we used the fact that the expectation value of z in the wavefunction 1 is zero.
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Defining D = a0 〈1 |1/r1| 1〉 (the so-called direct integral), we write

〈1 |H| 1〉 = E0 + 2E0D, (A.8)

•The second term is given by

〈2 |H| 2〉 = 〈2 |T + U2| 2〉+ 〈2 |U1| 2〉+ eF 〈2 |z| 2〉 = E0 + 2a0E0

〈
2

∣∣∣∣
1

r2

∣∣∣∣ 2
〉

+ eFR,

where we used the fact that the expectation value of z in the wavefunction 2 is R.

Since a0 〈2 |1/r2| 2〉 = a0 〈1 |1/r1| 1〉 = D, we write

〈2 |H| 2〉 = E0 + 2E0D + eFR, (A.9)

•The third and last term is given by

〈1 |H| 2〉 = 〈1 |T + U2| 2〉+ 〈1 |U1| 2〉+ eF 〈1 |z| 2〉

= E0 〈1|2〉+ 2a0E0

〈
1

∣∣∣∣
1

r1

∣∣∣∣ 2
〉

+ eF 〈1 |z| 2〉 ,

Defining ZX = 〈1 |z| 2〉, X = a0 〈1 |1/r1| 1〉 (the so-called exchange integral), and

recalling that 〈1|2〉 = I, we write

〈1 |H| 2〉 = E0I + 2E0X + ZX . (A.10)

The results for the direct and exchange integrals are the same as in the case of no

electric field, which are (GRIFFITHS, 2004)

D =
a0

R
−
(

1 +
a0

R

)
e−2R/a0 , (A.11)

and

X =

(
1 +

R

a0

)
e−R/a0 . (A.12)

Finally, we must calculate ZX .

ZX =

∫
d3rψ0(r1)zψ0(r2) =

1

πa3
0

∫
d3re−r1/a0e−r2/a0r1 cos θ

=
1

πa3
0

∫ ∫ ∫
e−r/a0e−(

√
r2+R2−2rR cos θ)/a0r3 cos θ sin θdrdθdφ

=
2

a3
0

∫ ∫
e−r/a0e−(

√
r2+R2−2rR cos θ)/a0r3 cos θ sin θdrdθ (A.13)

Let y =
√
r2 +R2 − 2rR cos θ, so that d(y2) = 2ydy = 2rR sin θdθ. Using also that
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cos θ = (r2 +R2 − y2)/(2rR), we have

ZX =
1

R2a3
0

∫ ∞

0

re−r/a0
[ ∫ r+R

|r−R|
e−y/a0y(R2 + r2 − y2)dy

]
dr

=
1

R2a3
0

∫ ∞

0

re−r/a0
[
(R2 + r2)

∫ r+R

|r−R|
ye−y/a0dy −

∫ r+R

|r−R|
y3e−y/a0dy

]
dr (A.14)

Evaluating this integral, we obtain

ZX =
R

2
e−R/a0

[
1 +

(
R

a0

)
+

1

3

(
R

a0

)2]
=
R

2
I. (A.15)

Putting all this together, Eq. A.7 becomes

〈H〉 = E0 +

(
D + 2XRe(λ) +D|λ|2

)
2E0 +

(
Re(λ)I + |λ|2

)
eFR

1 + |λ|2 + 2Re(λ)I
(A.16)

Assuming that the nuclei are fixed in space, as is the case of quantum dots or the vdW

heterostructure on a substrate, we take the partial derivative of the expectation value of

the Hamiltonian with respect to λ∗, the complex conjugate of λ, to find the maximum

and minimum points as functions of the electric field. This yields

λmax =
−eFR−

√
(eFR)2(1− I2) +

(
4(DI −X)E0

)2

eFIR + 4(DI −X)E0

λmin =
−eFR +

√
(eFR)2(1− I2) +

(
4(DI −X)E0

)2

eFIR + 4(DI −X)E0

, (A.17)

which are always real. Therefore, we may write the total energy of the system as a function

of the electric field by adding the energy of the nucleus-nucleus repulsion and the energy

of the nuclei in the electric field to 〈H〉
∣∣
λmin

, which gives

Etot = 〈H〉 − 2a0E0

R
− eFR

Etot =

(
1− 2

a0

R

)
E0 +

(
D + 2Xλmin +Dλ2

min

)
2E0 −

(
Iλmin + 1

)
eFR

1 + λ2
min + 2Iλmin

. (A.18)

The probabilities of finding the electron in atom 1 or in atom 2 are given, respectively,

by

p1 = | 〈1|ψ〉 |2 = |α + βI|2 =
(1 + Iλmin)2

1 + λ2
min + 2Iλmin

p2 = | 〈2|ψ〉 |2 = |αI + β|2 =
(I + λmin)2

1 + λ2 + 2Iλmin
(A.19)
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A major challenge in creating a quantum computer is to find a quantum system that can be used
to implement the qubits. For this purpose, deep centers are prominent candidates, and ab initio
calculations are one of the most important tools to theoretically study their properties. However,
these calculations are highly involved, due to the large supercell needed, and the computational cost
can be even larger when one goes beyond the Kohn-Sham scheme to correct the band gap problem
and achieve good accuracy. In this work, we present a method that overcomes these problems and
provides the optical transition energies as a difference of Kohn-Sham eigenvalues; and even more,
provides a complete and accurate band structure of the defect in the semiconductor. The method
is an extension of the low-cost and parameter-free DFT-1/2 approximate quasi-particle correction,
and allows it to be applied in the study of complex defects. As a benchmark, we apply the method
to the NV− center in diamond. The agreement with experiments is remarkable, with an accuracy
of 0.1 eV. The band structure agrees with the expected qualitative features of this system, and thus
provides a good intuitive physical picture by itself.

I. INTRODUCTION

One of the most exciting engineering problems of cur-
rent days is to develop a quantum computer. A quantum
computer is a computation system that makes direct use
of quantum phenomena, such as entanglement and su-
perposition, to perform operations on data. Their fun-
damental building blocks are called qubits, in analogy to
the bits present in digital computers. Quantum comput-
ers could enable us to solve complex and time-demanding
problems in a much faster way. This performance differ-
ence is not due to an eventual faster clock speed, but due
to the different kind of operations that quantum com-
puters will be able to perform with the data stored in
qubits.1

A major challenge in creating a quantum computer
is to find a quantum system that could be used to
implement the qubits. Most systems interact strongly
with their surroundings, causing decoherence and conse-
quently loss of information. In this scenario, deep centers
are prominent.2 They are point defects in a semiconduc-
tor or insulating crystal that bind electrons to a local-
ized region. Consequently, most characteristics of their
electronic states resembles the ones of single atoms or
molecules. Additionally, deep centers are fixed in space
by the surrounding crystal, in contrast to some other pro-
posals that require additional systems, like the magneto-
optical traps for ultracold atoms.

A deep center in diamond, known as negatively
charged nitrogen-vacancy center (NV− center),3 has been
strongly considered for such applications, since it has
many desirable characteristics: its spin can be optically
polarized, manipulated with microwaves, optically mea-
sured in an on-demand fashion at the single defect level,
and also have a huge coherence time, achieving the order

of milliseconds.4

Although NV− centers in diamond have all the desir-
able characteristics for a qubit, diamond as a host is not
ideal, since it makes device construction and design with
current technology really challenging due to its high me-
chanical resistance and small chemical reactivity.4 There-
fore, it is desirable to find deep centers with NV-like prop-
erties in semiconductor hosts that are more technologi-
cally mature, and a systematic search has been initiated.5

To predict theoretically whether a system is suitable to
implement a qubit, first principles calculations based on
density functional theory (DFT) are often used. How-
ever, in order to achieve enough accuracy, the calcula-
tions are usually highly involved because one needs to use
a large supercell and one must go beyond the Kohn-Sham
scheme to better describe it, due to the underestimation
of the quasi-particle band gap in standard DFT calcu-
lations. Hence, it is desirable to develop a fast method
that can be employed on this systematic search for NV−

like systems. A good choice is the LDA-1/2 (LDA mi-
nus half ), developed by Ferreira, Marques and Teles,6,7

which introduces approximate quasi-particle corrections
and has accurate predictions, while keeping the same
computational cost of the standard LDA approach. The
method also works with the more modern GGA function-
als, in which case it is called GGA-1/2. Hence, to avoid
unnecessary particularization, we call it DFT-1/2.

In this paper, we extend the DFT-1/2 method to cal-
culate the optical transition energies between the defect
levels. We demonstrate that it is possible to determine
the optical transition energies directly from the Kohn-
Sham band structure, against the usual procedure of tak-
ing the difference between two total-energy calculations.
Our proposal is benchmarked by applying it to the NV−

center in diamond, whose transition energies have already
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been experimentally determined. The method allows for
a systematic search for deep centers, since it has as a fi-
nal result a complete band structure which we can use
to accurately analyze the system both qualitative and
quantitatively. Moreover, despite the specific nature of
its initial motivation, this method is a general procedure,
and can be used to study any system with optical tran-
sition energies between levels within the band gap.

II. RETROSPECT FOR THE NV− CENTER IN
DIAMOND

Point defects are usually stable in different charge con-
figurations, depending on the Fermi level position. The
NV center has two different charge configurations, NV0

and NV−, and only the latter has the desired proper-
ties to be used as a qubit.3 Fortunately, nitrogen doping
places the Fermi level inside the range where the nega-
tively charged defect is stable.8

The NV center consists in a substitutional nitrogen
atom adjacent to a carbon vacancy, presenting a C3v

point symmetry. An instructive and useful model is to
consider the defect as an effective molecule.9,10 This ap-
proach, known as “molecular model for defects” consists
in making symmetry adapted linear combinations of the
dangling bonds around the vacancy to construct molec-
ular orbitals. It has the implicit assumption that the
electrons bound to the defect are localized around it and
are not “spilling over” from the vacancy into the en-
tire crystal.9,11 The states are labeled using the Mulliken
symbols. Lower case letters indicate the single-particle
states, while capital letters label the many-body states.

Since each dangling bond from the three carbon atoms
surrounding the vacancy contributes with one electron,

FIG. 1. (color online) Schematic representation of the defect
states and their occupation on the ground state of the NV−

center in diamond. Spin up levels are on the left of the figure,
while spin down levels are on the right. There are two distinct
levels with a1 geometry, which are labeled in crescent order
of energy with a number on the left. The double-degenerate
level e is indicated with a broken line.

and the overlapping nitrogen lone pair has other two elec-
trons, we conclude that the neutral NV center would have
five electrons and, consequently, the NV− would have six,
which would be accommodated in the defect energy lev-
els.

We note that the defect has states within the band
gap that are spin dependent, a consequence of the fact
that this defect breaks the spatial inversion symmetry
of the crystal. The electronic occupation for the ground
state of the NV− center is shown in Fig. 1. It can be
obtained by filling the lowest energy states with the cor-
responding spin state (spin up on the left side, spin down
on the right side). This leaves us with four spin-up and
two spin-down electrons, hence the spins in the ground
state do not cancel out and we have a total effective spin
S = 1, i.e. the ground state is a triplet. This fact is of
central importance in the application of the NV− center
as a qubit, since it is the spin that is used to store the
quantum information.

When electromagnetic radiation of 2.18 eV (569 nm,
green light) is applied,12 as depicted in Fig 2, there is a
resonant excitation to the first excited state. This can be
understood in light of Fig. 1 as promoting the spin down
electron in the state 2a1↓ to one of the excited states ex↓
or ey↓. Note that this is the first possible optical excita-
tion of the system, since changes in spin are forbidden at
the first order. Another important fact concerning this
transition is that it is possible to excite the system with-
out exciting electrons neither from the valence band to
the defect nor from the defect to the conduction band,
because the defect levels are far apart from the Valence
Band Maximum (VBM) and the Conduction Band Min-
imum (CBM). If the levels were shallower, it would be
possible to excite electrons into or outside the defect lev-
els, what would compromise its operation as a qubit.

Considering the multi-electronic system, both the
ground state and the excited state are triplets. How-
ever, the excited state transforms as the E symmetry
representation, in contrast with the ground state, which
transforms as A2. This difference in symmetry of the
wave function impacts the geometry of the defect. After
a transition, the structure relaxes to the new equilibrium
geometry, and since the movement of the ions is orders
of magnitude slower than the electronic excitation, it is
a good approximation to consider that the absorption
and emission corresponds to vertical transitions (Fig 2).
The photon emission then occurs in the geometry of the
excited state, and the difference in energy between the
excited state and the ground state in this configuration
is 1.76 eV (704 nm, red light).12 The difference in energy
between the excited and ground states in their respec-
tive relaxed geometries is called the Zero Phonon Line
(ZPL), and is also indicated in Fig 2. This considerable
difference in the wavelength enables to easily separate the
photons of the pumping laser from the photons emitted
by the center by using a dichroic mirror (which reflects
one wavelength and transmits the other), as in confocal
microscopy.
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It is important to mention that the DFT approach
and the defect molecular model are complementary to
each other. These two theoretical methods have their
complementary strengths and weaknesses, and only their
combined application can give us a good picture of the
observed phenomena.3

III. THE DFT-1/2 LOCAL CORRECTION TO
DEFECT LEVELS

The most important tools to support the search for
suitable deep centers for quantum computing applica-
tions are the ab initio computational techniques based
on DFT, since they allow us to determine macroscopic
properties based only on the system’s atomic composi-
tion and approximate geometry. Many attempts have
been made to find such defects to find such kind of
defects in several semiconductors, as in some silicon-

FIG. 2. (color online) Schematic configuration coordinate di-
agram for the NV− center. The curves represent the energy
of the defect as a function of the displacement of the atoms,
measured by a generalized coordinate q, for both its many-
body electronic ground and excited states. The minima of
these curves correspond to the relaxed geometry of each case.
The vertical transitions (green and red arrows) correspond to
the peaks in the optical absorption and emission curves, re-
spectively. The transition between the minima is called the
zero-phonon line (ZPL), and is the same for both the emission
and absorption. The Stokes (ES) and anti-Stokes (EaS) shift
energies are also indicated.

carbide polytypes,4,8 wurtzite aluminum nitride13 and
zinc-blende gallium nitride.14

Two major concerns can make first-principle calcula-
tions of defects a difficult task. First, the usually em-
ployed periodic boundary conditions to study solids re-
quire a large supercell to minimize the interaction be-
tween the defect and its images. Second, the Kohn-
Sham band gap is underestimated when compared to
experiments,15,16 which also impairs reliable calculations
of defect levels above the valence band.17 The method
which correct Kohn-Sham eigenvalues, such as hybrid
functionals18,19 and the GW approach,20 usually raise
the computational cost.21 The DFT-1/2 method is a good
alternative due to its nice accuracy and low computa-
tional cost.

LDA-1/2 and GGA-1/2 have already been successfully
used to study point defects22,23 by applying a formalism
developed by Rinke et al.17 In these cases, the interest
was to study the defect formation and transition energies,
both quantities related to the electronic ground state in
several charge states, such that what was changing was
the number of electrons binded to the defect as a function
of the Fermi level position. In the present case, the charge
of the defect is always the same and our interest is to
study the energies associated to the optical excitation of
an electron between intra-defect energy levels.

The DFT-1/2 method generalizes the Slater’s transi-
tion state technique for solids, introducing approximate
quasi-particle corrections which lead to accurate band
gap calculations. The details of the method are given in
Refs. 6,7. In this work, we present an overview to contex-
tualize the reader who is not familiar with the method.
The approach relies on the Janak’s theorem24 and on
the approximately linear dependence of the Kohn-Sham
eigenvalues with its own occupation. It is possible to use
these two facts to show that, in the case of atoms and
molecules, the value of the highest occupied eigenvalue
with half-ionization is the system ionization energy with
a remarkable agreement with experimental data.25

In semiconductors and insulators, the quasi-particle
band gap is defined as the energy difference between the
ionization energy and the electronic affinity. Thus, this
scheme allows us to compute the band gap as the differ-
ence between the Kohn-Sham eigenvalues, by introducing
a half-hole on the VBM and a half-electron on the CBM.

Since Bloch states are delocalized, they do not accu-
rately describe neither the hole on the valence band nor
the electron on the conduction band.7 Therefore, instead
of changing the occupations of the levels, this contribu-
tion in energy is added to the potential of the atoms
itself. It is assumed that this potential has the same for-
mat of the atomic self-energy potential VS , which can be
simply computed as the difference between the neutral
atomic potential and the half-ionized atomic potential.6

Considering that the localized hole state will be close to
the VBM and the localized electron state will be close to
the CBM, we must find which atomic orbitals contribute
to each of these levels and in what proportion (the or-
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FIG. 3. (color online) (a) Schematic representation of a Kohn-
Sham band structure with the Valence Band Maximum and
Conduction Band Minimum with half-occupation, as consid-
ered on the DFT-1/2 method; and (b) Extension of the DFT-
1/2 scheme for defect levels within the band gap.

bital character of the levels). This is quantified by the
projection of these Kohn-Sham orbitals onto the atomic
orbitals. A schematic representation of this scenario is
given on Fig. 3(a).

In what follows, we describe an extension of the
method for defect levels, which resembles in many as-
pects the scheme for the bulk (Fig. 3(b)). Due to the
increased complexity of the orbital character of the lev-
els, a more precise notation is necessary. Indeed, this is
also a formalization of some ideas that already have been
introduced in recent publications.26–28

We must add the potential that corresponds to the
removal of half-electron from the occupied level (labeled
α). In the usual and simple cases for the bulk, the Kohn-
Sham state ψα(kVBM) is composed only of the valence
level p orbital of the ion. However, in the case of the
defect, we can have a set of atoms contributing to this
level, in which case we must remove a smaller fraction
of electron from each of them, proportionally to their
contribution. Hence, for each atomic orbital φ of each
atom X, we subtract a fraction ξX,φ of an electron given
by

ξXφ = charXφ
[
ψα(Γ)

]
× 1

2
, (1)

where charXφ[ψ(k)] corresponds to the proportion of the
atomic orbital φ of atom X to the orbital character of
the Kohn-Sham state ψ at point k. Similarly, we must
add the potential that corresponds to the addition of half-
electron to the unoccupied level (labeled β). The fraction
ζXφ to be added to the orbital φ of atom X is given by:

ζXφ = charXφ
[
ψβ(Γ)

]
× 1

2
. (2)

The projection on atomic orbitals is usually a standard
output of DFT codes, and is computed as the projection
of the wave functions onto spherical harmonics within

spheres of an atomic species-dependent radius around
each ion. Considering the fact that some small contri-
butions of atoms far from the defect are going to be ne-
glected, it is important to normalize the orbital charac-
ters of the considered atoms with respect to their sum,
ensuring that

∑

Xφ

ξXφ =
∑

Xφ

ζXφ =
1

2
. (3)

The self-energy potentials are considered spherically
symmetric, so the dependence on r will be omitted on

our notation. We compute the components V XφS of the
self-energy potential VS as

V XφS,α = VX
(
f0
)
− VX

(
f0 − ξXφ

)
(4)

V XφS,β = −
[
VX
(
f0
)
− VX

(
f0 − ζXφ

)]
, (5)

where f0 is the occupation of the orbital φ of atom X on
the ground state, and VX(f) is the potential of atom X
with occupation f . Adding the components, we find

V XφS = VX
(
f0 − ζXφ

)
− VX

(
f0 − ξXφ

)
. (6)

Before adding the potentials to the Kohn-Sham po-
tential, we must multiply them by a trimming function
ΘXφ(r) to avoid the divergence that would arise from the
sum of the 1/r coulombic tails of these potentials.6,7 Θ
is a smooth step-like function, defined as

Θ(r) =





[
1−

(
r

CUT

)8]3
if r ≤ CUT

0 if r > CUT

(7)

which depends on a parameter called CUT . This param-
eter have to be determined variationally, by extremizing
the band gap.6,7 Thus, the trimmed potential is

V̂ XφS = ΘXφV
Xφ
S . (8)

It is common to have situations in which the CUT
depends only on the atom. In these cases, it is useful to
define

V̂ XS = ΘX

∑

φ

V XφS , (9)

and then we would have a single correction to the poten-
tial per atomic specie, with a single value of CUT to be
determined variationally.

The most noticeable difference between the usual DFT-
1/2 and the procedure here introduced is that in the lat-
ter exactly half electron is transferred between the defect
levels, being divided amongst the atoms which contribute
to them. In solids, the total number of transferred elec-
trons scales with the number of atoms in the cell, since
the corrections are applied as if each atom contributed
independently to the composition of the VBM and the
CBM.
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FIG. 4. (color online) (a) 215-atom supercell used to simulate the defect avoiding spurious interactions among images. (b)
NV− center and its surrounding atoms, representing the vacancy as a gray shadow. In both images, Brown, bluish-gray and red
circles represent, respectively, the host carbon atoms, the nitrogen atom, and the three carbon atoms neighboring the vacancy.
The images have been produced with help of the VESTA software.29

IV. COMPUTATIONAL DETAILS

The calculations have been performed within the DFT
combined with the Generalized Gradient Approxima-
tion of Perdew-Burke-Ernzerhof (GGA-PBE) exchange-
correlation potential30 using the Viena Ab-initio Simula-
tion Package (VASP).31,32 The electronic wave functions
have been expanded using the projected augmented wave
(PAW) method.33,34

In order to build a good approximation for the super-
cell structure, first the structure of a single cubic unit
cell has been relaxed. The next step is to replicate it side
by side to build a 3x3x3 supercell, with a total of 216
atoms, and a new structural relaxation has been carried
out. Then, the defect has been created by arbitrarily
removing one of the atoms of the supercell and replac-
ing one of the carbon atoms neighboring the resulting
vacancy by a nitrogen (Fig. 4). The number of elec-
trons has been increased by one, since we are interested
in the negatively charged NV center. As the last step be-
fore applying the DFT-1/2 corrections, a spin-polarized
structural relaxation has been performed for both the
electronic ground state and first excited state by setting
the corresponding energy levels occupations, to obtain
and store the respective resulting atomic positions. It
is noteworthy that, according to Fig. 1, the first excited
state corresponds to promote the highest occupied spin-
down state (2a1↓) to the lowest unoccupied spin-down

states (ex↓ and ey↓), with half electron in each one of the
states, to symmetrize the occupation.

In the geometry optimization of the pure cells, i.e. cells
that do not include the defect, the volume and shape of
the cell and all the atoms have been allowed to relax until
the magnitude of all forces is smaller than 10−3 eV/Å.
In order to save computational effort and relying on the
fact that only the nearest atoms should be affected by
the defect, the volume and shape of the cell have been
fixed for the relaxation of the supercells with the defect,
and the same stopping criteria as before has been used.

Following the Monkhorst-Pack scheme,35 the Brillouin
zone (BZ) has been sampled by a 19x19x19 grid of k-
points for the single cubic cell and by only the gamma
point for the supercells. The plane wave basis set has
been considered within a cutoff energy of 530 eV. The
electronic convergence criterion has been that the total
(free) energy and the band structure energy change be-
tween two steps are both smaller than 10−7 eV. In the
simulation of the negatively charged defect, a positive
uniform background charge has been added. The nu-
meric errors of our calculations have been estimated to
be smaller than 50 meV.



ACCURATE EXCITATION ENERGIES OF THE NV−... 6

FIG. 5. (color online) CUT determination for the DFT-1/2 corrections. The corrections have been performed sequentially for
each geometry, in the following order: CBulk, N, CDefect. (a) Band gap of pure diamond as a function of the CUT for the 0.25
electron removal from the CBulk atoms’ 2p orbital; (b) Transition energy on the ground state’s geometry as a function of the
CUT of the nitrogen atom, with CBulk corrected; (c) Transition energy on the ground state’s geometry as a function of the
CUT of the CDefect atoms, with CBulk and N corrected; (d) Transition energy on the excited state’s geometry as a function
of the CUT of the nitrogen atom, with CBulk corrected; (e) Transition energy on the excited state’s geometry as a function of
the CUT of the CDefect atoms, with CBulk and N corrected.

V. APPLYING THE LOCAL CORRECTION TO
THE NV− CENTER IN DIAMOND

The usual procedure to calculate the optical transi-
tion energies of defect levels is to take the difference in
total energy between each electronic configuration. Be-
cause this concerns excitations, one needs to go beyond
the Kohn-Sham scheme, by carrying out e.g. HSE calcu-
lations, to avoid the usual band gap problem.17 Hence,
one must go beyond standard DFT, as in HSE calcula-
tions, in order to obtain a more accurate result for these
energies. The inconvenient is the increase in the compu-
tational cost. Therefore, it would be of interest to ap-
ply the less demanding DFT-1/2 formalism. However, as
implemented, this method does not compute a physically
meaningful total energy, but the optical transition ener-
gies can be accurately obtained as the difference between
their corresponding Kohn-Sham eigenvalues, as demon-
strated in appendix A.

We must obtain the difference between the state 2a1↓
and the double-degenerated state e↓ in each geometry,
according to Fig. 1. We may write

EAb = ε(e↓; qgnd)− ε(2a1↓; qgnd) (10)

EEm = ε(e↓; qexc)− ε(2a1↓; qexc), (11)

where ε(ψ; q) corresponds to the eigenvalue of the state

TABLE I. Orbital character of the defect levels and fractions
of electron to be removed from and added to each potential
(denoted by ξ and ζ, respectively).

Ground State Excited State

Xφ 2a1↓ ξXφ ex↓+ey↓ ζXφ 2a1↓ ξXφ ex↓+ey↓ ζXφ

C2s 0.6% 0.00 3.1% 0.02 0.6% 0.00 2.2% 0.01
C2p 17.7% 0.09 30.2% 0.15 21.7% 0.11 31.1% 0.16
N2s 4.6% 0.02 0.0% 0.00 4.9% 0.02 0.0% 0.00
N2p 40.7% 0.20 0.3% 0.00 28.1% 0.14 0.3% 0.00

ψ as a function of the configuration coordinate q, which
in the current case correspond to the most stable geome-
tries in each one of the two electronic configurations, as
indicated in Fig. 2. Note that it is only possible to un-
ambiguously define these functions because the position
of the eigenvalues are considered independent of the oc-
cupation of these levels, as explained in the appendix A.
Otherwise, they would be functions of the occupation as
well.

With the relaxed geometries for both the ground and
excited states, we first separate the atoms in three types:
the carbon atoms of the bulk (CBulk), which are respon-
sible for the valence and conduction bands, the nitrogen
atom, and the carbon atoms which are the carbon va-
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FIG. 6. (color online) Supercell band structures, around the gap region and along some special high symmetry directions in
the cubic BZ, for the structural geometries of the NV- center in the (a) ground state and (b) excited state. The blue and red
lines represent, respectively, the spin-up and spin-down energy levels. The occupied states related to the defect are indicated
by ↑ and ↓ arrows. Both results have been obtained with bulk and local corrections. The direct band gap is a consequence of
the supercell band folding.

cancy next-neighbors (CDefect), whose dangling bonds
contribute to the localized defect levels. Since these types
contribute differently to the band structure, they must be
analyzed separately.

For the CBulk atoms, the same corrected potential as
the one used in the diamond unit cell is applied: due to
the perfectly covalent bonds between the carbon atoms,
the band gap of diamond is corrected by subtracting
one quarter of electron from the 2p orbital of the CBulk
atoms, as indicated in Ref. 6. The CUT of 2.5 bohr is
determined by maximizing the band gap, which gives a
gap of 5.01 eV, as shown in Fig. 5(a).

To apply the local correction to the defect, the char-
acter of the levels involved in the first optical excitation,
for both geometries, is determined by using the band
character obtained by standard PBE calculation. Ac-
cordingly, the percentage of the character contribution
is obtained by considering solely the nitrogen atom and
the carbon atoms that are the vacancy next-neighbors
(CDefect). Table I presents the orbital character of the
defect levels.

For each orbital, in each geometry, the potential of
half electron, weighted by the character of the 2a1↓ level,
must be removed, while the potential of half electron,
weighted by the character of the two states e↓, must be
added. These results are also displayed in Table I. The
CUT parameters for these corrections are determined
by maximizing the difference between the levels e↓ and
2a1↓, and we obtain the same values for the excited and
ground states, which are CUT=2.50 bohr for CDefect and
CUT=3.00 bohr for N. The curves obtained in this opti-
mization procedure are displayed in Figs. 5 (b, c, d and

e).
The maximum values obtained on Figs. 5 (c and e)

correspond, respectively, to the corrected absorption and
emission energies. The values are displayed in Table II,
together with other results and experimental data. With
their respective corrected potentials, the electronic struc-
ture is calculated for each geometry, and the corrected
band structures are displayed in Fig. 6. The energy dif-
ferences between the defect levels correspond to the opti-
cal transition energies, as indicated by the curved arrows.
The similarity of these results with the initial and sim-
ple picture of the position of the energy levels (Fig. 1) is
remarkable. A discussion about Table II and about the
band structures shown in Fig. 6 is given in Section VI.

Besides the vertical transition energies, the ZPL en-
ergy is also of experimental interest. We cannot simply
use the difference between the Kohn-Sham eigenvalues
of two different geometries to calculate it, since it would
not take into account the energy difference due to the
displacement of the ions. Nonetheless, we can indirectly
calculate EZPL. This is possible because the values for
the total energy of the two geometries in their electronic
ground state are correctly calculated by the standard
DFT. Hence, we can obtain the anti-Stokes shift as

EaS = E(fgnd, qexc)− E(fgnd, qgnd), (12)

where E(f, q) is the energy as a function of the electronic
configuration f and the geometry q, and use it together
with the vertical transitions to determine the remaining
desired energies as

EZPL = EEm + EaS (13)

ES = EAbs − EZPL, (14)
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as one can readily see from Fig. 2.
Finally, the steps to be followed to apply the DFT-1/2

method for defect levels, introducing Local Corrections,
can be summarized:

1. Perform the structural relaxation of the unit cell;

2. Determine the VBM and CBM orbital characters;

3. Build the supercell and perform a new structural
relaxation;

4. Set and build the defect in the supercell, perform
the structural relaxation with the electronic ground
state occupancy and determine the orbital charac-
ter of the selected defect levels;

5. Perform the structural relaxation with the elec-
tronic excited state occupancy and determine the
orbital character of the selected defect levels;

6. Calculate the system total energy in the electronic
ground state in the excited state geometry, and de-
termine the anti-Stokes shift (EaS) using Eq. 12;

7. Determine the CUT parameter for the bulk atoms
by maximizing the band gap;

8. Determine the CUT parameter for the defect atoms
by maximizing the energy difference between the
selected defect levels, and determine the energies
of the vertical transitions (EAb and EEm); and

9. Determine the remaining energies (EZPL and ES)
using Eq. 13 and Eq. 14, respectively.

10. Optional: Calculate the corrected band structures.

VI. RESULTS AND DISCUSSION

The diamond band gap value of 5.01 eV obtained
with GGA-1/2 approach shows a remarkable improve-
ment over the value of 4.1 eV obtained with standard
GGA, when compared to the exprimental value of 5.47
eV.36 Even though the result has a considerably better
agreement with the experimental value, it is still slightly
underestimated, not as good as the corrections to other
materials.7 This is due to the fact that the VBM and
CBM of diamond’s band structure have almost the same
orbital character and the usual procedure6,7 is not able
to appropriately correct the conduction band.

The corrected band structures of Fig. 6 present all the
expected general features for the NV− center in diamond:
the defect 1a1 energy levels are resonant inside the va-
lence band; the relative positions of the spin up and spin
down levels are correct; and the first possible valence
band excitation is high energetic enough, avoiding an
electron transition from the valence band to the defect
2a1↓ energy levels when the pumping laser is shined.

Although the e↓ energy levels appear to be closer to the
conduction band than expected, due to the slightly un-
derestimated band gap, the transition energies analysis
is not impaired. On the other hand, since the gap un-
derestimation is a diamond particular case, as explained

TABLE II. Vertical absorption (EAb), verti-
cal emission (EEm), zero-phonon line (EZPL),
Stokes shift (ES) and anti-Stokes shift (EaS) en-
ergies calculated by different methods, compared
to the experimental data12 (all values in eV).

EAb EEm EaS EZPL ES

GGA
(total energy)

1.90 1.55 0.16 1.71 0.19

GGA
(eigenvalues)

1.86 1.55 0.16∗ 1.72† 0.15‡

GGA-1/2
(eigenvalues)

2.18 1.68 0.16∗ 1.85† 0.33‡

HSE0637

(total energy)
2.21 1.74 0.22 1.96 0.26

Exp.12 2.18 1.76 0.19 1.95 0.24

∗ Calculated using Eq. 12
† Calculated using Eq. 13
‡ Calculated using Eq. 14

above, the method is expected to display still better
performance when applied to other semiconductors, like
the III-V ones, in which the application of the DFT-1/2
method presents very accurate results.7

The usual procedure to obtain the optical transition
energies via DFT is to take the difference between the
total energy values of the excited and ground states. The
correction method proposed here allows these quantities
to be extracted directly from the Kohn-Sham eigenval-
ues. To verify this claim, Table II presents results ob-
tained with the usual total energy approach and with
the eigenvalues approach, without the quasi-particle cor-
rections. Even though these values are not supposed to
correspond to the quasi-particle band gap, they should
agree with each other, and in fact, they do within a pre-
cision of 0.04 eV.

The results obtained when using the DFT-1/2 approx-
imate quasi-particle corrections are in close agreement
with the reported HSE results and experimental data. It
is observed that, in the GGA-1/2 results, the relative er-
ror of the Stokes and anti-Stokes shifts are greater than
that of the other energies, as expected, since both shifts
values result from the difference between two values very
close to each other.

In our development, it has been argued that stan-
dard DFT approach may provide a good estimate of
the anti-Stokes shift, and this is supported by the re-
sults from Ref. 37 that reports both GGA-PBE and HSE
calculations of the anti-Stokes shift for a larger super-
cell (4ax4ax4a) than the one used here, and they indeed
shown that GGA slightly outperformed HSE.

VII. CONCLUSION

The Kohn-Sham eigenvalues, with quasi-particle cor-
rections, have been related to the experimental transi-
tion energies by introducing a new procedure, that allows
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the application of the low computational effort method
DFT-1/2 to correct the relative position of the deep de-
fect energy levels. Since this method sharply reduces the
computational cost when compared with other methods,
it allows a systematic search for new defects in semicon-
ductor hosts for several applications, including the search
for new solid state qubits. In particular, the NV− center
in diamond has been considered as a benchmark of the
method, and also as an example of its application. In
this test case, an accuracy of 0.1 eV have been reached
in comparison with experimental data.
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Appendix A: Obtaining differences in total energy
through eigenvalues

Consider a situation in which we want to obtain the
energy of an electronic transition between the localized

states ψα and ψβ through the use of a supercell DFT cal-
culation. Defining the total energy E in terms of partial
occupations

E = T + U [n] + Exc[n], (A1)

n
(
~r
)

=
∑

i

fi
∣∣ψi
(
~r
)∣∣2, (A2)

where n is the electron number density, ψi is the i -th
Kohn-Sham orbital and fi its occupancy, T is the kinetic
energy, U is the classical Coulomb energy, and Exc is the
exchange-correlation functional.

Considering all but ψα and ψβ levels’ occupations are
fixed, we have E=E(fα, fβ). The Janak’s theorem states
that

∂E

∂fi
= εi, (A3)

where εi is the i -th Kohn-Sham eigenvalue. In a large
supercell, the excitation of a localized electron is a small
perturbation on the Kohn-Sham operators. Thus, the
position of the eigenvalues remain unchanged and we can
immediately integrate to obtain

E(1, fβ)− E(0, fβ) = εα,∀fβ (A4)
and

E(fα, 1)− E(fα, 0) = εβ ,∀fα. (A5)

We can express the transition energy of interest as

∆Etrans = E(0, 1)− E(1, 0) = εβ − εα, (A6)

i.e. the transition energy can be computed as the differ-
ence between the Kohn-Sham eigenvalues.
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